1
|
Kanoujia J, Raina N, Kishore A, Kaurav M, Tuli HS, Kumar A, Gupta M. Revealing the promising era of silk-based nanotherapeutics: a ray of hope for chronic wound healing treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6617-6641. [PMID: 39888364 DOI: 10.1007/s00210-024-03761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025]
Abstract
Chronic wounds significantly contribute to disability and affect the mortality rate in diabetic patients. In addition, pressure ulcers, diabetic foot ulcers, arterial ulcers, and venous ulcers pose a significant health burden due to their associated morbidity and death. The complex healing process, environmental factors, and genetic factors have been identified as the rate-limiting stages of chronic wound healing. Changes in temperature, moisture content, mechanical strain, and genetics can result in slow wound healing, increased susceptibility to bacterial infections, and poor matrix remodelling. These obstacles can be addressed with natural biomaterials exhibiting antimicrobial, collagen synthesis, and granulation tissue formation properties. Recently, silk proteins have gained significant attention as a natural biomaterial owing to good biocompatibility, biodegradability, reduced immunogenicity, ease of sterilization, and promote the wound healing process. The silk components such as sericin and fibroin in combination with nano(platforms) effectively promote wound repair. This review emphasises the potential of sericin and fibroin when combined with nano(platforms) like nanoparticles, nanofibers, and nanoparticles-embedded films, membranes, gels, and nanofibers.
Collapse
Affiliation(s)
- Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Ankita Kishore
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Monika Kaurav
- KIET School of Pharmacy, KIET Group of Institution, Ghaziabad, Uttar Pradesh, 201206, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Akhilesh Kumar
- Division of Medicine, ICAR Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
2
|
Vurro D, Liboà A, D’Onofrio I, De Giorgio G, Zhou Z, Galstyan V, Qin Y, Huang X, D’Angelo P, Tarabella G. Recycled Sericin Biopolymer in Biotechnology and Bioelectronics. Bioengineering (Basel) 2025; 12:547. [PMID: 40428166 PMCID: PMC12108825 DOI: 10.3390/bioengineering12050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/02/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
In a world characterized by rapid industrialization and a growing population, plastic or polymeric waste handling has undergone significant transformations. Recycling has become a major strategy where silk sericin has great potential among recyclable polymers. This naturally occurring biopolymer is a sustainable and versatile material with a wide range of potential uses in biotechnology and sensing. Furthermore, preparing and studying new environmentally friendly functional polymers with attractive physicochemical properties can open new opportunities for developing next-generation materials and composites. Herein, we provide an overview of the advances in the research studies of silk sericin as a functional and eco-friendly material, considering its biocompatibility and unique physicochemical properties. The structure of silk sericin and the extraction procedures, considering the influence of preparation methods on its properties, are described. Sericin's intrinsic properties, including its ability to crosslink with other polymers, its antioxidative capacity, and its biocompatibility, render it a versatile material for multifunctional applications across diverse fields. In biotechnology, the ability to blend sericin with other polymers enables the preparation of materials with varied morphologies, such as films and scaffolds, exhibiting enhanced mechanical strength and anti-inflammatory effects. This combination proves particularly advantageous in tissue engineering and wound healing. Furthermore, the augmentation of mechanical strength, coupled with the incorporation of plasticizers, makes sericin films suitable for the development of epidermal electrodes. Simultaneously, by precisely controlling hydration and permeability, the same material can be tailored for applications in packaging and the food industry. This work highlights the multidisciplinary and multifunctional nature of sericin, emphasizing its broad applicability.
Collapse
Affiliation(s)
- Davide Vurro
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37A, 43124 Parma, Italy; (D.V.); (A.L.); (I.D.); (G.D.G.); (V.G.); (G.T.)
| | - Aris Liboà
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37A, 43124 Parma, Italy; (D.V.); (A.L.); (I.D.); (G.D.G.); (V.G.); (G.T.)
- Department of Chemistry Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Ilenia D’Onofrio
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37A, 43124 Parma, Italy; (D.V.); (A.L.); (I.D.); (G.D.G.); (V.G.); (G.T.)
- Department of Chemistry Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Giuseppe De Giorgio
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37A, 43124 Parma, Italy; (D.V.); (A.L.); (I.D.); (G.D.G.); (V.G.); (G.T.)
| | - Zirong Zhou
- School of Information Science and Technology, Fudan University, Handan Rd. 220, Shanghai 200433, China; (Z.Z.); (Y.Q.); (X.H.)
| | - Vardan Galstyan
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37A, 43124 Parma, Italy; (D.V.); (A.L.); (I.D.); (G.D.G.); (V.G.); (G.T.)
| | - Yajie Qin
- School of Information Science and Technology, Fudan University, Handan Rd. 220, Shanghai 200433, China; (Z.Z.); (Y.Q.); (X.H.)
| | - Xiongchuan Huang
- School of Information Science and Technology, Fudan University, Handan Rd. 220, Shanghai 200433, China; (Z.Z.); (Y.Q.); (X.H.)
| | - Pasquale D’Angelo
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37A, 43124 Parma, Italy; (D.V.); (A.L.); (I.D.); (G.D.G.); (V.G.); (G.T.)
| | - Giuseppe Tarabella
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37A, 43124 Parma, Italy; (D.V.); (A.L.); (I.D.); (G.D.G.); (V.G.); (G.T.)
| |
Collapse
|
3
|
Stradczuk-Mazurek M, Mazurek Ł, Konop M. Silk Sericin in Dermatological Diseases: From Preclinical Studies to Future Clinical Applications. Macromol Biosci 2025:e00058. [PMID: 40394943 DOI: 10.1002/mabi.202500058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/26/2025] [Indexed: 05/22/2025]
Abstract
Biomaterials in medicine are becoming more widespread as a single or complementary treatment option. One such biomaterial is silk, comprised of two primary proteins: fibroin and sericin. Recently, sericin's anti-inflammatory, antioxidant, moisturizing, elastase- and tyrosinase-inhibiting properties have been widely investigated. Sericin biomaterials are already used in wound healing and bone tissue engineering. Additionally, there are promising results for its usefulness in many other applications. This review focuses on sericin use in dermatological diseases, above all in atopic dermatitis and psoriasis. Sericin biomaterials have proven not only to be a promising drug carrier but also to improve the treatment outcome of atopic skin lesions. In psoriasis, sericin's therapeutic effect has reduced inflammation and abnormal epidermal maturation in plaques, with results comparable to standard treatment. Sericin is also observed to diminish skin pigmentation, improve moisture, and increase collagen production so that it can be used as an anti-aging product. There are also reports of its anti-skin-cancer activity. This paper describes the mechanisms behind skin diseases' pathogenesis and, based on the results of scientific studies, highlights and explains sericin's beneficial effects in their treatment. Its versatility, alone or combined with other therapeutic agents, provides new opportunities for dermatological treatments and cosmetic innovations.
Collapse
Affiliation(s)
- Monika Stradczuk-Mazurek
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 3C Pawińskiego Street, Warsaw, 02-106, Poland
| | - Łukasz Mazurek
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 3C Pawińskiego Street, Warsaw, 02-106, Poland
| | - Marek Konop
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 3C Pawińskiego Street, Warsaw, 02-106, Poland
| |
Collapse
|
4
|
da Silva Santos É, Uchida DT, Bruschi ML. Sericin from Bombyx Mori as a By-product for DLP 3D Printing in Pharmaceutical and Biomedical Applications. AAPS PharmSciTech 2025; 26:111. [PMID: 40246786 DOI: 10.1208/s12249-025-03108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/06/2025] [Indexed: 04/19/2025] Open
Abstract
Sericin, a silk-derived protein, has emerged as a potential material for Digital Light Processing (DLP) printing, particularly in uses requiring biocompatibility and sustainability. Sericin is a candidate for developing durable and precise 3D-printed structures due to its natural origin and intrinsic properties like film-forming ability and cross-linking potential. Its biocompatibility makes it suitable for medical applications, such as targeted delivery of anticancer drugs or creation of therapeutic supports directly on affected skin, orthodontic and cosmetic biomaterials, disease modulation, wound healing, antioxidant and antimicrobial applications, and regenerative medicine. Additionally, sericin can strengthen and stabilize printed structures while maintaining environmental integrity, aligning with the growing demand for eco-friendly materials in advanced manufacturing. However, formulating sericin-based resins for DLP printing presents challenges, including optimizing cross-linking and curing processes for obtaining desired properties of material. Overcoming these challenges could unlock the full potential of sericin in diverse fields, such as tissue engineering, where biocompatibility and precise structural integrity are critical. This review investigates the potential of sericin-based resins for 3D printing, emphasizing the protein's compatibility with photopolymerizable systems and its capacity to improve the overall performance of DLP-printed materials. Further research is essential to refine sericin-based formulations, enabling their broader application in 3D printing technologies. By examining the unique characteristics of sericin, including its origins and material properties, this review underscores the protein's potential to drive innovation in sustainable manufacturing. Ultimately, sericin offers a viable alternative to synthetic resins and holds promise for advancing both biomedical and environmental applications through innovative 3D printing technologies.
Collapse
Affiliation(s)
- Éverton da Silva Santos
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Denise Tiemi Uchida
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil.
| |
Collapse
|
5
|
Laomeephol C, Punjataewakupt A, Kanchanasin P, Phongsopitanun W, Ferreira H, Neves NM, Aramwit P. Silver Cross-Linking of Silk Sericin-Based Hydrogels for Improved Stability and Broad-Spectrum Antimicrobial Properties. ACS APPLIED BIO MATERIALS 2025; 8:2312-2322. [PMID: 39939119 PMCID: PMC11921025 DOI: 10.1021/acsabm.4c01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Silk sericin (SS), a biocompatible protein derived from silkworms, exhibits valuable properties for medicinal applications, including antioxidant activity and cell growth support. However, their rapid degradation limits their practical use. This study introduces silver ions (Ag+) as a dual-function cross-linking agent to enhance the structural and functional properties of SS-based hydrogels. The incorporation of Ag+ stabilized the hydrogel network through dityrosine cross-links and coordination bonds with SS amino acid side chains, significantly improving hydrolytic and enzymatic resistance. Hydrogels cross-linked with 1 mM Ag+ demonstrated optimal performance, retaining excellent structural integrity while preserving the cytocompatibility and antioxidant activity of SS. These hydrogels also exhibited broad-spectrum antimicrobial activity against bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant S. aureus), fungus (Aspergillus niger), and yeast (Candida albicans). Higher Ag+ concentrations, however, increased the cytotoxicity without enhancing the antimicrobial efficacy. This study highlights the potential of Ag+ cross-linked SS-based hydrogels as scalable, multifunctional 3D structures for antimicrobial applications.
Collapse
Affiliation(s)
- Chavee Laomeephol
- Department
of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
- Center
of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Apirujee Punjataewakupt
- Department
of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Pawina Kanchanasin
- Department
of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Wongsakorn Phongsopitanun
- Department
of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Helena Ferreira
- 3B’s
Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables
and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edificio
1 (Sede), 4805-694 Barco, Guimarães, Portugal
- ICVS/3B’s,
PT Government Associate Laboratory, 4805-694 Braga, Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s
Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables
and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edificio
1 (Sede), 4805-694 Barco, Guimarães, Portugal
- ICVS/3B’s,
PT Government Associate Laboratory, 4805-694 Braga, Guimarães, Portugal
| | - Pornanong Aramwit
- Department
of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
- The Academy
of Science, The Royal Society of Thailand, Dusit, Bangkok 10330, Thailand
- Faculty
of
Pharmacy, Silpakorn University, Ratchamankanai, Phra Pathom Chedi,
Mueang District, Nakhon Pathom 73000, Thailand
| |
Collapse
|
6
|
Reis S, Spencer C, Soares CM, Falcão SI, Miguel SP, Ribeiro MP, Barros L, Coutinho P, Vaz J. Chemical Characterization and Bioactivities of Sericin Extracted from Silkworm Cocoons from Two Regions of Portugal. Molecules 2025; 30:1179. [PMID: 40076401 PMCID: PMC11901905 DOI: 10.3390/molecules30051179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Sericin has been characterized as demonstrating a variety of bioactivities, establishing it as a valuable resource for biomedical and pharmaceutical applications. The diverse biological activities of sericin are likely linked to its unique biochemical composition and properties. This study aimed to assess the effect of origin, seasonality, and amino acid composition on the bioactivity of sericin samples from two Portuguese regions compared to commercial sericin. The amino acid profile was analyzed using HPLC-FLD. Moreover, several bioactivities were assessed through in vitro assays, including antiproliferative effects, cell migration, antimicrobial activity, anticoagulant properties, antioxidant capacity, and anti-inflammatory effects. The results obtained in this work revealed that the origin and season affect the sericin amino acid profile. In its pure state, sericin exhibited a low content of free amino acids, with tyrosine being the most abundant (53.42-84.99%). In contrast, hydrolyzed sericin displayed a higher amino acid content dominated by serine (54.05-59.48%). Regarding bioactivities, the sericin tested did not demonstrate antioxidant or anti-inflammatory potential in the conducted tests. Notwithstanding, it showed antiproliferative activity in contact with human tumor cell lines at a minimum concentration of 0.52 mg/mL. Regarding antimicrobial activity, sericin had the capacity to inhibit the growth of the bacteria and fungi tested at concentrations between 5 and 10 mg/mL. Additionally, sericin demonstrated its capacity to prolong the coagulation time in pooled human plasma, indicating a potential anticoagulant activity. In addition, the origin and season also revealed their impact on biological activities, and sericin collected in Bragança in 2021 (S3) and 2022 (S4) demonstrated higher antiproliferative, antibacterial, and anticoagulant potentials. Future studies should focus on optimizing sericin's bioactivities and elucidating its molecular mechanisms for clinical and therapeutic applications.
Collapse
Affiliation(s)
- Sara Reis
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.I.F.); (L.B.)
| | - Carina Spencer
- BRIDGES—Biotechnology Research Innovation Design of Health Products, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (C.S.); (S.P.M.); (M.P.R.)
| | - Cristina M. Soares
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal;
| | - Soraia I. Falcão
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.I.F.); (L.B.)
| | - Sónia P. Miguel
- BRIDGES—Biotechnology Research Innovation Design of Health Products, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (C.S.); (S.P.M.); (M.P.R.)
| | - Maximiano P. Ribeiro
- BRIDGES—Biotechnology Research Innovation Design of Health Products, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (C.S.); (S.P.M.); (M.P.R.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Lillian Barros
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.I.F.); (L.B.)
| | - Paula Coutinho
- BRIDGES—Biotechnology Research Innovation Design of Health Products, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (C.S.); (S.P.M.); (M.P.R.)
| | - Josiana Vaz
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.I.F.); (L.B.)
| |
Collapse
|
7
|
Veiga A, Ramírez-Jiménez RA, Santos-Rosales V, García-González CA, Aguilar MR, Rojo L, Oliveira AL. Innovative Processing and Sterilization Techniques to Unlock the Potential of Silk Sericin for Biomedical Applications. Gels 2025; 11:114. [PMID: 39996657 PMCID: PMC11854797 DOI: 10.3390/gels11020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Silk sericin (SS), a by-product of the textile industry, has gained significant attention for its biomedical potential due to its biocompatibility and regenerative potential. However, the literature lacks information on SS processing methods and the resulting physicochemical properties. This study represents the first step in protocol optimization and standardization. In the present work, different processing techniques were studied and compared on SS extracted from boiling water: evaporation, rotary evaporation, lyophilization, and dialysis, which presented a recovery yield of approximately 27-32%. The goal was to find the most promising process to concentrate extracted SS solutions, and to ensure that the SS structure was highly preserved. As a result, a new cryo-lyophilization methodology was proposed. The proposed method allows for the preservation of the amorphous structure, which offers significant advantages including complete dissolution in water and PBS, an increase in storage stability, and the possibility of scaling-up, making it highly suitable for industrial and biomedical applications. The second part of the work focused on addressing another challenge in SS processing: efficient and non-destructive sterilization. Supercritical CO2 (scCO2) has been gaining momentum in the last years for sterilizing sensitive biopolymers and biological materials due to its non-toxicity and mild processing conditions. Thus, scCO2 technology was validated as a mild technique for the terminal sterilization of SS. In this way, it was possible to engineer a sequential cryo-lyophilization/scCO2 sterilization process which was able to preserve the original properties of this natural silk protein. Overall, we have valorized SS into a sterile, off-the-shelf, bioactive, and water-soluble material, with the potential to be used in the biomedical, pharmaceutical, or cosmetic industries.
Collapse
Affiliation(s)
- Anabela Veiga
- CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Instituto de Ciencia y Tecnología de Polímeros ICTP-CSIC, C. Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Rosa Ana Ramírez-Jiménez
- Instituto de Ciencia y Tecnología de Polímeros ICTP-CSIC, C. Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Víctor Santos-Rosales
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos A. García-González
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros ICTP-CSIC, C. Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros ICTP-CSIC, C. Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Ana L. Oliveira
- CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
8
|
Dragojlov I, Aad R, Ami D, Mangiagalli M, Natalello A, Vesentini S. Silk Sericin-Based Electrospun Nanofibers Forming Films for Cosmetic Applications: Preparation, Characterization, and Efficacy Evaluation. Molecules 2025; 30:715. [PMID: 39942818 PMCID: PMC11820507 DOI: 10.3390/molecules30030715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigates the extraction, characterization, and cosmetic application of silk sericin, a protein derived from Bombyx mori silkworm cocoons, with a focus on its potential in sustainable and biodegradable cosmetic formulations. Sericin was extracted using a high-temperature, high-pressure autoclave degumming method and spray-dried into a stable powder. The molecular weight distribution of sericin was analyzed, revealing fractions ranging from 10 to 37 kDa in Elution 1A and 25-40 kDa in Elution 1B. Electrospinning of sericin led to increased β-sheet content compared to raw sericin, as shown by secondary structure analyses. The electrospun sericin was then blended with gelatin to enhance mechanical strength and stability, resulting in robust films suitable for cosmetic applications. These films were developed into eye contour patches designed to deliver moisturizing, elasticizing, and smoothing effects. The efficacy of the patches was evaluated in 20 participants, showing increased skin elasticity (+35.1%) and smoothness (Ra: -30.7%, Rz: -26.6%), though a decline in hydration was observed, potentially indicating opportunities for further optimization.
Collapse
Affiliation(s)
- Ivana Dragojlov
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (I.D.); (R.A.)
| | - Rony Aad
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (I.D.); (R.A.)
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (D.A.); (M.M.); (A.N.)
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (D.A.); (M.M.); (A.N.)
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (D.A.); (M.M.); (A.N.)
| | - Simone Vesentini
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (I.D.); (R.A.)
| |
Collapse
|
9
|
Golshan M, Dortaj H, Rajabi M, Omidi Z, Golshan M, Pourentezari M, Rajabi A. Animal origins free products in cell culture media: a new frontier. Cytotechnology 2025; 77:12. [PMID: 39654546 PMCID: PMC11625046 DOI: 10.1007/s10616-024-00666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/02/2024] [Indexed: 12/12/2024] Open
Abstract
Despite the importance of finding replacements for fetal bovine serum (FBS), very few studies have focused on this subject. Historically, the use of animals and their derivatives in growth, reproduction, and physiological studies has raised several concerns. The supplementation of culture media with FBS, also known as fetal calf serum, continues to be widespread, despite its limitations in quality, reproducibility, and implications for animal welfare. Moreover, the presence of counterfeit and illegal products can adversely affect cell cultures and treatments, prompting the search for alternative solutions. To reduce reliance on FBS, various substitutes have been introduced, such as plant-derived proteins, bovine eye fluid, sericin protein, human platelet lysate, and inactivated coelomic fluid, which can provide roles similar to that of FBS. Therefore, it is essential to develop serum-free and animal supplement-free environments suitable for therapeutic and clinical applications, tailored to the specific needs of different cell types. Among the alternatives, plant-based options have gained attention as sustainable and ethical solutions. These include plant-derived peptones from sources like soy and wheat, which are rich in amino acids and peptides essential for mammalian cell growth, as well as plant protein hydrolysates from beans and peas that serve as sources of amino acids and growth factors. Plant extracts, especially from soy and various seeds, contain necessary proteins and growth factors, while phytohormones such as cytokinins and plant polysaccharides can help regulate cell growth. While these alternatives offer benefits like reduced costs and lower risks of disease transmission, further research is necessary to refine and align them with the specific requirements of diverse cell types. Graphical abstract
Collapse
Affiliation(s)
- Mahsa Golshan
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| | - Hengameh Dortaj
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Rajabi
- Department of Periodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Omidi
- Department of Cardiovascular Disease, Alzahra Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Golshan
- Shiraz Transplant Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Majid Pourentezari
- Department of Anatomical Sciences, School of Medicine Shahid, Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Rajabi
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| |
Collapse
|
10
|
Demiray EB, Sezgin Arslan T, Derkus B, Arslan YE. A Facile Strategy for Preparing Flexible and Porous Hydrogel-Based Scaffolds from Silk Sericin/Wool Keratin by In Situ Bubble-Forming for Muscle Tissue Engineering Applications. Macromol Biosci 2025; 25:e2400362. [PMID: 39427341 PMCID: PMC11827552 DOI: 10.1002/mabi.202400362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Indexed: 10/22/2024]
Abstract
In the present study, it is aimed to fabricate a novel silk sericin (SS)/wool keratin (WK) hydrogel-based scaffolds using an in situ bubble-forming strategy containing an N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) coupling reaction. During the rapid gelation process, CO2 bubbles are released by activating the carboxyl groups in sericin with EDC and NHS, entrapped within the gel, creating a porous cross-linked structure. With this approach, five different hydrogels (S2K1, S4K2, S2K4, S6K3, and S3K6) are constructed to investigate the impact of varying sericin and keratin ratios. Analyses reveal that more sericin in the proteinaceous mixture reinforced the hydrogel network. Additionally, the hydrogels' pore size distribution, swelling ratio, wettability, and in vitro biodegradation rate, which are crucial for the applications of biomaterials, are evaluated. Moreover, biocompatibility and proangiogenic properties are analyzed using an in-ovo chorioallantoic membrane assay. The findings suggest that the S4K2 hydrogel exhibited the most promising characteristics, featuring an adequately flexible and highly porous structure. The results obtained by in vitro assessments demonstrate the potential of S4K2 hydrogel in muscle tissue engineering. However, further work is necessary to improve hydrogels with an aligned structure to meet the features that can fully replace muscle tissue for volumetric muscle loss regeneration.
Collapse
Affiliation(s)
- Elif Beyza Demiray
- Regenerative Biomaterials Laboratory, Department of BioengineeringFaculty of Engineering, Çanakkale Onsekiz Mart UniversityÇanakkale17100Turkey
| | - Tugba Sezgin Arslan
- Regenerative Biomaterials Laboratory, Department of BioengineeringFaculty of Engineering, Çanakkale Onsekiz Mart UniversityÇanakkale17100Turkey
| | - Burak Derkus
- Stem Cell Research Lab, Department of ChemistryFaculty of Science, Ankara UniversityAnkara06100Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of BioengineeringFaculty of Engineering, Çanakkale Onsekiz Mart UniversityÇanakkale17100Turkey
| |
Collapse
|
11
|
Wanasingha N, Balu R, Rekas A, Mata JP, Dutta NK, Choudhury NR. A controlled co-assembly approach to tune temperature responsiveness of biomimetic proteins. J Mater Chem B 2025; 13:1302-1315. [PMID: 39628398 DOI: 10.1039/d4tb01737d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The controlled co-assembly of biomacromolecules through tuneable interactions offers a simple and fascinating opportunity to assemble multiple molecules into a single entity with enhanced complexity and unique properties. Herein, our study presents a dynamic co-assembled system using the multistimuli responsive intrinsically disordered protein Rec1-resilin and the adhesive hydrophilic protein silk sericin (SS). We utilized advanced characterization techniques including circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and small/ultra-small angle neutron scattering (SANS/USANS) to elucidate the detailed co-assembly behavior of the system and its evolution over time and temperature. To achieve sufficient neutron contrast, we successfully biosynthesised deuterium-labeled Rec1-resilin (D-Rec1). Our research demonstrates that this co-assembly allows the formation of a robust entity with dynamic conformational assembly and disassembly, exhibiting both the upper critical solution temperature (UCST) and lower critical solution temperature (LCST) with reversibility. The assembly and disassembly dynamics of the co-assembled entity at UCST are very fast, while the process is kinetically controlled at LCST. This study provides significant new insights into the interplay of a hydrophilic, multi-responsive IDP and a highly hydrophilic protein, shaping the thermoresponsive and stable properties of the co-assembled entity.
Collapse
Affiliation(s)
- Nisal Wanasingha
- Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Rajkamal Balu
- Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Agata Rekas
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Jitendra P Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Naba K Dutta
- Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
12
|
Kanyora MG, Kegode TM, Kurgat J, Kibogo H, Asudi G, Tanga CM, Ayalew W, Sevgan S, Ndungu N. Evaluating antibacterial and antioxidant properties of sericin recovered from cocoons of Bombyx mori, Gonometa postica and Samia ricini in Kenya. PLoS One 2024; 19:e0316259. [PMID: 39739913 DOI: 10.1371/journal.pone.0316259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
Microbial infections and excessive reactive oxygen species are the primary contributors to delays in wound healing with Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as the common wound infection causing bacteria. In fact, wound management has become more challenging since most of these microbes have developed resistance against commonly used conventional antibiotics thus making it necessary to develop natural products with both antibacterial and antioxidant activities. Increasing attention has been paid to silk sericin in the last decade, with limited research focus in Africa. Therefore, this work focus on evaluating antibacterial and antioxidant capacity of sericin recovered from cocoons of domesticated (Bombyx mori, Samia ricini) and wild (Gonometa postica) silkworms in Kenya. Sericin recovery was achieved using high temperature-high pressure method. Results revealed significance interspecies variation in all the parameters. Total flavonoid content ranged between 270±60.1 and 603.3±44.1 mg GAE/100g with S. ricini demonstrating the highest whereas G. postica exhibited the least content. Moreover, S. ricini showed the highest total phenolic content at 780.0±67.6 mg QE/100g while G. postica had the least phenolic content at 330.6±14.6 mg QE/100g. Samia ricini revealed the highest radical scavenging capacity at 40.47 ± 3.76% whereas B. mori sericin extract showed the least radical scavenging ability at 24.6± 2.96%. Furthermore, S. ricini silk sericin extract demonstrated the highest inhibitory activity against Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumonia which translated to 70.79 ± 11.28%, 93.86 ± 1.92%, 94.77 ± 7.07% when compared to streptomycin, chloramphenicol and oxytetracycline respectively. Bombyx mori and Gonometa postica showed the highest inhibitory activity against S. pyogene and E. coli respectively. These findings uncovered sufficient antibacterial efficacy of all three silk sericin extracts against both Gram-positive and negative bacteria, however, in depth research is still required to guarantee the aforementioned bioactivities to boost the therapeutic potential of silk sericin-based biomaterials.
Collapse
Affiliation(s)
- Mwangi G Kanyora
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Microbiology and Biotechnology Kenyatta University, Nairobi, Kenya
| | - Timothy M Kegode
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Justus Kurgat
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Harrison Kibogo
- Department of Biochemistry, Microbiology and Biotechnology Kenyatta University, Nairobi, Kenya
| | - George Asudi
- Department of Biochemistry, Microbiology and Biotechnology Kenyatta University, Nairobi, Kenya
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Workneh Ayalew
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Subramanian Sevgan
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Nelly Ndungu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
13
|
Prakash M, Mathikere Naganna C, Radhakrishnan V, Somayaji P, Sabu L. Therapeutic potential of silkworm sericin in wound healing applications. Wound Repair Regen 2024; 32:916-940. [PMID: 39225112 DOI: 10.1111/wrr.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic wounds are characterised by an imbalance between pro and anti-inflammatory signals, which result in permanent inflammation and delayed re-epithelialization, consequently hindering wound healing. They are associated with bacterial infections, tissue hypoxia, local ischemia, reduced vascularization and MMP-9 upregulation. The global prevalence of chronic wounds has been estimated at 40 million in the adult population, with an alarming annual growth rate of 6.6%, making it an increasingly significant clinical problem. Sericin is a natural hydrophilic protein obtained from the silkworm cocoon. Due to its biocompatibility, biodegradability, non-immunogenicity and oxidation resistance, coupled with its excellent affinity for target biomolecules, it holds great potential in wound healing applications. The silk industry discards 50,000 tonnes of sericin annually, making it a readily available material. Sericin increases cell union sites and promotes cell proliferation in fibroblasts and keratinocytes, thanks to its cytoprotective and mitogenic effects. Additionally, it stimulates macrophages to release more therapeutic cytokines, thus improving vascularization. This review focuses on the biological properties of sericin that contribute towards enhanced wound healing process and its mechanism of interaction with important biological targets involved in wound healing. Emphasis is placed on diverse wound dressing products that are sericin based and the utilisation of nanotechnology to design sericin nanoparticles that aid in chronic wound management.
Collapse
Affiliation(s)
- Monika Prakash
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | | | - Vivek Radhakrishnan
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Prathik Somayaji
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Leah Sabu
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| |
Collapse
|
14
|
Aad R, Dragojlov I, Vesentini S. Sericin Protein: Structure, Properties, and Applications. J Funct Biomater 2024; 15:322. [PMID: 39590526 PMCID: PMC11595228 DOI: 10.3390/jfb15110322] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Silk sericin, the glue protein binding fibroin fibers together, is present in the Bombyx mori silkworms' cocoons. In recent years, sericin has gained attention for its wide range of properties and possible opportunities for various applications, as evidenced by the meta-analysis conducted in this review. Sericin extraction methods have evolved over the years to become more efficient and environmentally friendly, preserving its structure. Due to its biocompatibility, biodegradability, anti-inflammatory, antibacterial, antioxidant, UV-protective, anti-tyrosinase, anti-aging, and anti-cancer properties, sericin is increasingly used in biomedical fields like drug delivery, tissue engineering, and serum-free cell culture media. Beyond healthcare, sericin shows promise in industries such as textiles, cosmetics, and food packaging. This review aims to highlight recent advancements in sericin extraction, research, and applications, while also summarizing key findings from earlier studies.
Collapse
Affiliation(s)
| | | | - Simone Vesentini
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (R.A.); (I.D.)
| |
Collapse
|
15
|
Majumder N, Bhattacharjee M, Spagnoli GC, Ghosh S. Immune response profiles induced by silk-based biomaterials: a journey from 'immunogenicity' towards 'immuno-compatibility. J Mater Chem B 2024; 12:9508-9523. [PMID: 39225012 DOI: 10.1039/d4tb01231c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Silk is a widely accepted biomaterial for tissue regeneration owing to its tunable biomechanical properties and ease of chemical modification. However, a number of aspects associated with its clinical use are still debated. Indeed, to achieve clinical success, a biomaterial must favorably interact with host tissues without evoking local or systemic immuno-inflammatory responses. The analysis of immune responses associated with silk under in vitro and in vivo conditions provides useful insights, improving the understanding of the functional characteristics of silk biomaterials and further promoting their clinical application. Silk evokes moderate immune responses upon implantation in vivo, depending on the material structure, fabrication method, degradation time, and implantation in soft or hard tissue sites, which rapidly subside within a few days/weeks. In vitro studies indicate that its immune-stimulatory properties are largely due to inherent protein conformation and differential processing parameters. Strategically controlled levels of immune responses in vivo with marginal immunogenicity of silk-based biomaterials may contribute to matrix remodeling and replacement by native tissue matrix around the implanted site. Therefore, immunomodulatory strategies should be developed to promote the use of silk-based biomaterials as promising candidates for numerous clinical applications.
Collapse
Affiliation(s)
- Nilotpal Majumder
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Maumita Bhattacharjee
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Giulio C Spagnoli
- National Research Council Institute of Translational Pharmacology, Rome, Italy
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
16
|
Andrade FRS, da Silva EL, Marinho AD, Oliveira ACX, Sánchez-Porras D, Bermejo-Casares F, Montenegro RC, Carriel V, Monteiro HSA, Jorge RJB. A new 3D model of L929 fibroblasts microtissues uncovers the effects of Bothrops erythromelas venom and its antivenom. Arch Toxicol 2024; 98:3503-3512. [PMID: 39009783 DOI: 10.1007/s00204-024-03824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
In Brazil, around 80% of snakebites are caused by snakes of the genus Bothrops. A three-dimensional culture model was standardized and used to perform treatments with Bothrops erythromelas venom (BeV) and its antivenom (AV). The MRC-5 and L929 cell lines were cultured at increasing cell densities. Morphometric parameters were evaluated through images obtained from an inverted microscope: solidity, circularity, and Feret diameter. L929 microtissues (MT) showed better morphometric data, and thus they were used for further analysis. MT viability was assessed using the acridine orange and ethidium bromide staining method, which showed viable cells in the MT on days 5, 7, and 10 of cultivation. Histochemical and histological analyses were performed, including hematoxylin/eosin staining, which showed a good structure of the spheroids. Alcian blue staining revealed the presence of acid proteoglycans. Immunohistochemical analysis with ki-67 showed different patterns of cell proliferation. The MT were also subjected to pharmacological tests using the BeV, in the presence or absence of its AV. The results showed that the venom was not cytotoxic, but it caused morphological changes. The MT showed cell detachment, losing their structure. The antivenom was able to partially prevent the venom activities.
Collapse
Affiliation(s)
- F R S Andrade
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St, 1127, Fortaleza, CE, 60.430-275, Brazil.
- Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St, 1000, Fortaleza, CE, 60.430-275, Brazil.
| | - E L da Silva
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St, 1127, Fortaleza, CE, 60.430-275, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St, 1000, Fortaleza, CE, 60.430-275, Brazil
| | - A D Marinho
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St, 1127, Fortaleza, CE, 60.430-275, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St, 1000, Fortaleza, CE, 60.430-275, Brazil
| | - A C X Oliveira
- Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St, 1000, Fortaleza, CE, 60.430-275, Brazil
- Department of Morphology, School of Medicine, Postgraduate Program in Morphological Science, Federal University of Ceará, Delmiro de Farias St., Fortaleza, CE, 60.430-170, Brazil
| | - D Sánchez-Porras
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - F Bermejo-Casares
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - R C Montenegro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St, 1127, Fortaleza, CE, 60.430-275, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St, 1000, Fortaleza, CE, 60.430-275, Brazil
| | - V Carriel
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - H S A Monteiro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St, 1127, Fortaleza, CE, 60.430-275, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St, 1000, Fortaleza, CE, 60.430-275, Brazil
| | - R J B Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St, 1127, Fortaleza, CE, 60.430-275, Brazil
- Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St, 1000, Fortaleza, CE, 60.430-275, Brazil
- Department of Morphology, School of Medicine, Postgraduate Program in Morphological Science, Federal University of Ceará, Delmiro de Farias St., Fortaleza, CE, 60.430-170, Brazil
| |
Collapse
|
17
|
Mazurek Ł, Rybka M, Jurak J, Frankowski J, Konop M. Silk Sericin and Its Effect on Skin Wound Healing: A State of the Art. Macromol Biosci 2024; 24:e2400145. [PMID: 39073276 DOI: 10.1002/mabi.202400145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Despite the significant progress in wound healing, chronic skin wounds remain a challenge for today's medicine. Due to the growing popularity of natural materials, silk protein-based dressings are gaining more attention in this field. Most studies refer to silk fibroin because sericin has been considered a waste product for years. However, sericin is also worth noting. Sericin-based dressings are mainly studied in cell cultures or animals. Sericin is the dressings' main component or can be included in more complex, advanced biomaterials. Recent studies highlight sericin's important role, noting its biocompatibility, biodegradability, and beneficial effects in skin wound healing, such as antibacterial activity, antioxidant and anti-inflammatory effects, or angiogenic properties. Developing sericin-based biomaterials is often simple, free of toxic by-products, and inexpensive, requiring no highly sophisticated apparatus. As a result, sericin-based dressings can be widely used in wound healing and have low environmental impact. However, the literature in this area is further limited. The following review collects and describes recent studies showing silk sericin's influence on skin wound healing.
Collapse
Affiliation(s)
- Łukasz Mazurek
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Pawińskiego 3c, Warsaw, 02-106, Poland
| | - Mateusz Rybka
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Pawińskiego 3c, Warsaw, 02-106, Poland
| | - Jan Jurak
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Pawińskiego 3c, Warsaw, 02-106, Poland
| | - Jakub Frankowski
- Department of Bioeconomy, Institute of Natural Fibres & Medicinal Plants-National Research Institute, Wojska Polskiego 71b, Poznań, 60-630, Poland
| | - Marek Konop
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Pawińskiego 3c, Warsaw, 02-106, Poland
| |
Collapse
|
18
|
Veiga A, Foster O, Kaplan DL, Oliveira AL. Expanding the boundaries of silk sericin biomaterials in biomedical applications. J Mater Chem B 2024; 12:7020-7040. [PMID: 38935038 DOI: 10.1039/d4tb00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Silk sericin (SS) has a long history as a by-product of the textile industry. SS has emerged as a sustainable material for biomedical engineering due to its material properties including water solubility, diverse impact on biological activities including antibacterial and antioxidant properties, and ability to promote cell adhesion and proliferation. This review addresses the origin, structure, properties, extraction, and underlying functions of this protein. An overview of the growing research studies and market evolution is presented, along with highlights of the most common fabrication matrices (hydrogels, bioinks, porous and fibrous scaffolds) and tissue engineering applications. Finally, the future trends with this protein as a multifaceted toolbox for bioengineering are explored, along with the challenges with SS. Overall, the present review can serve as a foundation for the creation of innovative biomaterials utilizing SS as a fundamental building block that hold market potential.
Collapse
Affiliation(s)
- Anabela Veiga
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Olivia Foster
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Ana Leite Oliveira
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
19
|
Veiga A, Silva IV, Dias JR, Alves NM, Oliveira AL, Ribeiro VP. Streamlining Skin Regeneration: A Ready-To-Use Silk Bilayer Wound Dressing. Gels 2024; 10:439. [PMID: 39057462 PMCID: PMC11276312 DOI: 10.3390/gels10070439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Silk proteins have been highlighted in the past decade for tissue engineering (TE) and skin regeneration due to their biocompatibility, biodegradability, and exceptional mechanical properties. While silk fibroin (SF) has high structural and mechanical stability with high potential as an external protective layer, traditionally discarded sericin (SS) has shown great potential as a natural-based hydrogel, promoting cell-cell interactions, making it an ideal material for direct wound contact. In this context, the present study proposes a new wound dressing approach by developing an SS/SF bilayer construct for full-thickness exudative wounds. The processing methodology implemented included an innovation element and the cryopreservation of the SS intrinsic secondary structure, followed by rehydration to produce a hydrogel layer, which was integrated with a salt-leached SF scaffold to produce a bilayer structure. In addition, a sterilization protocol was developed using supercritical technology (sCO2) to allow an industrial scale-up. The resulting bilayer material presented high porosity (>85%) and interconnectivity while promoting cell adhesion, proliferation, and infiltration of human dermal fibroblasts (HDFs). SS and SF exhibit distinct secondary structures, pore sizes, and swelling properties, opening new possibilities for dual-phased systems that accommodate the different needs of a wound during the healing process. The innovative SS hydrogel layer highlights the transformative potential of the proposed bilayer system for biomedical therapeutics and TE, offering insights into novel wound dressing fabrication.
Collapse
Affiliation(s)
- Anabela Veiga
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (V.P.R.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês V. Silva
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (V.P.R.)
| | - Juliana R. Dias
- Centre for Rapid and Sustainable Product Development, Instituto Politécnico de Leiria, 2430-028 Marinha Grande, Portugal; (J.R.D.); (N.M.A.)
| | - Nuno M. Alves
- Centre for Rapid and Sustainable Product Development, Instituto Politécnico de Leiria, 2430-028 Marinha Grande, Portugal; (J.R.D.); (N.M.A.)
| | - Ana L. Oliveira
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (V.P.R.)
| | - Viviana P. Ribeiro
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (V.P.R.)
| |
Collapse
|
20
|
Wang SL, Zhuo JJ, Fang SM, Xu W, Yu QY. Silk Sericin and Its Composite Materials with Antibacterial Properties to Enhance Wound Healing: A Review. Biomolecules 2024; 14:723. [PMID: 38927126 PMCID: PMC11201629 DOI: 10.3390/biom14060723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Wound infections may disrupt the normal wound-healing process. Large amounts of antibiotics are frequently used to prevent pathogenic infections; however, this can lead to resistance development. Biomaterials possessing antimicrobial properties have promising applications for reducing antibiotic usage and promoting wound healing. Silk sericin (SS) has been increasingly explored for skin wound healing applications owing to its excellent biocompatibility and antioxidant, antimicrobial, and ultraviolet-resistant properties. In recent years, SS-based composite biomaterials with a broader antimicrobial spectrum have been extensively investigated and demonstrated favorable efficacy in promoting wound healing. This review summarizes various antimicrobial agents, including metal nanoparticles, natural extracts, and antibiotics, that have been incorporated into SS composites for wound healing and elucidates their mechanisms of action. It has been revealed that SS-based biomaterials can achieve sustained antimicrobial activity by slow-release-loaded antimicrobial agents. The antimicrobial-loaded SS composites may promote wound healing through anti-infection, anti-inflammation, hemostasis, angiogenesis, and collagen deposition. The manufacturing methods, benefits, and limitations of antimicrobial-loaded SS materials are briefly discussed. This review aims to enhance the understanding of new advances and directions in SS-based antimicrobial composites and guide future biomedical research.
Collapse
Affiliation(s)
- Sheng-Lan Wang
- College of Life Science, China West Normal University, Nanchong 637002, China;
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Jia-Jun Zhuo
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, China;
| | - Wei Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, No. 40 Daomenkou St., District Yuzhong, Chongqing 400011, China
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| |
Collapse
|
21
|
Wang J, Liu H, Shi X, Qin S, Liu J, Lv Q, Liu J, Li Q, Wang Z, Wang L. Development and Application of an Advanced Biomedical Material-Silk Sericin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311593. [PMID: 38386199 DOI: 10.1002/adma.202311593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Sericin, a protein derived from silkworm cocoons, is considered a waste product derived from the silk industry for thousands of years due to a lack of understanding of its properties. However, in recent decades, a range of exciting properties of sericin are studied and uncovered, including cytocompatibility, low-immunogenicity, photo-luminescence, antioxidant properties, as well as cell-function regulating activities. These properties make sericin-based biomaterials promising candidates for biomedical applications. This review summarizes the properties and bioactivities of silk sericin and highlights the latest developments in sericin in tissue engineering and regenerative medicine. Furthermore, the extended application of sericin in developing flexible electronic devices and 3D bioprinting is also discussed. It is believed that sericin-based biomaterials have great potential of being developed into novel tissue engineering products and smart implantable devices for various medical applications toward improving clinical outcomes.
Collapse
Affiliation(s)
- Jian Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huan Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaolei Shi
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sumei Qin
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingwei Liu
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiying Lv
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Liu
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qilin's Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
22
|
Fongsodsri K, Tiyasatkulkovit W, Chaisri U, Reamtong O, Adisakwattana P, Supasai S, Kanjanapruthipong T, Sukphopetch P, Aramwit P, Ampawong S. Sericin promotes chondrogenic proliferation and differentiation via glycolysis and Smad2/3 TGF-β signaling inductions and alleviates inflammation in three-dimensional models. Sci Rep 2024; 14:11553. [PMID: 38773312 PMCID: PMC11109159 DOI: 10.1038/s41598-024-62516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Knee osteoarthritis is a chronic joint disease mainly characterized by cartilage degeneration. The treatment is challenging due to the lack of blood vessels and nerve supplies in cartilaginous tissue, causing a prominent limitation of regenerative capacity. Hence, we investigated the cellular promotional and anti-inflammatory effects of sericin, Bombyx mori-derived protein, on three-dimensional chondrogenic ATDC5 cell models. The results revealed that a high concentration of sericin promoted chondrogenic proliferation and differentiation and enhanced matrix production through the increment of glycosaminoglycans, COL2A1, COL X, and ALP expressions. SOX-9 and COL2A1 gene expressions were notably elevated in sericin treatment. The proteomic analysis demonstrated the upregulation of phosphoglycerate mutase 1 and triosephosphate isomerase, a glycolytic enzyme member, reflecting the proliferative enhancement of sericin. The differentiation capacity of sericin was indicated by the increased expressions of procollagen12a1, collagen10a1, rab1A, periostin, galectin-1, and collagen6a3 proteins. Sericin influenced the differentiation capacity via the TGF-β signaling pathway by upregulating Smad2 and Smad3 while downregulating Smad1, BMP2, and BMP4. Importantly, sericin exhibited an anti-inflammatory effect by reducing IL-1β, TNF-α, and MMP-1 expressions and accelerating COL2A1 production in the early inflammatory stage. In conclusion, sericin demonstrates potential in promoting chondrogenic proliferation and differentiation, enhancing cartilaginous matrix synthesis through glycolysis and TGF-β signaling pathways, and exhibiting anti-inflammatory properties.
Collapse
Affiliation(s)
- Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | | | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Suangsuda Supasai
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10330, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
23
|
Adamiak K, Gaida VA, Schäfer J, Bosse L, Diemer C, Reiter RJ, Slominski AT, Steinbrink K, Sionkowska A, Kleszczyński K. Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. Int J Mol Sci 2024; 25:4858. [PMID: 38732075 PMCID: PMC11084828 DOI: 10.3390/ijms25094858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021-2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Vivian A. Gaida
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Jasmin Schäfer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Lina Bosse
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Clara Diemer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| |
Collapse
|
24
|
Xiang JY, Kang L, Li ZM, Tseng SL, Wang LQ, Li TH, Li ZJ, Huang JZ, Yu NZ, Long X. Biological scaffold as potential platforms for stem cells: Current development and applications in wound healing. World J Stem Cells 2024; 16:334-352. [PMID: 38690516 PMCID: PMC11056631 DOI: 10.4252/wjsc.v16.i4.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Wound repair is a complex challenge for both clinical practitioners and researchers. Conventional approaches for wound repair have several limitations. Stem cell-based therapy has emerged as a novel strategy to address this issue, exhibiting significant potential for enhancing wound healing rates, improving wound quality, and promoting skin regeneration. However, the use of stem cells in skin regeneration presents several challenges. Recently, stem cells and biomaterials have been identified as crucial components of the wound-healing process. Combination therapy involving the development of biocompatible scaffolds, accompanying cells, multiple biological factors, and structures resembling the natural extracellular matrix (ECM) has gained considerable attention. Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells, providing them with an environment conducive to growth, similar to that of the ECM. These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing. This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing, emphasizing their capacity to facilitate stem cell adhesion, proliferation, differentiation, and paracrine functions. Additionally, we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity.
Collapse
Affiliation(s)
- Jie-Yu Xiang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin Kang
- Biomedical Engineering Facility, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zi-Ming Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Song-Lu Tseng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li-Quan Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tian-Hao Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhu-Jun Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiu-Zuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
25
|
Xu L, Wu C, Lay Yap P, Losic D, Zhu J, Yang Y, Qiao S, Ma L, Zhang Y, Wang H. Recent advances of silk fibroin materials: From molecular modification and matrix enhancement to possible encapsulation-related functional food applications. Food Chem 2024; 438:137964. [PMID: 37976879 DOI: 10.1016/j.foodchem.2023.137964] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Silk fibroin materials are emergingly explored for food applications due to their inherent properties including safe oral consumption, biocompatibility, gelatinization, antioxidant performance, and mechanical properties. However, silk fibroin possesses drawbacks like brittleness owing to its inherent specific composition and structure, which limit their applications in this field. This review discusses current progress about molecular modification methods on silk fibroin such as extraction, blending, self-assembly, enzymatic catalysis, etc., to address these limitations and improve their physical/chemical properties. It also summarizes matrix enhancement strategies including freeze drying, spray drying, electrospinning/electrospraying, microfluidic spinning/wheel spinning, desolvation and supercritical fluid, to generate nano-, submicron-, micron-, or bulk-scale materials. It finally highlights the food applications of silk fibroin materials, including nutraceutical improvement, emulsions, enzyme immobilization and 3D/4D printing. This review also provides insights on potential opportunities (like safe modification, toxicity risk evaluation, and digestion conditions) and possibilities (like digital additive manufacturing) in functional food industry.
Collapse
Affiliation(s)
- Liang Xu
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China
| | - Chaoyang Wu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Pei Lay Yap
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| |
Collapse
|
26
|
Vieira WT, Nicolini MVS, da Silva MGC, Nascimento LDO, Vieira MGA. κ-Carrageenan/sericin polymer matrix modified with different crosslinking agents and thermal crosslinking: Improved release profile of mefenamic acid. Int J Biol Macromol 2024; 262:129823. [PMID: 38296146 DOI: 10.1016/j.ijbiomac.2024.129823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/27/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
The crosslinking of the polymer matrix with compatible macromolecules results in a three-dimensional network structure that offers an enhancement in the controlled release properties of the material. In this sense, this work aimed to improve the release profile of mefenamic acid (MAC) through crosslinking strategies. κ-Carrageenan/sericin crosslinked blend was obtained by covalent and thermal crosslinking and the different formulations were characterized. The gastroresistant potential and release profile were evaluated in the dissolution assay. The effect and characterization of the particles were investigated. Multiple units presented high entrapment efficiency (94.11-104.25), high drug loading (36.50-47.50 %) and adequate particle size (1.34-1.57 mm) with rough surface and visually spherical shape. The Weibull model showed that drug release occurred by relaxation, erosion and Fickian diffusion. Material stability and absence of MAC -polymer interactions were demonstrated by FTIR and thermogravimetric analysis. DSC showed a stable character of MAC in the drug-loaded beads. Moreover, the application studies of κ-Car/Ser/carboxymethylcellulose in the in vitro intestine mode showed that the crosslinked blend increased cell viability (>85 %), while free MAC exhibited a cytotoxic effect. Finally, the crosslinked k-Car/Ser blend MAC -loaded showed promising properties of a sustained release form of anti-inflammatory drug.
Collapse
Affiliation(s)
- Wedja Timóteo Vieira
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Maria Vitória Silva Nicolini
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Meuris Gurgel Carlos da Silva
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Laura de Oliveira Nascimento
- University of Campinas, School of Pharmaceutical Sciences, Cândido Portinari, St. 200, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-871, Brazil
| | - Melissa Gurgel Adeodato Vieira
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil.
| |
Collapse
|
27
|
Kakihara N, Sato M, Shirai A, Koguchi M, Yamauchi S, Nakano T, Sasamoto R, Sato H. Green cocoon-derived sericin reduces cellular damage caused by radiation in human keratinocytes. Sci Rep 2024; 14:3068. [PMID: 38321256 PMCID: PMC10847496 DOI: 10.1038/s41598-024-53712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/04/2024] [Indexed: 02/08/2024] Open
Abstract
Radiation therapy used in the treatment of cancer causes skin damage, and no method of care has been established thus far. Recently, it has become clear that sericin derived from silkworm cocoons has moisturizing and antioxidant functions. In addition, green cocoon-derived sericin, which is rich in flavonoids, may have enhanced functions. However, whether this green cocoon-derived sericin can reduce radiotherapy-induced skin damage is unclear. In the present study, we aimed at establishing care methods to reduce skin cell damage caused by X-irradiation using green cocoon-derived sericin. We investigated its effect on human keratinocytes using lactate dehydrogenase activity to indicate damage reduction. Our results showed that green cocoon-derived sericin reduced cell damage caused by X-irradiation. However, this effect was not observed when cells were treated before X-irradiation or with a sericin derived from white cocoons. In addition, green cocoon-derived sericin decreased the levels of reactive oxygen species and lipid peroxidation. Our results suggest that green cocoon sericin mitigates the damaging effect of X-irradiation on cells, hence presenting potential usefulness in reducing skin damage from radiation therapy and opening new avenues in the care of cancer patients.
Collapse
Affiliation(s)
- Nahoko Kakihara
- Department of Nursing, Graduate School of Health Sciences, Niigata University, Niigata, Japan.
| | - Momoko Sato
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Ayaki Shirai
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Mizuki Koguchi
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Shiori Yamauchi
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Toshimichi Nakano
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryuta Sasamoto
- Department of Radiological Technology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Hideyo Sato
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| |
Collapse
|
28
|
Ratanabunyong S, Siriwaseree J, Wanaragthai P, Krobthong S, Yingchutrakul Y, Kuaprasert B, Choowongkomon K, Aramwit P. Exploring the apoptotic effects of sericin on HCT116 cells through comprehensive nanostring transcriptomics and proteomics analysis. Sci Rep 2024; 14:2366. [PMID: 38287097 PMCID: PMC10825148 DOI: 10.1038/s41598-024-52789-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
Sericin, a silk protein from Bombyx mori (silkworms), has many applications, including cosmetics, anti-inflammation, and anti-cancer. Sericin complexes with nanoparticles have shown promise for breast cancer cell lines. Apoptosis, a programmed cell death mechanism, stops cancer cell growth. This study found that Sericin urea extract significantly affected HCT116 cell viability (IC50 = 42.00 ± 0.002 µg/mL) and caused apoptosis in over 80% of treated cells. S-FTIR analysis showed significant changes in Sericin-treated cells' macromolecule composition, particularly in the lipid and nucleic acid areas, indicating major cellular modifications. A transcriptomics study found upregulation of the apoptotic signaling genes FASLG, TNFSF10, CASP3, CASP7, CASP8, and CASP10. Early apoptotic proteins also showed that BAD, AKT, CASP9, p53, and CASP8 were significantly upregulated. A proteomics study illuminated Sericin-treated cells' altered protein patterns. Our results show that Sericin activated the extrinsic apoptosis pathway via the caspase cascade (CASP8/10 and CASP3/7) and the death receptor pathway, involving TNFSF10 or FASLG, in HCT116 cells. Upregulation of p53 increases CASP8, which activates CASP3 and causes HCT116 cell death. This multi-omics study illuminates the molecular mechanisms of Sericin-induced apoptosis, sheds light on its potential cancer treatment applications, and helps us understand the complex relationship between silk-derived proteins and cellular processes.
Collapse
Affiliation(s)
- Siriluk Ratanabunyong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jeeraprapa Siriwaseree
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Panatda Wanaragthai
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Sucheewin Krobthong
- Thailand Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani, 12120, Thailand
| | - Buabarn Kuaprasert
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok, 10900, Thailand.
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Phayathai Road, Phatumwan, Bangkok, 10330, Thailand.
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10330, Thailand.
| |
Collapse
|
29
|
Wang SL, Li XW, Xu W, Yu QY, Fang SM. Advances of regenerated and functionalized silk biomaterials and application in skin wound healing. Int J Biol Macromol 2024; 254:128024. [PMID: 37972830 DOI: 10.1016/j.ijbiomac.2023.128024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The cocoon silk of silkworms (Bombyx mori) has multiple potential applications in biomedicine due to its good biocompatibility, mechanical properties, degradability, and plasticity. Numerous studies have confirmed that silk material dressings are more effective than traditional ones in the skin wound healing process. Silk material research has recently moved toward functionalized biomaterials and achieved remarkable results. Herein, we summarize the recent advances in functionalized silk materials and their efficacy in skin wound healing. In particular, transgenic technology has realized the specific expression of human growth factors in the silk glands of the silkworms, which lays the foundation for fabricating novel and low-cost functionalized materials. Without a green and safe preparation process, the best raw silk materials cannot be made into medically safe products. Therefore, we provide an overview of green and gentle approaches for silk degumming and silk sericin (SS) extraction. Moreover, we summarize and discuss the processing methods of silk fibroin (SF) and SS materials and their potential applications, such as burns, diabetic wounds, and other wounds. This review aims to enhance our understanding of new advances and directions in silk materials and guide future biomedical research.
Collapse
Affiliation(s)
- Sheng-Lan Wang
- College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China
| | - Xiao-Wei Li
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Wei Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, No. 40 Daomenkou St., District Yuzhong, Chongqing 400011, China
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China.
| |
Collapse
|
30
|
Lv J, Wang J, Zeng Y, Tian S, Wang F, Zhai Y, Zhou Q, Luo X, Zhang X, Liu B, Zhou C. In vitro chemical treatment of silk increases the expression of pro-inflammatory factors and facilitates degradation in rats. J Appl Biomater Funct Mater 2024; 22:22808000231222704. [PMID: 38217423 DOI: 10.1177/22808000231222704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVES Silk fiber is difficult to degrade in vivo, which limits its application in tissue engineering materials such as artificial nerves. Therefore, in this study aim to promote its degradation in vivo by chemical treating silk fibers in vitro. MATERIALS AND METHODS Sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), scanning electron microscopy (SEM) observations, mechanical test, Fourier transform infrared spectroscopy (FT-IR) measurements were used to investigate the degradation effect of chemicals (hydrochloric acid, phosphoric acid, acetic acid, sodium hydroxide, calcium hydroxide, sodium bicarbonate, and calcium chloride) on silk fiber in vitro. Immunofluorescence staining and transcriptome analysis were used to investigate the effect of inflammatory factors on the degradation of chemically treated silk fiber in rats. RESULTS (1) Silks were separated into finer fibers in each group. (2) FT-IR absorption peaks of amides I, II, and III overlap in each group. (3) Silk degradation degree in each group was higher than that in an untreated group. The calcium chloride-treated group was completely degraded. (4) Fibronectin, collagen I, collagen III, integrin α and CD68 were immunofluorescence positive in all vegetation section. (5) There were no significant differences in the expressions of collagen I, collagen III, and fibronectin in the vegetations formed on the 14th day of subcutaneous implantation, while integrin α, CD68, TNF-α, IL-1b, and IL-23 express at higher levels with IL-10 at lower levels. CONCLUSIONS All chemicals could completely degrade silk; however, their degradation products were not the same. The chemicals change the mechanical properties of silk by separating it into finer fibers, which increase the contact surface area between the silk and tissue fluid, accelerating the degradation of monofilaments in vivo by promoting inflammation and macrophage activity through the increased and decreased expressions of pro- and anti-inflammatory factors, respectively.
Collapse
Affiliation(s)
- Jinfeng Lv
- Institute for Silk and Related Biomaterials Research, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jieping Wang
- Institute for Silk and Related Biomaterials Research, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Yao Zeng
- Institute for Silk and Related Biomaterials Research, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Simeng Tian
- School of Life Sciences, Southwest University, Chongqing, China
| | - Fei Wang
- School of Life Sciences, Southwest University, Chongqing, China
| | - Yixue Zhai
- School of Life Sciences, Southwest University, Chongqing, China
| | - Qian Zhou
- School of Life Sciences, Southwest University, Chongqing, China
| | - Xiyue Luo
- School of Life Sciences, Southwest University, Chongqing, China
| | - Xuanjie Zhang
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Bin Liu
- School of Life Sciences, Southwest University, Chongqing, China
| | - Chan Zhou
- Institute for Silk and Related Biomaterials Research, Chongqing Academy of Animal Sciences, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
31
|
Saad M, El-Samad LM, Gomaa RA, Augustyniak M, Hassan MA. A comprehensive review of recent advances in silk sericin: Extraction approaches, structure, biochemical characterization, and biomedical applications. Int J Biol Macromol 2023; 250:126067. [PMID: 37524279 DOI: 10.1016/j.ijbiomac.2023.126067] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Silks are natural polymers that have been widely used for centuries. Silk consists of a filament core protein, termed fibroin, and a glue-like coating substance formed of sericin (SER) proteins. This protein is extracted from the silkworm cocoons (particularly Bombyx mori) and is mainly composed of amino acids like glycine, serine, aspartic acid, and threonine. Silk SER can be obtained using numerous methods, including enzymatic extraction, high-temperature, autoclaving, ethanol precipitation, cross-linking, and utilizing acidic, alkali, or neutral aqueous solutions. Given the versatility and outstanding properties of SER, it is widely fabricated to produce sponges, films, and hydrogels for further use in diverse biomedical applications. Hence, many authors reported that SER benefits cell proliferation, tissue engineering, and skin tissue restoration thanks to its moisturizing features, antioxidant and anti-inflammatory properties, and mitogenic effect on mammalian cells. Remarkably, SER is used in drug delivery depending on its chemical reactivity and pH-responsiveness. These unique features of SER enhance the bioactivity of drugs, facilitating the fabrication of biomedical materials at nano- and microscales, hydrogels, and conjugated molecules. This review thoroughly outlines the extraction techniques, biological properties, and respective biomedical applications of SER.
Collapse
Affiliation(s)
- Marwa Saad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Rehab A Gomaa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
32
|
Aramwit P, Fongsodsri K, Tuentam K, Reamtong O, Thiangtrongjit T, Kanjanapruthipong T, Yadavalli VK, Ampawong S. Sericin coated thin polymeric films reduce keratinocyte proliferation via the mTOR pathway and epidermal inflammation through IL17 signaling in psoriasis rat model. Sci Rep 2023; 13:12133. [PMID: 37495626 PMCID: PMC10372088 DOI: 10.1038/s41598-023-39218-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Therapeutic treatment forms can play significant roles in resolving psoriatic plaques or promoting wound repair in psoriatic skin. Considering the biocompatibility, mechanical strength, flexibility, and adhesive properties of silk fibroin sheets/films, it is useful to combine them with anti-psoriatic agents and healing stimulants, notably silk sericin. Here, we evaluate the curative properties of sericin-coated thin polymeric films (ScF) fabricated from silk fibroin, using an imiquimod-induced psoriasis rat model. The film biocompatibility and psoriatic wound improvement capacity was assessed. A proteomics study was performed to understand the disease resolving mechanisms. Skin-implantation study exhibited the non-irritation property of ScF films, which alleviate eczema histopathology. Immunohistochemical and gene expression revealed the depletion of β-defensin, caspase-3 and -9, TNF-α, CCL-20, IL-1β, IL-17, TGF-β, and Wnt expressions and S100a14 mRNA level. The proteomics study suggested that ScF diminish keratinocyte proliferation via the mTOR pathway by downregulating mTOR protein, corresponding to the modulation of TNF-α, Wnt, and IL-1β levels, leading to the enhancement of anti-inflammatory environment by IL-17 downregulation. Hematology data demonstrated the safety of using these biomaterials, which provide a potential therapeutic-option for psoriasis treatment due to desirable effects, especially anti-proliferation and anti-inflammation, functioning via the mTOR pathway and control of IL-17 signaling.
Collapse
Affiliation(s)
- Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10330, Thailand
| | - Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Khwanchanok Tuentam
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA, 23284, USA
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
33
|
Li Y, Wei Y, Zhang G, Zhang Y. Sericin from Fibroin-Deficient Silkworms Served as a Promising Resource for Biomedicine. Polymers (Basel) 2023; 15:2941. [PMID: 37447586 DOI: 10.3390/polym15132941] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Sericin, a fascinating natural biomaterial derived from silkworms, has received increasing interest in recent years for its unique bioactivity and high compatibility. Silkworms can be divided into wild-type or silk fibroin-deficient mutants according to whether they synthesize and secrete silk fibroin. Silk fibroin-deficient mutant silkworms and their cocoons are convenient for us to obtain diverse and high-quality sericin, which has been applicated in various fields such as cell culture, tissue engineering, drug delivery, and cosmetics. Here, we present an overview of our silkworm varieties resources, especially silk fibroin-deficient mutant silkworms. We optimized various extraction methods of sericin and summarized the characteristics and advantages of sericin. Finally, we developed and discussed a series of sericin-based biomaterials for promising applications for a diverse set of needs.
Collapse
Affiliation(s)
- Yurong Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yongkang Wei
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guozheng Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeshun Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
- Zhenjiang Zhongnong Biotechnology Co., Ltd., Zhenjiang 212121, China
| |
Collapse
|
34
|
Wang R, Wang Y, Song J, Tan H, Tian C, Zhao D, Xu S, Zhao P, Xia Q. A Novel Approach for Screening Sericin-Derived Therapeutic Peptides Using Transcriptomics and Immunoprecipitation. Int J Mol Sci 2023; 24:ijms24119425. [PMID: 37298379 DOI: 10.3390/ijms24119425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
With the demand for more efficient and safer therapeutic drugs, targeted therapeutic peptides are well received due to their advantages of high targeting (specificity), low immunogenicity, and minimal side effects. However, the conventional methods of screening targeted therapeutic peptides in natural proteins are tedious, time-consuming, less efficient, and require too many validation experiments, which seriously restricts the innovation and clinical development of peptide drugs. In this study, we established a novel method of screening targeted therapeutic peptides in natural proteins. We also provide details for library construction, transcription assays, receptor selection, therapeutic peptide screening, and biological activity analysis of our proposed method. This method allows us to screen the therapeutic peptides TS263 and TS1000, which have the ability to specifically promote the synthesis of the extracellular matrix. We believe that this method provides a reference for screening other drugs in natural resources, including proteins, peptides, fats, nucleic acids, and small molecules.
Collapse
Affiliation(s)
- Riyuan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yuancheng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Jianxin Song
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Huanhuan Tan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Chi Tian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Sheng Xu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning 530021, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
35
|
Duarte AC, Costa EC, Filipe HAL, Saraiva SM, Jacinto T, Miguel SP, Ribeiro MP, Coutinho P. Animal-derived products in science and current alternatives. BIOMATERIALS ADVANCES 2023; 151:213428. [PMID: 37146527 DOI: 10.1016/j.bioadv.2023.213428] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
More than fifty years after the 3Rs definition and despite the continuous implementation of regulatory measures, animals continue to be widely used in basic research. Their use comprises not only in vivo experiments with animal models, but also the production of a variety of supplements and products of animal origin for cell and tissue culture, cell-based assays, and therapeutics. The animal-derived products most used in basic research are fetal bovine serum (FBS), extracellular matrix proteins such as Matrigel™, and antibodies. However, their production raises several ethical issues regarding animal welfare. Additionally, their biological origin is associated with a high risk of contamination, resulting, frequently, in poor scientific data for clinical translation. These issues support the search for new animal-free products able to replace FBS, Matrigel™, and antibodies in basic research. In addition, in silico methodologies play an important role in the reduction of animal use in research by refining the data previously to in vitro and in vivo experiments. In this review, we depicted the current available animal-free alternatives in in vitro research.
Collapse
Affiliation(s)
- Ana C Duarte
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisabete C Costa
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Hugo A L Filipe
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Sofia M Saraiva
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Telma Jacinto
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Sónia P Miguel
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Maximiano P Ribeiro
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
36
|
Griffanti G, McKee MD, Nazhat SN. Mineralization of Bone Extracellular Matrix-like Scaffolds Fabricated as Silk Sericin-Functionalized Dense Collagen–Fibrin Hybrid Hydrogels. Pharmaceutics 2023; 15:pharmaceutics15041087. [PMID: 37111573 PMCID: PMC10142947 DOI: 10.3390/pharmaceutics15041087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
The design of hydrogels that combine both the biochemical cues needed to direct seeded cellular functions and mineralization to provide the structural and mechanical properties approaching those of mineralized native bone extracellular matrix (ECM) represents a significant challenge in bone tissue engineering. While fibrous hydrogels constituting of collagen or fibrin (and their hybrids) can be considered as scaffolds that mimic to some degree native bone ECM, their insufficient mechanical properties limit their application. In the present study, an automated gel aspiration–ejection (automated GAE) method was used to generate collagen–fibrin hybrid gel scaffolds with micro-architectures and mechanical properties approaching those of native bone ECM. Moreover, the functionalization of these hybrid scaffolds with negatively charged silk sericin accelerated their mineralization under acellular conditions in simulated body fluid and modulated the proliferation and osteoblastic differentiation of seeded MC3T3-E1 pre-osteoblastic cells. In the latter case, alkaline phosphatase activity measurements indicated that the hybrid gel scaffolds with seeded cells showed accelerated osteoblastic differentiation, which in turn led to increased matrix mineralization. In summary, the design of dense collagen–fibrin hybrid gels through an automated GAE process can provide a route to tailoring specific biochemical and mechanical properties to different types of bone ECM-like scaffolds, and can provide a model to better understand cell–matrix interactions in vitro for bioengineering purposes.
Collapse
Affiliation(s)
- Gabriele Griffanti
- Department of Mining and Materials Engineering, McGill University, Montréal, QC H3A 0C5, Canada;
| | - Marc D. McKee
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada;
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering, McGill University, Montréal, QC H3A 0C5, Canada;
- Correspondence: ; Tel.: +514-398-5524; Fax: 514-398-4492
| |
Collapse
|
37
|
Silk Sericin Protein Materials: Characteristics and Applications in Food-Sector Industries. Int J Mol Sci 2023; 24:ijms24054951. [PMID: 36902381 PMCID: PMC10003638 DOI: 10.3390/ijms24054951] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
There is growing concern about the use of plastic in packaging for food materials, as this results in increased plastic waste materials in the environment. To counter this, alternative sources of packaging materials that are natural and based on eco-friendly materials and proteins have been widely investigated for their potential application in food packaging and other industries of the food sector. Sericin, a silk protein that is usually discarded in large quantities by the sericulture and textile industries during the degumming process of manufacturing silk from silk cocoons, can be explored for its application in food packaging and in other food sectors as a functional food and component of food items. Hence, its repurposing can result in reduced economic costs and environmental waste. Sericin extracted from silk cocoon possesses several useful amino acids, such as aspartic acid, glycine, and serine. Likewise, sericin is strongly hydrophilic, a property that confers effective biological and biocompatible characteristics, including antibacterial, antioxidant, anticancer, and anti-tyrosinase properties. When used in combination with other biomaterials, sericin has proved to be effective in the manufacture of films or coating or packaging materials. In this review, the characteristics of sericin materials and their potential application in food-sector industries are discussed in detail.
Collapse
|
38
|
Han L, Wang W, Chen Z, Cai Y, Chen C, Chen G, Wang F. Sericin-reinforced dual-crosslinked hydrogel for cartilage defect repair. Colloids Surf B Biointerfaces 2023; 222:113061. [PMID: 36508890 DOI: 10.1016/j.colsurfb.2022.113061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Articular cartilage is essential for normal daily joint function activities. However, it is difficult for articular cartilage to repair itself after injury due to the lack of nerves and blood vessels, so an effective cartilage repair method is necessary. As a three-dimensional polymer network structure with high water content, hydrogel is a good candidate material for cartilage repair, and it is also a research hotspot in the treatment of cartilage injury. Here, a porous dual-crosslinked hydrogel containing sodium alginate (SA) and silk sericin (SS) was designed for in situ repair of cartilage damage. The degradation rate of the hydrogel was regulated by changing the content of SS to match the rate of cartilage regeneration. The hydrogel had excellent mechanical properties (compressive strength≈245 kPa, compressibility≈60%), high water content (85%-88%) and porosity(>20%), and when the content of SS is 1%, the scaffold has the best comprehensive performance. Existing excellent cytocompatibility, the scaffold can promote the adhesion and proliferation of chondrocytes while reducing inflammatory cell infiltration. The cartilage defect repair experiments in vivo showed that artificial cartilage was formed at 4 weeks with molecular structure similar to natural cartilage. It is expected to be applied to clinical cartilage repair through the dual-crosslinked three-dimensional cartilage scaffold.
Collapse
Affiliation(s)
- Lili Han
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Weiwei Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; Chongqing Aoti Biomedical Research Institute Co., Ltd, Chongqing 400020, PR China.
| | - Yong Cai
- Chongqing Aoti Biomedical Research Institute Co., Ltd, Chongqing 400020, PR China
| | - Cai Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
39
|
Rathinasamy SK, Maheswar R, Lorincz J. Silk Fibroin-Based Piezoelectric Sensor with Carbon Nanofibers for Wearable Health Monitoring Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:1373. [PMID: 36772412 PMCID: PMC9919155 DOI: 10.3390/s23031373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The continuous real-time monitoring of human health using biomedical sensing devices has recently become a promising approach to the realization of distant health monitoring. In this paper, the piezoelectric characteristics of the silk fibroin (SF) natural polymer were analyzed as the material used for obtaining sensing information in the application of distance health monitoring. To enhance the SF piezoelectricity, this paper presents the development of a novel SF-based sensor realized by combining SF with different carbon nanofiber (CNF) densities, and for such newly developed SF-based sensors comprehensive performance analyses have been performed. Versatile methods including the scanning electron microscope, Fourier transform infrared spectroscopy, Raman and X-ray diffraction measurements and impedance analysis were used to study the morphologic, mechanical and electrical properties of the developed SF-based sensor. The SF with CNF samples was analyzed for three different pressure loads (40 N, 60 N and 80 N) in 500 compression test cycles. The analyses thoroughly describe how combining natural polymer SF with different CNF densities impacts the piezoelectricity and mechanical strength of the proposed SF-based sensor. The developed piezoelectric SF-based sensors were further tested on humans in real medical applications to detect generated piezoelectric voltage in versatile body movements. The maximum piezoelectricity equal to 2.95 ± 0.03 V was achieved for the jumping movement, and the SF sample with a CNF density equal to 0.4% was tested. Obtained results also show that the proposed SF-based sensor has an appropriate piezoelectric sensitivity for each of the analyzed body movement types, and that the proposed SF-based sensor can be applied in real medical applications as a biomedical sensing device. The proposed SF-based sensor's practical implementation is further confirmed by the results of cytotoxicity analyses, which show that the developed sensor has a non-toxic and biocompatible nature and can be efficiently used in skin contact for biomedical wearable health monitoring applications.
Collapse
Affiliation(s)
- Senthil Kumar Rathinasamy
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India
| | - Rajagopal Maheswar
- Department of ECE, Centre for IoT and AI (CITI), KPR Institute of Engineering and Technology, Coimbatore 641407, India
| | - Josip Lorincz
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, 21000 Split, Croatia
| |
Collapse
|
40
|
Kanpipit N, Nualkaew N, Thapphasaraphong S. The Potential of Purple Waxy Corn Cob ( Zea mays L.) Extract Loaded-Sericin Hydrogel for Anti-Hyperpigmentation, UV Protection and Anti-Aging Properties as Topical Product Applications. Pharmaceuticals (Basel) 2022; 16:ph16010035. [PMID: 36678532 PMCID: PMC9864391 DOI: 10.3390/ph16010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Sericin-hydrogel formulations incorporating purple waxy corn (Zea mays L.) cob extract (PWCC) were developed as potential topical skin cosmetic products. Sericin has wound healing properties, protects against ultraviolet (UV) radiation, and exhibits anti-inflammatory, anti-oxidation, and anti-tyrosinase activities. PWCC is a rich source of anthocyanins with antioxidants, UV protective, anti-inflammatory, and collagen-enhancing activities. Six hydrogel formulations (S1-S6) were investigated for anti-melanogenesis on the B16F10 melanoma cell line and UV-protection on human keratinocytes (HaCaT) and anti-aging activities on normal human dermal fibroblasts (NHDFs). The results showed that the hydrogel formulations enhanced the anthocyanin permeation through the skin. The S4 formulation indicated the highest inhibition of tyrosinase activity and reduced the melanin pigment, increased the cell viability of the UV-induced HaCaT cells, the inhibition of collagenase and elastase, and increased the collagen type I production without cytotoxicity. Therefore, the PWCC loaded-sericin hydrogels show a high potential as a novel anti-hyperpigmentation, UV protection, and anti-aging products for topical applications.
Collapse
Affiliation(s)
- Nattawadee Kanpipit
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natsajee Nualkaew
- Department of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suthasinee Thapphasaraphong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-869218334
| |
Collapse
|
41
|
Sericin-Based Poly(Vinyl) Alcohol Relieves Plaque and Epidermal Lesions in Psoriasis; a Chance for Dressing Development in a Specific Area. Int J Mol Sci 2022; 24:ijms24010145. [PMID: 36613589 PMCID: PMC9820396 DOI: 10.3390/ijms24010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The noncontagious immune-mediated skin disease known as psoriasis is regarded as a chronic skin condition with a 0.09-11.4% global prevalence. The main obstacle to the eradication of the disease continues to be insufficient treatment options. Sericin, a natural biopolymer from Bombyx mori cocoons, can improve skin conditions via its immunomodulatory effect. Many external therapeutic methods are currently used to treat psoriasis, but sericin-based hydrogel is not yet used to treat plaques of eczema. Through the use of an imiquimod rat model, this study sought to identify the physical and chemical characteristics of a silk sericin-based poly(vinyl) alcohol (SS/PVA) hydrogel and assess both its therapeutic and toxic effects on psoriasis. The cytokines, chemokines, and genes involved in the pathogenesis of psoriasis were investigated, focusing on the immuno-pathological relationships. We discovered that the SS/PVA had a stable fabrication and proper release. Additionally, the anti-inflammatory, antioxidant, and anti-apoptotic properties of SS/PVA reduced the severity of psoriasis in both gross and microscopic skin lesions. This was demonstrated by a decrease in the epidermal histopathology score, upregulation of nuclear factor erythroid 2-related factor 2 and interleukin (IL)-10, and a decrease in the expression of tumor necrosis factor (TNF)-α and IL-20. Moreover, the genes S100a7a and S100a14 were downregulated. Additionally, in rats given the SS/PVA treatment, blood urea nitrogen, creatinine, and serum glutamic oxaloacetic transaminase levels were within normal limits. Our findings indicate that SS/PVA is safe and may be potentiated to treat psoriasis in a variety of forms and locations of plaque because of its physical, chemical, and biological characteristics.
Collapse
|
42
|
Mazurek Ł, Szudzik M, Rybka M, Konop M. Silk Fibroin Biomaterials and Their Beneficial Role in Skin Wound Healing. Biomolecules 2022; 12:biom12121852. [PMID: 36551280 PMCID: PMC9775069 DOI: 10.3390/biom12121852] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The skin, acting as the outer protection of the human body, is most vulnerable to injury. Wound healing can often be impaired, leading to chronic, hard-to-heal wounds. For this reason, searching for the most effective dressings that can significantly enhance the wound healing process is necessary. In this regard, silk fibroin, a protein derived from silk fibres that has excellent properties, is noteworthy. Silk fibroin is highly biocompatible and biodegradable. It can easily make various dressings, which can be loaded with additional substances to improve healing. Dressings based on silk fibroin have anti-inflammatory, pro-angiogenic properties and significantly accelerate skin wound healing, even compared to commercially available wound dressings. Animal studies confirm the beneficial influence of silk fibroin in wound healing. Clinical research focusing on fibroin dressings is also promising. These properties make silk fibroin a remarkable natural material for creating innovative, simple, and effective dressings for skin wound healing. In this review, we summarise the application of silk fibroin biomaterials as wound dressings in full-thickness, burn, and diabetic wounds in preclinical and clinical settings.
Collapse
|
43
|
Manoharan C, Thomas DS, Yashwant RS, Mudagal MP, Janadri S, Roy G, Kunjupillai V, Mishra RK, Gopalapillai R. Bioengineered and functionalized silk proteins accelerate wound healing in rat and human dermal fibroblasts. INTEGRATIVE BIOLOGY : QUANTITATIVE BIOSCIENCES FROM NANO TO MACRO 2022; 14:151-161. [PMID: 36314040 DOI: 10.1093/intbio/zyac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/07/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Wound healing is an intrinsic process directed towards the restoration of damaged or lost tissue. The development of a dressing material having the ability to control the multiple aspects of the wound environment would be an ideal strategy to improve wound healing. Though natural silk proteins, fibroin, and sericin have demonstrated tissue regenerative properties, the efficacy of bioengineered silk proteins on wound healing is seldom assessed. Furthermore, silk proteins sans contaminants, having low molecular masses, and combining with other bioactive factors can hasten the wound healing process. Herein, recombinant silk proteins, fibroin and sericin, and their fusions with cecropin B were evaluated for their wound-healing effects using in vivo rat model. The recombinant silk proteins demonstrated accelerated wound closure in comparison to untreated wounds and treatment with Povidone. Among all groups, the treatment with recombinant sericin-cecropin B (RSC) showed significantly faster healing, greater than 90% wound closure by Day 12 followed by recombinant fibroin-cecropin B (RFC) (88.86%). Furthermore, histological analysis and estimation of hydroxyproline showed complete epithelialization, neovascularization, and collagenisation in groups treated with recombinant silk proteins. The wound healing activity was further verified by in vitro scratch assay using HADF cells, where the recombinant silk proteins induced cell proliferation and cell migration to the wound area. Additionally, wound healing-related gene expression showed recombinant silk proteins stimulated the upregulation of EGF and VEGF and regulated the expression of TGF-β1 and TGF-β3. Our results demonstrated the enhanced healing effects of the recombinant silk fusion proteins in facilitating complete tissue regeneration with scar-free healing. Therefore, the recombinant silks and their fusion proteins have great potential to be developed as smart bandages for wound healing.
Collapse
Affiliation(s)
- Chitra Manoharan
- Seri-biotech Research Laboratory, Central Silk Board, Bengaluru, India
| | - Dyna Susan Thomas
- Seri-biotech Research Laboratory, Central Silk Board, Bengaluru, India
| | | | | | - Suresh Janadri
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Gourab Roy
- Seri-biotech Research Laboratory, Central Silk Board, Bengaluru, India
| | | | | | | |
Collapse
|
44
|
Rujimongkon K, Ampawong S, Isarangkul D, Reamtong O, Aramwit P. Sericin-mediated improvement of dysmorphic cardiac mitochondria from hypercholesterolaemia is associated with maintaining mitochondrial dynamics, energy production, and mitochondrial structure. PHARMACEUTICAL BIOLOGY 2022; 60:708-721. [PMID: 35348427 PMCID: PMC8967205 DOI: 10.1080/13880209.2022.2055088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 05/30/2023]
Abstract
CONTEXT Sericin is a component protein in the silkworm cocoon [Bombyx mori Linnaeus (Bombycidae)] that improves dysmorphic cardiac mitochondria under hypercholesterolemic conditions. This is the first study to explore cardiac mitochondrial proteins associated with sericin treatment. OBJECTIVE To investigate the mechanism of action of sericin in cardiac mitochondria under hypercholesterolaemia. MATERIALS AND METHODS Hypercholesterolaemia was induced in Wistar rats by feeding them 6% cholesterol-containing chow for 6 weeks. The hypercholesterolemic rats were separated into 2 groups (n = 6 for each): the sericin-treated (1,000 mg/kg daily) and nontreated groups. The treatment conditions were maintained for 4 weeks prior to cardiac mitochondria isolation. The mitochondrial structure was evaluated by immunolabeling electron microscopy, and differential mitochondrial protein expression was determined and quantitated by two-dimensional gel electrophoresis coupled with mass spectrometry. RESULTS A 32.22 ± 2.9% increase in the percent striated area of cardiac muscle was observed in sericin-treated hypercholesterolemic rats compared to the nontreatment group (4.18 ± 1.11%). Alterations in mitochondrial proteins, including upregulation of optic atrophy 1 (OPA1) and reduction of NADH-ubiquinone oxidoreductase 75 kDa subunit (NDUFS1) expression, are correlated with a reduction in mitochondrial apoptosis under sericin treatment. Differential proteomic observation also revealed that sericin may improve mitochondrial energy production by upregulating acetyl-CoA acetyltransferase (ACAT1) and NADH dehydrogenase 1α subcomplex subunit 10 (NDUFA10) expression. DISCUSSION AND CONCLUSIONS Sericin treatment could improve the dysmorphic mitochondrial structure, metabolism, and energy production of cardiac mitochondria under hypercholesterolaemia. These results suggest that sericin may be an alternative treatment molecule that is related to cardiac mitochondrial abnormalities.
Collapse
Affiliation(s)
- Kitiya Rujimongkon
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- Proteomics Research Team, National Omics Center, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duangnate Isarangkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, and
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
45
|
Analyzing and mapping the research status, hotspots, and frontiers of biological wound dressings: An in-depth data-driven assessment. Int J Pharm 2022; 629:122385. [DOI: 10.1016/j.ijpharm.2022.122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
46
|
Kim SI, Jeon GY, Kim SE, Choe SH, Kim SJ, Seo JS, Kang TW, Song JE, Khang G. Injectable Hydrogel Based on Gellan Gum/Silk Sericin for Application as a Retinal Pigment Epithelium Cell Carrier. ACS OMEGA 2022; 7:41331-41340. [PMID: 36406493 PMCID: PMC9670284 DOI: 10.1021/acsomega.2c05113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The damage to retinal pigment epithelium (RPE) cells can lead to vision loss and permanent blindness. Therefore, an effective therapeutic strategy has emerged to replace damaged cells through RPE cell delivery. In this study, we fabricated injectable gellan gum (GG)/silk sericin (SS) hydrogels as a cell carrier by blending GG and SS. To determine the appropriate concentration of SS for human RPE ARPE-19, 0, 0.05, 0.1, and 0.5% (w/v) of SS solution were blended in 1% (w/v) GG solution (GG/SS 0%, GG/SS 0.05%, GG/SS 0.1%, and GG/SS 0.5%, respectively). The physical and chemical properties were measured through Fourier-transform infrared spectroscopy, scanning electron microscopy, mass swelling, and weight loss. Also, viscosity, injection force, and compressive tests were used to evaluate mechanical characteristics. Cell proliferation and differentiation of ARPE-19 were evaluated using quantitative dsDNA analysis and real-time polymerase chain reaction, respectively. The addition of SS gave GG/SS hydrogels a compressive strength similar to that of natural RPE tissue, which may well support the growth of RPE and enhance cell proliferation and differentiation. In particular, the GG/SS 0.5% hydrogel showed the most similar compressive strength (about 10 kPa) and exhibited the highest gene expression related to ARPE-19 cell proliferation. These results indicate that GG/SS 0.5% hydrogels can be a promising biomaterial for cell delivery in retina tissue engineering.
Collapse
Affiliation(s)
- Soo in Kim
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Ga Yeong Jeon
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Se Eun Kim
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Seung Ho Choe
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Seung Jae Kim
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Jin Sol Seo
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Tae Woong Kang
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Jeong Eun Song
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Gilson Khang
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
- Department
of PolymerNano Science & Technology and Polymer Materials Fusion
Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
- Department
of Orthopaedic & Traumatology, Airlangga
University, Jl. Airlangga
No. 4−6, Airlangga, Kec. Gubeng, Kota
SBY, Jawa Timur60115, Indonesia
| |
Collapse
|
47
|
Silva AS, Costa EC, Reis S, Spencer C, Calhelha RC, Miguel SP, Ribeiro MP, Barros L, Vaz JA, Coutinho P. Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers (Basel) 2022; 14:polym14224931. [PMID: 36433058 PMCID: PMC9699483 DOI: 10.3390/polym14224931] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Silk is a natural composite fiber composed mainly of hydrophobic fibroin and hydrophilic sericin, produced by the silkworm Bombyx mori. In the textile industry, the cocoons of B. mori are processed into silk fabric, where the sericin is substantially removed and usually discarded in wastewater. This wastewater pollutes the environment and water sources. However, sericin has been recognized as a potential biomaterial due to its biocompatibility, immunocompatibility, biodegradability, anti-inflammatory, antibacterial, antioxidant and photoprotective properties. Moreover, sericin can produce hydrogels, films, sponges, foams, dressings, particles, fibers, etc., for various biomedical and pharmaceutical applications (e.g., tissue engineering, wound healing, drug delivery, cosmetics). Given the severe environmental pollution caused by the disposal of sericin and its beneficial properties, there has been growing interest in upcycling this biomaterial, which could have a strong and positive economic, social and environmental impact.
Collapse
Affiliation(s)
- Andreia S. Silva
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Elisabete C. Costa
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Sara Reis
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carina Spencer
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (R.C.C.); (P.C.)
| | - Sónia P. Miguel
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Maximiano P. Ribeiro
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Lillian Barros
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Josiana A. Vaz
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Paula Coutinho
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- Correspondence: (R.C.C.); (P.C.)
| |
Collapse
|
48
|
Gagliardi A, Ambrosio N, Voci S, Salvatici MC, Fresta M, Cosco D. Easy preparation, characterization and cytotoxic investigation of 5-Fluorouracil-loaded zein/sericin nanoblends. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
49
|
Qiang Y, Wang X, Ying Z, Zhou Y, Liu R, Gao S, Yan L. High-Efficiency Ion Enrichment inside Ultra-Short Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3528. [PMID: 36234655 PMCID: PMC9565519 DOI: 10.3390/nano12193528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The ion-enrichment inside carbon nanotubes (CNTs) offers the possibility of applications in water purification, ion batteries, memory devices, supercapacitors, field emission and functional hybrid nanostructures. However, the low filling capacity of CNTs in salt solutions due to end caps and blockages remains a barrier to the practical use of such applications. In this study, we fabricated ultra-short CNTs that were free from end caps and blockages using ball milling and acid pickling. We then compared their ion-enrichment capacity with that of long CNTs. The results showed that the ion-enrichment capacity of ultra-short CNTs was much higher than that of long CNTs. Furthermore, a broad range of ions could be enriched in the ultra-short CNTs including alkali-metal ions (e.g., K+), alkaline-earth-metal ions (e.g., Ca2+) and heavy-metal ions (e.g., Pb2+). The ultra-short CNTs were much more unobstructed than the raw long CNTs, which was due to the increased orifice number per unit mass of CNTs and the decreased difficulty in removing the blockages in the middle section inside the CNTs. Under the hydrated-cation-π interactions, the ultra-short CNTs with few end caps and blockages could highly efficiently enrich ions.
Collapse
Affiliation(s)
- Yu Qiang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xueliang Wang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhemian Ying
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Renduo Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Siyan Gao
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Long Yan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
50
|
Biganeh H, Kabiri M, Zeynalpourfattahi Y, Costa Brancalhão RM, Karimi M, Shams Ardekani MR, Rahimi R. Bombyx mori cocoon as a promising pharmacological agent: A review of ethnopharmacology, chemistry, and biological activities. Heliyon 2022; 8:e10496. [PMID: 36105465 PMCID: PMC9465338 DOI: 10.1016/j.heliyon.2022.e10496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/30/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022] Open
Abstract
Silk cocoon, naturally produced by silkworms scientifically named Bombyx mori L. (Lepidoptera, Bombycidae), is one of the well-known medicinal agents with several therapeutic activities. The present study aims to review the various aspects of the silk cocoon, including chemical composition, traditional uses, biological and biotechnological activities, and toxicological issues, to provide a scientific source for scholars. For this purpose, Electronic databases including PubMed, Scopus, Google Scholar, Web of Science, and traditional literature, were searched up to December 2021. According to the historical data, silk farming is acknowledged as one of the most ancient agricultural findings. The silk is generally composed of 75-83% fibroin, 17-25% sericin, and 1-5% non-sericin components, including secondary metabolites, wax, pigments, carbohydrates, and other impurities. Flavonoids, especially quercetin and kaempferol, alkaloids, coumarin derivatives, and phenolic acids, are among the secondary metabolites isolated from the silk cocoon. In recent years the biological properties of the silk cocoon, especially its major proteins, namely fibroin and sericin, have drawn special attention. Scientific literature has investigated several pharmacological effects of the silk cocoon and its ingredients, including cardioprotective, antioxidant, anticancer, antidiabetic, antihyperlipidemia, gastroprotective, as well as ameliorated skin health activities. In addition, it has been extensively taken into consideration in drug delivery and tissue engineering study fields. Furthermore, its toxicity is in acceptable range.
Collapse
Affiliation(s)
- Hossein Biganeh
- Department of Pharmacognosy, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahdi Kabiri
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yahya Zeynalpourfattahi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rose Meire Costa Brancalhão
- Center of Biological Sciences and Health, State University of Western Paraná, Rua Universitária, 2069, 85819-110, Cascavel, PR, Brazil
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Roja Rahimi
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|