1
|
Mirzaahmadi B, Ahmadian S, Haddadi P, Nezhad-Mokhtari P, Nezamdoust FV, Yalameha B, Chegeni SA, Rashidi S, Mousakhani A, Sokullu E, Shafaei H, Rahbarghazi R, Karimipour M. Neuroangiogenesis potential of mesenchymal stem cell extracellular vesicles in ischemic stroke conditions. Cell Commun Signal 2025; 23:272. [PMID: 40483532 PMCID: PMC12145630 DOI: 10.1186/s12964-025-02286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 06/01/2025] [Indexed: 06/11/2025] Open
Abstract
Ischemic stroke (IS) is a life-threatening condition in humans with high morbidity and mortality rates in developing and industrialized countries. The occlusion of blood-supporting vessels by thrombus or emboli can contribute to massive brain cell damage, neurological deficits, and long-term disability, and in more severe conditions, results in sudden death. Current therapeutic strategies, along with rehabilitation, in part, but not completely, can restore the integrity and function of the brain. These features necessitate the advent of novel therapeutic protocols for yielding better regenerative outcomes in IS patients. In past decades, the discovery of stem cells and byproducts has led to promising results in in vitro settings and pre-clinical studies. Extracellular vesicles (EVs) are nano-sized particles released from various cell types, for instance, mesenchymal stem cells (MSCs), with certain signaling biomolecules, growth factors, and cytokines involved in cell-to-cell communication. A great plethora of studies have pointed to the fact that EVs with specific cargo can distribute easily in different parts of the body, making them appropriate therapeutics under different pathological conditions. The current review articles aimed to highlight the neuroangiogenesis properties of MSC EVs in IS conditions. How and by which mechanisms MSC EVs can orchestrate the process of nervous system regeneration is at the center of debate. We think that the current article can help us better understand MSC EVs' function in the restoration of brain function under IS conditions in terms of neurogenesis and angiogenesis.
Collapse
Affiliation(s)
- Behnaz Mirzaahmadi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Ahmadian
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Haddadi
- Department of Biochemistry, Faculty of Basic Sciences, University of Tabriz, Tabriz, Iran
| | - Parinaz Nezhad-Mokhtari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Banafsheh Yalameha
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Somayyeh Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Akbar Mousakhani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, Istanbul, Sariyer, Turkey
| | - Hajar Shafaei
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Karimipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Tabriz University of Medical Sciences, Daneshghah St., Tabriz, Iran.
| |
Collapse
|
2
|
Li M, Huang H, Wei X, Li H, Li J, Xie B, Yang Y, Fang X, Wang L, Zhang X, Wang H, Li M, Lin Y, Wang D, Wang Y, Zhao T, Sheng J, Hao X, Yan M, Xu L, Chang Z. Clinical investigation on nebulized human umbilical cord MSC-derived extracellular vesicles for pulmonary fibrosis treatment. Signal Transduct Target Ther 2025; 10:179. [PMID: 40461474 PMCID: PMC12134356 DOI: 10.1038/s41392-025-02262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 04/15/2025] [Accepted: 05/09/2025] [Indexed: 06/11/2025] Open
Abstract
Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) are recognized as a promising strategy for cell-free therapy, however, their therapeutic role in pulmonary fibrosis remains unrevealed. Here, we report the safety and efficacy of MSC-EVs from human umbilical cord (hUCMSC-EVs) evaluated in mouse models and pulmonary fibrosis patients. We established a rigorous system to produce high-quality of hUCMSC-EVs, characterized by miRNA, protein, and metabolite profiles. When administered via nebulization, hUCMSC-EVs predominantly accumulated in murine lungs and ameliorated bleomycin-induced pulmonary fibrosis, with increased survival rate (from 20% to 80%), restored lung volume, and attenuated injury severity accompanied by elevated oxyhemoglobin saturation and improved pulmonary function evaluations. We performed a phase l clinical trial involving twenty-four patients in a randomized, single-blind, and placebo-controlled study to treat pulmonary fibrosis (MR-46-22-004531, ChiCTR2300075466). All participants tolerated the nebulized hUCMSC-EVs well, with no serious adverse events. Patients receiving the combined therapy of nebulized hUCMSC-EVs and routine treatment demonstrated significant improvements in both lung function indices (forced vital capacity and maximal voluntary ventilation) and respiratory health status (as measured by the Saint George's Respiratory Questionnaire and Leicester Cough Questionnaire. Overall, patients upon the additional therapy with nebulized hUCMSC-EVs gained significant benefits compared with those accepted only routine treatment. Remarkably, two patients with advanced post-inflammatory pulmonary fibrosis exhibited clinically significant regression on serial CT scans after hUCMSC-EVs therapy. These findings suggest that nebulized hUCMSC-EVs could be used as a promising therapeutic strategy for treating pulmonary fibrosis diseases.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Huaping Huang
- Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | | | - Huajuan Li
- Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jun Li
- Jinfeng Laboratory, High-tech Zone, Chongqing, China
| | - Bingchen Xie
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Yuze Yang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Xingyue Fang
- Department of Hematology, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Lei Wang
- Beijing cord blood bank, Beijing, China
| | - Xiaona Zhang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Heyu Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Mengdi Li
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Yuting Lin
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Dezhi Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Tongbiao Zhao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jianqiu Sheng
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Xinbao Hao
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
- Department of Hematology, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Muyang Yan
- First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Lu Xu
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China.
- Department of Hematology, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China.
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China.
- Precision medicine institute, Changgeng Hospital, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Bian Z, Wang X, Su X, Yang M, Zhu R, Chen S. Mechanism of adipose-derived stem cell-derived extracellular vesicles affecting macrophage efferocytosis by mediating ADAM17/MerTK in the apoptosis of tubular epithelial cells after sepsis-associated acute kidney injury. Transl Res 2025:S1931-5244(25)00052-0. [PMID: 40403963 DOI: 10.1016/j.trsl.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/14/2025] [Accepted: 05/16/2025] [Indexed: 05/24/2025]
Abstract
OBJECTIVE This study explored the molecular mechanism of adipose-derived stem cell-derived extracellular vesicles (ADSC-EVs) improving post-sepsis-associated acute kidney injury (S-AKI) tubular epithelial cell (TEC) apoptosis by modulating ADAM17/MerTK-mediated macrophage efferocytosis. METHODS The S-AKI mouse model was established by caecal ligation and puncture and intravenously injected with ADSC-EVs. Mouse kidney macrophages were cultured with LPS, cultured with EVs while transfecting with oe-ADAM17 or si-MerTK, then incubated with Jurkat cells. Mouse serum urea and creatinine, and KIM-1, efferocytosis- and apoptosis-related protein, inflammatory factor, cytokine, and soluble MerTK (sMerTK) levels were determined using colorimetric assay, immunohistochemistry, Western blot, and ELISA. Renal tubular injury, TEC apoptosis, macrophage efferocytosis, and M1/M2 polarization levels were assessed via HE staining, TUNEL staining, immunofluorescence, and flow cytometry, respectively. In vivo validation experiments were conducted. RESULTS S-AKI mice displayed elevated levels of serum urea, creatinine, KIM-1, pro-inflammatory factors, pro-apoptotic proteins and ADAM17 protein, decreased anti-apoptotic protein and MerTK protein levels, and diminished M2 polarization. ADSC-EVs down-regulated ADAM17 and sMerTK, and increased cell membrane MerTK, macrophage recognition of apoptotic cells and efferocytosis, and M2 polarization in renal tissues of S-AKI mice and LPS-induced mouse renal macrophages, indicating that ADSC-EVs regulated ADAM17/MerTK-mediated macrophage efferocytosis and promoted M2 polarization. MerTK silencing partially reversed ADSC-EVs-regulated LPS-induced mouse renal macrophage efferocytosis and M2 polarization. In vivo, ADAM17 upregulation partly averted ADSC-EVs-regulated post-S-AKI TEC apoptosis in mouse renal tissues. CONCLUSION ADSC-EVs down-regulated sMerTK level and up-regulated macrophage membrane MerTK protein level by modulating ADAM17 to promote macrophage efferocytosis and ameliorate post-S-AKI TEC apoptosis and inflammation.
Collapse
Affiliation(s)
- Zhixiang Bian
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiangxiang Wang
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxuan Su
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Yang
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Zhu
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shunjie Chen
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Li H, Chen C, Wang Y, Yi W, Guo P, Yao C, Liu J, Wei Y, Hu K, Shang X, Kang S. A meta-analysis on application and prospect of cell therapy in the treatment of diabetes mellitus. Stem Cell Res Ther 2025; 16:249. [PMID: 40390031 PMCID: PMC12090454 DOI: 10.1186/s13287-025-04377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 05/02/2025] [Indexed: 05/21/2025] Open
Abstract
OBJECTIVE Diabetes mellitus (DM) is a grave autoimmune disorder because of no insulin self-generation. Currently, mainly clinical methods exist, serious adverse effects leading to stem cell therapy are considered. The mesenchymal stem cells (MSCs), require high differentiation capacity and are judged as crucial in DM treatment. The meta-analysis aimed to systemically analyze the particular types of MSCs which play a more important role in DM and which DM is treated more effectively. METHOD A systematic review was conducted on the published literature, clinical trials and observational studies, utilizing databases such as PubMed, Embase, Cochrane and clinicaltrial.gov. RevMan software was adopted to draw Forest Plot and Funnel Plot, and subgroup analysis were employed to evaluate heterogeneity between different groups. RESULTS We identified the meta-analyses of 34 unique random controlled trials and divided our own systematic reviews into 8 groups. The MSCs were associated with placebo (OR = 2.79, 95% CI [1.63, 4.75]), Standard Clinical Treatment (SCT) (OR = 4.12, 95% CI [2.76, 6.14]), and monocyte (OR = 6.52, 95% CI [3.56, 9.48]). The comparison between Autologous MSCs and Allogenic MSCs (OR = 4.64, 95% CI [3.42, 6.31]), Autologous BMMSCs and other MSCs (OR = 5.28, 95% CI [3.64, 7.66]), Allogenic ASCs and UCMSCs (OR = 3.54, 95% CI [1.83, 6.86]), Type I DM and Type II DM (OR = 3.10, 95% CI [1.79, 5.38]), intravenous injection and other injections (OR = 4.81, 95% CI [3.34, 6.94]), diabetic foot ulcers and diabetic neurological disease (OR = 3.88,,95% CI [2.53,5.95]). CONCLUSION Current evidence suggests that MSCs hold significant potential for treating DM, demonstrating considerably high safety and efficacy. MSCs exhibit higher therapeutic benefits compared to monocytes, with autologous MSCs offering better clinical outcomes than allogenic sources. MSCs (BMMSCs) proved more effective than other types of MSCs. However, no significant differences were observed between adipose-derived MSCs (ASCs) and umbilical cord-derived MSCs (UCMSCs) in the allogeneic setting. Moreover, MSCs show more pronounced therapeutic effects in Type II DM, and the difference among the injection methods is minimally observed. In conclusion, the research scope on DM is relatively limited in this study and further research is necessary to improve the reliability of the estimates.
Collapse
Affiliation(s)
- Hanluo Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - Cheng Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - Yuansheng Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - Wei Yi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - Peipei Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - Chenguang Yao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - Jinbiao Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - Yanhong Wei
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - Kanghong Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - Xiaoke Shang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China.
- Wuhan Vickor Medical Technology Co. Ltd., Building 3-3, 3-4, and 3-5, Zhaoshang·High-Tech Network Valley, No. 16, Luzling Third Road, East Lake High-Tech Development Zone, Wuhan (Wuhan Area of the Pilot Free Trade Zone), Wuhan, 430015, China.
| | - Sini Kang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
5
|
Tozak Yıldız H, Kalkan KT, Baydilli N, Gönen ZB, Cengiz Mat Ö, Köseoğlu E, Önder GÖ, Yay A. Extracellular vesicles therapy alleviates cisplatin-ınduced testicular tissue toxicity in a rat model. PLoS One 2025; 20:e0314093. [PMID: 40315228 PMCID: PMC12047789 DOI: 10.1371/journal.pone.0314093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/05/2024] [Indexed: 05/04/2025] Open
Abstract
PURPOSE Cisplatin is a commonly used chemotherapy agent effective against various cancers, however it induces significant gonadotoxicity and infertility due to its adverse effects on testicular function. The underlying mechanisms of cisplatin-induced testicular damage include oxidative stress and dysregulated autophagy. This study investigates the potential of extracellular vesicles (EVs) to mitigate cisplatin-induced testicular damage through their regenerative, antioxidant, and autophagy-modulating properties. METHODS In the testicular toxicity model, thirty-two male rats were randomly divided into four groups (n = 8): control, EVs-only, Cis-only, and Cis + EVs. A single intraperitoneal dose of 7.5mg/kg cisplatin was administered on the first day. On the six day, the EVs treatment group received a single dose of EVs (8x107/100μl) intravenously. Animals were sacrificed on day eight. Testicular histoarchitecture was assessed via hematoxylin and eosin staining. Sperm parameters, including motility and count, were measured using light microscopy. Hormone levels (testosterone and inhibin) were determined via enzyme-linked immunosorbent assay (ELISA). Oxidative stress markers, such as glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), catalase (CAT), and is a metabolite malondialdehyde (MDA), were quantified using colorimetric assays. Autophagy and steroidogenesis were evaluated through immunohistochemical analysis of Beclin-1, p62, LC3-2, SF-1, and StAR. RESULTS Cisplatin exposure caused significant testicular damage, characterized by reduced germinal epithelium and degeneration of seminiferous tubules (p < 0.001). These structural changes led to hormonal imbalances, as evidenced by declines in testosterone (p < 0.005) and inhibin (p < 0.001). Additionally, sperm motility (p < 0.05) and count (p < 0.001) were adversely affected. Immunohistochemical analysis revealed upregulation of autophagy markers (p < 0.001), indicating heightened autophagic activity, alongside downregulation of steroidogenic factors (p < 0.001), which contributed to impaired steroidogenesis. Elevated levels of malondialdehyde (MDA) (p < 0.01) and decreased activities of antioxidant enzymes-GSH-PX, SOD, and CAT (p < 0.001) pointed to increased oxidative stress as a contributing mechanism. In contrast, treatment with extracellular vesicles (EVs) significantly improved testicular histoarchitecture (p < 0.001) and restored hormonal levels toward normal (testosterone p < 0.005, inhibin p < 0.001). Furthermore, EVs reduced the expression of autophagy markers (p < 0.001) and enhanced the levels of steroidogenic factors (p < 0.05). Notably, MDA levels decreased (p < 0.001), while antioxidant activities increased (p < 0.001), suggesting a protective effect of EVs against oxidative stress. CONCLUSION EVs protect against cisplatin-induced reproductive toxicity by modulating oxidative stress and autophagy pathways, preserving testicular function and fertility. These findings suggest that EVs may be a promising therapeutic strategy for mitigating cisplatin's negative effects on reproductive health. Further exploration of dosing regimens and localized applications is recommended for improved efficacy.
Collapse
Affiliation(s)
- Halime Tozak Yıldız
- Department of Histology and Embryology, Faculty of Medicine, Kirsehir Ahi Evran University, Kirsehir, Turkey
| | - Kübra Tuğçe Kalkan
- Department of Histology and Embryology, Faculty of Medicine, Kirsehir Ahi Evran University, Kirsehir, Turkey
| | - Numan Baydilli
- Department of Urology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Zeynep Burçin Gönen
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Özge Cengiz Mat
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Eda Köseoğlu
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gözde Özge Önder
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
6
|
Xiang B, Zhang S, Zhao IS, Gan X, Zhang Y. Microenvironmental Modulation for Therapeutic Efficacy of Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2503027. [PMID: 40145773 PMCID: PMC12079496 DOI: 10.1002/advs.202503027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/04/2025] [Indexed: 03/28/2025]
Abstract
Extracellular vesicles (EVs) hold significant promise for the prevention and treatment of various diseases. However, the translation of EV-based therapies into clinical practice faces considerable challenges, particularly in terms of production yield and therapeutic efficacy. Recent studies have emphasized the heterogeneity of EVs and the influence of parental cell microenvironmental signals on their biogenesis, cargo composition, and therapeutic outcomes. This review offers a comprehensive overview of strategies to optimize the therapeutic efficacy of EVs through physical, biochemical, and mechanical modulation. Additionally, it explores how microenvironmental signals affect EV cargoes and the mechanisms by which these signals can improve therapeutic efficacy. The review also addresses current challenges and potential solutions to accelerate the clinical translation of EV therapies. Ultimately, it highlights the potential of microenvironmental modulation in unlocking the full therapeutic capacity of EVs, providing key insights into their production and clinical use for treating various diseases.
Collapse
Affiliation(s)
- Bilu Xiang
- School of DentistryShenzhen University Medical SchoolShenzhen518055China
- Institute of Oral ScienceShenzhen UniversityShenzhen518055China
| | - Shiying Zhang
- School of DentistryShenzhen University Medical SchoolShenzhen518055China
| | - Irene Shuping Zhao
- School of DentistryShenzhen University Medical SchoolShenzhen518055China
- Institute of Oral ScienceShenzhen UniversityShenzhen518055China
| | - Xueqi Gan
- State Key Laboratory of Oral DiseaseNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Yang Zhang
- School of DentistryShenzhen University Medical SchoolShenzhen518055China
- Institute of Oral ScienceShenzhen UniversityShenzhen518055China
- School of Biomedical EngineeringShenzhen University Medical SchoolShenzhen518055China
| |
Collapse
|
7
|
Carmona JU, López C. Efficacy of Platelet-Rich Plasma in the Treatment of Equine Tendon and Ligament Injuries: A Systematic Review of Clinical and Experimental Studies. Vet Sci 2025; 12:382. [PMID: 40284884 PMCID: PMC12031177 DOI: 10.3390/vetsci12040382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
(1) Background: Tendon and ligament injuries are a leading cause of lameness in horses, with significant economic implications. Platelet-rich plasma (PRP) has gained attention for its regenerative potential, but its efficacy remains uncertain due to inconsistent study designs and reporting. (2) Methods: This systematic review, following the PRISMA guidelines, evaluated 22 studies (clinical and experimental) to assess the safety and efficacy of PRP in treating equine tendon and ligament injuries. The risk of bias was analyzed using the ROBINS-I and RoB 2.0 tools. (3) Results: PRP demonstrated a favorable safety profile, with no severe adverse effects reported. Clinical outcomes included improved lameness scores, ultrasonographic tissue organization, and return-to-work rates. However, variability in PRP formulations (e.g., leukocyte-rich vs. leukocyte-reduced) and activation methods (e.g., calcium chloride, thrombin) contributed to inconsistent results. Experimental studies supported PRP's role in collagen synthesis and neovascularization, but comparative trials with stem cells or other therapies (e.g., extracorporeal shockwave) showed mixed results. The methodological quality of studies varied, with only 27% achieving "good" scores for PRP reporting. (4) Conclusions: PRP is a safe and potentially effective treatment, but its clinical application is hindered by a lack of standardization. Future research should focus on large, randomized controlled trials with uniform PRP protocols, long-term (≥2 years) efficacy assessments, comparative studies with MSC combinations, and cost-effectiveness analyses.
Collapse
Affiliation(s)
- Jorge U. Carmona
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales 170004, Colombia
| | - Catalina López
- Grupo de Investigación Patología Clínica Veterinaria, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales 170004, Colombia;
| |
Collapse
|
8
|
Wang Z, Zhong D, Yan T, Zheng Q, Zhou E, Ye Z, He X, Liu Y, Yan J, Yuan Y, Wang Y, Cai X. Stem Cells from Human Exfoliated Deciduous Teeth-Derived Exosomes for the Treatment of Acute Liver Injury and Liver Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17948-17964. [PMID: 40087139 PMCID: PMC11955941 DOI: 10.1021/acsami.4c19748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Mesenchymal stem cells (MSCs) play a crucial role in regenerative medicine due to their regenerative potential. However, traditional MSC-based therapies are hindered by issues such as microvascular obstruction and low cell survival after transplantation. Exosomes derived from MSCs (MSC-Exo) provide a cell-free, nanoscale alternative, mitigating these risks and offering therapeutic potential for liver diseases. Nonetheless, the functional variability of MSCs from different sources complicates their clinical application. Stem cells derived from human exfoliated deciduous teeth (SHED) offer advantages such as ease of procurement and robust proliferative capacity, but their secretome, particularly SHED-Exo, remains underexplored in the context of liver disease therapy. This study analyzed MSC-Exo from various sources via small RNA sequencing to identify differences in microRNA profiles, aiding in the selection of optimal MSC sources for clinical use. SHED-Exo was subsequently tested in an acute liver injury model, showing notable regenerative effects, including enhanced hepatocyte proliferation, macrophage polarization, and reduced inflammation. Despite strong liver-targeting properties, the rapid hepatic clearance of SHED-Exo limits its effectiveness in chronic liver diseases. To address this challenge, a GelMA-based hydrogel was developed for in situ delivery, ensuring sustained release and enhanced antifibrotic efficacy, providing a promising strategy for chronic liver disease management.
Collapse
Affiliation(s)
- Ziyuan Wang
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Danyang Zhong
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Tingting Yan
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Qiang Zheng
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Enjie Zhou
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhichao Ye
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiaoyan He
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yu Liu
- Department
of Cardiac Surgery, Zhejiang University
School of Medicine Sir Run Run Shaw Hospital, Hangzhou 310016, Zhejiang, China
| | - Jianing Yan
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yuyang Yuan
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yifan Wang
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- National
Engineering Research Center of Innovation and Application of Minimally
Invasive Instruments, Hangzhou 310016, China
- Zhejiang
Minimal Invasive Diagnosis and Treatment Technology Research Center
of Severe Hepatobiliary Disease, Hangzhou 310016, China
| | - Xiujun Cai
- Department
of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- National
Engineering Research Center of Innovation and Application of Minimally
Invasive Instruments, Hangzhou 310016, China
- Zhejiang
Minimal Invasive Diagnosis and Treatment Technology Research Center
of Severe Hepatobiliary Disease, Hangzhou 310016, China
| |
Collapse
|
9
|
Pan M, Huang X, Huang X, Liu X, Lin J. USP38 protects intestinal epithelial cells from ischemia/reperfusion injury by stabilizing BIRC5. Gastroenterol Rep (Oxf) 2025; 13:goaf024. [PMID: 40151769 PMCID: PMC11947415 DOI: 10.1093/gastro/goaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/01/2024] [Accepted: 01/21/2025] [Indexed: 03/29/2025] Open
Abstract
Background Intestinal ischemia/reperfusion (II/R) is a severe condition with high mortality and limited treatment options. Extracellular vesicles that are derived from bone marrow mesenchymal stem cells (BM-MSC-EVs) exhibit therapeutic potential in alleviating II/R injury. However, the mechanism by which BM-MSC-EVs fulfill this function requires further characterization. The ubiquitin-proteasome system plays an essential role in II/R, but the functions of individual ubiquitination regulators such as ubiquitin-specific proteases (USPs) in this process remain incompletely understood. Methods An II/R cellular model was established by using IEC-6 intestinal epithelial cells with oxygen-glucose deprivation/reperfusion (OGD/R) treatment. The expression of USPs was evaluated by using quantitative polymerase chain reaction and Western blot. The role of USP38 on the viability, apoptosis, migration, and reactive oxygen species (ROS) levels in OGD/R-treated IEC-6 cells were measured by using CCK-8, Annexin V/PI staining, transwell assay, and 2',7'-dichlorofluorescin diacetate (DCFDA) staining, respectively. The interaction between USP38 and BIRC5 was explored by using co-immunoprecipitation (Co-IP) and the ubiquitination level and stability of BIRC5 were examined by using Western blot. USP38-overexpressing BM-MSC-EVs were produced to treat OGD/R-treated IEC-6 cells. Results USP38 expression was significantly downregulated in OGD/R-treated IEC-6 cells. Incubation of these cells with BM-MSC-EVs substantially elevated the USP38 expression, resulting in improved viability, reduced apoptosis, enhanced migration, and decreased ROS levels. Furthermore, overexpression of USP38 in BM-MSC-EVs further enhanced their protective effect on OGD/R-treated IEC-6 cells. At the molecular level, USP38 interacts with and stabilizes BIRC5 by decreasing its ubiquitination. Knock-down of BIRC5 abolished the protective effect of excessive USP38 on OGD/R-treated IEC-6 cells. Conclusion USP38 protects intestinal epithelial cells from I/R injury by enhancing the stability of BIRC5.
Collapse
Affiliation(s)
- Mandong Pan
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, P. R. China
| | - Xianwei Huang
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, P. R. China
| | - Xiaodong Huang
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, P. R. China
| | - Xiong Liu
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, P. R. China
| | - Jiyan Lin
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, P. R. China
- Xiamen Key Laboratory for Clinical Efficacy and Evidence-Based Research of Traditional Chinese Medicine, Xiamen, Fujian, P. R. China
| |
Collapse
|
10
|
Zhu Y, Yang H, Xue Z, Tang H, Chen X, Liao Y. Mesenchymal stem cells-derived small extracellular vesicles and apoptotic extracellular vesicles for wound healing and skin regeneration: a systematic review and meta-analysis of preclinical studies. J Transl Med 2025; 23:364. [PMID: 40128791 PMCID: PMC11934660 DOI: 10.1186/s12967-024-05744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/07/2024] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Studies examining the therapeutic potential of Mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) in wound healing and skin regeneration have progressed rapidly. Prior to considering clinical translation, a systematic and comprehensive understanding of these experimental details and the overall impact of MSC-EVs on skin regeneration is necessary. METHODS 83 studies were identified in Web of Science, Embase, and PubMed that satisfied a set of prespecified inclusion criteria. A random effects meta-analysis was conducted for wound closure rate, scar width, blood vessel density and collagen deposition. CONCLUSIONS Our findings demonstrate clear potential of MSC-EVs to be developed as therapy for wound healing and skin regeneration both in diabetic and non-diabetic animal models. Moreover, subgroup analyses demonstrated that apoptotic small extracellular vesicles (ApoSEVs) showed better efficacy than apoptotic bodies (ApoBDs) and small extracellular vesicles (sEVs) in wound closure outcome and collagen deposition, while sEVs displayed better than ApoEVs in revascularization. Among frequently used routes of administration, subcutaneous injection displayed a greater improvement to wound closure, collagen deposition and revascularization as compared to dressing/covering. Among easier-access source of MSCs, ADSCs demonstrated the best effect in wound closure rate and collagen deposition, as compared, BMMSCs displayed better in revascularization. Additionally, high heterogeneity observed in collection conditions, separation methods, storage methods, modifications, treatment dose, administration route, and frequency of MSC-EVs underscores the urgent need for standardization in these areas, prior to clinical translation. PROTOCOL REGISTRATION PROSPERO CRD42024499172.
Collapse
Affiliation(s)
- Yufan Zhu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China
| | - Han Yang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China
| | - Zhixin Xue
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China
| | - Haojing Tang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China
| | - Xihang Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China.
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, P. R. China.
| |
Collapse
|
11
|
Li L, Wang F, Zhu D, Hu S, Cheng K, Li Z. Engineering exosomes and exosome-like nanovesicles for improving tissue targeting and retention. FUNDAMENTAL RESEARCH 2025; 5:851-867. [PMID: 40242543 PMCID: PMC11997600 DOI: 10.1016/j.fmre.2024.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2025] Open
Abstract
Exosomes are natural nano-size particles secreted by human cells, containing numerous bioactive cargos. Serving as crucial mediators of intercellular communication, exosomes are involved in many physiological and pathological processes, such as inflammation, tissue injury, cardiovascular diseases, tumorigenesis and tumor development. Exosomes have exhibited promising results in the diagnosis and treatment of cancer, cardiovascular diseases and others. They are a rapidly growing class of drug delivery vehicles with many advantages over conventional synthetic carriers. Exosomes used in therapeutic applications encounter several challenges, such as the lack of tissue targeting capabilities and short residence time. In this review, we discuss recent advances in exosome engineering to improve tissue targeting and describe the current types of engineered exosome-like nanovesicles, and summarize their preclinical applications in the treatment of diseases. Further, we also highlight the latest engineering strategies developed to extend exosomes retention time in vivo and exosome-like nanovesicles.
Collapse
Affiliation(s)
- Lanya Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangdong 510515, China
| | - Fei Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangdong 510515, China
| | - Dashuai Zhu
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Shiqi Hu
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Zhenhua Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangdong 510515, China
| |
Collapse
|
12
|
Garcia‐Aponte OF, Kahlenberg S, Kouroupis D, Egger D, Kasper C. Effects of Hydrogels on Mesenchymal Stem/Stromal Cells Paracrine Activity and Extracellular Vesicles Production. J Extracell Vesicles 2025; 14:e70057. [PMID: 40091440 PMCID: PMC11911545 DOI: 10.1002/jev2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a valuable source of paracrine factors, as they have a remarkable secretory capacity, and there is a sizeable knowledge base to develop industrial and clinical production protocols. Promising cell-free approaches for tissue regeneration and immunomodulation are driving research towards secretome applications, among which extracellular vesicles (EVs) are steadily gaining attention. However, the manufacturing and application of EVs is limited by insufficient yields, knowledge gaps, and low standardization. Facing these limitations, hydrogels represent a versatile three-dimensional (3D) culture platform that can incorporate extracellular matrix (ECM) components to mimic the natural stem cell environment in vitro; via these niche-mimicking properties, hydrogels can regulate MSCs' morphology, adhesion, proliferation, differentiation and secretion capacities. However, the impact of the hydrogel's architectural, biochemical and biomechanical properties on the production of EVs remains poorly understood, as the field is still in its infancy and the interdependency of culture parameters compromises the comparability of the studies. Therefore, this review summarizes and discusses the reported effects of hydrogel encapsulation and culture on the secretion of MSC-EVs. Considering the effects of cell-material interactions on the overall paracrine activity of MSCs, we identify persistent challenges from low standardization and process control, and outline future paths of research, such as the synergic use of hydrogels and bioreactors to enhance MSC-EV generation.
Collapse
Affiliation(s)
- Oscar Fabian Garcia‐Aponte
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Simon Kahlenberg
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
- Diabetes Research Institute & Cell Transplant Center, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Dominik Egger
- Institute of Cell Biology and BiophysicsLeibniz University HannoverHannoverGermany
| | - Cornelia Kasper
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
13
|
Zhang Y, Liu K, Ma X, Su X, Zhao L, Wu Y, Shi Y. Therapeutic Effects of Puerarin Loaded Bone Marrow Mesenchymal Stem Cell-Derived Exosomes in a Rat Model of Osteoarthritis. Chem Biodivers 2025; 22:e202402095. [PMID: 39420681 DOI: 10.1002/cbdv.202402095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease among the aged population. The primary objective of this study was to assess the therapeutic potential of puerarin loaded bone marrow mesenchymal stem cell-derived exosomes (Pue@BMSC-Exo), and reveal their inflammatory regulating mechanisms through affecting the nuclear factor kappa-B (NF-κB) signaling pathway. In this study, exosomes derived from BMSCs were isolated and identified. Cell proliferation and migration were evaluated by CCK-8 and scratch methods. Furthermore, histological and micro-computed tomography analysis were performed to assess alterations of articular cartilage in OA rats. Results showed that BMSC-Exo and Pue@BMSC-Exo conformed with the basic characteristics of exosomes. BMSC-Exo increased the solubility of Pue and enhanced drug uptake by chondrocytes. In addition, Pue@BMSC-Exo stimulated proliferation and migration of chondrocyte, and also promoted cartilage repair by reducing matrix metalloproteinase MMP13 production and increasing type II collagen (Col2) synthesis. Furthermore, Pue@BMSC-Exo, by effectively inhibiting the NF-κB signaling pathway, reduced the production of inflammatory mediators and attenuated the release of the inflammatory marker nitric oxide (NO), ultimately ameliorating the damage of chondrocyte. These findings exhibited the potential therapeutic significance of Pue@BMSC-Exo in OA and warranted further exploration in clinical applications.
Collapse
Affiliation(s)
- Yifei Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Kang Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Xuejing Ma
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Xiangchen Su
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| | - Yi Wu
- Liaoning Provincial Academy of Traditional Chinese Medicine, Shenyang, 110030, P R China
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110030, P R China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, P R China
| |
Collapse
|
14
|
Zhang H, Li X, Jia Z, Jiao K, Liu C, Deng Z, Bai Y, Wei X, Zhou X. Bioprinted hydrogels in bone regeneration: a bibliometric analysis. Front Pharmacol 2025; 16:1532629. [PMID: 39963238 PMCID: PMC11830744 DOI: 10.3389/fphar.2025.1532629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Background The application of bioprinted hydrogels in the field of bone regeneration is garnering increasing attention. The objective of this study is to provide a comprehensive overview of the current research status, hotspots and research directions in this field through bibliometric methods, and to predict the development trend of this field. Methods A search was conducted on 27 December 2024, for papers published on the Web of Science from 2010 to 2025. We used the bibliometrix package in the software program R to analyze the retrieved data and VOSviewer and CiteSpace to visualize hotspots and research trends in bioprinted hydrogels for bone regeneration. Results We identified and reviewed 684 articles published in this field between 2010 and 2025. A total of 811 institutions and 1,166 researchers from 41 countries/regions contributed to these publications. Among them, China led in terms of the number of articles published, single-country publications (SCP), and multi-country publications (MCP). Our bibliometric-based visualization analysis revealed that the mechanical properties and osteogenic differentiation capacity of biomaterials have been a focal research topic over the past decade, while emerging research has also concentrated on the in vitro fabrication of stem cells for bone regeneration and osteogenic differentiation, particularly the precise application of in situ stem cell-loaded bioprinted organoids. Conclusion This study provides an in-depth analysis of the research trajectory in the application of bioprinted hydrogels for bone regeneration. The number of research papers in this field is increasing annually, and the main research hotspots include bone regeneration, 3D printing, scaffolds, and hydrogels. Future research directions may focus on gelatin, additive manufacturing, and growth factors. Additionally, international collaboration is essential to enhance the effectiveness of bioprinted hydrogels in bone regeneration applications.
Collapse
Affiliation(s)
- Huijie Zhang
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Xiaoyu Li
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Zhenyu Jia
- Department of Orthopedics, General Hospital of Southern Theater Command, Guangzhou, China
| | - Kun Jiao
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Chen Liu
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
- Department of Outpatient Service, Military District Shenyang No. 1 Retreat Center for Separated Cadres, Liaoning, China
| | - Zixiang Deng
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Yushu Bai
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Xianzhao Wei
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Xiaoyi Zhou
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| |
Collapse
|
15
|
Ma X, Peng L, Zhu X, Chu T, Yang C, Zhou B, Sun X, Gao T, Zhang M, Chen P, Chen H. Isolation, identification, and challenges of extracellular vesicles: emerging players in clinical applications. Apoptosis 2025; 30:422-445. [PMID: 39522104 DOI: 10.1007/s10495-024-02036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs) serve as critical mediators of intercellular communication, encompassing exosomes, microvesicles, and apoptotic vesicles that play significant roles in diverse physiological and pathological contexts. Numerous studies have demonstrated that EVs derived from mesenchymal stem cells (MSC-EVs) play a pivotal role in facilitating tissue and organ repair, alleviating inflammation and apoptosis, enhancing the proliferation of endogenous stem cells within tissues and organs, and modulating immune function-these functions have been extensively utilized in clinical applications. The precise classification, isolation, and identification of MSC-EVs are essential for their clinical applications. This article provides a comprehensive overview of the biological properties of EVs, emphasizing both their advantages and limitations in isolation and identification methodologies. Additionally, we summarize the protein markers associated with MSC-EVs, emphasizing their significance in the treatment of various diseases. Finally, this article addresses the current challenges and dilemmas in developing clinical applications for MSC-EVs, aiming to offer valuable insights for future research.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Lanwei Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiaohui Zhu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tianqi Chu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Changcheng Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Bohao Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiangwei Sun
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tianya Gao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Mengqi Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ping Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Haiyan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
- East China Institute of Digital Medical Engineering, Shangrao, 334000, People's Republic of China.
| |
Collapse
|
16
|
Wang C, Wang L, Wang Z, Yang Z, Du K, Song J, Hou J, Wang Y. Study on the in vitro changes of human bone marrow‑related mesenchymal stem cells. Int J Mol Med 2025; 55:23. [PMID: 39611467 PMCID: PMC11637496 DOI: 10.3892/ijmm.2024.5464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) serve a pivotal role in the hematopoietic niche. The present study collected bone marrow samples from individuals across various age groups to investigate the biological characteristics of MSCs. By modifying the bone marrow microenvironment through co‑culture techniques, changes in the stemness of MSCs were examined. An in vitro hematopoietic co‑culture system was established to simulate the impact of MSCs on hematopoietic stem cells. The results demonstrated that the mode of cell‑to‑cell contact among stem cells is more influential in shaping bone marrow function compared with the effects of aging on these stem cells. Transcriptomic analysis revealed that MSCs serve as essential mediators, with their growth variations being both a consequence and a cause of changes in the bone marrow microenvironment. Furthermore, the decline in hematopoietic function observed in the elderly is a manifestation of this phenomenon. Data from the present study suggest that targeting MSCs is essential for enhancing bone marrow function and improving the outcomes of bone marrow transplantation.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lu Wang
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ziling Wang
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kunhang Du
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jiaqi Song
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jiying Hou
- Faculty of Basic Medical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 400016, P.R. China
| | - Yaping Wang
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
17
|
Schwartz G, Rana S, Jackson AR, Leñero C, Best TM, Kouroupis D, Travascio F. Human mesenchymal stem/stromal cell-derived extracellular vesicle transport in meniscus fibrocartilage. J Orthop Res 2025; 43:457-465. [PMID: 39396193 DOI: 10.1002/jor.25993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
Extracellular vesicles (EVs) derived from endometrial-derived mesenchymal stem/stromal cells (eMSC) play a crucial role in tissue repair due to their immunomodulatory and reparative properties. Given these properties, eMSC EVs may offer potential benefits for meniscal repair. The meniscus, being partly vascularized, relies on diffusivity for solute trafficking. This study focuses on EVs transport properties characterization within fibrocartilage that remains unknown. Specifically, EVs were isolated from Crude and CD146+ eMSC populations. Green fluorescence-labeled EVs transport properties were investigated in three structurally distinct layers (core, femoral, and tibial surfaces) of porcine meniscus. Diffusivity was measured via custom fluorescence recovery after photobleaching (FRAP) technique. Light spectrometry was used to determine EVs solubility. Both Crude and CD146+ eMSC EVs exhibited high purity (>90% CD63CD9 marker expression) and an average diffusivity of 10.924 (±4.065) µm²/s. Importantly, no significant difference was observed between Crude and CD146+ eMSC EV diffusivity on the meniscal layer (p > 0.05). The mean partitioning coefficient was 0.2118 (±0.1321), with Crude EVs demonstrating significantly higher solubility than CD146+ EVs (p < 0.05). In conclusion, this study underscores the potential of both Crude and CD146+ eMSC EVs to traverse all layers of the meniscus, supporting their capacity to enhance delivery of orthobiologics for cartilaginous tissue healing.
Collapse
Affiliation(s)
- Gabi Schwartz
- Department of Biomedical Engineering, University of Miami, Coral Gables, USA
| | - Samir Rana
- Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, USA
| | - Alicia R Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, USA
| | - Clarissa Leñero
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, USA
- Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, USA
| | - Thomas M Best
- Department of Biomedical Engineering, University of Miami, Coral Gables, USA
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, USA
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, USA
- Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, USA
| | - Francesco Travascio
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, USA
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, USA
- Max Biedermann Institute for Biomechanics, Mount Sinai Medical Center, Miami Beach, USA
| |
Collapse
|
18
|
Chen M, Huang B, Su X. Mesenchymal stem cell-derived extracellular vesicles in periodontal bone repair. J Mol Med (Berl) 2025; 103:137-156. [PMID: 39821702 DOI: 10.1007/s00109-025-02513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
Periodontitis is a chronic inflammatory disease that destroys tooth-supporting structures and poses significant public health challenges due to its high prevalence and links to systemic health conditions. Traditional treatments are effective in reducing the inflammatory response and improving the clinical symptoms of periodontitis. However, these methods are challenging to achieve an ideal treatment effect in alveolar bone repair. Mesenchymal stem cells (MSCs) represent a potential alternative for the treatment of periodontal bone defects due to their self-renewal and differentiation capabilities. Recent research indicates that MSCs exert their effects primarily through paracrine mechanisms. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) serve as pivotal mediators in intercellular communication, transferring microRNAs (miRNAs), messenger RNAs (mRNAs), proteins, and cytokines to recipient cells, thereby emulating the therapeutic effects of MSCs. In periodontitis, MSC-EVs play a pivotal role in immunomodulation and bone remodeling, thereby facilitating periodontal bone repair. As a cell-free therapy, MSC-EVs demonstrate considerable clinical potential due to their specialized membrane structure, minimal immunogenicity, low toxicity, high biocompatibility, and nanoscale size. This review indicates that MSC-EVs represent a promising approach for periodontitis treatment, with the potential to overcome the limitations of traditional therapies and offer a more effective solution for bone repair in periodontal disease. In this review, we introduce MSC-EVs, emphasizing their mechanisms and clinical applications in periodontal bone repair. It synthesizes recent advances, existing challenges, and future prospects to present up-to-date information and novel techniques for periodontal regeneration and to guide the improvement of MSC-EV therapy in clinical practice.
Collapse
Affiliation(s)
- Mengbing Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bo Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
19
|
Teng H, Cho M, Ma Z, Ji X, Jin S, Zhou Y, Xuan M, Seong HA, Li X, Choi SH, Li Q. Preclinical Assessment of Safety and Efficacy of Deferoxamine (DFO)-pretreated Feline Adipose Mesenchymal Stem Cells. In Vivo 2025; 39:267-279. [PMID: 39740892 PMCID: PMC11705137 DOI: 10.21873/invivo.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM This study aimed to investigate the safety and efficacy of deferoxamine (DFO) pretreated feline adipose tissue derived mesenchymal stem cells (fATMSCs) for the treatment of inflammatory disorders. MATERIALS AND METHODS fATMSCs were isolated from feline adipose tissue and characterized using flow cytometry for surface marker expression and differentiation assays for adipogenic, osteogenic, and chondrogenic lineages. Different concentrations of DFO were used to evaluate its impact on fATMSC activity. The therapeutic potential of these preconditioned cells was validated using a mouse model of acute lung injury (ALI) by LPS injection. Comprehensive evaluations, including clinical, hematological, and radiological assessments, were conducted before and after intravenous injection of preconditioned cells in three feline subjects. RESULTS 25 μM DFO pretreatment significantly up-regulated immunomodulatory genes (Tgfb, Hgf, and Tsg-6) in fATMSCs. In the mouse ALI model, DFO-pretreated fATMSCs exhibited enhanced anti-inflammatory effects, reducing inflammatory cytokines (Tnfa, Il1b, Il6). Clinical safety assessment in felines showed no immediate adverse effects, structural alterations, or tumorigenesis. CONCLUSION Utilizing a mouse model of acute lung injury, we demonstrated the potential of DFO-pretreated fATMSCs as a safe and effective therapeutic approach for inflammatory disorders.
Collapse
Affiliation(s)
- Hailong Teng
- Department of Veterinary Medicine, Yanbian University, Yanji, P.R. China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, P.R. China
| | - Minkyung Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University College of Natural Science, Cheongju, Republic of Korea
| | | | - Xinpeng Ji
- Department of Veterinary Medicine, Yanbian University, Yanji, P.R. China
| | - Shiyu Jin
- Department of Veterinary Medicine, Yanbian University, Yanji, P.R. China
| | - Yuze Zhou
- Department of Veterinary Medicine, Yanbian University, Yanji, P.R. China
| | - Meifu Xuan
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, P.R. China
| | - Hyun-A Seong
- Department of Biological Sciences and Biotechnology, Chungbuk National University College of Natural Science, Cheongju, Republic of Korea
| | - Xiangzi Li
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, P.R. China
| | - Seong-Ho Choi
- Department of Biological Sciences and Biotechnology, Chungbuk National University College of Natural Science, Cheongju, Republic of Korea;
| | - Qiang Li
- Department of Veterinary Medicine, Yanbian University, Yanji, P.R. China;
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, P.R. China
| |
Collapse
|
20
|
Szigyártó IC, Singh P, Sonallya T, Románszki L, Mihály J, Wiener Z, Bebesi T, Mészáros G, Keresztes Z, Thompson M, Varga Z, Beke-Somfai T. ATR-Infrared Spectroscopy and Acoustic Sensing in Characterization of Blood and Pancreatic Ductal Adenocarcinoma-Derived Extracellular Vesicles. Methods Mol Biol 2025; 2908:225-238. [PMID: 40304913 DOI: 10.1007/978-1-0716-4434-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer-enclosed nanoparticles secreted by most cells into the biofluids. They have an important role in intercellular communication by carrying bioactive components (e.g., lipids, proteins, nucleic acids, and other metabolites) and reflecting the biochemical and metabolic processes of their parent cell. Due to their widespread molecular cargo, they have potential diagnostic and therapeutic roles, so they can be considered as new generation biomarkers. With the drastic increase in the number of publications and the comparability of the obtained results, the development of standardized protocols has become necessary. Here we aim to demonstrate the applicability of two, non-conventional techniques, such as ATR-infrared spectroscopy (ATR-FTIR) and electromagnetic piezoelectric acoustic sensor (EMPAS) in the characterization of compositional changes of blood- and pancreatic tumor-derived vesicles. In addition, we provide guidelines in sample collection, isolation, and separation of EVs. IR spectroscopy, as a fast and label-free technique, gives biochemical insight into the sample composition, while EMPAS serves information on vesicle quantity and in membrane integrity changes during storage.
Collapse
Affiliation(s)
- Imola Cs Szigyártó
- HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Biomolecular Self-assembly Research Group, Budapest, Hungary.
| | - Priyanka Singh
- HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Biomolecular Self-assembly Research Group, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Tasvilla Sonallya
- HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Biomolecular Self-assembly Research Group, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Loránd Románszki
- HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Functional Interfaces Research Group, Budapest, Hungary
| | - Judith Mihály
- HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Biological Nanochemistry Research Group, Budapest, Hungary
- Department of Chemistry, Eszterházy Károly Catholic University, Eger, Hungary
| | - Zoltán Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Tímea Bebesi
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Budapest, Hungary
- HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Biological Nanochemistry Research Group, Budapest, Hungary
| | - Gábor Mészáros
- HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Functional Interfaces Research Group, Budapest, Hungary
| | - Zsófia Keresztes
- HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Functional Interfaces Research Group, Budapest, Hungary
| | - Michael Thompson
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Zoltán Varga
- HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Biological Nanochemistry Research Group, Budapest, Hungary
- Depatment of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Tamás Beke-Somfai
- HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Biomolecular Self-assembly Research Group, Budapest, Hungary.
| |
Collapse
|
21
|
Amolegbe SM, Johnston NC, Ambrosi A, Ganguly A, Howcroft TK, Kuo LS, Labosky PA, Rudnicki DD, Satterlee JS, Tagle DA, Happel C. Extracellular RNA communication: A decade of NIH common fund support illuminates exRNA biology. J Extracell Vesicles 2025; 14:e70016. [PMID: 39815775 PMCID: PMC11735951 DOI: 10.1002/jev2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 01/18/2025] Open
Abstract
The discovery that extracellular RNAs (exRNA) can act as endocrine signalling molecules established a novel paradigm in intercellular communication. ExRNAs can be transported, both locally and systemically in virtually all body fluids. In association with an array of carrier vehicles of varying complexity, exRNA can alter target cell phenotype. This highlights the important role secreted exRNAs have in regulating human health and disease. The NIH Common Fund exRNA Communication program was established in 2012 to accelerate and catalyze progress in the exRNA biology field. The program addressed both exRNA and exRNA carriers, and served to generate foundational knowledge for the field from basic exRNA biology to future potential clinical applications as biomarkers and therapeutics. To address scientific challenges, the exRNA Communication program developed novel tools and technologies to isolate exRNA carriers and analyze their cargo. Here, we discuss the outcomes of the NIH Common Fund exRNA Communication program, as well as the evolution of exRNA as a scientific field through the analysis of scientific publications and NIH funding. ExRNA and associated carriers have potential clinical use as biomarkers, diagnostics, and therapeutics. Recent translational applications include exRNA-related technologies repurposed as novel diagnostics in response to the COVID-19 pandemic, the clinical use of extracellular vesicle-based biomarker assays, and exRNA carriers as drug delivery platforms. This comprehensive landscape analysis illustrates how discoveries and innovations in exRNA biology are being translated both into the commercial market and the clinic. Analysis of program outcomes and NIH funding trends demonstrate the impact of this NIH Common Fund program.
Collapse
Affiliation(s)
- Sara M. Amolegbe
- Office of the DirectorNational Institutes of HealthBethesdaMarylandUSA
| | - Nicolas C. Johnston
- National Institute on Drug AbuseNational Institutes of HealthBethesdaMarylandUSA
| | - Angela Ambrosi
- Office of the DirectorNational Institutes of HealthBethesdaMarylandUSA
| | - Aniruddha Ganguly
- National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - T. Kevin Howcroft
- National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Lillian S. Kuo
- National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | | | - Dobrila D. Rudnicki
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - John S. Satterlee
- National Institute on Drug AbuseNational Institutes of HealthBethesdaMarylandUSA
| | - Danilo A. Tagle
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Christine Happel
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
22
|
Shirzad M, Daraei A, Najafzadehvarzi H, Farnoush N, Parsian H. Co-culture system of breast cancer and normal cells to investigate inflammation: using doxorubicin encapsulated in adipose-derived exosomes. Med Oncol 2024; 42:21. [PMID: 39630192 DOI: 10.1007/s12032-024-02568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/11/2024] [Indexed: 01/23/2025]
Abstract
Doxorubicin (DOX) chemotherapy for breast cancer is an effective treatment option, but it also has disadvantages. Exosomes (EXOs) have safely and successfully transported DOX and reduced its adverse effects; however, its use is still being explored. In this study, a co-culture system of malignant and non-malignant breast cells was used to generate an in vitro model reflecting the in vivo cellular microenvironment, and the effects of this treatment were investigated by examining inflammatory genes. Extracellular matrices (EXOs) were extracted from mesenchymal stem cells derived from human adipose tissue by ultracentrifugation. Later, Western blotting, dynamic light scattering (DLS) and transmission electron microscopy methods were used to examine the properties of the EXO. DOX was encapsulated in the EXOs by sonication and the loading rate was measured by spectrophotometry. In the current study, a co-culture system was used to investigate the cytotoxic effects of free DOX and DOX encapsulated in EXOs (EXO-DOX) on various breast cell lines, including MCF-7, MCF-10A, MDA-MB-231, and A-MSC. Additionally, the expression levels of inflammatory cytokines (IL-1β, IL-6, IL-10, and TNF-α) were examined. Methylthiazolyldiphenyl-tetrazolium bromide assay demonstrated that free DOX showed the highest cytotoxicity against MCF-10A cells, followed by MCF-7 cells. Conversely, EXO-DOX indicated a greater effect on MCF-7 cells and had a lower IC50 compared to MDA-MB-231 cells. Free DOX significantly downregulated the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), particularly in MCF-7 and MCF-10A cells, while concurrently upregulating IL-10 expression. EXO-DOX induced a more significant alteration in cytokine expression than the control and free DOX treatment groups. The co-culture system revealed a synergistic effect of free DOX on cancer cells while simultaneously mitigating the toxic effects of DOX on normal cells. This study suggests that EXO-DOX has promising potential as a targeted drug delivery system that could potentially improve therapeutic efficacy and minimize off-target toxicity.
Collapse
Affiliation(s)
- Moein Shirzad
- Student Research Committee, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Najafzadehvarzi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Pharmacology Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Nazila Farnoush
- Department of Surgery, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
23
|
Hu Z, Zhu L, Zhu Y, Xu Y. Mesenchymal Stem Extracellular Vesicles in Various Respiratory Diseases: A New Opportunity. J Inflamm Res 2024; 17:9041-9058. [PMID: 39583853 PMCID: PMC11586120 DOI: 10.2147/jir.s480345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024] Open
Abstract
Lung diseases are associated with high morbidity and mortality rates, thereby jeopardizing human health and imposing a great burden on society. Currently, lung diseases are mainly treated with medications, oxygen therapy and mechanical ventilation, but these approaches are unable to effectively reduce the mortality rate. Therefore, lung transplantation remains the ultimate treatment for various chronic lung diseases, but this treatment is also hindered by the limited availability of lung sources, immature technology and a low survival rate after transplantation. With constant changes in the environment, pathogens, type and amount of harmful substances and the prevalence of respiratory diseases, there is an urgent need to identify alternative treatment methods. Research on stem cell therapy has been very successful in recent years, and mesenchymal stem cells (MSCs), together with their secretory bodies, play a significant therapeutic role. Extracellular vesicles of MSCs (MSC-EVs) are also major components of the paracrine secretion of MSCs, including exosomes, microvesicles, and apoptotic bodies, among which exosomes are the most typical. MSC-EVs are believed to be present in various tissues of the human body where they can carry proteins, DNA, RNA and biologically active factors, just to name a few. They can also transmit various biological signals to participate in different biological activities, including the maintenance of homeostasis within the tissue. Several studies have further demonstrated that MSCs and their generated extracellular vesicles play an important role in the treatment of diseases. In this paper, the origin, properties and roles of MSCs and MSC-EVs are reviewed, the mechanisms of different lung diseases, the limitations of current therapeutic options and the roles of MSC-EVs in Chronic Obstructive Pulmonary Disease, asthma, infectious lung disease, lung cancer, pulmonary fibrosis, pulmonary arterial hypertension, and acute lung injury/ acute respiratory distress syndrome are also discussed (Figure 1). In addition, the current limitations and possible future research directions are also discussed in view of providing new ideas for the role of MSC-EVs in the treatment of lung diseases.
Collapse
Affiliation(s)
- Zijun Hu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, People’s Republic of China
| | - Lujian Zhu
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, People’s Republic of China
| | - Yanglin Zhu
- Department of Hepatobiliary Pancreatic Gastrointestinal Surgery 2, Affiliated Jinhua Hospital of Wenzhou Medical University, Jinhua, Zhejiang, People’s Republic of China
| | - Yejin Xu
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, People’s Republic of China
| |
Collapse
|
24
|
Li M, Yuan W, Kong X, Wu H, Cai Z, Zhu W, Lu X. Proton pump inhibitors reduce chemotherapeutic hepatotoxicity and enhance hepatic uptake and accumulation of drug-loaded extracellular vesicles. Sci Rep 2024; 14:28163. [PMID: 39548145 PMCID: PMC11568174 DOI: 10.1038/s41598-024-75775-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
Extracellular vesicles (EVs) are involved in the progression of various diseases. Tumor cell-derived EVs (TEVs) are a particular concern, as they can induce fatty liver by promoting liver macrophages to secrete tumor necrosis factor (TNF), thus enhancing the toxicity of chemotherapy. Therefore, reducing pathogenic EV production is a potential strategy for treating EV-related diseases. However, there are currently no effective clinical reagents to obtain this purpose. In addition, EVs are also natural and ideal drug-delivery vehicles. Improving the delivery efficiency of EVs remains a challenge. Proton pump inhibitors (PPIs) have been demonstrated to promote cell uptake of EVs by inducing micropinocytosis. Here, we show that PPIs can accelerate TEV clearance, reduce TEV uptake by liver macrophages and decrease the mRNA expression of TNF in liver macrophages of tumor-bearing mice. Correspondingly, the fatty liver phenotypes are alleviated, and the tolerance to chemotherapy is improved in these mice. Furthermore, our findings indicate that PPIs facilitate the uptake of red blood cell-derived EVs (RBC-EVs) loaded with antisense oligonucleotides of Trim21 (Trim21-ASOs) by the liver macrophages of obesity. Consequently, the inhibition of macrophage inflammatory responses in obese mice mediated by RBC-EVs/Trim21-ASOs was further enhanced by PPIs, resulting in a more profound improvement in obesity and related metabolic disorders. In conclusion, our findings demonstrated that PPIs can effectively clear pathogenic EVs and enhance the delivery efficacy of EV vehicles, making them a highly promising clinical prospect.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Internal Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310058, P.R. China
| | - Weiyi Yuan
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Xianghui Kong
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Hao Wu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P.R. China
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Weiguo Zhu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China.
| | - Xinliang Lu
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China.
| |
Collapse
|
25
|
Nainggolan ADC, Hartrianti P, Anjani QK, Donnelly RF, Putra ABN, Kho K, Kurniawan A, Andranilla RK, Rattu SA, Ramadon D. Double-layer dissolving microneedles for delivery of mesenchymal stem cell Secretome: Formulation, characterisation and skin irritation study. Eur J Pharm Biopharm 2024; 204:114495. [PMID: 39277118 DOI: 10.1016/j.ejpb.2024.114495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Regenerative therapy based on stem cells have been developed, focusing on either stem cell or secretome delivery. Most marketed cellular and gene therapy products are available as injectable dosage forms, leading to several limitations requiring alternative routes, such as the intradermal route. Microneedles, capable of penetratingthe stratum corneumbarrier, offer a potential alternative for intradermal delivery. This present study aimed to develop double-layer dissolving microneedles (DMN) for the delivery of freeze-dried mesenchymal stem cell secretome. DMNs were fabricated using a two-step casting method and composed of two polymer combinations: poly(vinyl pyrrolidone) (PVP) with poly(vinyl alcohol) (PVA) or PVP with sodium hyaluronate (SH). The manufactured DMNs underwent assessments for morphology, mechanical strength, in skin dissolution, protein content, in vitro permeation, in vivo skin irritation, and physical stability. Based on evaluations of morphology and mechanical strength, two formulas (F5 and F12) met acceptance criteria. Evaluation of protein content revealed that F12 (PVP-SH combination) had a higher protein content than F5 (PVP-PVA combination), 99.02 ± 3.24 μg and 78.36 ± 3.75 μg respectively. In vitro permeation studies showed that F5 delivered secretome protein by 100.84 ± 0.88%, while F12 delivered 99.63 ± 9.21% in 24 h. After four days of observation onSprague-Dawleyrat's skin, no signs of irritation, such as oedema and redness, was observed after applying both formulations. The safety of using PVP-PVA and PVP-SH combinations as excipients for DMN secretome delivery has been confirmed, promising significant advancements in biotherapeutic development in the future.
Collapse
Affiliation(s)
| | - Pietradewi Hartrianti
- Department of Pharmacy, School of Life Sciences, Indonesia International Institute of Life Sciences, Jakarta 13210, Indonesia
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Agus Budiawan Naro Putra
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, Indonesia
| | - Katherine Kho
- Department of Biotechnology, School of Life Sciences, Indonesia International Institute of Life Sciences, Jakarta 13210, Indonesia
| | - Arief Kurniawan
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | | | - Shereen Angelina Rattu
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute of Life Sciences, Jakarta 13210, Indonesia
| | - Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
| |
Collapse
|
26
|
Zhang Y, Wu D, Zhou C, Bai M, Wan Y, Zheng Q, Fan Z, Wang X, Yang C. Engineered extracellular vesicles for tissue repair and regeneration. BURNS & TRAUMA 2024; 12:tkae062. [PMID: 39439545 PMCID: PMC11495891 DOI: 10.1093/burnst/tkae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are heterogeneous membrane-like vesicles secreted by living cells that are involved in many physiological and pathological processes and act as intermediaries of intercellular communication and molecular transfer. Recent studies have shown that EVs from specific sources regulate tissue repair and regeneration by delivering proteins, lipids, and nucleic acids to target cells as signaling molecules. Nanotechnology breakthroughs have facilitated the development and exploration of engineered EVs for tissue repair. Enhancements through gene editing, surface modification, and content modification have further improved their therapeutic efficacy. This review summarizes the potential of EVs in tissue repair and regeneration, their mechanisms of action, and their research progress in regenerative medicine. This review highlights their design logic through typical examples and explores the development prospects of EVs in tissue repair. The aim of this review is to provide new insights into the design of EVs for tissue repair and regeneration applications, thereby expanding their use in regenerative medicine.
Collapse
Affiliation(s)
- Yan Zhang
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
- School of Public Health, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Dan Wu
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Chen Zhou
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025 Shennan Middle Road, Futian District, Shenzhen, China
| | - Muran Bai
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Yucheng Wan
- Hospital of Stomatology, Zunyi Medical University, No. 89, Wujiang East Road, Xinpu New District, Zunyi City, Guizhou Province, China
| | - Qing Zheng
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, No. 1168 Chunrong West Road, Yuhua Street, Chenggong District, Kunming City, Yunnan Province China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, No.81 Meishan Road, Shushan District, Hefei 230032, China
| | - Chun Yang
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| |
Collapse
|
27
|
Xia EJ, Zou S, Zhao X, Liu W, Zhang Y, Zhao IS. Extracellular vesicles as therapeutic tools in regenerative dentistry. Stem Cell Res Ther 2024; 15:365. [PMID: 39402576 PMCID: PMC11476107 DOI: 10.1186/s13287-024-03936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Dental and maxillofacial diseases are always accompanied by complicated hard and soft tissue defects, involving bone, teeth, blood vessels and nerves, which are difficult to repair and severely affect the life quality of patients. Recently, extracellular vesicles (EVs) secreted by all types of cells and extracted from body fluids have gained more attention as potential solutions for tissue regeneration due to their special physiological characteristics and intrinsic signaling molecules. Compared to stem cells, EVs present lower immunogenicity and tumorigenicity, cause fewer ethical problems, and have higher stability. Thus, EV therapy may have a broad clinical application in regenerative dentistry. Herein, we reviewed the currently available literature regarding the functional roles of EVs in oral and maxillofacial tissue regeneration, including in maxilla and mandible bone, periodontal tissues, temporomandibular joint cartilage, dental hard tissues, peripheral nerves and soft tissues. We also summarized the underlying mechanisms of actions of EVs and their delivery strategies for dental tissue regeneration. This review would provide helpful guidelines and valuable insights into the emerging potential of EVs in future research and clinical applications in regenerative dentistry.
Collapse
Affiliation(s)
- Evelyn Jingwen Xia
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China
| | - Shasha Zou
- Longgang Center for Chronic Disease Control, Shenzhen, 518172, China
| | - Xiu Zhao
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen, 518015, China
| | - Wei Liu
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen, 518015, China
| | - Yang Zhang
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China.
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518015, China.
| | - Irene Shuping Zhao
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China.
| |
Collapse
|
28
|
Peng S, Liu X, Chang L, Liu B, Zhang M, Mao Y, Shen X. Exosomes Derived from Rejuvenated Stem Cells Inactivate NLRP3 Inflammasome and Pyroptosis of Nucleus Pulposus Cells via the Transfer of Antioxidants. Tissue Eng Regen Med 2024; 21:1061-1077. [PMID: 39060654 PMCID: PMC11416441 DOI: 10.1007/s13770-024-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Accumulating evidence supports the potential of exosomes as a promising therapeutic approach for intervertebral disc degeneration (IDD). Nevertheless, enhancing the efficiency of exosome treatment remains an urgent concern. This study investigated the impact of quercetin on the characteristics of mesenchymal stem cells (MSCs) and their released exosomes. METHODS Exosomes were obtained from quercetin pre-treated MSCs and quantified for the production based on nanoparticle tracking and western blot analysis. The molecules involved in the secretion and cargo sorting of exosomes were investigated using western blot and immunofluorescence analysis. Based on the in vitro biological analysis and in vivo histological analysis, the effects of exosomes derived from conventional or quercetin-treated MSCs on nucleus pulposus (NP) cells were compared. RESULTS A significant enhancement in the production and transportation efficiency of exosomes was observed in quercetin-treated MSCs. Moreover, the exosomes derived from quercetin-treated MSCs exhibited a greater abundance of antioxidant proteins, specifically superoxide dismutase 1 (SOD1), which inhibit the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome in NP cells. Through in vitro and in vivo experiments, it was elucidated that exosomes derived from quercetin-treated MSCs possessed enhanced anti-inflammatory and antioxidant properties. CONCLUSION Collectively, our research underscores an optimized therapeutic strategy for IDD utilizing MSC-derived exosomes, thereby augmenting the efficacy of exosomes in intervertebral disc regeneration.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Xiangyang Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Lei Chang
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Bin Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Mingyan Zhang
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Yan Mao
- Department of Ophthalmology, Hunan Provincial People's Hospital, Changsha, 410005, Hunan, China
| | - Xiongjie Shen
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China.
| |
Collapse
|
29
|
Li Y, Wang Y, Zhang Y, Zhu Y, Dong Y, Cheng H, Zhang Y, Wang Y, Li Z, Gao J. Engineered mesenchymal stem cell-derived extracellular vesicles: kill tumors and protect organs. Theranostics 2024; 14:6202-6217. [PMID: 39431009 PMCID: PMC11488101 DOI: 10.7150/thno.99618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024] Open
Abstract
Solid tumors cause 90% of cancers and remain the primary cause of mortality. However, treating solid tumors presents significant challenges due to the complex tumor microenvironment and drug resistance, leading to inadequate treatment targeting and severe side effects. Surgery, radiotherapy, and chemotherapy Although it is an effective method for the treatment of solid tumors, it can lead to organ dysfunction and affect patient prognosis. Therefore, it is imperative to improve treatment precision and organ repair capabilities to manage solid tumors. Mesenchymal stem cell extracellular vesicles (MSC-EVs) have wide application prospects as a new agent for solid tumor therapy. Firstly, MSC-EVs is a derivative of MSCs. It has the function of promoting tissue regeneration by inducing dedifferentiation in surviving cells after injury. Additionally, MSC-EVs offer unique advantages in terms of safety, stability and penetrability, making them a promising extracellular therapeutic modality for solid tumor treatment. Finally, MSC-EVs are able to enhance therapeutic efficacy through engineering strategies. To sum up, this review takes MSC-EVs as its object. And then we discuss recent advancements and engineering strategies in the use of MSC-EVs for soid tumor suppression. This review aims to inspire researchers to devise a new method for effectively treat solid tumors.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, Shanghai, 200433, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yao Wang
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Heilongjiang Mudanjiang, 157011, China
| | - Yu Zhang
- Shanghai Key Laboratory of Cell Engineering, Shanghai, 200120, China
| | - Yuruchen Zhu
- School of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yuhui Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Haobin Cheng
- School of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yue Wang
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, 200120, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- National Key Laboratory of lmmunology and Inflammation, Naval Medical University, Shanghai, 200433, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| | - Jie Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| |
Collapse
|
30
|
Zheng L, Song H, Li Y, Li H, Lin G, Cai Z. Insulin-Induced Gene 1-Enhance Secretion of BMSC Exosome Enriched in miR-132-3p Promoting Wound Healing in Diabetic Mice. Mol Pharm 2024; 21:4372-4385. [PMID: 39136964 DOI: 10.1021/acs.molpharmaceut.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Chronic diabetic wounds represent a significant clinical challenge because of impaired healing processes, which require innovative therapeutic strategies. This study explores the therapeutic efficacy of insulin-induced gene 1-induced bone marrow mesenchymal stem cell exosomes (Insig1-exos) in promoting wound healing in diabetic mice. We demonstrated that Insig1 enhanced the secretion of bone marrow mesenchymal stem cell-derived exosomes, which are enriched with miR-132-3p. Through a series of in vitro and in vivo experiments, these exosomes significantly promoted the proliferation, migration, and angiogenesis of dermal fibroblasts under high-glucose conditions. They also regulated key wound-healing factors, including matrix metalloproteinase-9, platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor-β1, and platelet endothelial cell adhesion molecule-1, thereby accelerating wound closure in diabetic mice. Histological analysis showed that Insig1-exos were more effective in promoting epithelialization, enhancing collagen deposition, and reducing inflammation. Additionally, inhibition of miR-132-3p notably diminished these therapeutic effects, underscoring its pivotal role in the wound-healing mechanism facilitated by Insig1-exos. This study elucidates the molecular mechanisms through which Insig1-exos promotes diabetic wound healing, highlighting miR-132-3p as a key mediator. These findings provide new strategies and theoretical foundations for treating diabetes-related skin injuries.
Collapse
Affiliation(s)
- Liming Zheng
- China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Honghong Song
- Botanical Institute, Karlsruhe Institute for Technology, Fritz Haber Weg 4, 76131 Karlsruhe, Germany
| | - Yang Li
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Hengfei Li
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Guanlin Lin
- The First Affiliated Hospital of Xiamen University, Xiamen ,Fujian 361000, China
| | - Zhenyu Cai
- The First Affiliated Hospital of Xiamen University, Xiamen ,Fujian 361000, China
| |
Collapse
|
31
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Zhang Y, Zheng Z, Sun J, Xu S, Wei Y, Ding X, Ding G. The application of mesenchymal stem cells in the treatment of traumatic brain injury: Mechanisms, results, and problems. Histol Histopathol 2024; 39:1109-1131. [PMID: 38353136 DOI: 10.14670/hh-18-716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that can be derived from a wide variety of human tissues and organs. They can differentiate into a variety of cell types, including osteoblasts, adipocytes, and chondrocytes, and thus show great potential in regenerative medicine. Traumatic brain injury (TBI) is an organic injury to brain tissue with a high rate of disability and death caused by an external impact or concussive force acting directly or indirectly on the head. The current treatment of TBI mainly includes symptomatic, pharmacological, and rehabilitation treatment. Although some efficacy has been achieved, the definitive recovery effect on neural tissue is still limited. Recent studies have shown that MSC therapies are more effective than traditional treatment strategies due to their strong multi-directional differentiation potential, self-renewal capacity, and low immunogenicity and homing properties, thus MSCs are considered to play an important role and are an ideal cell for the treatment of injurious diseases, including TBI. In this paper, we systematically reviewed the role and mechanisms of MSCs and MSC-derived exosomes in the treatment of TBI, thereby providing new insights into the clinical applications of MSCs and MSC-derived exosomes in the treatment of central nervous system disorders.
Collapse
Affiliation(s)
- Ying Zhang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shuangshuang Xu
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yanan Wei
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Xiaoling Ding
- Clinical Competency Training Center, Shandong Second Medical University, Weifang, Shandong Province, China.
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong Province, China.
| |
Collapse
|
33
|
Luo M, Zhu Y, Zhang X, Sun J, Feng X, Zhang H, Qi Q. Multiomics-Based Biocargo Components Analysis in Enterococcus faecium Membrane Vesicles. Foodborne Pathog Dis 2024. [PMID: 39129487 DOI: 10.1089/fpd.2024.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
Enterococcus spp. have been shown to have gastrointestinal tract protective functions; our recent results suggest that membrane vesicles (MVs) play an important role in the gastric protection of Enterococcus faecium (E. faecium). The specific function is determined by molecular compositions of MVs. To resolve biocargo components in E. faecium MVs (EfmMVs), MVs were isolated from E. faecium culture. Transcriptomics, label-free quantitative proteomics, and untargeted metabolomics were performed to obtain information about the complexity of ribonucleic acids (RNAs), proteins, and metabolites biocargo they carry, respectively. RNA-sequencing identified a total of 2122 transcripts. The top 20 transcripts accounted for 27.63% of total counts, which, including enzymes, participate in glycolysis, ribosomal proteins, DNA-directed RNA polymerases, protein-synthesizing relative enzymes, molecules associated with protein post-translational processing and transport, and peptidoglycan lyases. Label-free quantitative proteomics analysis identified a total of 711 proteins. The top 20 proteins accounted for 48.02% of all identified proteins, which including ribosomal proteins, enzymes participate in glycolysis, DNA-directed RNA polymerases, protein-synthesizing relative enzymes, peptidoglycan lyases, and autolysin. Untargeted metabolomics analysis identified a total of 519 metabolites. The top 20 metabolites accounted for 79.55% of all identified metabolites, which included amino acids, substrates, or products in the metabolism of amino acids, natural organic acids, products in the metabolism of organic acids, ketone compounds, and two other compounds. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that the identified biocargo components enriched in metabolism, genetic, and environmental information processing. Overall, we hope that the current exploration of multiple "-omics" analyses of this EfmMVs will provide useful information and further groundwork for future studies on E. faecium application.
Collapse
Affiliation(s)
- Meiying Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuanyuan Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaofang Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Junhang Sun
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qien Qi
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
34
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
35
|
Adamo G, Santonicola P, Picciotto S, Gargano P, Nicosia A, Longo V, Aloi N, Romancino DP, Paterna A, Rao E, Raccosta S, Noto R, Salamone M, Deidda I, Costa S, Di Sano C, Zampi G, Morsbach S, Landfester K, Colombo P, Wei M, Bergese P, Touzet N, Manno M, Di Schiavi E, Bongiovanni A. Extracellular vesicles from the microalga Tetraselmis chuii are biocompatible and exhibit unique bone tropism along with antioxidant and anti-inflammatory properties. Commun Biol 2024; 7:941. [PMID: 39097626 PMCID: PMC11297973 DOI: 10.1038/s42003-024-06612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed bio-nanoparticles secreted by cells and naturally evolved to transport various bioactive molecules between cells and even organisms. These cellular objects are considered one of the most promising bio-nanovehicles for the delivery of native and exogenous molecular cargo. However, many challenges with state-of-the-art EV-based candidates as drug carriers still exist, including issues with scalability, batch-to-batch reproducibility, and cost-sustainability of the final therapeutic formulation. Microalgal extracellular vesicles, which we named nanoalgosomes, are naturally released by various microalgal species. Here, we evaluate the innate biological properties of nanoalgosomes derived from cultures of the marine microalgae Tetraselmis chuii, using an optimized manufacturing protocol. Our investigation of nanoalgosome biocompatibility in preclinical models includes toxicological analyses, using the invertebrate model organism Caenorhabditis elegans, hematological and immunological evaluations ex vivo and in mice. We evaluate nanoalgosome cellular uptake mechanisms in C. elegans at cellular and subcellular levels, and study their biodistribution in mice with accurate space-time resolution. Further examination highlights the antioxidant and anti-inflammatory bioactivities of nanoalgosomes. This holistic approach to nanoalgosome functional characterization demonstrates that they are biocompatible and innate bioactive effectors with unique bone tropism. These findings suggest that nanoalgosomes have significant potential for future therapeutic applications.
Collapse
Affiliation(s)
- Giorgia Adamo
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy
| | - Sabrina Picciotto
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Paola Gargano
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Aldo Nicosia
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Valeria Longo
- Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Noemi Aloi
- Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Daniele P Romancino
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Angela Paterna
- Cell-Tech HUB at Institute of Biophysics, National Research Council of Italy (CNR), Palermo, Italy
| | - Estella Rao
- Cell-Tech HUB at Institute of Biophysics, National Research Council of Italy (CNR), Palermo, Italy
| | - Samuele Raccosta
- Cell-Tech HUB at Institute of Biophysics, National Research Council of Italy (CNR), Palermo, Italy
| | - Rosina Noto
- Cell-Tech HUB at Institute of Biophysics, National Research Council of Italy (CNR), Palermo, Italy
| | - Monica Salamone
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Irene Deidda
- Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Caterina Di Sano
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Palermo, Italy
| | - Giuseppina Zampi
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research (MPIP), Mainz, Germany
| | | | - Paolo Colombo
- Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
| | - Mingxing Wei
- Cellvax SAS, Villejuif Bio Park, 1 Mail du Professeur Georges Mathé, Villejuif, France
| | - Paolo Bergese
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Center for Colloid and Surface Science (CSGI), Florence, Italy
| | - Nicolas Touzet
- Department of Environmental Science, School of Science, Centre for Environmental Research, Innovation and Sustainability, CERIS, Atlantic Technological University Sligo, Sligo, Ireland
| | - Mauro Manno
- Cell-Tech HUB at Institute of Biophysics, National Research Council of Italy (CNR), Palermo, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy
| | - Antonella Bongiovanni
- Cell-Tech HUB at Institute for Research and Biomedical Innovation, National Research Council of Italy (CNR), Palermo, Italy.
| |
Collapse
|
36
|
Arbade G, Jose JV, Gulbake A, Kadam S, Kashte SB. From stem cells to extracellular vesicles: a new horizon in tissue engineering and regenerative medicine. Cytotechnology 2024; 76:363-401. [PMID: 38933869 PMCID: PMC11196501 DOI: 10.1007/s10616-024-00631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/07/2024] [Indexed: 06/28/2024] Open
Abstract
In the fields of tissue engineering and regenerative medicine, extracellular vesicles (EVs) have become viable therapeutic tools. EVs produced from stem cells promote tissue healing by regulating the immune system, enhancing cell proliferation and aiding remodeling processes. Recently, EV has gained significant attention from researchers due to its ability to treat various diseases. Unlike stem cells, stem cell-derived EVs show lower immunogenicity, are less able to overcome biological barriers, and have a higher safety profile. This makes the use of EVs derived from cell-free stem cells a promising alternative to whole-cell therapy. This review focuses on the biogenesis, isolation, and characterization of EVs and highlights their therapeutic potential for bone fracture healing, wound healing, and neuronal tissue repair and treatment of kidney and intestinal diseases. Additionally, this review discusses the potential of EVs for the treatment of cancer, COVID-19, and HIV. In summary, the use of EVs derived from stem cells offers a new horizon for applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati, (NIPER G), Guwahati, Assam 781101 India
| | - Sachin Kadam
- Sophisticated Analytical and Technical Help Institute, Indian Institute of Technology, Delhi, New Delhi 110016 India
| | - Shivaji B. Kashte
- Department of Stem Cell and Regenerative Medicine, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur, MS 416006 India
| |
Collapse
|
37
|
Shi W, Zheng J, Zhang J, Dong X, Li Z, Xiao Y, Li Q, Huang X, Du Y. Desktop-Stereolithography 3D Printing of a Decellularized Extracellular Matrix/Mesenchymal Stem Cell Exosome Bioink for Vaginal Reconstruction. Tissue Eng Regen Med 2024; 21:943-957. [PMID: 38937423 PMCID: PMC11286906 DOI: 10.1007/s13770-024-00649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND 3D-printing is widely used in regenerative medicine and is expected to achieve vaginal morphological restoration and true functional reconstruction. Mesenchymal stem cells-derived exosomes (MSCs-Exos) were applyed in the regeneration of various tissues. The current study aimed to explore the effctive of MSCs-Exos in vaginal reconstruction. METHODS In this work, hydrogel was designed using decellularized extracellular matrix (dECM) and gelatin methacrylate (GelMA) and silk fibroin (SF). The biological scaffolds were constructed using desktop-stereolithography. The physicochemical properties of the hydrogels were evaluated; Some experiments have been conducted to evaluate exosomes' effect of promotion vaginal reconstruction and to explore the mechanism in this process. RESULTS It was observed that the sustained release property of exosomes in the hydrogel both in vitro and in vitro.The results revealed that 3D scaffold encapsulating exosomes expressed significant effects on the vascularization and musule regeneration of the regenerative vagina tissue. Also, MSCs-Exos strongly promoted vascularization in the vaginal reconstruction of rats, which may through the PI3K/AKT signaling pathway. CONCLUSION The use of exosome-hydrogel composites improved the epithelial regeneration of vaginal tissue, increased angiogenesis, and promoted smooth muscle tissue regeneration. 3D-printed, lumenal scaffold encapsulating exosomes might be used as a cell-free alternative treatment strategy for vaginal reconstruction.
Collapse
Affiliation(s)
- Wenxin Shi
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Jiahua Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Jingkun Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Xiaoli Dong
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Yanlai Xiao
- Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050000, Hebei, China
| | - Qian Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Xianghua Huang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China.
| | - Yanfang Du
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
38
|
Shi L, Hu Y, Zeng H, Shi H, Xu W, Sun Y, Chu H, Ji C, Qian H. Mesenchymal stem cell-derived extracellular vesicles ameliorate renal interstitial fibrosis via the miR-13474/ADAM17 axis. Sci Rep 2024; 14:17703. [PMID: 39085289 PMCID: PMC11291924 DOI: 10.1038/s41598-024-67339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Renal interstitial fibrosis (RIF) is a prevalent consequence of chronic renal diseases, characterized by excessive extracellular matrix (ECM) deposition. A Disintegrin and Metalloprotease 17 (ADAM17), a transmembrane metalloproteinase, plays a central role in driving renal fibrosis progression by activating Notch 1 protein and the downstream TGF-β signaling pathway. Our study investigated potential therapeutic interventions for renal fibrosis, focusing on human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hucMSC-EVs). We found that hucMSC-EVs inhibit ADAM17, thereby impeding renal fibrosis progression. Analysis of hucMSC-EVs miRNA profiles revealed significant enrichment of miR-13474, which effectively targeted and inhibited ADAM17 mRNA expression, subsequently suppressing Notch1 activation, TGF-β signaling, and collagen deposition. Overexpression of miR-13474 enhanced hucMSC-EVs' inhibitory effect on renal fibrosis, while its downregulation abolished this protective effect. Our findings highlight the efficacy of hucMSC-EVs overexpressing miR-13474 in mitigating renal fibrosis via ADAM17 targeting. These insights offer potential therapeutic strategies for managing renal fibrosis.
Collapse
Affiliation(s)
- Linru Shi
- Center for Molecular & Imageology of Jiangsu University, Division of Nephrology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yuyan Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Shaoxing Central Hospital Medical Alliance General Hospital, The Department of Laboratory, Shaoxing, 312030, Zhejiang, China
| | - Houcheng Zeng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yaoxiang Sun
- Center for Molecular & Imageology of Jiangsu University, Division of Nephrology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China
| | - Hong Chu
- Center for Molecular & Imageology of Jiangsu University, Division of Nephrology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China.
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Center for Molecular & Imageology of Jiangsu University, Division of Nephrology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
39
|
Deng M, Gao F, Liu T, Zhan W, Quan J, Zhao Z, Wu X, Zhong Z, Zheng H, Chu J. T. gondii excretory proteins promote the osteogenic differentiation of human bone mesenchymal stem cells via the BMP/Smad signaling pathway. J Orthop Surg Res 2024; 19:386. [PMID: 38951811 PMCID: PMC11218376 DOI: 10.1186/s13018-024-04839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Bone defects, resulting from substantial bone loss that exceeds the natural self-healing capacity, pose significant challenges to current therapeutic approaches due to various limitations. In the quest for alternative therapeutic strategies, bone tissue engineering has emerged as a promising avenue. Notably, excretory proteins from Toxoplasma gondii (TgEP), recognized for their immunogenicity and broad spectrum of biological activities secreted or excreted during the parasite's lifecycle, have been identified as potential facilitators of osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs). Building on our previous findings that TgEP can enhance osteogenic differentiation, this study investigated the molecular mechanisms underlying this effect and assessed its therapeutic potential in vivo. METHODS We determined the optimum concentration of TgEP through cell cytotoxicity and cell proliferation assays. Subsequently, hBMSCs were treated with the appropriate concentration of TgEP. We assessed osteogenic protein markers, including alkaline phosphatase (ALP), Runx2, and Osx, as well as components of the BMP/Smad signaling pathway using quantitative real-time PCR (qRT-PCR), siRNA interference of hBMSCs, Western blot analysis, and other methods. Furthermore, we created a bone defect model in Sprague-Dawley (SD) male rats and filled the defect areas with the GelMa hydrogel, with or without TgEP. Microcomputed tomography (micro-CT) was employed to analyze the bone parameters of defect sites. H&E, Masson and immunohistochemical staining were used to assess the repair conditions of the defect area. RESULTS Our results indicate that TgEP promotes the expression of key osteogenic markers, including ALP, Runx2, and Osx, as well as the activation of Smad1, BMP2, and phosphorylated Smad1/5-crucial elements of the BMP/Smad signaling pathway. Furthermore, in vivo experiments using a bone defect model in rats demonstrated that TgEP markedly promoted bone defect repair. CONCLUSION Our results provide compelling evidence that TgEP facilitates hBMSC osteogenic differentiation through the BMP/Smad signaling pathway, highlighting its potential as a therapeutic approach for bone tissue engineering for bone defect healing.
Collapse
Affiliation(s)
- Mingzhu Deng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feifei Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tianfeng Liu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiqiang Zhan
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juanhua Quan
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ziquan Zhao
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xuyang Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhuolan Zhong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hong Zheng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Jiaqi Chu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
40
|
Hao X, Wang S, Wang L, Li J, Li Y, Liu J. Exosomes as drug delivery systems in glioma immunotherapy. J Nanobiotechnology 2024; 22:340. [PMID: 38890722 PMCID: PMC11184820 DOI: 10.1186/s12951-024-02611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024] Open
Abstract
Recently, the significant benefits of cancer immunotherapy for most cancers have been demonstrated in clinical and preclinical studies. However, the efficacy of these immunotherapies for gliomas is limited, owing to restricted drug delivery and insufficient immune activation. As drug carriers, exosomes offer the advantages of low toxicity, good biocompatibility, and intrinsic cell targeting, which could enhance glioma immunotherapy efficacy. However, a review of exosome-based drug delivery systems for glioma immunotherapy has not been presented. This review introduces the current problems in glioma immunotherapy and the role of exosomes in addressing these issues. Meanwhile, preparation and application strategies of exosome-based drug delivery systems for glioma immunotherapy are discussed, especially for enhancing immunogenicity and reversing the immunosuppressive tumor microenvironment. Finally, we briefly describe the challenges of exosome-based drug delivery systems in clinical translation. We anticipate that this review will guide the use of exosomes as drug carriers for glioma immunotherapy.
Collapse
Affiliation(s)
- Xinqing Hao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China
| | - Shiming Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China
| | - Jiaqi Li
- Reproductive Medicine Center, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, China
| | - Ying Li
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China.
| |
Collapse
|
41
|
Yang S, Sun Y, Yan C. Recent advances in the use of extracellular vesicles from adipose-derived stem cells for regenerative medical therapeutics. J Nanobiotechnology 2024; 22:316. [PMID: 38844939 PMCID: PMC11157933 DOI: 10.1186/s12951-024-02603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) isolated from adipose tissue. They possess remarkable properties, including multipotency, self-renewal, and easy clinical availability. ADSCs are also capable of promoting tissue regeneration through the secretion of various cytokines, factors, and extracellular vesicles (EVs). ADSC-derived EVs (ADSC-EVs) act as intercellular signaling mediators that encapsulate a range of biomolecules. These EVs have been found to mediate the therapeutic activities of donor cells by promoting the proliferation and migration of effector cells, facilitating angiogenesis, modulating immunity, and performing other specific functions in different tissues. Compared to the donor cells themselves, ADSC-EVs offer advantages such as fewer safety concerns and more convenient transportation and storage for clinical application. As a result, these EVs have received significant attention as cell-free therapeutic agents with potential future application in regenerative medicine. In this review, we focus on recent research progress regarding regenerative medical use of ADSC-EVs across various medical conditions, including wound healing, chronic limb ischemia, angiogenesis, myocardial infarction, diabetic nephropathy, fat graft survival, bone regeneration, cartilage regeneration, tendinopathy and tendon healing, peripheral nerve regeneration, and acute lung injury, among others. We also discuss the underlying mechanisms responsible for inducing these therapeutic effects. We believe that deciphering the biological properties, therapeutic effects, and underlying mechanisms associated with ADSC-EVs will provide a foundation for developing a novel therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Song Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China.
| | - Chenchen Yan
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| |
Collapse
|
42
|
Marquez-Curtis LA, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects: Update from 2015 review. Cryobiology 2024; 115:104856. [PMID: 38340887 DOI: 10.1016/j.cryobiol.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) have become one of the most investigated and applied cells for cellular therapy and regenerative medicine. In this update of our review published in 2015, we show that studies continue to abound regarding the characterization of MSCs to distinguish them from other similar cell types, the discovery of new tissue sources of MSCs, and the confirmation of their properties and functions that render them suitable as a therapeutic. Because cryopreservation is widely recognized as the only technology that would enable the on-demand availability of MSCs, here we show that although the traditional method of cryopreserving cells by slow cooling in the presence of 10% dimethyl sulfoxide (Me2SO) continues to be used by many, several novel MSC cryopreservation approaches have emerged. As in our previous review, we conclude from these recent reports that viable and functional MSCs from diverse tissues can be recovered after cryopreservation using a variety of cryoprotectants, freezing protocols, storage temperatures, and periods of storage. We also show that for logistical reasons there are now more studies devoted to the cryopreservation of tissues from which MSCs are derived. A new topic included in this review covers the application in COVID-19 of MSCs arising from their immunomodulatory and antiviral properties. Due to the inherent heterogeneity in MSC populations from different sources there is still no standardized procedure for their isolation, identification, functional characterization, cryopreservation, and route of administration, and not likely to be a "one-size-fits-all" approach in their applications in cell-based therapy and regenerative medicine.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9.
| |
Collapse
|
43
|
Shimizu Y, Ntege EH, Inoue Y, Matsuura N, Sunami H, Sowa Y. Optimizing mesenchymal stem cell extracellular vesicles for chronic wound healing: Bioengineering, standardization, and safety. Regen Ther 2024; 26:260-274. [PMID: 38978963 PMCID: PMC11228664 DOI: 10.1016/j.reth.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Chronic wounds represent a significant global burden, afflicting millions with debilitating complications. Despite standard care, impaired healing persists due to factors like persistent inflammation and impaired tissue regeneration. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) offer an innovative regenerative medicine approach, delivering stem cell-derived therapeutic cargo in engineered nanoscale delivery systems. This review examines pioneering bioengineering strategies to engineer MSC-EVs into precision nanotherapeutics for chronic wounds. Emerging technologies like CRISPR gene editing, microfluidic manufacturing, and biomimetic delivery systems are highlighted for their potential to enhance MSC-EV targeting, optimize therapeutic cargo enrichment, and ensure consistent clinical-grade production. However, key hurdles remain, including batch variability, rigorous safety assessment for potential tumorigenicity, immunogenicity, and biodistribution profiling. Crucially, collaborative frameworks harmonizing regulatory science with bioengineering and patient advocacy hold the key to expediting global clinical translation. By overcoming these challenges, engineered MSC-EVs could catalyze a new era of off-the-shelf regenerative therapies, restoring hope and healing for millions afflicted by non-healing wounds.
Collapse
Affiliation(s)
- Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshikazu Inoue
- Department of Plastic and Reconstructive Surgery, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Naoki Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, 329-0498, Tochigi, Japan
| |
Collapse
|
44
|
Guo N, Wang Y, Wen Z, Fan X. Promising nanotherapeutics of stem cell extracellular vesicles in liver regeneration. Regen Ther 2024; 26:1037-1047. [PMID: 39569342 PMCID: PMC11576938 DOI: 10.1016/j.reth.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 11/22/2024] Open
Abstract
Extracellular vesicles (EVs) have gainedsignificant attention due totheir crucialroles invarious biological systems. This review aims to explore the functions of EVs in both in physiological and pathological states of the liver, with a specific focus on the potential mechanisms and concrete evidence of EVs in liver regeneration processes. The review begins by emphasizing the importance of EVs in maintaining liver health and their involvement in different pathological conditions, starting from the liver's own EVs. Reviewing the role of EVs in liver diseases to reveal the impact of EVs in pathological processes (e.g., hepatitis, liver fibrosis, and cirrhosis) and elucidate their signaling functions at the molecular level. Subsequently, the work concentrates on the functions of EVs in liver regeneration, revealing their key role in repair and regeneration following liver injury by carrying growth factors, nucleic acids, and other bioactive molecules. This part not only theoretically clarifies the mechanisms of EVs in liver regeneration but also experimentally demonstrates their role in promoting liver cell proliferation, inhibiting apoptosis, regulating immune responses, and fostering angiogenesis, laying the groundwork for future clinical applications. Moreover, this work provides a comprehensive analysis of the challenges faced by existing EV-based therapies in liver regeneration and offers prospects for future research directions. It highlights that despite the tremendous potential of EVs in treating liver diseases, there are still technical challenges (e.g., EV isolation and purification, dosage control, and targeted delivery). To overcome these challenges, the review suggests improvements to current technologies and the development of new methods to realize the clinical application of EVs in treating liver diseases.
Collapse
Affiliation(s)
- Na Guo
- Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Hexi Yuelu District, Changsha, Hunan, 410000, China
| | - Yan Wang
- Department of Basic Medicine, Cangzhou Medical College, No.39, West Jiuhe Road, Cangzhou, 061001, China
| | - Zhaofeng Wen
- Heze Medical College, No.1950, Daxue Road, Heze Shandong, 274000, China
| | - Xiaofei Fan
- Shandong Medical College, No.5460, Second Ring South Road, Jinan, Shandong, 250002, China
| |
Collapse
|
45
|
Sarkar S, Patranabis S. Emerging Role of Extracellular Vesicles in Intercellular Communication in the Brain: Implications for Neurodegenerative Diseases and Therapeutics. Cell Biochem Biophys 2024; 82:379-398. [PMID: 38300375 DOI: 10.1007/s12013-024-01221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Extracellular vesicles (EVs) are minute lipid-bilayer sacs discharged by cells, encompassing a diverse array of proteins, nucleic acids, and lipids. The identification of EVs as pivotal agents in intercellular communication has sparked compelling research pathways in the realms of cell biology and neurodegenerative diseases. Utilizing EVs for medicinal reasons has garnered interest due to the adaptability of EV-mediated communication. EVs can be classified based on their physical characteristics, biochemical composition, or cell of origin following purification. This review delves into the primary sub-types of EVs, providing an overview of the biogenesis of each type. Additionally, it explores the diverse environmental conditions triggering EV release and the originating cells, including stem cells and those from the Central Nervous System. Within the brain, EVs play a pivotal role as essential mediators of intercellular communication, significantly impacting synaptic plasticity, brain development, and the etiology of neurological diseases. Their potential diagnostic and therapeutic applications in various brain-related conditions are underscored, given their ability to carry specific cargo. Specially engineered EVs hold promise for treating diverse diseases, including neurodegenerative disorders. This study primarily emphasizes the diagnostic and potential therapeutic uses of EVs in neurological disorders such as Alzheimer's Disease, Huntington's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Prions disease. It also summarizes innovative techniques for detecting EVs in the brain, suggesting that EVs could serve as non-invasive biomarkers for early detection, disease monitoring, and prognosis in neurological disorders.
Collapse
|
46
|
Afzal A, Khan M, Gul Z, Asif R, Shahzaman S, Parveen A, Imran M, Khawar MB. Extracellular Vesicles: the Next Frontier in Pregnancy Research. Reprod Sci 2024; 31:1204-1214. [PMID: 38151656 DOI: 10.1007/s43032-023-01434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Extracellular vehicles (EVs) have been involved in several aspects of pregnancy, including endometrial receptivity, embryo implantation, and embryo-maternal communication showing them associated with pregnancy disorders, such as preeclampsia, gestational diabetes mellitus, and preterm birth. Further research is warranted to fully comprehend the exact pathophysiological roles of EVs and to develop new therapies targeting EVs thereby improving pregnancy outcomes. Herein, we review the recent knowledge on the multifaceted roles of EVs during pregnancy and address the majority of the molecular interactions between EVs, maternal, and fetal cells with an emphasis on disorders of pregnancy under the influence of EVs. Moreover, we also discuss its applications in clinical trials followed by prospects.
Collapse
Affiliation(s)
- Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Madeeha Khan
- College of Allied Health Sciences, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
| | - Zaman Gul
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Rameen Asif
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Sara Shahzaman
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Asia Parveen
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Imran
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Applied Molecular Biology & Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| |
Collapse
|
47
|
Serra D, Cruciani S, Garroni G, Sarais G, Kavak FF, Satta R, Montesu MA, Floris M, Ventura C, Maioli M. Effect of Helichrysum italicum in Promoting Collagen Deposition and Skin Regeneration in a New Dynamic Model of Skin Wound Healing. Int J Mol Sci 2024; 25:4736. [PMID: 38731954 PMCID: PMC11083432 DOI: 10.3390/ijms25094736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products have many healing effects on the skin with minimal or no adverse effects. In this study, we analyzed the regenerative properties of a waste product (hydrolate) derived from Helichrysum italicum (HH) on scratch-tested skin cell populations seeded on a fluidic culture system. Helichrysum italicum has always been recognized in the traditional medicine of Mediterranean countries for its wide pharmacological activities. We recreated skin physiology with a bioreactor that mimics skin stem cell (SSCs) and fibroblast (HFF1) communication as in vivo skin layers. Dynamic culture models represent an essential instrument for recreating and preserving the complex multicellular organization and interactions of the cellular microenvironment. Both cell types were exposed to two different concentrations of HH after the scratch assay and were compared to untreated control cells. Collagen is the constituent of many wound care products that act directly on the damaged wound environment. We analyzed the role played by HH in stimulating collagen production during tissue repair, both in static and dynamic culture conditions, by a confocal microscopic analysis. In addition, we performed a gene expression analysis that revealed the activation of a molecular program of stemness in treated skin stem cells. Altogether, our results indicate a future translational application of this natural extract to support skin regeneration and define a new protocol to recreate a dynamic process of healing.
Collapse
Affiliation(s)
- Diletta Serra
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (S.C.); (G.G.); (F.F.K.); (M.F.)
- R&D Laboratory Center, InoCure s.r.o, Politickych veziu 935/13, Nové Mesto, Praha 1, 110 00 Prague, Czech Republic
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (S.C.); (G.G.); (F.F.K.); (M.F.)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (S.C.); (G.G.); (F.F.K.); (M.F.)
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, 09042 Cagliari, Italy;
| | - Fikriye Fulya Kavak
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (S.C.); (G.G.); (F.F.K.); (M.F.)
| | - Rosanna Satta
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Maria Antonietta Montesu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (S.C.); (G.G.); (F.F.K.); (M.F.)
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering—Eldor Lab, Istituto Nazionale di Biostrutture e Biosistemi (INBB), 40128 Bologna, Italy;
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (S.C.); (G.G.); (F.F.K.); (M.F.)
- Center for Developmental Biology and Reprogramming—CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| |
Collapse
|
48
|
Zhang Y, Remy M, Leste-Lasserre T, Durrieu MC. Manipulating Stem Cell Fate with Disordered Bioactive Cues on Surfaces: The Role of Bioactive Ligand Selection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18474-18489. [PMID: 38581548 DOI: 10.1021/acsami.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
The development of 2D or 3D bioactive platforms for rapidly isolating pure populations of cells from adult stem cells holds promise for advancing the understanding of cellular mechanisms, drug testing, and tissue engineering. Over the years, methods have emerged to synthesize bioactive micro- and nanostructured 2D materials capable of directing stem cell fate. We introduce a novel method for randomly micro- or nanopatterning any protein/peptide onto both 2D and 3D scaffolds via spray technology. Our goal is to investigate the impact of arranging bioactive micropatterns (ordered vs disordered) on surfaces to guide human mesenchymal stem cell (hMSC) differentiation. The spray technology efficiently coats materials with controlled, cost-effective bioactive micropatterns in various sizes and shapes. BMP-2 mimetic peptides were covalently grafted, individually or in combination with RGD peptides, onto activated polyethylene terephthalate (PET) surfaces through a spraying process, incorporating nano/microscale parameters like size, shape, and composition. The study explores different peptide distributions on surfaces and various peptide combinations. Four surfaces were homogeneously functionalized with these peptides (M1 to M4 with various densities of peptides), and six surfaces with disordered micro- and nanopatterns of peptides (S0 to S5 with different sizes of peptide patterns) were synthesized. Fluorescence microscopy assessed peptide distribution, followed by hMSC culture for 2 weeks, and evaluated osteogenic differentiation via immunocytochemistry and RT-qPCR for osteoblast and osteocyte markers. Cells on uniformly peptide-functionalized surfaces exhibited cuboidal forms, while those on surfaces with disordered patterns tended toward columnar or cuboidal shapes. Surfaces S4 and S5 showed dendrite-like formations resembling an osteocyte morphology. S5 showed significant overexpression of osteoblast (OPN) and osteocyte markers (E11, DMP1, and SOST) compared to control surfaces and other micropatterned surfaces. Notably, despite sharing an equivalent quantity of peptides with a homogeneous functionalized surface, S5 displayed a distinct distribution of peptides, resulting in enhanced osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Yujie Zhang
- CNRS, Bordeaux INP, CBMN, Univ. Bordeaux, UMR 5248, Pessac33600,France
| | - Murielle Remy
- CNRS, Bordeaux INP, CBMN, Univ. Bordeaux, UMR 5248, Pessac33600,France
| | | | | |
Collapse
|
49
|
Luo M, Sun J, Li S, Wei L, Sun R, Feng X, Zhang H, Chen T, Xi Q, Zhang Y, Qi Q. Protective effect of Enterococcus faecium against ethanol-induced gastric injury via extracellular vesicles. Microbiol Spectr 2024; 12:e0389423. [PMID: 38488394 PMCID: PMC10986489 DOI: 10.1128/spectrum.03894-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Recently, Enterococcus has been shown to have gastric protective functions, and the mechanisms by which Enterococcus modulates gastric function are still being investigated. Herein, we investigated how Enterococcus faecium (Efm) and E. faecium-derived extracellular vesicles (EVs) (EfmEVs) exert protective effect against ethanol-induced gastric injury by investigating the effect of EfmEVs on gastric mucosal ulcer scoring, histological lesion, mucosal glycoprotein production, acidity, anti-oxidative function, and inflammatory responses in rat. Pretreatment with Efm showed significant reduction of ethanol-induced gastric injury, as evidenced by the lowering of ulcer index, histological lesion, gastric pH, and inflammatory responses and the enhancement of mucosal glycoprotein production and anti-oxidative function. Further functional studies on three bioactive components [inactivated Efm, EfmEVs (EVs), and EV-free supernatants] of the bacterial culture showed that EVs are mostly responsible for the gastroprotective effect. Moreover, EV secretion is beneficial for the gastroprotective effect of Efm. Hence, EVs mediated the protective effect of Efm against ethanol-induced gastric injury by lowering inflammatory responses and enhancing anti-oxidative function and may be a potent anti-inflammatory and anti-oxidative strategy to alleviate hyperinflammatory gastrointestinal tract conditions.IMPORTANCEThis study indicated that Enterococcus faecium provided a protective effect against rat gastric injury, which involved improvement of the mucosal glycoprotein production, anti-oxidative function, and inflammatory responses. Furthermore, we confirmed that three bioactive components (inactivated Efm, extracellular vesicles, and EV-free supernatants) of E. faecium culture also contributed to the gastroprotective effect. Importantly, E. faecium-derived EVs showed an effective impact for the gastroprotective effect.
Collapse
Affiliation(s)
- Meiying Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Junhang Sun
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Suqian Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Limin Wei
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China
| | - Ruiping Sun
- Institute of Animal Science and Veterinary Medicine of Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qien Qi
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
50
|
Lu X, Song Z, Hao J, Kong X, Yuan W, Shen Y, Zhang C, Yang J, Yu P, Qian Y, Zhang G, Feng H, Wang J, Cai Z, Cai Z. Proton pump inhibitors enhance macropinocytosis-mediated extracellular vesicle endocytosis by inducing membrane v-ATPase assembly. J Extracell Vesicles 2024; 13:e12426. [PMID: 38532609 PMCID: PMC10966248 DOI: 10.1002/jev2.12426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Besides participating in diverse pathological and physiological processes, extracellular vesicles (EVs) are also excellent drug-delivery vehicles. However, clinical drugs modulating EV levels are still lacking. Here, we show that proton pump inhibitors (PPIs) reduce EVs by enhancing macropinocytosis-mediated EV uptake. PPIs accelerate intestinal cell endocytosis of autocrine immunosuppressive EVs through macropinocytosis, thereby aggravating inflammatory bowel disease. PPI-induced macropinocytosis facilitates the clearance of immunosuppressive EVs from tumour cells, improving antitumor immunity. PPI-induced macropinocytosis also increases doxorubicin and antisense oligonucleotides of microRNA-155 delivery efficiency by EVs, leading to enhanced therapeutic effects of drug-loaded EVs on tumours and acute liver failure. Mechanistically, PPIs reduce cytosolic pH, promote ATP6V1A (v-ATPase subunit) disassembly from the vacuolar membrane and enhance the assembly of plasma membrane v-ATPases, thereby inducing macropinocytosis. Altogether, our results reveal a mechanism for macropinocytic regulation and PPIs as potential modulators of EV levels, thus regulating their functions.
Collapse
Affiliation(s)
- Xinliang Lu
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Institute of HematologyZhejiang University & Zhejiang Engineering Laboratory for Stem Cell and ImmunotherapyHangzhouChina
| | - Zhengbo Song
- Department of Medical OncologyZhejiang Cancer HospitalHangzhouChina
| | - Jiayue Hao
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Institute of HematologyZhejiang University & Zhejiang Engineering Laboratory for Stem Cell and ImmunotherapyHangzhouChina
| | - Xianghui Kong
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Institute of HematologyZhejiang University & Zhejiang Engineering Laboratory for Stem Cell and ImmunotherapyHangzhouChina
| | - Weiyi Yuan
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yingying Shen
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang, Cancer Center of Zhejiang UniversitySir Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhouZhejiangChina
| | - Chengyan Zhang
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jie Yang
- Department of Critical Care Medicine of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Pengfei Yu
- Department of Abdominal SurgeryZhejiang Cancer HospitalHangzhouChina
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of StomatologyZhejiang University School of Medicine, Clinical Research Center for Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang UniversityHangzhouChina
| | - Gensheng Zhang
- Department of Critical Care Medicine of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Huajun Feng
- Ecological‐Environment & Health CollegeZhejiang A & F UniversityHangzhouChina
| | - Jianli Wang
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Institute of HematologyZhejiang University & Zhejiang Engineering Laboratory for Stem Cell and ImmunotherapyHangzhouChina
| | - Zhenzhai Cai
- Department of GastroenterologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhijian Cai
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|