1
|
Carregari VC, Reis-de-Oliveira G, Crunfli F, Smith BJ, de Souza GF, Muraro SP, Saia-Cereda VM, Vendramini PH, Baldasso PA, Silva-Costa LC, Zuccoli GS, Brandão-Teles C, Antunes A, Valença AF, Davanzo GG, Virgillio-da-Silva JV, Dos Reis Araújo T, Guimarães RC, Chaim FDM, Chaim EA, Kawagosi Onodera CM, Ludwig RG, Saccon TD, Damásio ARL, Leiria LOS, Vinolo MAR, Farias AS, Moraes-Vieira PM, Mori MA, Módena JLP, Martins-de-Souza D. Diving into the proteomic atlas of SARS-CoV-2 infected cells. Sci Rep 2024; 14:7375. [PMID: 38548777 PMCID: PMC10978884 DOI: 10.1038/s41598-024-56328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
The COVID-19 pandemic was initiated by the rapid spread of a SARS-CoV-2 strain. Though mainly classified as a respiratory disease, SARS-CoV-2 infects multiple tissues throughout the human body, leading to a wide range of symptoms in patients. To better understand how SARS-CoV-2 affects the proteome from cells with different ontologies, this work generated an infectome atlas of 9 cell models, including cells from brain, blood, digestive system, and adipocyte tissue. Our data shows that SARS-CoV-2 infection mainly trigger dysregulations on proteins related to cellular structure and energy metabolism. Despite these pivotal processes, heterogeneity of infection was also observed, highlighting many proteins and pathways uniquely dysregulated in one cell type or ontological group. These data have been made searchable online via a tool that will permit future submissions of proteomic data ( https://reisdeoliveira.shinyapps.io/Infectome_App/ ) to enrich and expand this knowledgebase.
Collapse
Affiliation(s)
- Victor C Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela Fabiano de Souza
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Stéfanie Primon Muraro
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Veronica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Pedro H Vendramini
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Paulo A Baldasso
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lícia C Silva-Costa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline F Valença
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gustavo G Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - João Victor Virgillio-da-Silva
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil
| | | | - Raphael Campos Guimarães
- Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, São Paulo, Brazil
| | | | - Elinton Adami Chaim
- Department of Surgery, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Raissa Guimarães Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tatiana Dandolini Saccon
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André R L Damásio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Osório S Leiria
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil
| | - Marco Aurélio R Vinolo
- Obesity and Comorbidities Research Center (OCRC), Campinas, São Paulo, Brazil
- Hematology-Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alessandro S Farias
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, 05403-000, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, 04501-000, Brazil
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, São Paulo, Brazil
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José Luiz P Módena
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, 04501-000, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Nascimento JM, Saia-Cereda VM, Zuccoli GS, Reis-de-Oliveira G, Carregari VC, Smith BJ, Rehen SK, Martins-de-Souza D. Proteomic signatures of schizophrenia-sourced iPSC-derived neural cells and brain organoids are similar to patients' postmortem brains. Cell Biosci 2022; 12:189. [PMID: 36451159 PMCID: PMC9714120 DOI: 10.1186/s13578-022-00928-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Schizophrenia is a complex and severe neuropsychiatric disorder, with a wide range of debilitating symptoms. Several aspects of its multifactorial complexity are still unknown, and some are accepted to be an early developmental deficiency with a more specifically neurodevelopmental origin. Understanding the timepoints of disturbances during neural cell differentiation processes could lead to an insight into the development of the disorder. In this context, human brain organoids and neural cells differentiated from patient-derived induced pluripotent stem cells are of great interest as a model to study the developmental origins of the disease. RESULTS Here we evaluated the differential expression of proteins of schizophrenia patient-derived neural progenitors (NPCs), early neurons, and brain organoids in comparison to healthy individuals. Using bottom-up shotgun proteomics with a label-free approach for quantitative analysis, we found multiple dysregulated proteins since NPCs, modified, and disrupted the 21DIV neuronal differentiation, and cerebral organoids. Our experimental methods have shown impairments in pathways never before found in patient-derived induced pluripotent stem cells studies, such as spliceosomes and amino acid metabolism; but also, those such as axonal guidance and synaptogenesis, in line with postmortem tissue studies of schizophrenia patients. CONCLUSION In conclusion, here we provide comprehensive, large-scale, protein-level data of different neural cell models that may uncover early events in brain development, underlying several of the mechanisms within the origins of schizophrenia.
Collapse
Affiliation(s)
- Juliana Minardi Nascimento
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil ,grid.472984.4D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ 22281-100 Brazil ,grid.411249.b0000 0001 0514 7202Department of Biosciences, Institute Science and Society, Federal University of São Paulo (UNIFESP), Santos, SP Brazil
| | - Verônica M. Saia-Cereda
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Giuliana S. Zuccoli
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Guilherme Reis-de-Oliveira
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Victor Corasolla Carregari
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Bradley J. Smith
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Stevens K. Rehen
- grid.472984.4D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ 22281-100 Brazil ,grid.8536.80000 0001 2294 473XInstitute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Daniel Martins-de-Souza
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil ,grid.472984.4D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ 22281-100 Brazil ,grid.450640.30000 0001 2189 2026Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico E Tecnológico (CNPq), São Paulo, Brazil ,grid.411087.b0000 0001 0723 2494Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP 13083-970 Brazil
| |
Collapse
|
3
|
Crunfli F, Carregari VC, Veras FP, Silva LS, Nogueira MH, Antunes ASLM, Vendramini PH, Valença AGF, Brandão-Teles C, Zuccoli GDS, Reis-de-Oliveira G, Silva-Costa LC, Saia-Cereda VM, Smith BJ, Codo AC, de Souza GF, Muraro SP, Parise PL, Toledo-Teixeira DA, Santos de Castro ÍM, Melo BM, Almeida GM, Firmino EMS, Paiva IM, Silva BMS, Guimarães RM, Mendes ND, Ludwig RL, Ruiz GP, Knittel TL, Davanzo GG, Gerhardt JA, Rodrigues PB, Forato J, Amorim MR, Brunetti NS, Martini MC, Benatti MN, Batah SS, Siyuan L, João RB, Aventurato ÍK, Rabelo de Brito M, Mendes MJ, da Costa BA, Alvim MKM, da Silva Júnior JR, Damião LL, de Sousa IMP, da Rocha ED, Gonçalves SM, Lopes da Silva LH, Bettini V, Campos BM, Ludwig G, Tavares LA, Pontelli MC, Viana RMM, Martins RB, Vieira AS, Alves-Filho JC, Arruda E, Podolsky-Gondim GG, Santos MV, Neder L, Damasio A, Rehen S, Vinolo MAR, Munhoz CD, Louzada-Junior P, Oliveira RD, Cunha FQ, Nakaya HI, Mauad T, Duarte-Neto AN, Ferraz da Silva LF, Dolhnikoff M, Saldiva PHN, Farias AS, Cendes F, Moraes-Vieira PMM, Fabro AT, Sebollela A, Proença-Modena JL, Yasuda CL, Mori MA, Cunha TM, Martins-de-Souza D. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc Natl Acad Sci U S A 2022. [DOI: 10.1073/pnas.2200960119 1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of “long COVID-19” syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell–derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike–NRP1 interaction. SARS-CoV-2–infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.
Collapse
Affiliation(s)
- Fernanda Crunfli
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Victor C. Carregari
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Flavio P. Veras
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Lucas S. Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Mateus Henrique Nogueira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | | | - Pedro Henrique Vendramini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | | | - Caroline Brandão-Teles
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Giuliana da Silva Zuccoli
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Guilherme Reis-de-Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Lícia C. Silva-Costa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Verônica Monteiro Saia-Cereda
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Bradley J. Smith
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Ana Campos Codo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Gabriela F de Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Stéfanie P. Muraro
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Pierina Lorencini Parise
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Daniel A. Toledo-Teixeira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | | | - Bruno Marcel Melo
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Glaucia M. Almeida
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | | | - Isadora Marques Paiva
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | | | - Rafaela Mano Guimarães
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Niele D. Mendes
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Raíssa L. Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Gabriel P. Ruiz
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Thiago L. Knittel
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Gustavo G. Davanzo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Jaqueline Aline Gerhardt
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Patrícia Brito Rodrigues
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Julia Forato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Mariene Ribeiro Amorim
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Natália S. Brunetti
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Matheus Cavalheiro Martini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Maíra Nilson Benatti
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Sabrina S. Batah
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Li Siyuan
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Rafael B. João
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Ítalo K. Aventurato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Mariana Rabelo de Brito
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Maria J. Mendes
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Beatriz A. da Costa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Marina K. M. Alvim
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - José Roberto da Silva Júnior
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Lívia L. Damião
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Iêda Maria P. de Sousa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Elessandra D. da Rocha
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Solange M. Gonçalves
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Luiz H. Lopes da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Vanessa Bettini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Brunno M. Campos
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Guilherme Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Lucas Alves Tavares
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | | | | | - Ronaldo B. Martins
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Andre Schwambach Vieira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | | | - Eurico Arruda
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | | | - Marcelo Volpon Santos
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Luciano Neder
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Stevens Rehen
- D'Or Institute for Research and Education, 04502001, Brazil
- Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, 21941590, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | | | - Paulo Louzada-Junior
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Renê Donizeti Oliveira
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Fernando Q. Cunha
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | | | - Thais Mauad
- University of São Paulo, São Paulo, 05508-220, Brazil
| | | | | | | | | | - Alessandro S. Farias
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Fernando Cendes
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Pedro Manoel M. Moraes-Vieira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Alexandre T. Fabro
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Adriano Sebollela
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - José L. Proença-Modena
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Clarissa L. Yasuda
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Marcelo A. Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
| | - Thiago M. Cunha
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049900, Brazil
| | - Daniel Martins-de-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, 13083862, Brazil
- D'Or Institute for Research and Education, 04502001, Brazil
| |
Collapse
|
4
|
Abstract
Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of "long COVID-19" syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell-derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike-NRP1 interaction. SARS-CoV-2-infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.
Collapse
|
5
|
Dopamine signaling impairs ROS modulation by mitochondrial hexokinase in human neural progenitor cells. Biosci Rep 2021; 41:230295. [PMID: 34821365 PMCID: PMC8661505 DOI: 10.1042/bsr20211191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Dopamine signaling has numerous roles during brain development. In addition, alterations in dopamine signaling may be also involved in the pathophysiology of psychiatric disorders. Neurodevelopment is modulated in multiple steps by reactive oxygen species (ROS), byproducts of oxidative metabolism that are signaling factors involved in proliferation, differentiation, and migration. Hexokinase (HK), when associated with the mitochondria (mt-HK), is a potent modulator of the generation of mitochondrial ROS in the brain. In the present study, we investigated whether dopamine could affect both the activity and redox function of mt-HK in human neural progenitor cells (NPCs). We found that dopamine signaling via D1R decreases mt-HK activity and impairs ROS modulation, which is followed by an expressive release of H2O2 and impairment in calcium handling by the mitochondria. Nevertheless, mitochondrial respiration is not affected, suggesting specificity for dopamine on mt-HK function. In neural stem cells (NSCs) derived from induced-pluripotent stem cells (iPSCs) of schizophrenia patients, mt-HK is unable to decrease mitochondrial ROS, in contrast with NSCs derived from healthy individuals. Our data point to mitochondrial hexokinase as a novel target of dopaminergic signaling, as well as a redox modulator in human neural progenitor cells, which may be relevant to the pathophysiology of neurodevelopmental disorders such as schizophrenia.
Collapse
|
6
|
Tezel T, Ruff A. Retinal cell transplantation in retinitis pigmentosa. Taiwan J Ophthalmol 2021; 11:336-347. [PMID: 35070661 PMCID: PMC8757529 DOI: 10.4103/tjo.tjo_48_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 11/25/2022] Open
Abstract
Retinitis pigmentosa is the most common hereditary retinal disease. Dietary supplements, neuroprotective agents, cytokines, and lately, prosthetic devices, gene therapy, and optogenetics have been employed to slow down the retinal degeneration or improve light perception. Completing retinal circuitry by transplanting photoreceptors has always been an appealing idea in retinitis pigmentosa. Recent developments in stem cell technology, retinal imaging techniques, tissue engineering, and transplantation techniques have brought us closer to accomplish this goal. The eye is an ideal organ for cell transplantation due to a low number of cells required to restore vision, availability of safe surgical and imaging techniques to transplant and track the cells in vivo, and partial immune privilege provided by the subretinal space. Human embryonic stem cells, induced pluripotential stem cells, and especially retinal organoids provide an adequate number of cells at a desired developmental stage which may maximize integration of the graft to host retina. However, stem cells must be manufactured under strict good manufacturing practice protocols due to known tumorigenicity as well as possible genetic and epigenetic stabilities that may pose a danger to the recipient. Immune compatibility of stem cells still stands as a problem for their widespread use for retinitis pigmentosa. Transplantation of stem cells from different sources revealed that some of the transplanted cells may not integrate the host retina but slow down the retinal degeneration through paracrine mechanisms. Discovery of a similar paracrine mechanism has recently opened a new therapeutic path for reversing the cone dormancy and restoring the sight in retinitis pigmentosa.
Collapse
|
7
|
Cruvinel E, Ogusuku I, Cerioni R, Rodrigues S, Gonçalves J, Góes ME, Alvim JM, Silva AC, Lino VDS, Boccardo E, Goulart E, Pereira A, Dariolli R, Valadares M, Biagi D. Long-term single-cell passaging of human iPSC fully supports pluripotency and high-efficient trilineage differentiation capacity. SAGE Open Med 2020; 8:2050312120966456. [PMID: 33149912 PMCID: PMC7586033 DOI: 10.1177/2050312120966456] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives: To establish a straightforward single-cell passaging cultivation method that enables high-quality maintenance of human induced pluripotent stem cells without the appearance of karyotypic abnormalities or loss of pluripotency. Methods: Cells were kept in culture for over 50 passages, following a structured chronogram of passage and monitoring cell growth by population doubling time calculation and cell confluence. Standard procedures for human induced pluripotent stem cells monitoring as embryonic body formation, karyotyping and pluripotency markers expression were evaluated in order to assess the cellular state in long-term culture. Cells that underwent these tests were then subjected to differentiation into keratinocytes, cardiomyocytes and definitive endoderm to evaluate its differentiation capacity. Results: Human induced pluripotent stem cells clones maintained its pluripotent capability as well as chromosomal integrity and were able to generate derivatives from the three germ layers at high passages by embryoid body formation and high-efficient direct differentiation into keratinocytes, cardiomyocytes and definitive endoderm. Conclusions: Our findings support the routine of human induced pluripotent stem cells single-cell passaging as a reliable procedure even after long-term cultivation, providing healthy human induced pluripotent stem cells to be used in drug discovery, toxicity, and disease modeling as well as for therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Elisa Góes
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Vanesca de Souza Lino
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ernesto Goulart
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Pereira
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Rafael Dariolli
- PluriCell Biotech, São Paulo, Brazil.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | |
Collapse
|
8
|
Assis‐de‐Lemos G, Ledur PF, Karmirian K, Rehen SK, Galina A. A Protocol to Study Mitochondrial Function in Human Neural Progenitors and iPSC‐Derived Astrocytes. ACTA ACUST UNITED AC 2020; 85:e97. [DOI: 10.1002/cptx.97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gabriela Assis‐de‐Lemos
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health SciencesFederal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | | - Karina Karmirian
- D'Or Institute for Research and Education (IDOR) Rio de Janeiro Brazil
- Institute of Biomedical Sciences, Center for Health SciencesFederal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Stevens Kastrup Rehen
- D'Or Institute for Research and Education (IDOR) Rio de Janeiro Brazil
- Institute of Biomedical Sciences, Center for Health SciencesFederal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health SciencesFederal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| |
Collapse
|
9
|
Gomide MS, Sales TT, Barros LRC, Limia CG, de Oliveira MA, Florentino LH, Barros LMG, Robledo ML, José GPC, Almeida MSM, Lima RN, Rehen SK, Lacorte C, Melo EO, Murad AM, Bonamino MH, Coelho CM, Rech E. Genetic switches designed for eukaryotic cells and controlled by serine integrases. Commun Biol 2020; 3:255. [PMID: 32444777 PMCID: PMC7244727 DOI: 10.1038/s42003-020-0971-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
Abstract
Recently, new serine integrases have been identified, increasing the possibility of scaling up genomic modulation tools. Here, we describe the use of unidirectional genetic switches to evaluate the functionality of six serine integrases in different eukaryotic systems: the HEK 293T cell lineage, bovine fibroblasts and plant protoplasts. Moreover, integrase activity was also tested in human cell types of therapeutic interest: peripheral blood mononuclear cells (PBMCs), neural stem cells (NSCs) and undifferentiated embryonic stem (ES) cells. The switches were composed of plasmids designed to flip two different genetic parts driven by serine integrases. Cell-based assays were evaluated by measurement of EGFP fluorescence and by molecular analysis of attL/attR sites formation after integrase functionality. Our results demonstrate that all the integrases were capable of inverting the targeted DNA sequences, exhibiting distinct performances based on the cell type or the switchable genetic sequence. These results should support the development of tunable genetic circuits to regulate eukaryotic gene expression.
Collapse
Affiliation(s)
- Mayna S Gomide
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
- Department of Cell Biology, Institute of Biological Science, University of Brasília, Brasília, 70910900, DF, Brazil
- School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, 36036900, MG, Brazil
| | - Thais T Sales
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
- Department of Cell Biology, Institute of Biological Science, University of Brasília, Brasília, 70910900, DF, Brazil
| | - Luciana R C Barros
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, 20231050, RJ, Brazil
| | - Cintia G Limia
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, 20231050, RJ, Brazil
| | - Marco A de Oliveira
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
- Department of Cell Biology, Institute of Biological Science, University of Brasília, Brasília, 70910900, DF, Brazil
| | - Lilian H Florentino
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
| | - Leila M G Barros
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
| | - Maria L Robledo
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, 20231050, RJ, Brazil
| | - Gustavo P C José
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
| | - Mariana S M Almeida
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
| | - Rayane N Lima
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, 22281100, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, 21941902, RJ, Brazil
| | - Cristiano Lacorte
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
| | - Eduardo O Melo
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
- Graduation Program in Biotechnology, Federal University of Tocantins, Gurupi, 77402970, TO, Brazil
| | - André M Murad
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil
| | - Martín H Bonamino
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, 20231050, RJ, Brazil.
- Vice-Presidency of Research and Biological Collections (VPPCB), FIOCRUZ - Oswaldo Cruz Foundation Institute, Rio de Janeiro, 21040900, RJ, Brazil.
| | - Cintia M Coelho
- Department of Genetic and Morphology, Institute of Biological Science, University of Brasília, Brasília, 70910900, DF, Brazil.
| | - Elibio Rech
- Brazilian Agriculture Research Corporation - Embrapa - Genetic Resources and Biotechnology - CENARGEN, Brasília, 70770917, DF, Brazil.
| |
Collapse
|
10
|
Nascimento JM, Saia-Cereda VM, Sartore RC, da Costa RM, Schitine CS, Freitas HR, Murgu M, de Melo Reis RA, Rehen SK, Martins-de-Souza D. Human Cerebral Organoids and Fetal Brain Tissue Share Proteomic Similarities. Front Cell Dev Biol 2019; 7:303. [PMID: 31850342 PMCID: PMC6893972 DOI: 10.3389/fcell.2019.00303] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
The limited access to functional human brain tissue has led to the development of stem cell-based alternative models. The differentiation of human pluripotent stem cells into cerebral organoids with self-organized architecture has created novel opportunities to study the early stages of the human cerebral formation. Here we applied state-of-the-art label-free shotgun proteomics to compare the proteome of stem cell-derived cerebral organoids to the human fetal brain. We identified 3,073 proteins associated with different developmental stages, from neural progenitors to neurons, astrocytes, or oligodendrocytes. The major protein groups are associated with neurogenesis, axon guidance, synaptogenesis, and cortical brain development. Glial cell proteins related to cell growth and maintenance, energy metabolism, cell communication, and signaling were also described. Our data support the variety of cells and neural network functional pathways observed within cell-derived cerebral organoids, confirming their usefulness as an alternative model. The characterization of brain organoid proteome is key to explore, in a dish, atypical and disrupted processes during brain development or neurodevelopmental, neurodegenerative, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Juliana Minardi Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafaela C Sartore
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,National Institute of Traumatology and Orthopedics, Rio de Janeiro, Brazil
| | | | - Clarissa S Schitine
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Hercules Rezende Freitas
- Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,School of Health Sciences, IBMR - University Center, Rio de Janeiro, Brazil
| | | | - Ricardo A de Melo Reis
- Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
| |
Collapse
|
11
|
Steichen C, Hannoun Z, Luce E, Hauet T, Dubart-Kupperschmitt A. Genomic integrity of human induced pluripotent stem cells: Reprogramming, differentiation and applications. World J Stem Cells 2019; 11:729-747. [PMID: 31692979 PMCID: PMC6828592 DOI: 10.4252/wjsc.v11.i10.729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Ten years after the initial generation of induced pluripotent stem cells (hiPSCs) from human tissues, their potential is no longer questioned, with over 15000 publications listed on PubMed, covering various fields of research; including disease modeling, cell therapy strategies, pharmacology/toxicology screening and 3D organoid systems. However, despite evidences that the presence of mutations in hiPSCs should be a concern, publications addressing genomic integrity of these cells represent less than 1% of the literature. After a first overview of the mutation types currently reported in hiPSCs, including karyotype abnormalities, copy number variations, single point mutation as well as uniparental disomy, this review will discuss the impact of reprogramming parameters such as starting cell type and reprogramming method on the maintenance of the cellular genomic integrity. Then, a specific focus will be placed on culture conditions and subsequent differentiation protocols and how their may also trigger genomic aberrations within the cell population of interest. Finally, in a last section, the impact of genomic alterations on the possible usages of hiPSCs and their derivatives will also be exemplified and discussed. We will also discuss which techniques or combination of techniques should be used to screen for genomic abnormalities with a particular focus on the necessary quality controls and the potential alternatives.
Collapse
Affiliation(s)
- Clara Steichen
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers F-86021, France
- Université de Poitiers, Faculté de Médecine et Pharmacie, Bâtiment D1, 6 rue de la milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
| | - Zara Hannoun
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Eléanor Luce
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- Département Hospitalo-Universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Thierry Hauet
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers F-86021, France
- Université de Poitiers, Faculté de Médecine et Pharmacie, Bâtiment D1, 6 rue de la milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
- Service de Biochimie, Pôle Biospharm, CHU de Poitiers, Poitiers F-86021, France
- Fédération Hospitalo-Universitaire SUPORT, CHU de Poitiers, Poitiers F-86021, France
| | - Anne Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- Département Hospitalo-Universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| |
Collapse
|
12
|
Gasparini SJ, Llonch S, Borsch O, Ader M. Transplantation of photoreceptors into the degenerative retina: Current state and future perspectives. Prog Retin Eye Res 2018; 69:1-37. [PMID: 30445193 DOI: 10.1016/j.preteyeres.2018.11.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022]
Abstract
The mammalian retina displays no intrinsic regenerative capacities, therefore retinal degenerative diseases such as age-related macular degeneration (AMD) or retinitis pigmentosa (RP) result in a permanent loss of the light-sensing photoreceptor cells. The degeneration of photoreceptors leads to vision impairment and, in later stages, complete blindness. Several therapeutic strategies have been developed to slow down or prevent further retinal degeneration, however a definitive cure i.e. replacement of the lost photoreceptors, has not yet been established. Cell-based treatment approaches, by means of photoreceptor transplantation, have been studied in pre-clinical animal models over the last three decades. The introduction of pluripotent stem cell-derived retinal organoids represents, in principle, an unlimited source for the generation of transplantable human photoreceptors. However, safety, immunological and reproducibility-related issues regarding the use of such cells still need to be solved. Moreover, the recent finding of cytoplasmic material transfer between donor and host photoreceptors demands reinterpretation of several former transplantation studies. At the same time, material transfer between healthy donor and dysfunctional patient photoreceptors also offers a potential alternative strategy for therapeutic intervention. In this review we discuss the history and current state of photoreceptor transplantation, the techniques used to assess rescue of visual function, the prerequisites for effective transplantation as well as the main roadblocks, including safety and immune response to the graft, that need to be overcome for successful clinical translation of photoreceptor transplantation approaches.
Collapse
Affiliation(s)
- Sylvia J Gasparini
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Sílvia Llonch
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Oliver Borsch
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany.
| |
Collapse
|
13
|
COSTA RODRIGOMDA, KARMIRIAN KARINA, REHEN STEVENSK. Deformation of Mitochondrial Cristae in Human Neural Progenitor Cells Exposed to Valproic Acid. ACTA ACUST UNITED AC 2018; 90:2223-2232. [DOI: 10.1590/0001-3765201820170762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/04/2017] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - STEVENS K. REHEN
- Instituto D’Or de Pesquisa e Ensino, Brazil; Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Dakic V, Minardi Nascimento J, Costa Sartore R, Maciel RDM, de Araujo DB, Ribeiro S, Martins-de-Souza D, Rehen SK. Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT. Sci Rep 2017; 7:12863. [PMID: 28993683 PMCID: PMC5634411 DOI: 10.1038/s41598-017-12779-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022] Open
Abstract
Dimethyltryptamines are entheogenic serotonin-like molecules present in traditional Amerindian medicine recently associated with cognitive gains, antidepressant effects, and changes in brain areas related to attention. Legal restrictions and the lack of adequate experimental models have limited the understanding of how such substances impact human brain metabolism. Here we used shotgun mass spectrometry to explore proteomic differences induced by 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) on human cerebral organoids. Out of the 6,728 identified proteins, 934 were found differentially expressed in 5-MeO-DMT-treated cerebral organoids. In silico analysis reinforced previously reported anti-inflammatory actions of 5-MeO-DMT and revealed modulatory effects on proteins associated with long-term potentiation, the formation of dendritic spines, including those involved in cellular protrusion formation, microtubule dynamics, and cytoskeletal reorganization. Our data offer the first insight about molecular alterations caused by 5-MeO-DMT in human cerebral organoids.
Collapse
Affiliation(s)
- Vanja Dakic
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Minardi Nascimento
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafaela Costa Sartore
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Sao Paulo, Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil. .,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Dezonne RS, Sartore RC, Nascimento JM, Saia-Cereda VM, Romão LF, Alves-Leon SV, de Souza JM, Martins-de-Souza D, Rehen SK, Gomes FCA. Derivation of Functional Human Astrocytes from Cerebral Organoids. Sci Rep 2017; 7:45091. [PMID: 28345587 PMCID: PMC5366860 DOI: 10.1038/srep45091] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/15/2017] [Indexed: 12/17/2022] Open
Abstract
Astrocytes play a critical role in the development and homeostasis of the central nervous system (CNS). Astrocyte dysfunction results in several neurological and degenerative diseases. However, a major challenge to our understanding of astrocyte physiology and pathology is the restriction of studies to animal models, human post-mortem brain tissues, or samples obtained from invasive surgical procedures. Here, we report a protocol to generate human functional astrocytes from cerebral organoids derived from human pluripotent stem cells. The cellular isolation of cerebral organoids yielded cells that were morphologically and functionally like astrocytes. Immunolabelling and proteomic assays revealed that human organoid-derived astrocytes express the main astrocytic molecular markers, including glutamate transporters, specific enzymes and cytoskeletal proteins. We found that organoid-derived astrocytes strongly supported neuronal survival and neurite outgrowth and responded to ATP through transient calcium wave elevations, which are hallmarks of astrocyte physiology. Additionally, these astrocytes presented similar functional pathways to those isolated from adult human cortex by surgical procedures. This is the first study to provide proteomic and functional analyses of astrocytes isolated from human cerebral organoids. The isolation of these astrocytes holds great potential for the investigation of developmental and evolutionary features of the human brain and provides a useful approach to drug screening and neurodegenerative disease modelling.
Collapse
Affiliation(s)
- Rômulo Sperduto Dezonne
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ., Brasil
| | - Rafaela Costa Sartore
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ., Brasil.,Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, RJ, Brasil
| | - Juliana Minardi Nascimento
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, RJ, Brasil.,Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | - Luciana Ferreira Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ., Brasil.,Universidade Federal do Rio de Janeiro,Campus Xerém, RJ, Brasil
| | - Soniza Vieira Alves-Leon
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Jorge Marcondes de Souza
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - Stevens Kastrup Rehen
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ., Brasil.,Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, RJ, Brasil
| | | |
Collapse
|
16
|
Sartore RC, Cardoso SC, Lages YVM, Paraguassu JM, Stelling MP, Madeiro da Costa RF, Guimaraes MZ, Pérez CA, Rehen SK. Trace elements during primordial plexiform network formation in human cerebral organoids. PeerJ 2017; 5:e2927. [PMID: 28194309 PMCID: PMC5301978 DOI: 10.7717/peerj.2927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022] Open
Abstract
Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development in vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood.
Collapse
Affiliation(s)
- Rafaela C Sartore
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Simone C Cardoso
- Physics Institute, Federal University of Rio de Janeiro , Brazil
| | - Yury V M Lages
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Julia M Paraguassu
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Mariana P Stelling
- Federal Institute of Education, Science and Technology of Rio de Janeiro , Brazil
| | | | - Marilia Z Guimaraes
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Carlos A Pérez
- Brazilian Synchrotron Light Laboratory , São Paulo , Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Dakic V, Maciel RDM, Drummond H, Nascimento JM, Trindade P, Rehen SK. Harmine stimulates proliferation of human neural progenitors. PeerJ 2016; 4:e2727. [PMID: 27957390 PMCID: PMC5144684 DOI: 10.7717/peerj.2727] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/27/2016] [Indexed: 11/20/2022] Open
Abstract
Harmine is the β-carboline alkaloid with the highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell cultures containing human neural progenitor cells (hNPCs, 97% nestin-positive) derived from pluripotent stem cells. After 4 days of treatment, the pool of proliferating hNPCs increased by 71.5%. Harmine has been reported as a potent inhibitor of the dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A), which regulates cell proliferation and brain development. We tested the effect of analogs of harmine, an inhibitor of DYRK1A (INDY), and an irreversible selective inhibitor of monoamine oxidase (MAO) but not DYRK1A (pargyline). INDY but not pargyline induced proliferation of hNPCs similarly to harmine, suggesting that inhibition of DYRK1A is a possible mechanism to explain harmine effects upon the proliferation of hNPCs. Our findings show that harmine enhances proliferation of hNPCs and suggest that inhibition of DYRK1A may explain its effects upon proliferation in vitro and antidepressant effects in vivo.
Collapse
Affiliation(s)
- Vanja Dakic
- IDOR, D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Hannah Drummond
- IDOR, D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana M Nascimento
- IDOR, D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil; Department of Biochemistry and Tissue Biology/Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Pablo Trindade
- IDOR, D'Or Institute for Research and Education , Rio de Janeiro , RJ , Brazil
| | - Stevens K Rehen
- IDOR, D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
18
|
Tofoli FA, Dasso M, Morato-Marques M, Nunes K, Pereira LA, da Silva GS, Fonseca SAS, Costas RM, Santos HC, da Costa Pereira A, Lotufo PA, Bensenor IM, Meyer D, Pereira LV. Increasing The Genetic Admixture of Available Lines of Human Pluripotent Stem Cells. Sci Rep 2016; 6:34699. [PMID: 27708369 PMCID: PMC5052616 DOI: 10.1038/srep34699] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/19/2016] [Indexed: 01/06/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) may significantly improve drug development pipeline, serving as an in vitro system for the identification of novel leads, and for testing drug toxicity. Furthermore, these cells may be used to address the issue of differential drug response, a phenomenon greatly influenced by genetic factors. This application depends on the availability of hPSC lines from populations with diverse ancestries. So far, it has been reported that most lines of hPSCs derived worldwide are of European or East Asian ancestries. We have established 23 lines of hPSCs from Brazilian individuals, and we report the analysis of their genomic ancestry. We show that embryo-derived PSCs are mostly of European descent, while induced PSCs derived from participants of a national-wide Brazilian cohort study present high levels of admixed European, African and Native American genomic ancestry. Additionally, we use high density SNP data and estimate local ancestries, particularly those of CYP genes loci. Such information will be of key importance when interpreting variation among cell lines with respect to cellular phenotypes of interest. The availability of genetically admixed lines of hPSCs will be of relevance when setting up future in vitro studies of drug response.
Collapse
Affiliation(s)
- Fabiano A Tofoli
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, SP 05508-900, Brazil
| | - Maximiliano Dasso
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, SP 05508-900, Brazil
| | - Mariana Morato-Marques
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, SP 05508-900, Brazil
| | - Kelly Nunes
- Laboratory of Evolutionary Genetics, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, SP 05508-900, Brazil
| | - Lucas Assis Pereira
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, SP 05508-900, Brazil
| | - Giselle Siqueira da Silva
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, SP 05508-900, Brazil
| | - Simone A S Fonseca
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, SP 05508-900, Brazil
| | - Roberta Montero Costas
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, SP 05508-900, Brazil
| | - Hadassa Campos Santos
- Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo. Av. Dr. Enéas de Carvalho Aguiar, 44, São Paulo, SP 05403-900, Brazil
| | - Alexandre da Costa Pereira
- Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo. Av. Dr. Enéas de Carvalho Aguiar, 44, São Paulo, SP 05403-900, Brazil
| | - Paulo A Lotufo
- Center of Clinical and Epidemiologic Research, University Hospital, University of São Paulo, SP 05508-000. Brazil
| | - Isabela M Bensenor
- Center of Clinical and Epidemiologic Research, University Hospital, University of São Paulo, SP 05508-000. Brazil
| | - Diogo Meyer
- Laboratory of Evolutionary Genetics, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, SP 05508-900, Brazil
| | - Lygia Veiga Pereira
- National Laboratory for Embryonic Stem Cells (LaNCE), Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, SP 05508-900, Brazil
| |
Collapse
|
19
|
Lages YM, Nascimento JM, Lemos GA, Galina A, Castilho LR, Rehen SK. Low oxygen alters mitochondrial function and response to oxidative stress in human neural progenitor cells. PeerJ 2015; 3:e1486. [PMID: 26713239 PMCID: PMC4690376 DOI: 10.7717/peerj.1486] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/18/2015] [Indexed: 12/11/2022] Open
Abstract
Oxygen concentration should be carefully regulated in all living tissues, beginning at the early embryonic stages. Unbalances in oxygen regulation can lead to cell death and disease. However, to date, few studies have investigated the consequences of variations in oxygen levels for fetal-like cells. Therefore, in the present work, human neural progenitor cells (NPCs) derived from pluripotent stem cells grown in 3% oxygen (v/v) were compared with NPCs cultured in 21% (v/v) oxygen. Low oxygen concentrations altered the mitochondrial content and oxidative functions of the cells, which led to improved ATP production, while reducing generation of reactive oxygen species (ROS). NPCs cultured in both conditions showed no differences in proliferation and glucose metabolism. Furthermore, antioxidant enzymatic activity was not altered in NPCs cultured in 3% oxygen under normal conditions, however, when exposed to external agents known to induce oxidative stress, greater susceptibility to DNA damage was observed. Our findings indicate that the management of oxygen levels should be considered for in vitro models of neuronal development and drug screening.
Collapse
Affiliation(s)
- Yury M Lages
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro , Rio de Janeiro, RJ , Brazil
| | | | - Gabriela A Lemos
- Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro , Rio de Janeiro, RJ , Brazil
| | - Antonio Galina
- Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro , Rio de Janeiro, RJ , Brazil
| | - Leda R Castilho
- COPPE, Chemical Engineering Program, Federal University of Rio de Janeiro , Rio de Janeiro, RJ , Brazil
| | - Stevens K Rehen
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro , Rio de Janeiro, RJ , Brazil ; IDOR, D'Or Institute for Research and Education , Rio de Janeiro, RJ , Brazil
| |
Collapse
|
20
|
da Costa RFM, Kormann ML, Galina A, Rehen SK. Valproate Disturbs Morphology and Mitochondrial Membrane Potential in Human Neural Cells. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Michelle Louise Kormann
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stevens Kastrup Rehen
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Fonseca SAS, Costas RM, Morato-Marques M, Costa S, Alegretti JR, Rosenberg C, da Motta ELA, Serafini PC, Pereira LV. A Euploid Line of Human Embryonic Stem Cells Derived from a 43,XX,dup(9q),+12,-14,-15,-18,-21 Embryo. PLoS One 2015; 10:e0140999. [PMID: 26540511 PMCID: PMC4634922 DOI: 10.1371/journal.pone.0140999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/02/2015] [Indexed: 11/18/2022] Open
Abstract
Aneuploid embryos diagnosed by FISH-based preimplantation genetic screening (PGS) have been shown to yield euploid lines of human embryonic stem cells (hESCs) with a relatively high frequency. Given that the diagnostic procedure is usually based on the analysis of 1–2 blastomeres of 5 to 10-cell cleavage-stage embryos, mosaicism has been a likely explanation for the phenomena. However, FISH-based PGS can have a significant rate of misdiagnosis, and therefore some of those lines may have been derived from euploid embryos misdiagnosed as aneuploid. More recently, coupling of trophectoderm (TE) biopsy at the blastocyst stage and array-CGH lead to a more informative form of PGS. Here we describe the establishment of a new line of hESCs from an embryo with a 43,XX,dup(9q),+12,-14,-15,-18,-21 chromosomal content based on array-CGH of TE biopsy. We show that, despite the complex chromosomal abnormality, the corresponding hESC line BR-6 is euploid (46,XX). Single nucleotide polymorphism analysis showed that the embryo´s missing chromosomes were not duplicated in BR-6, suggesting the existence of extensive mosaicism in the TE lineage.
Collapse
Affiliation(s)
- Simone Aparecida Siqueira Fonseca
- National Laboratory of Embryonic Stem Cell (LaNCE), University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Roberta Montero Costas
- National Laboratory of Embryonic Stem Cell (LaNCE), University of São Paulo, São Paulo, Brazil
| | - Mariana Morato-Marques
- National Laboratory of Embryonic Stem Cell (LaNCE), University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Silvia Costa
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | | | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | | | | | - Lygia V. Pereira
- National Laboratory of Embryonic Stem Cell (LaNCE), University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
22
|
Global Database-Driven Assessment of HIV-1 Adaptation to the Immune Repertoires of Human Populations. J Virol 2015; 89:10693-5. [PMID: 26246562 DOI: 10.1128/jvi.01355-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/27/2015] [Indexed: 11/20/2022] Open
Abstract
Associations between HIV-1 cytotoxic T lymphocyte (CTL) escape mutations and their restricting human leukocyte antigen (HLA) alleles imply that HIV could adapt to divergent HLA repertoires of human populations globally. Using publicly available databases, we examine the relationship between the frequencies of 19 experimentally validated CTL escape mutations in HIV-1 reverse transcriptase and their restricting HLA alleles in 59 countries. From these extensive data, we find evidence of differential HIV adaptations to human populations at only a limited number of the studied epitope sites.
Collapse
|
23
|
Alves CJ, Dariolli R, Jorge FM, Monteiro MR, Maximino JR, Martins RS, Strauss BE, Krieger JE, Callegaro D, Chadi G. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Front Cell Neurosci 2015; 9:289. [PMID: 26300727 PMCID: PMC4523944 DOI: 10.3389/fncel.2015.00289] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/14/2015] [Indexed: 01/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that leads to widespread motor neuron death, general palsy and respiratory failure. The most prevalent sporadic ALS form is not genetically inherited. Attempts to translate therapeutic strategies have failed because the described mechanisms of disease are based on animal models carrying specific gene mutations and thus do not address sporadic ALS. In order to achieve a better approach to study the human disease, human induced pluripotent stem cell (hiPSC)-differentiated motor neurons were obtained from motor nerve fibroblasts of sporadic ALS and non-ALS subjects using the STEMCCA Cre-Excisable Constitutive Polycistronic Lentivirus system and submitted to microarray analyses using a whole human genome platform. DAVID analyses of differentially expressed genes identified molecular function and biological process-related genes through Gene Ontology. REVIGO highlighted the related functions mRNA and DNA binding, GTP binding, transcription (co)-repressor activity, lipoprotein receptor binding, synapse organization, intracellular transport, mitotic cell cycle and cell death. KEGG showed pathways associated with Parkinson's disease and oxidative phosphorylation, highlighting iron homeostasis, neurotrophic functions, endosomal trafficking and ERK signaling. The analysis of most dysregulated genes and those representative of the majority of categorized genes indicates a strong association between mitochondrial function and cellular processes possibly related to motor neuron degeneration. In conclusion, iPSC-derived motor neurons from motor nerve fibroblasts of sporadic ALS patients may recapitulate key mechanisms of neurodegeneration and may offer an opportunity for translational investigation of sporadic ALS. Large gene profiling of differentiated motor neurons from sporadic ALS patients highlights mitochondrial participation in the establishment of autonomous mechanisms associated with sporadic ALS.
Collapse
Affiliation(s)
- Chrystian J Alves
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Frederico M Jorge
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Matheus R Monteiro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Jessica R Maximino
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Roberto S Martins
- Department of Neurosurgery, Surgical Center of Functional Neurosurgery, Clinics Hospital of University of São Paulo São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, University of São Paulo School of Medicine São Paulo, Brazil
| | - José E Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Dagoberto Callegaro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| |
Collapse
|
24
|
Aberrant patterns of X chromosome inactivation in a new line of human embryonic stem cells established in physiological oxygen concentrations. Stem Cell Rev Rep 2015; 10:472-9. [PMID: 24633531 DOI: 10.1007/s12015-014-9505-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the differences between murine and human embryonic stem cells (ESCs) is the epigenetic state of the X chromosomes in female lines. Murine ESCs (mESCs) present two transcriptionally active Xs that will undergo the dosage compensation process of XCI upon differentiation, whereas most human ESCs (hESCs) spontaneously inactivate one X while keeping their pluripotency. Whether this reflects differences in embryonic development of mice and humans, or distinct culture requirements for the two kinds of pluripotent cells is not known. Recently it has been shown that hESCs established in physiological oxygen levels are in a stable pre-XCI state equivalent to that of mESCs, suggesting that culture in low oxygen concentration is enough to preserve that epigenetic state of the X chromosomes. Here we describe the establishment of two new lines of hESCs under physiological oxygen level and the characterization of the XCI state in the 46,XX line BR-5. We show that a fraction of undifferentiated cells present XIST RNA accumulation and single H3K27me foci, characteristic of the inactive X. Moreover, analysis of allele specific gene expression suggests that pluripotent BR-5 cells present completely skewed XCI. Our data indicate that physiological levels of oxygen are not sufficient for the stabilization of the pre-XCI state in hESCs.
Collapse
|
25
|
Pranke P, Chagastelles P, Sperling LE. The Current State of Research with Human Pluripotent Stem Cells in Brazil. Stem Cells Dev 2014; 23 Suppl 1:20-3. [DOI: 10.1089/scd.2014.0320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, and Stem Cell Laboratory, Fundamental Health Science Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Research Institute, Porto Alegre, Brazil
| | - Pedro Chagastelles
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, and Stem Cell Laboratory, Fundamental Health Science Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura E. Sperling
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, and Stem Cell Laboratory, Fundamental Health Science Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
26
|
Potential and limitation of HLA-based banking of human pluripotent stem cells for cell therapy. J Immunol Res 2014; 2014:518135. [PMID: 25126584 PMCID: PMC4121106 DOI: 10.1155/2014/518135] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 12/13/2022] Open
Abstract
Great hopes have been placed on human pluripotent stem (hPS) cells for therapy. Tissues or organs derived from hPS cells could be the best solution to cure many different human diseases, especially those who do not respond to standard medication or drugs, such as neurodegenerative diseases, heart failure, or diabetes. The origin of hPS is critical and the idea of creating a bank of well-characterized hPS cells has emerged, like the one that already exists for cord blood. However, the main obstacle in transplantation is the rejection of tissues or organ by the receiver, due to the three main immunological barriers: the human leukocyte antigen (HLA), the ABO blood group, and minor antigens. The problem could be circumvented by using autologous stem cells, like induced pluripotent stem (iPS) cells, derived directly from the patient. But iPS cells have limitations, especially regarding the disease of the recipient and possible difficulties to handle or prepare autologous iPS cells. Finally, reaching standards of good clinical or manufacturing practices could be challenging. That is why well-characterized and universal hPS cells could be a better solution. In this review, we will discuss the interest and the feasibility to establish hPS cells bank, as well as some economics and ethical issues.
Collapse
|
27
|
Ruiz MA. Cell therapy in Brazil: time for reflection. Rev Bras Hematol Hemoter 2013; 35:296-8. [PMID: 24255604 PMCID: PMC3832301 DOI: 10.5581/1516-8484.20130117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 09/01/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Milton Artur Ruiz
- Editor-in-chief. Revista Brasileira de Hematologia e Hemoterapia -RBHH
| |
Collapse
|
28
|
Schuldt BM, Guhr A, Lenz M, Kobold S, MacArthur BD, Schuppert A, Löser P, Müller FJ. Power-laws and the use of pluripotent stem cell lines. PLoS One 2013; 8:e52068. [PMID: 23300961 PMCID: PMC3534668 DOI: 10.1371/journal.pone.0052068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 11/15/2012] [Indexed: 12/31/2022] Open
Abstract
It is widely accepted that the (now reversed) Bush administration's decision to restrict federal funding for human embryonic stem cell (hESC) research to a few "eligible" hESC lines is responsible for the sustained preferential use of a small subset of hESC lines (principally the H1 and H9 lines) in basic and preclinical research. Yet, international hESC usage patterns, in both permissive and restrictive political environments, do not correlate with a specific type of stem cell policy. Here we conducted a descriptive analysis of hESC line usage and compared the ability of policy-driven processes and collaborative processes inherent to biomedical research to recapitulate global hESC usage patterns. We find that current global hESC usage can be modelled as a cumulative advantage process, independent of restrictive or permissive policy influence, suggesting a primarily innovation-driven (rather than policy-driven) mechanism underlying human pluripotent stem cell usage in preclinical research.
Collapse
Affiliation(s)
- Bernhard M. Schuldt
- Graduiertenschule Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen, Aachen, Germany
| | - Anke Guhr
- Robert Koch Institute, Berlin, Germany
| | - Michael Lenz
- Graduiertenschule Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen, Aachen, Germany
| | | | - Ben D. MacArthur
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
- School of Mathematics, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, United Kingdom
| | - Andreas Schuppert
- Graduiertenschule Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen, Aachen, Germany
| | - Peter Löser
- Robert Koch Institute, Berlin, Germany
- * E-mail: (F-JM); (PL)
| | - Franz-Josef Müller
- Zentrum für Integrative Psychiatrie, Kiel, Germany
- * E-mail: (F-JM); (PL)
| |
Collapse
|
29
|
Lopez Corrales NL, Mrasek K, Voigt M, Liehr T, Kosyakova N. Comprehensive characterization of genomic instability in pluripotent stem cells and their derived neuroprogenitor cell lines. Appl Transl Genom 2012; 1:21-24. [PMID: 27896049 PMCID: PMC5121198 DOI: 10.1016/j.atg.2012.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The genomic integrity of two human pluripotent stem cells and their derived neuroprogenitor cell lines was studied, applying a combination of high-resolution genetic methodologies. The usefulness of combining array-comparative genomic hybridization (aCGH) and multiplex fluorescence in situ hybridization (M-FISH) techniques should be delineated to exclude/detect a maximum of possible genomic structural aberrations. Interestingly, in parts different genomic imbalances at chromosomal and subchromosomal levels were detected in pluripotent stem cells and their derivatives. Some of the copy number variations were inherited from the original cell line, whereas other modifications were presumably acquired during the differentiation and manipulation procedures. These results underline the necessity to study both pluripotent stem cells and their differentiated progeny by as many approaches as possible in order to assess their genomic stability before using them in clinical therapies.
Collapse
Affiliation(s)
- Nestor Luis Lopez Corrales
- Visiting Scientist CnPQ Fellowship, Brazil; Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Kristin Mrasek
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Martin Voigt
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| |
Collapse
|
30
|
Jacquet L, Stephenson E, Collins R, Patel H, Trussler J, Al-Bedaery R, Renwick P, Ogilvie C, Vaughan R, Ilic D. Strategy for the creation of clinical grade hESC line banks that HLA-match a target population. EMBO Mol Med 2012; 5:10-7. [PMID: 23161805 PMCID: PMC3569650 DOI: 10.1002/emmm.201201973] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/04/2012] [Accepted: 10/09/2012] [Indexed: 01/08/2023] Open
Abstract
Here, we describe a pre-derivation embryo haplotyping strategy that we developed in order to maximize the efficiency and minimize the costs of establishing banks of clinical grade hESC lines in which human leukocyte antigen (HLA) haplotypes match a significant proportion of the population. Using whole genome amplification followed by medium resolution HLA typing using PCR amplification with sequence-specific primers (PCR-SSP), we have typed the parents, embryos and hESC lines from three families as well as our eight clinical grade hESC lines and shown that this technical approach is rapid, reliable and accurate. By employing this pre-derivation strategy where, based on HLA match, embryos are selected for a GMP route on day 3-4 of development, we would have drastically reduced our cGMP laboratory running costs.
Collapse
Affiliation(s)
- Laureen Jacquet
- Embryonic Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, King's College School of Medicine, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Research using human embryonic stem cells (hESCs) was debated for 4 years in the Brazilian Supreme Court before being legally approved in 2008. Before that, only research with adult stem cells was supported by federal funding. Even with the ban on hESC research until 2008 the country made significant advances in stem cell research in the last decade. Right after legislation permitted, the first Brazilian hESC line was derived, still in 2008. Achievements in the field were supported by policies directed to provide federal funding for stem cell research by the Ministry of Health. Investments since 2005 have mounted to over US$50 million, financing 110 projects, ranging from basic to clinical research.
Collapse
Affiliation(s)
- Rosalia Mendez-Otero
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil.
| | | |
Collapse
|
32
|
Stelling MP, Lages YMV, Tovar AMF, Mourão PAS, Rehen SK. Matrix-bound heparan sulfate is essential for the growth and pluripotency of human embryonic stem cells. Glycobiology 2012; 23:337-45. [PMID: 23002246 DOI: 10.1093/glycob/cws133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human embryonic stem (hES) cell production of heparan sulfate influences cell fate and pluripotency. Human ES cells remain pluripotent in vitro through the action of growth factors signaling, and the activity of these factors depends on interaction with specific receptors and also with heparan sulfate. Here, we tested the hypothesis that matrix-associated heparan sulfate is enough to maintain hES cells under low fibroblast growth factor-2 concentration in the absence of live feeder cells. To pursue this goal, we compared hES cells cultured either on coated plates containing live murine embryonic fibroblasts (MEFs) or on a matrix derived from ethanol-fixed MEFs. hES cells were analyzed for the expression of pluripotency markers and the ability to form embryoid bodies. hES cells cultured either on live mouse fibroblasts or onto a matrix derived from fixed fibroblasts expressed similar levels of Oct-4, SOX-2, Nanog, TRA-1-60 and SSEA-4, and they were also able to form cavitated embryoid bodies. Heparan sulfate-depleted matrix lost the ability to support the adherence and growth of hES cells, confirming that this glycosaminoglycan, bound to the extracellular matrix, is enough for the growth and attachment of hES cells. Finally, we observed that the ethanol-fixed matrix decreases by 30% the levels of Neu5Gc in hES cells, indicating that this procedure reduces xeno-contamination. Our data suggest that matrix-bound heparan sulfate is required for the growth and pluripotency of hES cells and that ethanol-fixed MEFs may be used as a "live cell"-free substrate for stem cells.
Collapse
Affiliation(s)
- Mariana P Stelling
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | | | | | | |
Collapse
|
33
|
Fraga AM, de Araújo ESS, Stabellini R, Vergani N, Pereira LV. Establishment of new lines of human embryonic stem cells: evolution of the methodology. Methods Mol Biol 2012; 873:1-12. [PMID: 22528345 DOI: 10.1007/978-1-61779-794-1_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Although since 1998 more than 1,200 different hESC lines have been established worldwide, there is still a recognized interest in the establishment of new lines of hESC, particularly from HLA types and ethnic groups underrepresented among the currently available lines. The methodology of hESC derivation has evolved significantly since the initial derivations using human LIF (hLIF) for maintenance of pluripotency. However, there are still a number of alternative strategies for the different steps involved in establishing a new line of hESC. We have analyzed the different strategies/parameters used between 1998 and 2010 for the derivation of the 375 hESC lines able to form teratomas in immunocompromised mice deposited in two international stem cell registries. Here we describe some trends in the methodology for establishing hESC lines, discussing the developments in the field. Nevertheless, we describe a much greater heterogeneity of strategies for hESCs derivation than what is used for murine ESC lines, indicating that optimum conditions have not been identified yet, and thus, hESC establishment is still an evolving field of research.
Collapse
Affiliation(s)
- Ana Maria Fraga
- National Laboratory for Embryonic Stem Cells, Dept. Genetics and Evolutionary Biology, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
34
|
Corrales NLL, Mrasek K, Voigt M, Liehr T, Kosyakova N. Copy number variations (CNVs) in human pluripotent cell-derived neuroprogenitors. Gene 2012; 506:377-9. [PMID: 22820389 DOI: 10.1016/j.gene.2012.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 01/22/2023]
Abstract
Results from the analysis of copy number variations (CNVs) in human pluripotent cell-derived neuroprogenitor cell lines (hiPSC and hESC-derived NPC) are presented. Two different types of CNVs were detected: a) CNVs inherited from the original source of pluripotent cells (hESC and hiPSC) and b) CNVs detected either in the original source of pluripotent cells or in the derived NPC cell lines but not in both at the same time. Our data suggest that submicroscopic chromosomal changes happened during culture and manipulation of cells and those differentiation procedures could result in gains and losses of genomic regions in pluripotent cell-derived neuroprogenitors. Overall, the results indicate that even chromosomally stable stem cell lines would need to be analyzed in detail by high resolution methodologies before their clinical use.
Collapse
|
35
|
Zimmermann A, Preynat-Seauve O, Tiercy JM, Krause KH, Villard J. Haplotype-based banking of human pluripotent stem cells for transplantation: potential and limitations. Stem Cells Dev 2012; 21:2364-73. [PMID: 22559254 DOI: 10.1089/scd.2012.0088] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
High expectations surround the area of stem cells therapeutics. However, the cells' source-adult or embryonic-and the cells' origin-patient-derived autologous or healthy donor genetically unrelated-remain subjects of debate. Autologous origins have the advantage of a theoretical absence of immune rejection by the recipient. However, this approach has several limitations with regard to the disease of the recipient and to potential problems with the generation, expansion, and manipulation of autologous induced pluripotent stem cells (iPS cells) preparation. An alternative to using autologous cells is the establishment of a bank of well-characterized adult cells that would be used to generate iPS cells and their derivatives. In the context of transplantation, such cells would come from genetically unrelated donors and the immune system of the recipient would reject the graft without immunosuppressive therapy. To minimize the risk of rejection, human leukocyte antigen (HLA) compatibility is certainly the best option, and the establishment of an HLA-organized bank would mean having a limited number of stem cells that would be sufficient for a large number of recipients. The concept of haplobanking with HLA homozygous cell lines would also limit the number of HLA mismatches, but such an approach will not necessarily be less immunogenic in terms of selection criteria, because of the limited number of HLA-compatible loci and the level of HLA typing resolution.
Collapse
Affiliation(s)
- Anna Zimmermann
- Laboratory of Experimental Cell Therapy, Department of Genetic and Laboratory Medicine, Geneva University Hospital and Medical School, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Menasché P. [Embryonic stem cells in the treatment of severe cardiac insufficiency]. Biol Aujourdhui 2012; 206:31-44. [PMID: 22463994 DOI: 10.1051/jbio/2012002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Indexed: 05/31/2023]
Abstract
The experience accumulated in cardiac cell therapy suggests that regeneration of extensively necrotic myocardial areas is unlikely to be achieved by the sole paracrine effects of the grafted cells but rather requires the conversion of these cells into cardiomyocytes featuring the capacity to substitute for those which have been irreversibly lost. In this setting, the use of human pluripotent embryonic stem cells has a strong rationale. The experimental results obtained in animal models of myocardial infarction are encouraging. However, the switch to clinical applications still requires to address some critical issues, among which optimizing cardiac specification of the embryonic stem cells, purifying the resulting progenitor cells so as to graft a purified population devoid from any contamination by residual pluripotent cells which carry the risk of tumorigenesis and controlling the expected allogeneic rejection by clinically acceptable methods. If the solution to these problems is a pre-requisite, the therapeutic success of this approach will also depend on the capacity to efficiently transfer the cells to the target tissue, to keep them alive once engrafted and to allow them to spatially organize in such a way that they can contribute to the contractile function of the heart.
Collapse
Affiliation(s)
- Philippe Menasché
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité de chirurgie de l'insuffisance cardiaque, 20 rue Leblanc, 75015 Paris, France.
| |
Collapse
|
37
|
Isasi R, Knoppers BM, Lomax G. Sustained interaction: the new normal for stem cell repositories? Regen Med 2012; 6:783-92. [PMID: 22050529 DOI: 10.2217/rme.11.93] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Stem cell repositories, similar to many areas in human scientific research, must balance the interests of the individuals who donate their time and samples to science with the interests of scientific progress. This article seeks to explore how sustained interaction with stem cell donors can advance key donor interests (autonomy and privacy) while also increasing the scientific utility of stem cell lines. The ability to trace stem cell lines to their respective donors - underpinned by robust informed consent - enables donors to gain access to information regarding research outcomes and the uses of their biological samples, while also supporting basic and clinical research by providing a means for quality and safety controls. Measures to recontact donors and also to enable donors to withdraw from research should be well designed to ensure donors' preferences are respected while mitigating negative consequences resulting from limited data availability or compromised sample quality. To guarantee the integrity of research while respecting donors' autonomy and preferences, stem cell repositories require a prospective approach to informed consent.
Collapse
Affiliation(s)
- Rosario Isasi
- Centre of Genomics and Policy, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
38
|
Fraga AM, Souza de Araújo ÉS, Stabellini R, Vergani N, Pereira LV. A survey of parameters involved in the establishment of new lines of human embryonic stem cells. Stem Cell Rev Rep 2012; 7:775-81. [PMID: 21416256 DOI: 10.1007/s12015-011-9250-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Since the derivation of the first human embryonic stem cell (hESC) lines by Thomson and coworkers in 1998, more than 1,200 different hESC lines have been established worldwide. Nevertheless, there is still a recognized interest in the establishment of new lines of hESC, particularly from HLA types and ethnic groups currently underrepresented among the available lines. The methodology of hESC derivation has evolved significantly since 1998, when human LIF (hLIF) was used for maintenance of pluripotency. However, there are a number of different strategies for the several steps involved in establishing a new line of hESC. Here we make a survey of the most relevant parameters used between 1998 and 2010 for the derivation of the 375 hESC lines deposited in two international stem cell registries, and able to form teratomas in immunocompromised mice. Although we identify some trends in the methodology for establishing hESC lines, our data reveal a much greater heterogeneity of strategies than what is used for derivation of murine ESC lines, indicating that optimum conditions have not been consolidated yet, and thus, hESC establishment is still an evolving field of research.
Collapse
Affiliation(s)
- Ana Maria Fraga
- Laboratório Nacional de Células-Tronco Embrionárias and Instituto Nacional de Ciência e Tecnologia em Células-Tronco e Terapia Celular, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | | | | | | | | |
Collapse
|
39
|
Embryonic stem cells for severe heart failure: why and how? J Cardiovasc Transl Res 2012; 5:555-65. [PMID: 22411322 DOI: 10.1007/s12265-012-9356-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/21/2012] [Indexed: 01/26/2023]
Abstract
The experience accumulated in cardiac cell therapy suggests that regeneration of extensively necrotic myocardial areas is unlikely to be achieved by the sole paracrine effects of the grafted cells but rather requires the conversion of these cells into cardiomyocytes featuring the capacity to substitute for those which have been irreversibly lost. In this setting, the use of human pluripotent embryonic stem cells has a strong rationale. The experimental results obtained in animal models of myocardial infarction are encouraging. However, the switch to clinical applications still requires to address some critical issues, among which the optimization of the cardiac specification of the embryonic stem cells, the purification of the resulting progenitor cells so as to graft a purified population devoid from any contamination by residual pluripotent cells which carry the risk of tumorigenesis, and the control of the expected allogeneic rejection by clinically acceptable methods. If the solution to these problems is a prerequisite, the therapeutic success of this approach will also depend on the capacity to efficiently transfer the cells to the target tissue, to keep them alive once engrafted, and to allow them to spatially organize in such a way that they can contribute to the contractile function of the heart.
Collapse
|
40
|
Ilic D, Stephenson E, Wood V, Jacquet L, Stevenson D, Petrova A, Kadeva N, Codognotto S, Patel H, Semple M, Cornwell G, Ogilvie C, Braude P. Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy 2011; 14:122-8. [PMID: 22029654 DOI: 10.3109/14653249.2011.623692] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Human embryonic stem (hES) cells hold great potential for cell therapy and regenerative medicine because of their pluripotency and capacity for self-renewal. The conditions used to derive and culture hES cells vary between and within laboratories depending on the desired use of the cells. Until recently, stem cell culture has been carried out using feeder cells, and culture media, that contain animal products. Recent advances in technology have opened up the possibility of both xeno-free and feeder-free culture of stem cells, essential conditions for the use of stem cells for clinical purposes. To date, however, there has been limited success in achieving this aim. METHODS, RESULTS AND CONCLUSIONS Protocols were developed for the successful derivation of two normal and three specific mutation-carrying (SMC) (Huntington's disease and myotonic dystrophy 1) genomically stable hES cell lines, and their adaptation to feeder-free culture, all under xeno-free conditions.
Collapse
Affiliation(s)
- Dusko Ilic
- Embryonic Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, King's College School of Medicine, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|