1
|
Jia Y, Liu Y, Yang H, Yao F. Adenoid cystic carcinoma: insights from molecular characterization and therapeutic advances. MedComm (Beijing) 2024; 5:e734. [PMID: 39263605 PMCID: PMC11387731 DOI: 10.1002/mco2.734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
Adenoid cystic carcinoma (ACC) is a malignant tumor primarily originating from the salivary glands, capable of affecting multiple organs. Although ACC typically exhibits slow growth, it is notorious for its propensity for neural invasion, local recurrence, and distant metastasis, making it a particularly challenging cancer to treat. The complexity of ACC's histological and molecular features poses significant challenges to current treatment modalities, which often show limited effectiveness. Recent advancements in single-cell RNA-sequencing (scRNA-seq) have begun to unravel unprecedented insights into the heterogeneity and subpopulation diversity within ACC, revealing distinct cellular phenotypes and origins. This review delves into the intricate pathological and molecular characteristics of ACC, focusing on recent therapeutic advancements. We particularly emphasize the insights gained from scRNA-seq studies that shed light on the cellular landscape of ACC, underscoring its heterogeneity and pathobiology. Moreover, by integrating analyses from public databases, this review proposes novel perspectives for advancing treatment strategies in ACC. This review contributes to the academic understanding of ACC by proposing novel therapeutic approaches informed by cutting-edge molecular insights, paving the way for more effective, personalized therapeutic approaches for this challenging malignancy.
Collapse
Affiliation(s)
- Yunxuan Jia
- Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yupeng Liu
- Department of Thoracic Surgery Tumor Hospital Affiliated to Nantong University Nantong Tumor Hospital Nantong China
| | - Haitang Yang
- Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Feng Yao
- Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
2
|
Sheikhshabani SH, Modarres P, Ghafouri‐Fard S, Amini‐Farsani Z, Khodaee L, Shaygan N, Amini‐Farsani Z, Omrani MD. Meta-analysis of microarray data to determine gene indicators involved in cisplatin resistance in non-small cell lung cancer. Cancer Rep (Hoboken) 2024; 7:e1970. [PMID: 38351531 PMCID: PMC10864718 DOI: 10.1002/cnr2.1970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Lung cancer is a major cause of cancer-related mortality worldwide, with a 5-year survival rate of approximately 22%. Cisplatin is one of the standard first-line chemotherapeutic agents for non-small cell lung cancer (NSCLC), but its efficacy is often limited by the development of resistance. Despite extensive research on the molecular mechanisms of chemoresistance, the underlying causes remain elusive and complex. AIMS We analyzed three microarray datasets to find the gene signature and key pathways related to cisplatin resistance in NSCLC. METHODS AND RESULTS We compared the gene expression of sensitive and resistant NSCLC cell lines treated with cisplatin. We found 274 DEGs, including 111 upregulated and 163 downregulated genes, in the resistant group. Gene set enrichment analysis showed the potential roles of several DEGs, such as TUBB2B, MAPK7, TUBAL3, MAP2K5, SMUG1, NTHL1, PARP3, NTRK1, G6PD, PDK1, HEY1, YTHDF2, CD274, and MAGEA1, in cisplatin resistance. Functional analysis revealed the involvement of pathways, such as gap junction, base excision repair, central carbon metabolism, and Notch signaling in the resistant cell lines. CONCLUSION We identified several molecular factors that contribute to cisplatin resistance in NSCLC cell lines, involving genes and pathways that regulate gap junction communication, DNA damage repair, ROS balance, EMT induction, and stemness maintenance. These genes and pathways could be targets for future studies to overcome cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
| | - Paratoo Modarres
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Soudeh Ghafouri‐Fard
- Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
| | - Zeinab Amini‐Farsani
- Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
| | - Lavin Khodaee
- Department of Biotechnology and Plant BreedingIslamic Azad University Science and Research BranchTehranIran
| | - Nasibeh Shaygan
- Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
| | - Zahra Amini‐Farsani
- Bayesian Imaging and Spatial Statistics Group, Institute of StatisticsLudwig‐Maximilian‐Universität MünchenMunichGermany
- Department of StatisticsLorestan UniversityKhorramabadIran
| | - Mir Davood Omrani
- Urogenital Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Joshi P, Waghmare S. Molecular signaling in cancer stem cells of tongue squamous cell carcinoma: Therapeutic implications and challenges. World J Stem Cells 2023; 15:438-452. [PMID: 37342225 PMCID: PMC10277967 DOI: 10.4252/wjsc.v15.i5.438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 04/07/2023] [Indexed: 05/26/2023] Open
Abstract
Head and neck squamous cell carcinoma is the seventh most common cancer worldwide with high mortality rates. Amongst oral cavity cancers, tongue carcinoma is a very common and aggressive oral cavity carcinoma. Despite the implementation of a multimodality treatment regime including surgical intervention, chemo-radiation as well as targeted therapy, tongue carcinoma shows a poor overall 5-year survival pattern, which is attributed to therapy resistance and recurrence of the disease. The presence of a rare population, i.e., cancer stem cells (CSCs) within the tumor, are involved in therapy resistance, recurrence, and distant metastasis that results in poor survival patterns. Therapeutic agents targeting CSCs have been in clinical trials, although they are unable to reach into therapy stage which is due to their failure in trials. A more detailed understanding of the CSCs is essential for identifying efficient targets. Molecular signaling pathways, which are differentially regulated in the CSCs, are one of the promising targets to manipulate the CSCs that would provide an improved outcome. In this review, we summarize the current understanding of molecular signaling associated with the maintenance and regulation of CSCs in tongue squamous cell carcinoma in order to emphasize the need of the hour to get a deeper understanding to unravel novel targets.
Collapse
Affiliation(s)
- Priyanka Joshi
- Stem Cell Biology Group, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
| | - Sanjeev Waghmare
- Stem Cell Biology Group, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
| |
Collapse
|
4
|
Gao J, Li Y, Zou X, Lei T, Xu T, Chen Y, Wang Z. HEY1-mediated cisplatin resistance in lung adenocarcinoma via epithelial-mesenchymal transition. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:18. [PMID: 36396748 DOI: 10.1007/s12032-022-01886-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Lung cancer is one of the most common malignancies and the leading cause of cancer-related death in the world. In patients with advanced lung adenocarcinoma who are negative for driver gene mutations, platinum-based chemotherapy represented by cisplatin remain the standard of care. Therefore, studying the mechanism behind inevitable cisplatin resistance in lung adenocarcinoma is still important. In this study, the potentially related differential expression gene for cisplatin resistance in lung adenocarcinoma was screened in the GEO database. The expression level of HEY1 in cell lines of lung adenocarcinoma was detected and HEY1 expression was up-regulated in cisplatin-resistant lung adenocarcinoma tissues and cell lines A549/DDP. Patients with high HEY1 expression have poor prognosis after cisplatin therapy. Gain and loss function assays uncovered that HEY1 could regulate the cisplatin sensitivity of NSCLC cells. In vivo experiments have confirmed that silence of HEY1 expression can induce cisplatin resistance, and epithelial-mesenchymal transition (EMT) changes occur during this process. Mechanically, HEY1 silencing significantly up-regulated E-cadherin expression and down-regulated Vimentin in A549/DDP cells. While up-regulation of HEY1 resulted in down-regulation of E-cadherin and up-regulation of Vimentin in A549 cells. Immunohistochemical experiments confirmed that E-cadherin was significantly decreased, and Vimentin expression was significantly up-regulated in cisplatin-resistant lung adenocarcinoma tissues. HEY1 can mediate the occurrence of cisplatin-acquired resistance in lung adenocarcinoma, and the possible mechanism is to regulate the EMT. The results of this study can provide a new direction and target for clinical research on the reversal of cisplatin resistance in lung adenocarcinoma.
Collapse
Affiliation(s)
- Jin Gao
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China.,Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing, Medical University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yadong Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 30#, Nanjing, 210029, Jiangsu, People's Republic of China.,Department of Thoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Xiaoteng Zou
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Tianyao Lei
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China
| | - Yijiang Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 30#, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan Road 121#, Nanjing, 210011, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Zhang J, Shen Q, Xia L, Zhu X, Zhu X. DYNLT3 overexpression induces apoptosis and inhibits cell growth and migration via inhibition of the Wnt pathway and EMT in cervical cancer. Front Oncol 2022; 12:889238. [PMID: 35965516 PMCID: PMC9372440 DOI: 10.3389/fonc.2022.889238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
The role of the dynein light chain Tctex-type 3 (DYNLT3) protein in the biological behavior of cervical cancer and its relative molecular mechanisms were investigated. Immunohistochemical staining was used to detect DYNLT3 protein expression in cervical cancer tissues. Cell proliferation and apoptosis rates and invasiveness and migratory capacities were determined by CCK-8 assays, BrdU staining assays and colony formation assays, fluorescence activated cell sorting (FACS), wound healing assays, and Transwell invasion assays of cervical cancer cells after DYNLT3 modulation. The expression levels of Wnt signaling pathway- and EMT-related proteins were examined by Western blotting. Furthermore, the effects of DYNLT3 on the tumorigenicity and metastasis of cervical cancer in nude mice were analyzed by performing immunohistochemistry, and we found that the expression level of the DYNLT3 protein was higher in human normal cervical tissues than in cervical cancer tissues. Overexpression of DYNLT3 obviously attenuated the proliferation, migration and invasion of CaSki and SiHa cells, and promoted cell apoptosis. Upregulation of DYNLT3 expression markedly decreased the expression of Wnt signaling pathway-related proteins (Dvl2, Dvl3, p-LRP6, Wnt3a, Wnt5a/b, Naked1, Naked2, β-catenin and C-Myc) and EMT-related proteins (N-cadherin, SOX2, OCT4, vimentin and Snail), and increased the expression of E-cadherin and Axin1. However, the opposite results were observed after down-regulation of DYNLT3 expression. Up-regulation of DYNLT3 expression significantly inhibited tumor growth in a nude mouse model, while downregulation of DYNLT3 showed the opposite results. In addition, the major metastatic site of cervical cancer cells in mice was the lung, and downregulation of DYNLT3 expression increased cancer metastasis in vivo. DYNLT3 exerted inhibitory effects on cervical cancer by inhibiting cell proliferation, migration and invasion, promoting cell apoptosis in vitro, and inhibiting tumor growth and metastasis in vivo, possibly by suppressing the Wnt signaling pathway and the EMT.
Collapse
Affiliation(s)
- Jianan Zhang
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Shen
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Xia
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuejie Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
de Fátima Laureano Martins J, Souza-Silva TGD, Paula HADA, Rafael VDC, Sartori SSR, Ferreira CLDLF. Yacon-based product improves intestinal hypertrophy and modulates the production of glucagon-like peptide-1 in postmenopausal experimental model. Life Sci 2021; 291:120245. [PMID: 34952042 DOI: 10.1016/j.lfs.2021.120245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022]
Abstract
AIMS The progressive decline in estrogen level puts postmenopausal women at a higher risk of developing cardiometabolic diseases. Thus, we evaluated the potential beneficial effects of yacon-based product (YBP) on glycemic profile and intestinal health of postmenopausal rats. METHODS Eighty Wistar rats were randomized into 4 ovariectomized (OVX) groups or 4 celiotomized groups treated with a standard diet (SD) or diet supplemented with YBP at 6% of fructooligosaccharide (FOS)/inulin. KEY FINDINGS The continued consumption of YBP at 6% of FOS/inulin did not generate liver damage and gastrointestinal disorders. Rats fed with YBP displayed higher food consumption, but this did not increase the body weight gain, abdominal circumference and body fat percentual of OVX rats. Furthermore, we also found that the FOS/inulin fermentation present in the YBP resulted in cecum, ileum and colon crypts hypertrophy and increased the lactic acid levels in the cecal content. We observed an increase of glucagon-like peptide-1 (GLP-1) immunoreactive cells and there was no change in the glucose and insulin plasma levels of YBP-fed OVX rats. SIGNIFICANCE Our findings indicated that YBP when consumed previously and after the menopausal period has important effects on the morphology and function of intestinal mucous of rats and has potential to modulate indirectly the glycemic and insulinemic profiles, weight gain and body fat percentual in the hypoestrogenic period through metabolites produced in the fermentation process.
Collapse
Affiliation(s)
| | - Thaiany Goulart de Souza-Silva
- Institute of Biological Science, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | - Viviane da Cruz Rafael
- Department of Food Technology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
7
|
Kałafut J, Czerwonka A, Anameriç A, Przybyszewska-Podstawka A, Misiorek JO, Rivero-Müller A, Nees M. Shooting at Moving and Hidden Targets-Tumour Cell Plasticity and the Notch Signalling Pathway in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:6219. [PMID: 34944837 PMCID: PMC8699303 DOI: 10.3390/cancers13246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is often aggressive, with poor response to current therapies in approximately 40-50% of the patients. Current therapies are restricted to operation and irradiation, often combined with a small number of standard-of-care chemotherapeutic drugs, preferentially for advanced tumour patients. Only very recently, newer targeted therapies have entered the clinics, including Cetuximab, which targets the EGF receptor (EGFR), and several immune checkpoint inhibitors targeting the immune receptor PD-1 and its ligand PD-L1. HNSCC tumour tissues are characterized by a high degree of intra-tumour heterogeneity (ITH), and non-genetic alterations that may affect both non-transformed cells, such as cancer-associated fibroblasts (CAFs), and transformed carcinoma cells. This very high degree of heterogeneity likely contributes to acquired drug resistance, tumour dormancy, relapse, and distant or lymph node metastasis. ITH, in turn, is likely promoted by pronounced tumour cell plasticity, which manifests in highly dynamic and reversible phenomena such as of partial or hybrid forms of epithelial-to-mesenchymal transition (EMT), and enhanced tumour stemness. Stemness and tumour cell plasticity are strongly promoted by Notch signalling, which remains poorly understood especially in HNSCC. Here, we aim to elucidate how Notch signal may act both as a tumour suppressor and proto-oncogenic, probably during different stages of tumour cell initiation and progression. Notch signalling also interacts with numerous other signalling pathways, that may also have a decisive impact on tumour cell plasticity, acquired radio/chemoresistance, and metastatic progression of HNSCC. We outline the current stage of research related to Notch signalling, and how this pathway may be intricately interconnected with other, druggable targets and signalling mechanisms in HNSCC.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alinda Anameriç
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Julia O. Misiorek
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
- Western Finland Cancer Centre (FICAN West), Institute of Biomedicine, University of Turku, 20101 Turku, Finland
| |
Collapse
|
8
|
Pu Y, Lei M, Chen Y, Huang Y, Zhang L, Chen J, Zhang Y, Shao X, Liu L, Chen J. Hey1 promotes migration and invasion of melanoma cells via GRB2/PI3K/AKT signaling cascade. J Cancer 2021; 12:6979-6988. [PMID: 34729100 PMCID: PMC8558658 DOI: 10.7150/jca.60974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/18/2021] [Indexed: 11/05/2022] Open
Abstract
Increasing evidence indicates that Notch signaling regulates multiple intracellular biological processes in malignant melanoma. Whereas how Notch signaling is transduced to influence melanoma cell behaviors remains largely elusive. Here we show that the Notch signaling downstream target Hey1 promotes migration and invasion of melanoma cells via the GRB2/PI3K/AKT pathway. First, bioinformatics tools, immunohistochemistry, and Western blotting analysis showed that the expression of Hey1 is increased in melanoma. Then, both in vivo and in vitro experiments showed that Hey1 promotes the malignant behaviour of the melanoma cells. High-throughput RNA-sequencing analysis revealed that inhibition of Hey1 results in decreased GRB2 expression in melanoma cells. Last, functional experiments confirmed that Hey1 positively regulates GRB2/PI3K/AKT pathway to influence migration and invasion of melanoma cells. In summary, our results suggest that Hey1 promotes the invasion and metastasis of melanoma cells by regulating GRB2/PI3K/AKT pathway. Our study provides potential therapeutics in tumor biology.
Collapse
Affiliation(s)
- Yihuan Pu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,Key Laboratory of Biorheological Science and Technology of the Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yangmei Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanran Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lingzhao Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiayi Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yujie Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Shao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lin Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|