1
|
Huang Y, Wang Z. Therapeutic potential of SOX family transcription factors in osteoarthritis. Ann Med 2025; 57:2457520. [PMID: 39887675 PMCID: PMC11789227 DOI: 10.1080/07853890.2025.2457520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND As the worldwide population ages, osteoarthritis has significantly increased. This musculoskeletal condition has become a pressing global health issue and thus, prevention and treatment of osteoarthritis have become the primary focus of domestic and international research. Scholarly investigations of the molecular mechanisms that are related to the occurrence and development of osteoarthritis have shed light on the pathological causes of this condition to a certain extent, providing a foundation for its prevention and treatment. However, further research is necessary to fully understand the critical role of the transcription factor SOX9 in chondrocyte differentiation and the development of osteoarthritis. As a result, there has been widespread interest in SOX transcription factors. While SOX9 has been utilized as a biomarker to indicate the occurrence and prognosis of osteoarthritis, investigations into other members of the SOX family and the development of targeted treatments around SOX9 are still required. PURPOSE This article considers the impact of the SOX protein on the development and inhibition of osteoarthritis and highlights the need for therapeutic approaches targeting SOX9, as supported by existing research. RESULTS SOX9 can contribute to the process of osteoarthritis through acetylation and ubiquitination modifications. The regulation of the WNT signalling pathway, Nrf2/ARE signalling pathway, NF-κB signalling pathway and SOX9 is implicated in the emergence of osteoarthritis. Non-coding RNA may play a role in the onset and progression of osteoarthritis by modulating various SOX family members, including SOX2, SOX4, SOX5, SOX6, SOX8, SOX9 and SOX11. CONCLUSION SOX9 has the capability of mitigating the onset and progression of osteoarthritis through means such as medication therapy, stem cell therapy, recombinant adeno-associated virus (rAAV) vector therapy, physical therapy and other approaches.
Collapse
Affiliation(s)
- Yue Huang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Zhuo Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
2
|
Li ZP, Li H, Ruan YH, Wang P, Zhu MT, Fu WP, Wang RB, Tang XD, Zhang Q, Li SL, Yin H, Li CJ, Tian YG, Han RN, Wang YB, Zhang CJ. Stem cell therapy for intervertebral disc degeneration: Clinical progress with exosomes and gene vectors. World J Stem Cells 2025; 17:102945. [PMID: 40308883 PMCID: PMC12038459 DOI: 10.4252/wjsc.v17.i4.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/25/2025] [Accepted: 03/10/2025] [Indexed: 04/23/2025] Open
Abstract
Intervertebral disc degeneration is a leading cause of lower back pain and is characterized by pathological processes such as nucleus pulposus cell apoptosis, extracellular matrix imbalance, and annulus fibrosus rupture. These pathological changes result in disc height loss and functional decline, potentially leading to disc herniation. This comprehensive review aimed to address the current challenges in intervertebral disc degeneration treatment by evaluating the regenerative potential of stem cell-based therapies, with a particular focus on emerging technologies such as exosomes and gene vector systems. Through mechanisms such as differentiation, paracrine effects, and immunomodulation, stem cells facilitate extracellular matrix repair and reduce nucleus pulposus cell apoptosis. Despite recent advancements, clinical applications are hindered by challenges such as hypoxic disc environments and immune rejection. By analyzing recent preclinical and clinical findings, this review provided insights into optimizing stem cell therapy to overcome these obstacles and highlighted future directions in the field.
Collapse
Affiliation(s)
- Zhi-Peng Li
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Han Li
- Department of Orthopedics, Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua 322100, Zhejiang Province, China
| | - Yu-Hua Ruan
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Peng Wang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Meng-Ting Zhu
- Department of Neurology, Union Medical College Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Wei-Ping Fu
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rui-Bo Wang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xiao-Dong Tang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qi Zhang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Sen-Li Li
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - He Yin
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Cheng-Jin Li
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yi-Gong Tian
- Third Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rui-Ning Han
- Third Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yao-Bin Wang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chang-Jiang Zhang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.
| |
Collapse
|
3
|
Zhang X, Li H, Chen L, Wu Y, Li Y. NRF2 in age-related musculoskeletal diseases: Role and treatment prospects. Genes Dis 2024; 11:101180. [PMID: 39281838 PMCID: PMC11400624 DOI: 10.1016/j.gendis.2023.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 09/18/2024] Open
Abstract
The NRF2 pathway is a metabolic- and redox-sensitive signaling axis in which the transcription factor controls the expression of a multitude of genes that enable cells to survive environmental stressors, such as oxidative stress, mainly by inducing the expression of cytoprotective genes. Basal NRF2 levels are maintained under normal physiological conditions, but when exposed to oxidative stress, cells activate the NRF2 pathway, which is crucial for supporting cell survival. Recently, the NRF2 pathway has been found to have novel functions in metabolic regulation and interplay with other signaling pathways, offering novel insights into the treatment of various diseases. Numerous studies have shown that targeting its pathway can effectively investigate the development and progression of age-related musculoskeletal diseases, such as sarcopenia, osteoporosis, osteoarthritis, and intervertebral disc degeneration. Appropriate regulation of the NRF2 pathway flux holds promise as a means to improve musculoskeletal function, thereby providing a new avenue for drug treatment of age-related musculoskeletal diseases in clinical settings. The review summarized an overview of the relationship between NRF2 and cellular processes such as oxidative stress, apoptosis, inflammation, mitochondrial dysfunction, ferroptosis, and autophagy, and explores the potential of targeted NRF2 regulation in the treatment of age-related musculoskeletal diseases.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei 430056, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
4
|
Hridayanka KSN, Duttaroy AK, Basak S. Bioactive Compounds and Their Chondroprotective Effects for Osteoarthritis Amelioration: A Focus on Nanotherapeutic Strategies, Epigenetic Modifications, and Gut Microbiota. Nutrients 2024; 16:3587. [PMID: 39519419 PMCID: PMC11547880 DOI: 10.3390/nu16213587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
In degenerative joint disease like osteoarthritis (OA), bioactive compounds like resveratrol, epigallocatechin gallate, curcumin, and other polyphenols often target various signalling pathways, including NFκB, TGFβ, and Wnt/β-catenin by executing epigenetic-modifying activities. Epigenetic modulation can target genes of disease pathophysiology via histone modification, promoter DNA methylation, and non-coding RNA expression, some of which are directly involved in OA but have been less explored. OA patients often seek options that can improve the quality of their life in addition to existing treatment with nonsteroidal anti-inflammatory drugs (NSAIDs). Although bioactive and natural compounds exhibit therapeutic potential against OA, several disadvantages loom, like insolubility and poor bioavailability. Nanoformulated bioactive compounds promise a better way to alleviate OA since they also control systemic events, including metabolic, immunological, and inflammatory responses, by modulating host gut microbiota that can regulate OA pathogenesis. Recent data suggest gut dysbiosis in OA. However, limited evidence is available on the role of bioactive compounds as epigenetic and gut modulators in ameliorating OA. Moreover, it is not known whether the effects of polyphenolic bioactive compounds on gut microbial response are mediated by epigenetic modulatory activities in OA. This narrative review highlights the nanotherapeutic strategies utilizing bioactive compounds, reporting their effects on chondrocyte growth, metabolism, and epigenetic modifications in osteoarthritis amelioration.
Collapse
Affiliation(s)
- Kota Sri Naga Hridayanka
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway;
| | - Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| |
Collapse
|
5
|
Wakabayashi N, Yagishita Y, Joshi T, Kensler TW. Dual Deletion of Keap1 and Rbpjκ Genes in Liver Leads to Hepatomegaly and Hypercholesterolemia. Int J Mol Sci 2024; 25:4712. [PMID: 38731931 PMCID: PMC11083431 DOI: 10.3390/ijms25094712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The hepatic deletion of Rbpjκ (RbpjF/F::AlbCre) in the mouse leads to exhibition of the Alagille syndrome phenotype during early postnatal liver development with hyperlipidemia and cholestasis due to attenuated disruption of NOTCH signaling. Given the roles of NRF2 signaling in the regulation of lipid metabolism and bile ductal formation, it was anticipated that these symptoms could be alleviated by enhancing NRF2 signaling in the RbpjF/F::AlbCre mouse by hepatic deletion of Keap1 in compound Keap1F/F::RbpjF/F::AlbCre mice. Unexpectedly, these mice developed higher hepatic and plasma cholesterol levels with more severe cholestatic liver damage during the pre-weaning period than in the RbpjF/F::AlbCre mice. In addition, hypercholesterolemia and hepatic damage were sustained throughout the growth period unlike in the RbpjF/F::AlbCre mouse. These enhanced abnormalities in lipid metabolism appear to be due to NRF2-dependent changes in gene expression related to cholesterol synthetic and subsequent bile acid production pathways. Notably, the hepatic expression of Cyp1A7 and Abcb11 genes involved in bile acid homeostasis was significantly reduced in Keap1F/F::RbpjF/F::AlbCre compared to RbpjF/F::AlbCre mice. The accumulation of liver cholesterol and the weakened capacity for bile excretion during the 3 pre-weaning weeks in the Keap1F/F::RbpjF/F::AlbCre mice may aggravate hepatocellular damage level caused by both excessive cholesterol and residual bile acid toxicity in hepatocytes. These results indicate that a tuned balance of NOTCH and NRF2 signaling is of biological importance for early liver development after birth.
Collapse
Affiliation(s)
- Nobunao Wakabayashi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
| | - Yoko Yagishita
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
- Division of Endocrinology, Columbia University, New York, NY 10032, USA
| | - Tanvi Joshi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
| | - Thomas W. Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
| |
Collapse
|
6
|
Lian WS, Wu RW, Lin YH, Chen YS, Jahr H, Wang FS. Tricarboxylic Acid Cycle Regulation of Metabolic Program, Redox System, and Epigenetic Remodeling for Bone Health and Disease. Antioxidants (Basel) 2024; 13:470. [PMID: 38671918 PMCID: PMC11047415 DOI: 10.3390/antiox13040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Imbalanced osteogenic cell-mediated bone gain and osteoclastic remodeling accelerates the development of osteoporosis, which is the leading risk factor of disability in the elderly. Harmonizing the metabolic actions of bone-making cells and bone resorbing cells to the mineralized matrix network is required to maintain bone mass homeostasis. The tricarboxylic acid (TCA) cycle in mitochondria is a crucial process for cellular energy production and redox homeostasis. The canonical actions of TCA cycle enzymes and intermediates are indispensable in oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis for osteogenic differentiation and osteoclast formation. Knockout mouse models identify these enzymes' roles in bone mass and microarchitecture. In the noncanonical processes, the metabolites as a co-factor or a substrate involve epigenetic modification, including histone acetyltransferases, DNA demethylases, RNA m6A demethylases, and histone demethylases, which affect genomic stability or chromatin accessibility for cell metabolism and bone formation and resorption. The genetic manipulation of these epigenetic regulators or TCA cycle intermediate supplementation compromises age, estrogen deficiency, or inflammation-induced bone mass loss and microstructure deterioration. This review sheds light on the metabolic functions of the TCA cycle in terms of bone integrity and highlights the crosstalk of the TCA cycle and redox and epigenetic pathways in skeletal tissue metabolism and the intermediates as treatment options for delaying osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yu-Han Lin
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| |
Collapse
|
7
|
Hsieh PL, Tsai KL, Chou WC, Wu CH, Jou IM, Tu YK, Ma CH. Cisplatin triggers oxidative stress, apoptosis and pro-inflammatory responses by inhibiting the SIRT1-mediated Nrf2 pathway in chondrocytes. ENVIRONMENTAL TOXICOLOGY 2023; 38:2476-2486. [PMID: 37497868 DOI: 10.1002/tox.23885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
Although the height of the proliferating layer that was suppressed in the growth plate has been recognized as an adverse effect of cisplatin in pediatric cancer survivors, the detailed pathological mechanism has not been elucidated. Sirtuin-1 (SIRT1) has been reported as an essential modulator of cartilage homeostasis, but its role in cisplatin-induced damage of chondrocytes remains unclear. In this study, we examined how cisplatin affected the expression of SIRT1 and cell viability. Next, we showed downregulation of SIRT1 after cisplatin treatment resulted in suppression of Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), leading to inhibition of Nrf2 nuclear translocation and subsequently decreased Heme oxygenase-1(HO-1) and NAD(P)H Quinone Dehydrogenase 1(NQO-1) expression. Blockage of the SIRT1/ PGC-1α axis not only increased oxidative stress with lower antioxidant SOD and GSH, but also contributed to mitochondrial dysfunction evidenced by the collapse of membrane potential and repression of mitochondrial DNA copy number and ATP. We also found that Cisplatin up-regulated the p38 phosphorylation, pro-inflammatory events and matrix metalloproteinases (MMPs) in chondrocytes through the SIRT1-modulated antioxidant manner. Collectively, our findings suggest that preservation of SIRT1 in chondrocytes may be a potential target to ameliorate growth plate dysfunction for cisplatin-receiving pediatric cancer survivors.
Collapse
Affiliation(s)
- Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ching Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan
| | - Chin-Hsien Wu
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan
| | - Ching-Hou Ma
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| |
Collapse
|
8
|
Nie J, Zhou W, Yu S, Cao S, Wang H, Yu T. miR‑30c reduces myocardial ischemia/reperfusion injury by targeting SOX9 and suppressing pyroptosis. Exp Ther Med 2023; 25:180. [PMID: 37006883 PMCID: PMC10061048 DOI: 10.3892/etm.2023.11879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are commonly involved in regulating myocardial ischemia/reperfusion (I/R) injury by binding and silencing their target genes. However, whether miRNAs regulate myocardial I/R-induced pyroptosis remains unclear. The present study established an in vivo rat model of myocardial I/R injury and in vitro hypoxia/reoxygenation (H/R) injury model in rat primary cardiomyocytes to investigate the function and the underlying mechanisms of miRNAs on I/R injury-induced pyroptosis. RNA sequencing was utilized to select the candidate miRNAs between normal and I/R group. Reverse transcription-quantitative PCR and western blotting were performed to detect candidate miRNAs (miR-30c-5p, also known as miR-30c) and SRY-related high mobility group-box gene 9 (SOX9) expression, as well as expression of pyroptosis-associated proteins (NF-κB, ASC, caspase-1, NLRP3) in the myocardial I/R model. ELISA was used to measure pyroptosis-associated inflammatory markers IL-18 and IL-1β. Moreover, the link between miR-30c and SOX9 was predicted using bioinformatics and luciferase reporter assay. In myocardial I/R injured rats, miR-30c was downregulated, while the expression of SOX9 was upregulated. Overexpression of miR-30c inhibited pyroptosis both in vivo and in vitro. Furthermore, miR-30c negatively regulated SOX9 expression by binding its 3'untranslated region. In conclusion, the miR-30c/SOX9 axis decreased myocardial I/R injury by suppressing pyroptosis, which may be a potential therapeutic target.
Collapse
Affiliation(s)
- Jia Nie
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Wenjing Zhou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shouyang Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Song Cao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Haiying Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
9
|
Cao X, Lu W, Gang Y, Hu B, Wen C. Prx5 of Cristaria plicata has antioxidant function and is regulated by Nrf2/ARE signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108548. [PMID: 36690268 DOI: 10.1016/j.fsi.2023.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Cristaria plicata is one of the more important freshwater pearl bivalves in China, which is susceptible to pathogen infection, and greatly impacts the ability of breeding pearls. Nrf2/ARE signaling pathway and its downstream target gene Prx5 have endogenous antioxidant functions to protect cells from oxidative damage. The full-length cDNA of Prx5 was cloned from C. Plicata, which was 1420 bp, encoding a total of 189 amino acids and had two conserved cysteine residues (Cys78 and Cys179). The amino acid sequence of CpPrx5 was highly similar to Prx5 of other species. Real-time fluorescence quantitative PCR showed that CpPrx5 was distributed in various tissues of mussels, and the highest expression was in hepatopancreas. The expression of CpPrx5 up-regulated in hepatopancreas and gills after LPS, PGN and Poly:I:C stimulation. The recombinant plasmid DE3-PGEX-4T-1-CpPrx5 was expressed in Escherichia coli BL21 and showed antioxidant activity. With the increase of CpPrx5 protein concentration, the superhelical form of DNA was protected. The expression of CpPrx5 was up-regulated after interference CpKeap1 and down-regulated after interference CpNrf2. Gel block assay showed that CpNrf2 and CpMafK proteins blocked CpPrx5 promoter. Subcellular localization showed that CpPrx5 was located in 293T nucleus and cytoplasm and CpMafK was located in 293T nucleus. GST-Pull down verified that CpMafK and CpPrx5 could bind in vitro. These results indicated that Prx5 had antioxidant function and could protects DNA from oxidative damage, and participated in transcriptional regulation by combining with the transcription factor MafK. In addition, MafK could combine with Nrf2 to regulate the downstream target gene Prx5.
Collapse
Affiliation(s)
- Xinying Cao
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| | - Wuting Lu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China.
| | - Yang Gang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| | - Baoqing Hu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China.
| | - Chungen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
10
|
Vaamonde-García C, Capelo-Mera E, Flórez-Fernández N, Torres MD, Rivas-Murias B, Mejide-Faílde R, Blanco FJ, Domínguez H. In Vitro Study of the Therapeutic Potential of Brown Crude Fucoidans in Osteoarthritis Treatment. Int J Mol Sci 2022; 23:14236. [PMID: 36430716 PMCID: PMC9698873 DOI: 10.3390/ijms232214236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis, one of the most common joint degenerative pathologies, still has no cure, and current treatments, such as nonsteroidal anti-inflammatory drugs, can cause serious adverse effects when taken for a long time. Brown seaweed crude fucoidans are used for the clinical treatment of several pathologies. In this study, the therapeutical potential of these biocompounds was analyzed in primary chondrocytes and the 260TT human chondrocyte cell line. Crude fucoidan from Undaria pinnatifida (Up) and Sargassum muticum (Sm) was obtained by different extraction techniques (microwave-assisted extraction, pressurized hot-water extraction, ultrasound-assisted extraction) and chemically and structurally characterized by Fourier transform infrared spectroscopy, high-performance size-exclusion chromatography, proton nuclear magnetic resonance, and scanning electron microscopy. Once cell viability was confirmed in chondrocytes treated with crude fucoidans, we evaluated their anti-inflammatory effects, observing a significant reduction in IL-6 production stimulated by IL-1β. Findings were confirmed by analysis of IL-6 and IL-8 gene expression, although only fucoidans from Up achieved a statistically significant reduction. Besides this, the antioxidant capacity of crude fucoidans was observed through the upregulation of Nrf-2 levels and the expression of its transcriptional target genes HO-1 and SOD-2, with compounds from Up again showing a more consistent effect. However, no evidence was found that crude fucoidans modulate senescence, as they failed to reduced β-galactosidase activity, cell proliferation, or IL-6 production in chondrocytes stimulated with etoposide. Thus, the findings of this research seem to indicate that the tested crude fucoidans are capable of partially alleviating OA-associated inflammation and oxidative stress, but fail to attenuate chondrocyte senescence.
Collapse
Affiliation(s)
- Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Emma Capelo-Mera
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Noelia Flórez-Fernández
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | - María Dolores Torres
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | | | - Rosa Mejide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain
| | - Herminia Domínguez
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
11
|
Physiological Mineralization during In Vitro Osteogenesis in a Biomimetic Spheroid Culture Model. Cells 2022; 11:cells11172702. [PMID: 36078105 PMCID: PMC9454617 DOI: 10.3390/cells11172702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Bone health-targeting drug development strategies still largely rely on inferior 2D in vitro screenings. We aimed at developing a scaffold-free progenitor cell-based 3D biomineralization model for more physiological high-throughput screenings. MC3T3-E1 pre-osteoblasts were cultured in α-MEM with 10% FCS, at 37 °C and 5% CO2 for up to 28 days, in non-adherent V-shaped plates to form uniformly sized 3D spheroids. Osteogenic differentiation was induced by 10 mM β-glycerophosphate and 50 µg/mL ascorbic acid. Mineralization stages were assessed through studying expression of marker genes, alkaline phosphatase activity, and calcium deposition by histochemistry. Mineralization quality was evaluated by Fourier transformed infrared (FTIR) and scanning electron microscopic (SEM) analyses and quantified by micro-CT analyses. Expression profiles of selected early- and late-stage osteoblast differentiation markers indicated a well-developed 3D biomineralization process with strongly upregulated Col1a1, Bglap and Alpl mRNA levels and type I collagen- and osteocalcin-positive immunohistochemistry (IHC). A dynamic biomineralization process with increasing mineral densities was observed during the second half of the culture period. SEM–Energy-Dispersive X-ray analyses (EDX) and FTIR ultimately confirmed a native bone-like hydroxyapatite mineral deposition ex vivo. We thus established a robust and versatile biomimetic, and high-throughput compatible, cost-efficient spheroid culture model with a native bone-like mineralization for improved pharmacological ex vivo screenings.
Collapse
|
12
|
Vidović T, Ewald CY. Longevity-Promoting Pathways and Transcription Factors Respond to and Control Extracellular Matrix Dynamics During Aging and Disease. FRONTIERS IN AGING 2022; 3:935220. [PMID: 35874275 PMCID: PMC9301135 DOI: 10.3389/fragi.2022.935220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 05/28/2023]
Abstract
Aging is one of the largest risk factors for cancer, type 2 diabetes, osteoarthritis, cardiovascular diseases, and other age-related pathologies. Here, we give a detailed description of the interplay of chronic age-related pathologies with the remodeling of the extracellular matrix during disease development and progression. Longevity-promoting signaling pathways slow or prevent age-related diseases. In particular, we focus on the mTOR signaling pathway, sirtuins, and canonical longevity-promoting transcription factors, such as FOXO, NF-κB, and Nrf2. We extend our analysis using chromatin immunoprecipitation (ChIP) sequencing and transcriptomic data and report that many established and emerging longevity-promoting transcription factors, such as CREB1, FOXO1,3, GATA1,2,3,4, HIF1A, JUN, KLF4, MYC, NFE2L2/Nrf2, RELA/NF-κB, REST, STAT3,5A, and TP53/p53, directly regulate many extracellular matrix genes and remodelers. We propose that modulation of these pathways increases lifespan and protects from age-related diseases in part due to their effects on extracellular matrix remodeling. Therefore, to successfully treat age-related diseases, it is necessary to better understand the connection between extracellular matrix components and longevity pathways.
Collapse
Affiliation(s)
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
13
|
Thielen NGM, Neefjes M, Vitters EL, van Beuningen HM, Blom AB, Koenders MI, van Lent PLEM, van de Loo FAJ, Blaney Davidson EN, van Caam APM, van der Kraan PM. Identification of Transcription Factors Responsible for a Transforming Growth Factor-β-Driven Hypertrophy-like Phenotype in Human Osteoarthritic Chondrocytes. Cells 2022; 11:cells11071232. [PMID: 35406794 PMCID: PMC8998018 DOI: 10.3390/cells11071232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
During osteoarthritis (OA), hypertrophy-like chondrocytes contribute to the disease process. TGF-β's signaling pathways can contribute to a hypertrophy(-like) phenotype in chondrocytes, especially at high doses of TGF-β. In this study, we examine which transcription factors (TFs) are activated and involved in TGF-β-dependent induction of a hypertrophy-like phenotype in human OA chondrocytes. We found that TGF-β, at levels found in synovial fluid in OA patients, induces hypertrophic differentiation, as characterized by increased expression of RUNX2, COL10A1, COL1A1, VEGFA and IHH. Using luciferase-based TF activity assays, we observed that the expression of these hypertrophy genes positively correlated to SMAD3:4, STAT3 and AP1 activity. Blocking these TFs using specific inhibitors for ALK-5-induced SMAD signaling (5 µM SB-505124), JAK-STAT signaling (1 µM Tofacitinib) and JNK signaling (10 µM SP-600125) led to the striking observation that only SB-505124 repressed the expression of hypertrophy factors in TGF-β-stimulated chondrocytes. Therefore, we conclude that ALK5 kinase activity is essential for TGF-β-induced expression of crucial hypertrophy factors in chondrocytes.
Collapse
|