1
|
Sindeeva OA, Kozyreva ZV, Abdurashitov AS, Sukhorukov GB. Engineering colloidal systems for cell manipulation, delivery, and tracking. Adv Colloid Interface Sci 2025; 340:103462. [PMID: 40037017 DOI: 10.1016/j.cis.2025.103462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Men-made colloidal systems are widely presented across various aspects of biomedical science. There is a strong demand for engineering colloids to tailor their functions and properties to meet the requirements of biological and medical tasks. These requirements are not only related to size, shape, capacity to carry bioactive compounds as drug delivery systems, and the ability to navigate via chemical and physical targeting. Today, the more challenging aspects of colloid design are how the colloidal particles interact with biological cells, undergo internalization by cells, how they reside in the cell interior, and whether we can explore cells with colloids, intervene with biochemical processes, and alter cell functionality. Cell tracking, exploitation of cells as natural transporters of internalized colloidal carriers loaded with drugs, and exploring physical methods as external triggers of cell functions are ongoing topics in the research agenda. In this review, we summarize recent advances in these areas, focusing on how colloidal particles interact and are taken up by mesenchymal stem cells, dendritic cells, neurons, macrophages, neutrophils and lymphocytes, red blood cells, and platelets. The engineering of colloidal vesicles with cell membrane fragments and exosomes facilitates their application. The perspectives of different approaches in colloid design, their limitations, and obstacles on the biological side are discussed.
Collapse
Affiliation(s)
- Olga A Sindeeva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia.
| | - Zhanna V Kozyreva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia
| | - Arkady S Abdurashitov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia; Life Improvement by Future Technologies (LIFT) Center, Bolshoy Boulevard 30, Moscow 121205, Russia
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia.
| |
Collapse
|
2
|
Premer C, Hare JM, Yuan SY, Wilson JW. Mesenchymal stem/stromal cells as a therapeutic for sepsis: a review on where do we stand? Stem Cell Res Ther 2025; 16:245. [PMID: 40375314 DOI: 10.1186/s13287-025-04371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/28/2025] [Indexed: 05/18/2025] Open
Abstract
Sepsis is one of the leading causes of morbidity and mortality in the United States and Worldwide despite advances in quick recognition and early antibiotics, fluids, and vasopressors. Mesenchymal stem/stromal cells (MSCs) have gained attention as a biologic therapy given their unique anti-inflammatory, immunomodulatory, and anti-bacterial characteristics. MSCs have had success in treating a range of diseases, however limited clinical trials exist specifically for MSC use in sepsis. This article reviews the properties of MSCs that make them favorable for treating sepsis, as well as the current state of clinical trials. All clinical trials presented here demonstrated MSC safety, with a mixture of efficacy results and a heterogeneity of trial methods. Ultimately, MSCs are a promising novel therapeutic for sepsis, however a consensus in cell source, dosage, preparation, and delivery needs to be further investigated for MSCs to transition from bench to bedside and become a true therapeutic for sepsis.
Collapse
Affiliation(s)
- Courtney Premer
- Department of Emergency Medicine, McGaw Medical Center of Northwestern University, 211 E Ontario Street, Suite 200, Chicago, IL, 60611, USA.
| | - Joshua M Hare
- Department of Medicine, Division of Cardiovascular Medicine, Interdisciplinary Stem Cell Institute (ISCI), University of Miami, Miami, FL, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jason W Wilson
- Department of Emergency Medicine, Morsani College of Medicine, Tampa General Hospital, University of South Florida, Tampa, FL, USA
| |
Collapse
|
3
|
Mallis P. Hypoxic endometrial epithelial cell-derived microRNAs effectively regulate the regenerative properties of mesenchymal stromal cells. World J Stem Cells 2025; 17:102482. [PMID: 40308881 PMCID: PMC12038455 DOI: 10.4252/wjsc.v17.i4.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/06/2025] [Accepted: 03/05/2025] [Indexed: 04/23/2025] Open
Abstract
Endometrial thickness plays an important role in successful embryo implantation and normal pregnancy achievement. However, a thin endometrial layer (≤ 7 mm) may have a significant effect on microenvironment tolerance, which is further related to successful embryo implantation or conception, either naturally or after assisted reproductive technology. Moreover, this microenvironment tolerance shift induces hypoxic damage to endometrial epithelial cells (EECs), which results in altered signaling biomolecule secretion, including exosome content. In the context of endometrium regeneration, mesenchymal stromal cells (MSCs) and umbilical cord (UC)-derived stem cells have been applied in clinical trials with promising results. It has been recently shown that exosomes derived from hypoxic damaged EECs directly contribute to the increased migratory and regenerative abilities of UCs and MSCs. Specifically, microRNAs in exosomes secreted by the hypoxic damaged EECs, such as miR-214-5p and miR-21-5p, play a crucial role in the migratory capacity and differentiation ability of MSCs to EECs mediated through the signal transducer and activator of transcription 3 (STAT3) signaling pathway. Taking into consideration the above information, UC-MSCs may be considered as a modern intervention for endometrial regeneration.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Attikí, Greece.
| |
Collapse
|
4
|
Gregersen E, Kresse JC, Atay JCL, Boysen AT, Nejsum P, Eijken M, Nørregaard R. Comparative study of systemic and local delivery of mesenchymal stromal cells for the treatment of chronic kidney disease. Front Cell Dev Biol 2024; 12:1456416. [PMID: 39234562 PMCID: PMC11373351 DOI: 10.3389/fcell.2024.1456416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
Renal fibrosis, characterized by excessive extracellular matrix accumulation, leads to a progressive decline of renal function and is a common endpoint of chronic kidney disease (CKD). Current treatments primarily focus on managing underlying diseases, offering limited direct intervention for the fibrotic process. This study explores the anti-fibrotic potential of human adipose-derived mesenchymal stromal cells (MSCs) and their derived extracellular vesicles (EVs) in the context of CKD, emphasizing the effects of systemic versus local delivery methods. Preconditioned MSCs (Pr-MSCs) were treated with TNF-α and IFN-γ to enhance their immunomodulatory capabilities, and demonstrated significant anti-fibrotic effects in vitro, reducing mRNA expression of fibrosis markers in TGF-β stimulated HKC-8 cells. Our in vivo findings from a murine unilateral ureteral obstruction (UUO) model of CKD showed that local deliveries of Pr-MSCs reduced collagen deposition and increased expression of the anti-inflammatory cytokine IL-10. Systemic administration of Pr-MSCs did not show any significant effect on UUO-induced injury. In addition, EVs did not replicate the anti-fibrotic effects observed with their parent cells, suggesting that soluble proteins or metabolites secreted by Pr-MSCs might be the primary mediators of the anti-fibrotic and immunomodulatory effects. This study provides critical insights into the therapeutic efficacy of MSCs, highlighting the importance of delivery methods and the potential of preconditioning strategies in enhancing MSC-based therapies for renal fibrosis.
Collapse
Affiliation(s)
- Emil Gregersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Anders Toftegaard Boysen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Marco Eijken
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Choudhury S, Madhu Krishna M, Sen D, Ghosh S, Basak P, Das A. 3D Porous Polymer Scaffold-Conjugated KGF-Mimetic Peptide Promotes Functional Skin Regeneration in Chronic Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37418-37434. [PMID: 38980153 DOI: 10.1021/acsami.4c02633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The re-epithelialization process gets severely dysregulated in chronic nonhealing diabetic foot ulcers/wounds. Keratinocyte growth factor (KGF or FGF-7) is the major modulator of the re-epithelialization process, which regulates the physiological phenotypes of cutaneous keratinocytes. The existing therapeutic strategies of growth factor administration have several limitations. To overcome these, we have designed a KGF-mimetic peptide (KGFp, 13mer) based on the receptor interaction sites in murine KGF. KGFp enhanced migration and transdifferentiation of mouse bone marrow-derived MSCs toward keratinocyte-like cells (KLCs). A significant increase in the expression of skin-specific markers Bnc1 (28.5-fold), Ck5 (14.6-fold), Ck14 (26.1-fold), Ck10 (187.7-fold), and epithelial markers EpCam (23.3-fold) and Cdh1 (64.2-fold) was associated with the activation of ERK1/2 and STAT3 molecular signaling in the KLCs. Further, to enhance the stability of KGFp in the wound microenvironment, it was conjugated to biocompatible 3D porous polymer scaffolds without compromising its active binding sites followed by chemical characterization using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, dynamic mechanical analysis, and thermogravimetry. In vitro evaluation of the KGFp-conjugated 3D polymer scaffolds revealed its potential for transdifferentiation of MSCs into KLCs. Transplantation of allogeneic MSCGFP using KGFp-conjugated 3D polymer scaffolds in chronic nonhealing type 2 diabetic wounds (db/db transgenic, 50-52 weeks old male mice) significantly enhanced re-epithelialization-mediated wound closure rate (79.3%) as compared to the control groups (Untransplanted -22.4%, MSCGFP-3D polymer scaffold -38.5%). Thus, KGFp-conjugated 3D porous polymer scaffolds drive the fate of the MSCs toward keratinocytes that may serve as potential stem cell delivery platform technology for tissue engineering and transplantation.
Collapse
Affiliation(s)
- Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Mangali Madhu Krishna
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
- Department of Polymers and Functional Materials, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Debanjan Sen
- BCDA College of Pharmacy and Technology, Hridaypur, Kolkata 700127, West Bengal, India
| | - Subhash Ghosh
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
- Department of Organic Synthesis and Process Chemistry, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Pratyay Basak
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
- Department of Polymers and Functional Materials, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
6
|
Couto PS, Stibbs DJ, Rotondi MC, Takeuchi Y, Rafiq QA. Scalable manufacturing of gene-modified human mesenchymal stromal cells with microcarriers in spinner flasks. Appl Microbiol Biotechnol 2023; 107:5669-5685. [PMID: 37470820 PMCID: PMC10439856 DOI: 10.1007/s00253-023-12634-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 07/21/2023]
Abstract
Due to their immunomodulatory properties and in vitro differentiation ability, human mesenchymal stromal cells (hMSCs) have been investigated in more than 1000 clinical trials over the last decade. Multiple studies that have explored the development of gene-modified hMSC-based products are now reaching early stages of clinical trial programmes. From an engineering perspective, the challenge lies in developing manufacturing methods capable of producing sufficient doses of ex vivo gene-modified hMSCs for clinical applications. This work demonstrates, for the first time, a scalable manufacturing process using a microcarrier-bioreactor system for the expansion of gene-modified hMSCs. Upon isolation, umbilical cord tissue mesenchymal stromal cells (UCT-hMSCs) were transduced using a lentiviral vector (LV) with green fluorescent protein (GFP) or vascular endothelial growth factor (VEGF) transgenes. The cells were then seeded in 100 mL spinner flasks using Spherecol microcarriers and expanded for seven days. After six days in culture, both non-transduced and transduced cell populations attained comparable maximum cell concentrations (≈1.8 × 105 cell/mL). Analysis of the culture supernatant identified that glucose was fully depleted after day five across the cell populations. Lactate concentrations observed throughout the culture reached a maximum of 7.5 mM on day seven. Immunophenotype analysis revealed that the transduction followed by an expansion step was not responsible for the downregulation of the cell surface receptors used to identify hMSCs. The levels of CD73, CD90, and CD105 expressing cells were above 90% for the non-transduced and transduced cells. In addition, the expression of negative markers (CD11b, CD19, CD34, CD45, and HLA-DR) was also shown to be below 5%, which is aligned with the criteria established for hMSCs by the International Society for Cell and Gene Therapy (ISCT). This work provides a foundation for the scalable manufacturing of gene-modified hMSCs which will overcome a significant translational and commercial bottleneck. KEY POINTS: • hMSCs were successfully transduced by lentiviral vectors carrying two different transgenes: GFP and VEGF • Transduced hMSCs were successfully expanded on microcarriers using spinner flasks during a period of 7 days • The genetic modification step did not cause any detrimental impact on the hMSC immunophenotype characteristics.
Collapse
Affiliation(s)
- Pedro Silva Couto
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Dale J. Stibbs
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Marco C. Rotondi
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, Gower Street, London, WC1E 6BT UK
- Biotherapeutics and Advanced Therapies, Scientific Research and Innovation, Medicines, and Healthcare Products Regulatory Agency, South Mimms, EN6 3QG UK
| | - Qasim A. Rafiq
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
7
|
Girard P, Dulong J, Duisit J, Mocquard C, Le Gallou S, Chaput B, Lupon E, Watier E, Varin A, Tarte K, Bertheuil N. Modified nanofat grafting: Stromal vascular fraction simple and efficient mechanical isolation technique and perspectives in clinical recellularization applications. Front Bioeng Biotechnol 2022; 10:895735. [PMID: 36177178 PMCID: PMC9513316 DOI: 10.3389/fbioe.2022.895735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Nanofat grafting (NG) is a simple and cost-effective method of lipoaspirates with inter-syringe passages, to produce stromal vascular fraction (SVF) and isolate adipose-derived stem cells (ASCs). This represents a tremendous interest in the future clinical needs of tissue engineering. In this study, we optimized the NG technique to increase the yield of ASC extractions. Methods: We analyzed three groups of SVF obtained by 20, 30, and 40 inter-syringe passages. The control group was an SVF obtained by enzymatic digestion with Celase. We studied their cell composition by flow cytometry, observed their architecture by confocal microscopy, and observed immunomodulatory properties of the ASCs from each of the SVFs by measuring inflammatory markers of macrophages obtained by an ASC monocyte co-culture. Results: We have established the first cell mapping of the stromal vascular fraction of adipose tissue. The results showed that SVF obtained by 20 inter-syringe passages contains more statistically significant total cells, more cells expressing the ASC phenotype, more endothelial cells, and produces more CFU-F than the SVF obtained by 30 and 40 passages and by enzymatic digestion. Confocal microscopy showed the presence of residual adipocytes in SVF obtained by inter-syringe passages but not by enzymatic digestion. The functional study indicates an orientation toward a more anti-inflammatory profile and homogenization of their immunomodulatory properties. Conclusion: This study places mechanically dissociated SVF in the center of approaches to easily extract ASCs and a wide variety and number of other progenitor cells, immediately available in a clinical setting to provide both the amount and quality of cells required for decellularized tissues.
Collapse
Affiliation(s)
- Paul Girard
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
- INSERM U1236, University of Rennes I, Rennes, France
- SITI Laboratory, CHU Rennes, Rennes, France
- *Correspondence: Paul Girard, ; Nicolas Bertheuil,
| | - Joelle Dulong
- INSERM U1236, University of Rennes I, Rennes, France
- SITI Laboratory, CHU Rennes, Rennes, France
| | - Jerome Duisit
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
| | - Camille Mocquard
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
- INSERM U1236, University of Rennes I, Rennes, France
- SITI Laboratory, CHU Rennes, Rennes, France
| | - Simon Le Gallou
- INSERM U1236, University of Rennes I, Rennes, France
- SITI Laboratory, CHU Rennes, Rennes, France
| | - Benoit Chaput
- Department of Plastic, Reconstructive and Aesthetic Surgery, Rangueil Hospital, CHU Toulouse, Toulouse, France
- INSERM U1031 STROMALab, Toulouse, France
| | - Elise Lupon
- Department of Plastic, Reconstructive and Aesthetic Surgery, Rangueil Hospital, CHU Toulouse, Toulouse, France
| | - Eric Watier
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
| | | | - Karin Tarte
- INSERM U1236, University of Rennes I, Rennes, France
- SITI Laboratory, CHU Rennes, Rennes, France
| | - Nicolas Bertheuil
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
- INSERM U1236, University of Rennes I, Rennes, France
- SITI Laboratory, CHU Rennes, Rennes, France
- *Correspondence: Paul Girard, ; Nicolas Bertheuil,
| |
Collapse
|
8
|
Fayon A, Helle D, Francius G, Vincourt JB, Regnault V, Dumas D, Menu P, El Omar R. Characterization of an Innovative Biomaterial Derived From Human Wharton’s Jelly as a New Promising Coating for Tissue Engineering Applications. Front Bioeng Biotechnol 2022; 10:884069. [PMID: 35769101 PMCID: PMC9234273 DOI: 10.3389/fbioe.2022.884069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
The extracellular matrix (ECM) offers the opportunity to create a biomaterial consisting of a microenvironment with interesting biological and biophysical properties for improving and regulating cell functions. Animal-derived ECM are the most widely used as an alternative to human tissues that are of very limited availability. However, incomplete decellularization of these tissues presents a high risk of immune rejection and disease transmission. In this study, we present an innovative method to extract human ECM derived from the Wharton’s jelly (WJ-ECMaa) of umbilical cords as a novel biomaterial to be used in tissue engineering. WJ-ECMaa was very efficiently decellularized, suggesting its possible use in allogeneic conditions. Characterization of its content allowed the identification of type I collagen as its main component. Various other matrix proteins, playing an important role in cell adhesion and proliferation, were also detected. WJ-ECMaa applied as a surface coating was analyzed by fluorescent labeling and atomic force microscopy. The results revealed a particular arrangement of collagen fibers not previously described in the literature. This biomaterial also presented better cytocompatibility compared to the conventional collagen coating. Moreover, it showed adequate hemocompatibility, allowing its use as a surface with direct contact with blood. Application of WJ-ECMaa as a coating of the luminal surface of umbilical arteries for a use in vascular tissue engineering, has improved significantly the cellularization of this surface by allowing a full and homogeneous cell coverage. Taking these results together, our novel extraction method of human ECM offers a very promising biomaterial with many potential applications in tissue engineering such as the one presented direct in vascular tissue engineering. Further characterization of the composition and functionality will help explore the ways it can be used in tissue engineering applications, especially as a scaffold or a surface coating.
Collapse
Affiliation(s)
- Adrien Fayon
- Université de Lorraine, CNRS, IMoPA, Nancy, France
| | | | - Gregory Francius
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environnement, Université de Lorraine, Nancy, France
| | - Jean-Baptiste Vincourt
- Université de Lorraine, CNRS, IMoPA, Nancy, France
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Nancy, France
| | | | | | - Patrick Menu
- Université de Lorraine, CNRS, IMoPA, Nancy, France
- *Correspondence: Patrick Menu,
| | | |
Collapse
|
9
|
Mallis P, Chatzistamatiou T, Dimou Z, Sarri EF, Georgiou E, Salagianni M, Triantafyllia V, Andreakos E, Stavropoulos-Giokas C, Michalopoulos E. Mesenchymal stromal cell delivery as a potential therapeutic strategy against COVID-19: Promising evidence from in vitro results. World J Biol Chem 2022; 13:47-65. [PMID: 35432769 PMCID: PMC8966500 DOI: 10.4331/wjbc.v13.i2.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic, which was initiated in December 2019. COVID-19 is characterized by a low mortality rate (< 6%); however, this percentage is higher in elderly people and patients with underlying disorders. COVID-19 is characterized by mild to severe outcomes. Currently, several therapeutic strategies are evaluated, such as the use of anti-viral drugs, prophylactic treatment, monoclonal antibodies, and vaccination. Advanced cellular therapies are also investigated, thus representing an additional therapeutic tool for clinicians. Mesenchymal stromal cells (MSCs), which are known for their immunoregulatory properties, may halt the induced cytokine release syndrome mediated by SARS-CoV-2, and can be considered as a potential stem cell therapy. AIM To evaluate the immunoregulatory properties of MSCs, upon stimulation with COVID-19 patient serum. METHODS MSCs derived from the human Wharton's Jelly (WJ) tissue and bone marrow (BM) were isolated, cryopreserved, expanded, and defined according to the criteria outlined by the International Society for Cellular Therapies. Then, WJ and BM-MSCs were stimulated with a culture medium containing 15% COVID-19 patient serum, 1% penicillin-streptomycin, and 1% L-glutamine for 48 h. The quantification of interleukin (IL)-1 receptor a (Ra), IL-6, IL-10, IL-13, transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF)-a, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and indoleamine-2,3-dioxygenase (IDO) was performed using commercial ELISA kits. The expression of HLA-G1, G5, and G7 was evaluated in unstimulated and stimulated WJ and BM-MSCs. Finally, the interactions between MSCs and patients' macrophages were established using co-culture experiments. RESULTS Thawed WJ and BM-MSCs exhibited a spindle-shaped morphology, successfully differentiated to "osteocytes", "adipocytes", and "chondrocytes", and in flow cytometric analysis were characterized by positivity for CD73, CD90, and CD105 (> 95%) and negativity for CD34, CD45, and HLA-DR (< 2%). Moreover, stimulated WJ and BM-MSCs were characterized by increased cytoplasmic granulation, in comparison to unstimulated cells. The HLA-G isoforms (G1, G5, and G7) were successfully expressed by the unstimulated and stimulated WJ-MSCs. On the other hand, only weak expression of HLA-G1 was identified in BM-MSCs. Stimulated MSCs secreted high levels of IL-1Ra, IL-6, IL-10, IL-13, TGF-β1, FGF, VEGF, PDGF, and IDO in comparison to unstimulated cells (P < 0.05) after 12 and 24 h. Finally, macrophages derived from COVID-19 patients successfully adapted the M2 phenotype after co-culturing with stimulated WJ and BM-MSCs. CONCLUSION WJ and BM-MSCs successfully produced high levels of immunoregulatory agents, which may efficiently modulate the over-activated immune responses of critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | | | - Zetta Dimou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Eirini-Faidra Sarri
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Eleni Georgiou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Maria Salagianni
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | | | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| |
Collapse
|
10
|
Mallis P, Sokolis DP, Katsimpoulas M, Kostakis A, Stavropoulos-Giokas C, Michalopoulos E. Improved Repopulation Efficacy of Decellularized Small Diameter Vascular Grafts Utilizing the Cord Blood Platelet Lysate. Bioengineering (Basel) 2021; 8:118. [PMID: 34562940 PMCID: PMC8467559 DOI: 10.3390/bioengineering8090118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The development of functional bioengineered small-diameter vascular grafts (SDVGs), represents a major challenge of tissue engineering. This study aimed to evaluate the repopulation efficacy of biological vessels, utilizing the cord blood platelet lysate (CBPL). METHODS Human umbilical arteries (hUAs, n = 10) were submitted to decellularization. Then, an evaluation of decellularized hUAs, involving histological, biochemical and biomechanical analysis, was performed. Wharton's Jelly (WJ) Mesenchymal Stromal Cells (MSCs) were isolated and characterized for their properties. Then, WJ-MSCs (1.5 × 106 cells) were seeded on decellularized hUAs (n = 5) and cultivated with (Group A) or without the presence of the CBPL, (Group B) for 30 days. Histological analysis involving immunohistochemistry (against Ki67, for determination of cell proliferation) and indirect immunofluorescence (against activated MAP kinase, additional marker for cell growth and proliferation) was performed. RESULTS The decellularized hUAs retained their initial vessel's properties, in terms of key-specific proteins, the biochemical and biomechanical characteristics were preserved. The evaluation of the repopulation process indicated a more uniform distribution of WJ-MSCs in group A compared to group B. The repopulated vascular grafts of group B were characterized by greater Ki67 and MAP kinase expression compared to group A. CONCLUSION The results of this study indicated that the CBPL may improve the repopulation efficacy, thus bringing the biological SDVGs one step closer to clinical application.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Dimitrios P. Sokolis
- Laboratory of Biomechanics, Center for Experimental Surgery, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Michalis Katsimpoulas
- Center of Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (M.K.); (A.K.)
| | - Alkiviadis Kostakis
- Center of Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (M.K.); (A.K.)
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| |
Collapse
|