1
|
Fan Z, Jia M, Zhou J, Zhu Z, Wu Y, Lin X, Qian Y, Lian J, Hua X, Dong J, Fang Z, Liu Y, Chen S, Xue X, Yue J, Zhu M, Wang Y, Huang Z, Teng H. Pharmacological targeting cGAS/STING/NF-κB axis by tryptanthrin induces microglia polarization toward M2 phenotype and promotes functional recovery in a mouse model of spinal cord injury. Neural Regen Res 2025; 20:3287-3301. [PMID: 38993129 PMCID: PMC11881704 DOI: 10.4103/nrr.nrr-d-23-01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 02/01/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00031/figure1/v/2024-12-20T164640Z/r/image-tiff The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury. Regulation of shifting microglia polarization from M1 (neurotoxic and proinflammatory type) to M2 (neuroprotective and anti-inflammatory type) after spinal cord injury appears to be crucial. Tryptanthrin possesses an anti-inflammatory biological function. However, its roles and the underlying molecular mechanisms in spinal cord injury remain unknown. In this study, we found that tryptanthrin inhibited microglia-derived inflammation by promoting polarization to the M2 phenotype in vitro . Tryptanthrin promoted M2 polarization through inactivating the cGAS/STING/NF-κB pathway. Additionally, we found that targeting the cGAS/STING/NF-κB pathway with tryptanthrin shifted microglia from the M1 to M2 phenotype after spinal cord injury, inhibited neuronal loss, and promoted tissue repair and functional recovery in a mouse model of spinal cord injury. Finally, using a conditional co-culture system, we found that microglia treated with tryptanthrin suppressed endoplasmic reticulum stress-related neuronal apoptosis. Taken together, these results suggest that by targeting the cGAS/STING/NF-κB axis, tryptanthrin attenuates microglia-derived neuroinflammation and promotes functional recovery after spinal cord injury through shifting microglia polarization to the M2 phenotype.
Collapse
Affiliation(s)
- Ziwei Fan
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Mengxian Jia
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Jian Zhou
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Zhoule Zhu
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Yumin Wu
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Xiaowu Lin
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Yiming Qian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Jiashu Lian
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Xin Hua
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianhong Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Zheyu Fang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuqing Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Sibing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Xiumin Xue
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Juanqing Yue
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
| | - Minyu Zhu
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
| | - Zhihui Huang
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Honglin Teng
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Xu Z, Wang Y, Li S, Li Y, Chang L, Yao Y, Peng Q. Advances of functional nanomaterials as either therapeutic agents or delivery systems in the treatment of periodontitis. BIOMATERIALS ADVANCES 2025; 175:214326. [PMID: 40300444 DOI: 10.1016/j.bioadv.2025.214326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Periodontitis is a common chronic inflammatory disease primarily caused by pathogenic microorganisms in the oral cavity. Without appropriate treatments, it may lead to the gradual destruction of the supporting tissues of the teeth. While current treatments can alleviate symptoms, they still have limitations, particularly in eliminating pathogenic bacteria, promoting periodontal tissue regeneration, and avoiding antibiotic resistance. In recent years, functional nanomaterials have shown great potential in the treatment of periodontitis due to their unique physicochemical and biological properties. This review summarizes various functionalization strategies of nanomaterials and explores their potential applications in periodontitis treatment, including metal-based nanoparticles, carbon nanomaterials, polymeric nanoparticles, and exosomes. The mechanisms and advances in antibacterial effects, immune regulation, reactive oxygen species (ROS) scavenging, and bone tissue regeneration are discussed in detail. In addition, the challenges and future directions of applying nanomaterials in periodontitis therapy are also discussed.
Collapse
Affiliation(s)
- Ziyi Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuoshun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital and School of Stomatology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Liu C, Liao Y, Wu A, He C, Du X, Chen S, Tan L, Zou Y, Baimawangzha, Tang Q, Chen D. Tibetan dark tea Theabrownin alleviates LPS-induced inflammation by modulating the Nrf2/NF-κB signaling pathway and host microbial metabolites. Food Chem 2025; 483:144264. [PMID: 40245629 DOI: 10.1016/j.foodchem.2025.144264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Theabrownin is a key contributor to the flavor and health benefits of dark tea, but its structural characterization and anti-inflammatory properties remain underexplored. This study systematically investigated the physicochemical characteristics and anti-inflammatory mechanisms of Tibetan dark tea theabrownin (TTB). Our findings demonstrate that TTB is a hydroxyl- and carboxyl-rich polyphenolic aromatic polymer, composed of polyphenols, lipids, polysaccharides, and proteins. TTB modulated the NF-κB/Nrf2 signaling pathway, reducing inflammatory cytokines and oxidative stress, which in turn led to a decreased M1/M2 macrophage ratio and alleviated systemic inflammation. Fecal metabolomics analysis indicated that TTB exerts anti-inflammatory effects potentially by regulating key microbial metabolites, such as allantoic acid, and critical metabolic pathways like purine metabolism, as well as the metabolism of lysine, cysteine, phenylalanine, and pyruvate, etc. These findings provide insights into TTB's physicochemical properties and its mechanisms in alleviating systematic inflammation, providing a theoretical basis for the health-promoting effects of Tibetan dark tea.
Collapse
Affiliation(s)
- Chen Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yihong Liao
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Chunlei He
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Xiao Du
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Shengxiang Chen
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Liqiang Tan
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yao Zou
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Baimawangzha
- Bomi Agricultural Station, Bomi County, Lizhi city, 850300, Tibet Autonomous Region, PR China
| | - Qian Tang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.
| |
Collapse
|
4
|
Chen Y, Deng H, Zhang N. Autophagy-targeting modulation to promote peripheral nerve regeneration. Neural Regen Res 2025; 20:1864-1882. [PMID: 39254547 PMCID: PMC11691477 DOI: 10.4103/nrr.nrr-d-23-01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 09/11/2024] Open
Abstract
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Deng
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Lu J, Zhou Y, Song YX, Wang JY, Xian JX. Natural alkaloids modulating macrophage polarization: Innovative therapeutic strategies for inflammatory, cardiovascular, and cancerous diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156709. [PMID: 40250001 DOI: 10.1016/j.phymed.2025.156709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Macrophage polarization, switching between pro-inflammatory M1 and anti-inflammatory M2 states, is crucial for disease dynamics in inflammatory, metabolic, and cancer contexts. Modulating this polarization is a clinical challenge, but natural alkaloids, with their potent anti-inflammatory and immunomodulatory effects, show promise in reprogramming macrophage phenotypes. PURPOSE This review explores the applications of natural alkaloids-such as matrine, berberine, koumine, sophoridine, and curcumin-in modulating macrophage polarization. It aims to highlight their potential in reprogramming macrophage phenotypes and improving therapeutic outcomes across various diseases. METHODS A comprehensive literature review was conducted using databases like PubMed, Web of Science, Science Direct and Google Scholar, employing targeted keywords related to natural alkaloids, macrophage polarization, and disease treatment. The analysis primarily focused on articles published between 2020 and 2024. RESULTS This review summarizes how natural alkaloids regulate macrophage polarization, promoting the M2 phenotype to reduce inflammation, thereby playing a therapeutic role in anti-inflammatory, cardiovascular, and metabolic diseases. At the same time, they also promote M1 polarization to inhibit tumor development. CONCLUSION Accumulating evidence demonstrates that macrophage polarization regulation by natural alkaloids holds notable clinical value for disease intervention. They alleviate inflammation, enhance antitumor immunity, and improve treatment outcomes, demonstrating their importance in innovative therapeutic strategies. Moreover, combining alkaloids with immunotherapy enhances treatment efficacy, further highlighting their versatility in a variety of therapeutic applications.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Ying Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi-Xuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie-Ying Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jia-Xun Xian
- Traditional Chinese Medicine Hospital of Meishan, Meishan 620010, China.
| |
Collapse
|
6
|
Zheng K, Wang S, Deng M, Luo Y, Li W, Zeng L, Wang Y. Mechanisms and Therapeutic Strategies of Macrophage Polarization in Intervertebral Disc Degeneration. JOR Spine 2025; 8:e70065. [PMID: 40371270 PMCID: PMC12077540 DOI: 10.1002/jsp2.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 05/16/2025] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a leading cause of low back pain (LBP), contributing significantly to global disability and productivity loss. Its pathogenesis involves complex processes, including inflammation, cellular senescence, angiogenesis, fibrosis, neural ingrowth, and sensitization. Emerging evidence highlights macrophages as central immune regulators infiltrating degenerated discs, with macrophage polarization implicated in IVDD progression. However, the mechanisms linking macrophage polarization to IVDD pathology remain poorly elucidated. Methods A comprehensive literature review was conducted by searching major databases (PubMed, Web of Science, and Scopus) for studies published in the last decade (2014-2024). Keywords included "intervertebral disc degeneration," "macrophage polarization," "inflammation," "senescence," and "therapeutic strategies." Relevant articles were selected, analyzed, and synthesized to evaluate the role of macrophage polarization in IVDD. Results Macrophage polarization dynamically influences IVDD through multiple pathways. Pro-inflammatory M1 macrophages exacerbate disc degeneration by amplifying inflammatory cytokines (e.g., TNF-α, IL-1β), promoting cellular senescence, and stimulating abnormal angiogenesis and neural ingrowth. In contrast, anti-inflammatory M2 macrophages may mitigate degeneration by suppressing inflammation and enhancing tissue repair. Therapeutic strategies targeting macrophage polarization include pharmacological agents (e.g., cytokines, small-molecule inhibitors), biologic therapies, gene editing, and physical interventions. Challenges persist, such as incomplete understanding of polarization triggers, lack of targeted delivery systems, and limited translational success in preclinical models. Conclusion Macrophage polarization is a pivotal regulator of IVDD pathology, offering promising therapeutic targets. Future research should focus on elucidating polarization mechanisms, optimizing spatiotemporal control of macrophage phenotypes, and developing personalized therapies. Addressing these challenges may advance innovative strategies to halt or reverse IVDD progression, ultimately improving clinical outcomes for LBP patients.
Collapse
Affiliation(s)
- Kaiyuan Zheng
- Department of Rehabilitation Medicine, Intensive Care MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Siyu Wang
- Department of Rehabilitation Medicine, Intensive Care MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Meng Deng
- Department of Clinical LaboratoryThe First People's Hospital of GuangyuanGuangyuanChina
| | - Yaomin Luo
- Department of Rehabilitation Medicine, Intensive Care MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Wen Li
- Department of Rehabilitation Medicine, Intensive Care MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Lianlin Zeng
- Department of Rehabilitation MedicineSuining Central HospitalSuiningChina
| | - Yinxu Wang
- Department of Rehabilitation Medicine, Intensive Care MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| |
Collapse
|
7
|
Lin X, Deng S, Fu T, Lei Y, Wang Y, Yao J, Lu Y, Huang Y, Shang J, Chen J, Zhou X. Hyaluronic acid-based hydrogel microspheres with multi-responsive properties for antibacterial therapy and bone regeneration in Staphylococcus aureus-infected skull defects. Mater Today Bio 2025; 32:101676. [PMID: 40236808 PMCID: PMC11997343 DOI: 10.1016/j.mtbio.2025.101676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 03/16/2025] [Indexed: 04/17/2025] Open
Abstract
This study introduces hyaluronic acid-based (HA) hydrogel microspheres loaded with zinc oxide nanoparticles (ZnO-NPs) for the treatment of infectious bone defects. The microspheres were fabricated using a 3D-printing process, with a formulation consisting of 6 wt% HAD (methacrylated HA), 3 wt% AOHA (AMP-conjugated oxidized HA), 1 % BOHA (phenylboric acid-conjugated HA), 0.5 % photoinitiator, and 0.05 % ZnO-NPs. In vitro, the hydrogel microspheres demonstrated significant antibacterial activity against Staphylococcus aureus, with colony counts and biofilm inhibition assays showing a marked reduction in bacterial growth after 12 and 24 h. The release of antimicrobial peptides (AMPs) was enhanced in acidic conditions and in the presence of hyaluronidase. The microspheres also promoted osteogenic differentiation of bone marrow stromal cells (BMSCs), as evidenced by increased expression of osteogenic markers (ALP, OCN, OPN, and COL-1). In vivo, the hydrogel microspheres were tested in a rat skull defect model, showing significant bone regeneration, improved angiogenesis, and an anti-inflammatory response. These results indicate that ABOHA@ZnO hydrogel microspheres provide a promising strategy for treating infectious bone defects by combining antimicrobial, osteogenic.
Collapse
Affiliation(s)
- Xiaolong Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Tao Fu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, School of Stomatology and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Yuqing Lei
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital, School of Biomedical Engineering Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jiapei Yao
- Department of Orthopedics, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, 213000, China
| | - Yaojun Lu
- Department of Orthopedics, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, 213000, China
| | - Yong Huang
- Department of Orthopedics, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, 213000, China
| | - Jingjing Shang
- Department of Pharmacy, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, Jiangsu, 213000, China
| | - Jingjing Chen
- Department of Orthopedics, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, 213000, China
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, NHC Key Laboratory of Antibody Technique, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Xindie Zhou
- Department of Orthopedics, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, 213000, China
- Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, Qinghai Province, 811800, China
| |
Collapse
|
8
|
Tamura S, Pasang CET, Tsuda M, Ma S, Shindo H, Nagaoka N, Ohkubo T, Fujiyama Y, Tamai M, Tagawa YI. Tri-culture model of intestinal epithelial cell, macrophage, and bacteria for the triggering of inflammatory bowel disease on a microfluidic device. Eur J Cell Biol 2025; 104:151495. [PMID: 40409019 DOI: 10.1016/j.ejcb.2025.151495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/15/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025] Open
Abstract
Inflammatory bowel disease (IBD) involves gastrointestinal inflammation, due to intestinal epithelial barrier destruction caused by excessive immune activation. Conventional cell culture systems do not provide a model system that can recapitulate the complex interactions between epithelial cells, immune cells, and intestinal bacteria. To address this, we developed a microfluidic device that mimics the inflammatory response associated with microbial invasion of the intestinal mucosa. The device consisted of two media channels, an upper and a lower channel, and a porous membrane between these channels on which C2BBe1 intestinal epithelial cells were seeded to form a tight junction layer. Each electrode was placed in contact with both channels to continuously monitor the tight junction state. Fresh medium flow allowed bacterial numbers to be controlled and bacterial toxins to be removed, allowing co-culture of mammalian cells and bacteria. In addition, RAW264 macrophage cells were attached to the bottom of the lower channel. By introducing E. coli into the lower channel, the RAW264 cells were activated and produced TNF-α, successfully recapitulating a culture model of inflammation in which the C2BBe1cell tight junction layer was destroyed. The main structure of the device was initially made of polydimethylsiloxane to facilitate its widespread use, but with a view to introducing anaerobic bacteria in the future, a similar phenomenon was successfully reproduced using polystyrene. When TPCA-1, an IκB kinase 2 inhibitor was added into this IBD culture model, the tight junction destruction was significantly suppressed. The results suggest that this IBD culture model also is useful as a screening system for anti-IBD drugs.
Collapse
Affiliation(s)
- Shiori Tamura
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Clarissa Ellice Talitha Pasang
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Minami Tsuda
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Shilan Ma
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Hiromasa Shindo
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | - Noriyuki Nagaoka
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Tomoki Ohkubo
- Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Yoichi Fujiyama
- Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Miho Tamai
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan; Department of Pharmacy, Yasuda Women's University, Japan
| | - Yoh-Ichi Tagawa
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan.
| |
Collapse
|
9
|
Wang J, Chen B, Meng Q, Qu F, Ma Z. Using eQTL Mendelian randomization and transcriptomic analysis to identify the relationship between ion channel genes and intracranial aneurysmal subarachnoid hemorrhage. Medicine (Baltimore) 2025; 104:e42457. [PMID: 40388745 PMCID: PMC12091597 DOI: 10.1097/md.0000000000042457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/28/2025] [Indexed: 05/21/2025] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a complex condition associated with high disability and mortality rates, leading to poor clinical outcomes. Previous observational studies have suggested a link between ion channel genes and aSAH, but the causal relationship remains uncertain. This study utilized Mendelian randomization (MR) to explore the causal association between ion channel genes and aSAH, employing 5 MR methods: inverse variance weighted (IVW), MR-Egger, maximum likelihood, weighted median, and weighted mode. If results from these methods are inconclusive, IVW will be prioritized as the primary outcome. Additionally, MR-Egger, MR-PRESSO, and Cochrane Q tests were conducted to assess heterogeneity and pleiotropy. The stability of MR findings was evaluated using the leave-one-out approach; Bonferroni correction tested the strength of the causal relationship between exposure and outcome. The MR analysis revealed that CACNA2D3 was positively correlated with aSAH (OR 1.245; 95% confidence intervals [CI] 1.008-1.537; P = .042), while ANO6 showed a negative correlation (OR 0.728; 95% CI 0.533-0.993; P = .045). Our findings indicate that increased expression of CACNA2D3 promotes aSAH whereas elevated levels of ANO6 inhibit it. Transcriptome data from intracranial aneurysm samples confirmed significant differential expression of CACNA2D3 and ANO6 between ruptured and unruptured groups. CACNA2D3 being higher in ruptured cases while ANO6 was more expressed in unruptured ones. Furthermore, GeneMANIA analysis along with functional enrichment provided insights into risk factors for aSAH. Through MR analysis, we established a causal link between ion channel genes and aSAH, which helps to better understand the pathogenesis of aSAH and provide new therapeutic targets.
Collapse
Affiliation(s)
- Jing Wang
- Department of Intensive Care Unit, Jining No. 1 People’s Hospital, Shandong, China
| | - Bowang Chen
- Department of Intensive Care Unit, Jining No. 1 People’s Hospital, Shandong, China
| | - Qiang Meng
- Department of Intensive Care Unit, Jining No. 1 People’s Hospital, Shandong, China
| | - Feng Qu
- Department of Intensive Care Unit, Jining No. 1 People’s Hospital, Shandong, China
| | - Zhen Ma
- Department of Intensive Care Unit, Jining No. 1 People’s Hospital, Shandong, China
| |
Collapse
|
10
|
Li B, Guo M, Wang X, Qiao L, Song H, Li Z. Design and 3D Printing of Soft Orthokeratology Lenses. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40373233 DOI: 10.1021/acsami.5c03402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
The effectiveness of hard orthokeratology (OK) lenses in controlling myopia has been confirmed in clinical practice. However, there exist defects including wear discomfort, limited regulation of mechanical properties and geometry, and effectiveness inconsistency with the expected efficacy. Herein, we analyze the relationship between the mechanical properties of OK lenses and the vertex displacement of the human cornea through the finite element model. It is noted that the expected corneal deformation of 15-20 μm can be achieved by soft OK lenses with an elasticity modulus above 9 MPa, which is far lower than the 2.7 GPa of commercial OK lenses. No obvious displacement difference occurred when the elasticity modulus of the OK lenses exceeded 200 MPa. Thus, we propose the hypothesis of soft OK lenses based on hydrogel materials for controlling myopia. The soft OK lenses are fabricated by a two-step 3D printing technology using a multicomponent bioink containing methyl methacrylate, hydroxyethyl methacrylate, polyethylene glycol diacrylate, and 3-(trimethoxysilyl)propyl methacrylate (KH-570). The printed OK lenses possess comfort wear, high light transmittance, smooth surface, regulated elasticity modulus (from 33 to 535 MPa) and geometry, and excellent biocompatibility. Additionally, the effectiveness of soft OK lenses is confirmed through a porcine corneal model with obvious corneal deformation comparable to that of the commercial ones. This study demonstrates the feasibility of soft OK lenses for controlling myopia and provides support for the design and fabrication of soft OK lenses for comfortable wear.
Collapse
Affiliation(s)
- Baijun Li
- Institute of Applied Mechanics, College of Aeronautics and Astronautics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Meiqing Guo
- Institute of Applied Mechanics, College of Aeronautics and Astronautics, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Key Laboratory of Material Strength & Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, China
- National Demonstration Center for Experimental Mechanics Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Research Center of Basic Discipline of Mechanics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaojun Wang
- Institute of Applied Mechanics, College of Aeronautics and Astronautics, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Key Laboratory of Material Strength & Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, China
- National Demonstration Center for Experimental Mechanics Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Research Center of Basic Discipline of Mechanics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Liyong Qiao
- Institute of Applied Mechanics, College of Aeronautics and Astronautics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hui Song
- Institute of Applied Mechanics, College of Aeronautics and Astronautics, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Key Laboratory of Material Strength & Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, China
- National Demonstration Center for Experimental Mechanics Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Research Center of Basic Discipline of Mechanics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhiqiang Li
- Institute of Applied Mechanics, College of Aeronautics and Astronautics, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Key Laboratory of Material Strength & Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, China
- National Demonstration Center for Experimental Mechanics Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Research Center of Basic Discipline of Mechanics, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
11
|
Pomeyie K, Abrokwah F, Boison D, Amoani B, Kyei F, Adinortey CA, Barnie PA. Macrophage immunometabolism dysregulation and inflammatory disorders. Biomed Pharmacother 2025; 188:118142. [PMID: 40378771 DOI: 10.1016/j.biopha.2025.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/17/2025] [Accepted: 05/05/2025] [Indexed: 05/19/2025] Open
Abstract
Macrophages are innate immune cells which are involved in triggering inflammation. Growing evidence shows that, macrophages respond to intracellular and extracellular cues which makes them adopt either anti-inflammatory or pro-inflammatory functions and phenotypes. Immunometabolism has been identified as one of the prominent factors which contributes massively towards the cessation and the development of inflammation as an immune response to infections and autoimmune diseases. However, when inflammation is poorly regulated, it leads to dire consequences. This illustrates that, understanding the role of immunometabolism in the regulation of inflammation, is paramount. In view of this, the review investigated the role of metabolic pathways such as: glycolysis, tricarboxylic acid cycle, pentose phosphate pathway, fatty acid oxidation, amino acid metabolism in macrophage reprogramming. The role of the intermediates and enzymes associated with these metabolic pathways in the regulation of, macrophage reprogramming and polarisation or activation was also reviewed. It was unveiled that, manipulating metabolic intermediates and enzymes could impact cellular immunometabolism. This eventually influences macrophage reprogramming and thus influences the generation of either a pro-inflammatory or anti-inflammatory response.
Collapse
Affiliation(s)
- Karen Pomeyie
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Francis Abrokwah
- Department of Biochemistry, School of Biological Sciences University of Cape Coast, Cape Coast, Ghana
| | - Daniel Boison
- Department of Biochemistry, School of Biological Sciences University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Amoani
- Department of Biomedical Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Foster Kyei
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Cynthia A Adinortey
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Prince Amoah Barnie
- Department of Forensic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana; International Genome Centre, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Department of Immunology, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
12
|
Chopra A, Venugopalan A. Chikungunya and other viral arthritis. Best Pract Res Clin Rheumatol 2025:102068. [PMID: 40360316 DOI: 10.1016/j.berh.2025.102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
Several viruses cause acute and chronic arthritis. Millions of people suffered from Chikungunya(CHIK) during the recent epidemics/outbreaks in Asia, Africa and the Americas. Almost 20-40 % failed to recover completely and suffered from chronic pain and arthritis sequel. A wide spectrum of clinical phenotypic arthritis was described. Non-specific arthralgias(NSA) and soft tissue pains were predominant although inflammatory arthritis (mostly undifferentiated)(IA-U) was substantial. Specifically, rheumatoid arthritis(RA) and spondyloarthritis(SpA) like disorders were described. The frequency of biomarkers such as rheumatoid factor(RF) was low. Arthritis was mostly non-erosive in population studies. Abnormal immune mechanisms and persistent specific CHIK virus (CHIKV) IgM and IgG antibodies were shown. The etiopathogenetic evidence was divided between intense joint tissue inflammation due to prolonged virus persistence and abnormal autoimmune mechanisms. There was no specific therapy. The symptomatic management was often combined with an empirical use of disease modifying anti rheumatoid drugs and steroids. Substantial research is required to address knowledge gaps and unravel evidence-based medicine.
Collapse
Affiliation(s)
- Arvind Chopra
- Center for Rheumatic Diseases, 11 Hermes Elegance, 1988 Convent Street, Camp, Pune, 411001, India.
| | - Anuradha Venugopalan
- Center for Rheumatic Diseases, 11 Hermes Elegance, 1988 Convent Street, Camp, Pune, 411001, India.
| |
Collapse
|
13
|
Wang X, Tan L, Dong Y, Lin Y, Yin L, Shen S, Dou H, Hou Y. Vitamin D enhances the effect of Soufeng sanjie formula in alleviating joint inflammation in CIA mice through VDR-NOTCH3/DLL4 signaling in macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119932. [PMID: 40350051 DOI: 10.1016/j.jep.2025.119932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/22/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA), defined as Bi Zheng syndrome in traditional Chinese medicine (TCM), is a chronic inflammatory and autoimmune disease that can cause substantial articular degradation and impairment. In RA, the polarization of macrophages to a proinflammatoy phenotype contributes to chronic inflammation and joint injury. Soufeng sanjie formula (SF), a traditional Chinese formula used to treat RA, consists of Scolopendra subspinipes mutilans L. Koch, Buthus martensii Karsch, Astragalus membranaceus (Fisch), and Glycine max (L.) Merr seed coats and plays a role in the regulation of macrophage polarization. Vitamin D (VD), a specific activator of the vitamin D receptor (VDR), promotes the differentiation of M2 macrophages and significantly enhances the therapeutic effects of TCM on arthritis. However, whether SF can be combined with VD to regulate macrophage polarization and alleviate RA remains unclear. AIM OF THE STUDY In this study, we examined the regulatory mechanisms and therapeutic effects of the combination of SF and VD on macrophages in RA. MATERIALS AND METHODS We used network pharmacology to analyze the targets and pathways of SF in RA. Clinical data were analyzed to confirm the expression of key targets. The RA immune landscape for cell-gene correlations was built using bioinformatics. A collagen-induced arthritis (CIA) model was established to evaluate the combined therapeutic effects of SF and VD on joint injury and inflammation. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting (WB), and immunofluorescence were used to assess the expression of key molecules in macrophages. Macrophage polarization was analyzed using flow cytometry. RESULTS SF acts on RA through multiple pathways, including hub genes, such as VDR, ABL1, DNMT1, and CXCR4. Immune infiltration analysis of RA showed that a reduction in the number of M2 macrophages significantly affected RA. Clinical data analysis and prognostic assessments corroborated the pivotal roles played by hub genes, such as VDR, ABL1, DNMT1, and CXCR4. Crucially, this study demonstrated a strong association between the key hub gene VDR and M2 macrophages. In vivo and in vitro models of RA showed that VD significantly improved the efficacy of SF against arthritis in CIA mice and stimulated macrophage polarization toward the M2 phenotype via modulation of the NOTCH3/DLL4 pathway. Furthermore, siRNA-mediated interference with the expression of VDR confirmed that the downregulation of VDR significantly activated the NOTCH3/DLL4 signaling pathway and blocked the regulation of SF combined with VD on the polarization of macrophages toward the M2 phenotype. CONCLUSIONS Our results demonstrate that the combination of SF and VD markedly improves the therapeutic effect of SF on RA via M2 macrophage differentiation through the VDR-NOTCH3/DLL4 signaling pathway. The VD-enhancing effect of SF in improving RA symptoms offers a new strategy and theoretical foundation for the clinical treatment of the condition.
Collapse
Affiliation(s)
- Xiuzhu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Yue Dong
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Yan Lin
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Lijie Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| |
Collapse
|
14
|
Ivy A, Bess SN, Agrawal S, Kochar V, Stokes AL, Muldoon TJ, Nelson CE. A dual-fluorescence assay for gene delivery vehicle screening in macrophages with an inflammation-inducible reporter construct. BMC METHODS 2025; 2:8. [PMID: 40352095 PMCID: PMC12062070 DOI: 10.1186/s44330-025-00030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
Background Macrophages are a promising target for therapeutics in various applications such as regenerative medicine and immunotherapy for cancer. Due to their plastic nature, macrophages can switch from a non-activated state to activated with the smallest environmental change. For macrophages to be effective in their respective applications, screening for phenotypic changes is necessary to elucidate the cell response to different delivery vehicles, vaccines, small molecules, and other stimuli. Methods We created a sensitive and dynamic high-throughput screening method for macrophages based on the activation of NF-κB. For this reporter, we placed an mRFP1 fluorescence gene under the control of an inflammatory promoter, which recruits NF-κB response elements to promote expression during the inflammatory response in macrophages. We characterized the inflammatory reporter based on key markers of an inflammatory response in macrophages including TNF-α cytokine release and immunostaining for inflammatory and non-inflammatory cell surface markers. We compared gene delivery and inflammation of several clinically relevant viral vehicles and commercially available non-viral vehicles. Statistical analysis between groups was performed with a one-way ANOVA with post-hoc Tukey's test. Results The reporter macrophages demonstrated a dynamic range after LPS stimulation with an EC50 of 0.61 ng/mL that was highly predictive of TNF-α release. Flow cytometry revealed heterogeneity between groups but confirmed population level shifts in pro-inflammatory markers. Finally, we demonstrated utility of the reporter by showing divergent effects with various leading gene delivery vehicles. Discussion This screening technique developed here provides a dynamic, high-throughput screening technique for determining inflammatory response by mouse macrophages to specific stimuli. The method presented here provides insight into the inflammatory response in mouse macrophages to different viral and non-viral gene delivery methods and provides a tool for high-throughput screening of novel vehicles. Supplementary Information The online version contains supplementary material available at 10.1186/s44330-025-00030-x.
Collapse
Affiliation(s)
- Allie Ivy
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
| | - Shelby N. Bess
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
| | - Shilpi Agrawal
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
| | - Varun Kochar
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
| | - Abbey L. Stokes
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
| | - Timothy J. Muldoon
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR USA
| | - Christopher E. Nelson
- Department of Biomedical Engineering, University of Arkansas, 120 John A. White Jr. Engineering Hall, Fayetteville, AR 72701 USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR USA
| |
Collapse
|
15
|
Froom ZSCS, Callaghan NI, Davenport Huyer L. Cellular crosstalk in fibrosis: insights into macrophage and fibroblast dynamics. J Biol Chem 2025:110203. [PMID: 40334985 DOI: 10.1016/j.jbc.2025.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Pathological fibrosis, the excessive deposition of extracellular matrix and tissue stiffening that causes progressive organ dysfunction, underlies diverse chronic diseases. The fibrotic microenvironment is driven by the dynamic microenvironmental interaction between various cell types; macrophages and fibroblasts play central roles in fibrotic disease initiation, maintenance, and progression. Macrophage functional plasticity to microenvironmental stimuli modulates fibroblast functionality by releasing pro-inflammatory cytokines, growth factors, and matrix remodeling enzymes that promote fibroblast proliferation, activation, and differentiation into myofibroblasts. Activated fibroblasts and myofibroblasts serve as the fibrotic effector cells, secreting extracellular matrix components and initiating microenvironmental contracture. Fibroblasts also modulate macrophage function through the release of their own pro-inflammatory cytokines and growth factors, creating bidirectional crosstalk that reinforces the chronic fibrotic cycle. The intricate interplay between macrophages and fibroblasts, including their secretomes and signaling interactions, leads to tissue damage and pathological loss of tissue function. In this review, we examine macrophage-fibroblast reciprocal dynamic interactions in pathological fibrotic conditions. We discuss the specific lineages and functionality of macrophages and fibroblasts implicated in fibrotic progression, with focus on their signal transduction pathways and secretory signalling that enables their pro-fibrotic behaviour. We then finish with a set of recommendations for future experimentation with the goal of developing a set of potential targets for anti-fibrotic therapeutic candidates. Understanding the cellular interactions between macrophages and fibroblasts provides valuable insights into potential therapeutic strategies to mitigate fibrotic disease progression.
Collapse
Affiliation(s)
- Zachary S C S Froom
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Neal I Callaghan
- Department of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Locke Davenport Huyer
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada; Nova Scotia Health, Halifax, NS B3S 0H6, Canada.
| |
Collapse
|
16
|
Jiemy WF, Zhang A, Abdulahad WH, Reitsema RD, van Sleen Y, Sandovici M, Alegria GC, Cornec D, Devauchelle-Pensec V, Hemon P, Quéré B, Boukhlal S, Roozendaal C, Kwee TC, Dasgupta B, Diepstra A, Heeringa P, Brouwer E, van der Geest KSM. GM-CSF drives IL-6 production by macrophages in polymyalgia rheumatica. Ann Rheum Dis 2025; 84:833-843. [PMID: 39915203 DOI: 10.1016/j.ard.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 05/06/2025]
Abstract
OBJECTIVES Insight into the immunopathology of polymyalgia rheumatica (PMR) is scarce and mainly derived from peripheral blood studies. The limited data available point towards macrophages as potential key players in PMR. This study aimed to identify the factors driving proinflammatory macrophage development and their functions in the immunopathology of PMR. METHODS Monocyte phenotypes were investigated by flow cytometry in peripheral blood (PMR, n = 22; healthy controls, n = 20) and paired subacromial-subdeltoid (SASD) bursal fluid (PMR, n = 9). Macrophages in SASD bursa were characterised by immunohistochemistry and immunofluorescence (PMR, n = 12; controls undergoing shoulder replacement surgery, n = 10). The functions of cytokines expressed in PMR-affected tissue were examined using macrophage differentiation cultures (PMR, n = 7; healthy controls, n = 7). RESULTS Monocytes (CD14highCD16- and CD14highCD16+) were increased in blood of PMR patients and activated in bursal fluid. Macrophages dominated immune infiltrates in PMR-affected tissue, expressing various proinflammatory cytokines. While interleukin (IL)-6 and interferon-gamma (IFN-γ) expression was abundant in both PMR and control tissue, granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) were significantly increased in PMR tissue. Macrophages in PMR-affected tissue showed an elevated CD206/folate receptor β ratio, reflecting a GM-CSF skewed signature. A combination of GM-CSF/M-CSF/IFN-γ significantly boosted IL-6 production in vitro, while limited IL-6 production was observed without GM-CSF. CONCLUSIONS The monocyte compartment is expanded and activated in PMR. Macrophages in PMR-affected tissue produce abundant proinflammatory cytokines such as IL-6. A network of locally expressed cytokines, including GM-CSF, M-CSF, and IFN-γ, may drive the proinflammatory functions of these macrophages. Overall, macrophages may constitute key therapeutic targets for PMR.
Collapse
Affiliation(s)
- William F Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anqi Zhang
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rosanne D Reitsema
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Guillermo Carvajal Alegria
- Unité Propre de Recherche (UPR) Centre National de la Recherche Scientifique (CNRS) 4301Centre de Biophysique Moléculaire (CBM), Département NanoMédicaments et NanoSondes (NMNS), Tours, France; Université de Tours, Unité de Formation et de Recherche (UFR) de Médecine, Tours Cedex 1, France; Centre Hospitalier Universitaire (CHU) de Tours, Service de Rhumatologie, Tours Cedex 9, France
| | - Divi Cornec
- Lymphocytes B, Autoimmunité et Immunothérapies (LBAI) Unité Mixte de Recherche (UMR) 1227, Institut National de la Santé et de la Recherche Médicale (INSERM), Brest, France; Université de Bretagne Occidentale, Faculté de Médecine et Sciences de la Santé, Brest Cedex 3, France; Centre Hospitalier Régional Universitaire (CHRU) de Brest, Service de Rhumatologie, Brest, France
| | - Valérie Devauchelle-Pensec
- Lymphocytes B, Autoimmunité et Immunothérapies (LBAI) Unité Mixte de Recherche (UMR) 1227, Institut National de la Santé et de la Recherche Médicale (INSERM), Brest, France; Université de Bretagne Occidentale, Faculté de Médecine et Sciences de la Santé, Brest Cedex 3, France; Centre Hospitalier Régional Universitaire (CHRU) de Brest, Service de Rhumatologie, Brest, France
| | - Patrice Hemon
- Lymphocytes B, Autoimmunité et Immunothérapies (LBAI) Unité Mixte de Recherche (UMR) 1227, Institut National de la Santé et de la Recherche Médicale (INSERM), Brest, France; Université de Bretagne Occidentale, Faculté de Médecine et Sciences de la Santé, Brest Cedex 3, France; Centre Hospitalier Régional Universitaire (CHRU) de Brest, Service de Rhumatologie, Brest, France
| | - Baptiste Quéré
- Lymphocytes B, Autoimmunité et Immunothérapies (LBAI) Unité Mixte de Recherche (UMR) 1227, Institut National de la Santé et de la Recherche Médicale (INSERM), Brest, France; Université de Bretagne Occidentale, Faculté de Médecine et Sciences de la Santé, Brest Cedex 3, France; Centre Hospitalier Régional Universitaire (CHRU) de Brest, Service de Rhumatologie, Brest, France
| | - Sara Boukhlal
- Lymphocytes B, Autoimmunité et Immunothérapies (LBAI) Unité Mixte de Recherche (UMR) 1227, Institut National de la Santé et de la Recherche Médicale (INSERM), Brest, France; Centre Hospitalier Régional Universitaire (CHRU) de Brest, Service de Rhumatologie, Brest, France
| | - Caroline Roozendaal
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Thomas Christian Kwee
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bhaskar Dasgupta
- Department of Rheumatology, Southend University Hospital National Health Service (NHS) Foundation Trust, Westcliff-on-Sea, UK
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
17
|
Izhar M, Lesniak MS. Role of Extracellular Vesicles in the Pathogenesis of Brain Metastasis. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70051. [PMID: 40330713 PMCID: PMC12053894 DOI: 10.1002/jex2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Extracellular vesicles (EVs) are small particles released by various cells, including cancer cells. They play a significant role in the development of different cancers, including brain metastasis. These EVs transport biomolecular materials such as RNA, DNA, and proteins from tumour cells to other cells, facilitating the spread of primary tumours to the brain tissue. EVs interact with the endothelial cells of the blood-brain barrier (BBB), compromising its integrity and allowing metastatic cells to pass through easily. Additionally, EVs interact with various cells in the brain's microenvironment, creating a conducive environment for incoming metastatic cells. They also influence the immune system within this premetastatic environment, promoting the growth of metastatic cells. This review paper focuses on the research regarding the role of EVs in the development of brain metastasis, including their impact on disrupting the BBB, preparing the premetastatic environment, and modulating the immune system. Furthermore, the paper discusses the potential of EVs as diagnostic and prognostic biomarkers for brain metastasis.
Collapse
Affiliation(s)
- Muhammad Izhar
- Department of NeurosurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Maciej S. Lesniak
- Department of Neurological SurgeryLou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
18
|
Kocsy K, Deshmukh S, Nawaz S, Ali AN, Baig S, Balami JS, Majid A, Kiss-Toth E, Francis S, Redgrave J. Reprogramming human macrophages in symptomatic carotid stenosis: Stabilization of atherosclerotic carotid plaques. Atherosclerosis 2025; 404:119180. [PMID: 40239267 DOI: 10.1016/j.atherosclerosis.2025.119180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/21/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND AND AIMS Inflammation is a precursor to atherosclerotic plaque destabilisation, leading to ischaemic events like stroke. Since macrophage phenotypes can be influenced by their microenvironment, we aimed to stabilise plaques and reduce the risk of recurrent ischaemic events using clinically relevant anti-inflammatory agents. METHODS Thirteen carotid plaques from stroke/Transient Ischaemic Attack (TIA) patients undergoing carotid endarterectomy were analysed using immunofluorescence stain to identify macrophage markers (CD68, CD86, MRC1). An in vitro model of human blood-derived macrophages was used to evaluate the effects of statins and glucocorticoids on macrophage-specific markers using RT-qPCR, Western Blot, and immunofluorescence staining. The physiological effects of dexamethasone on macrophages and human carotid plaques were further studied ex vivo. RESULTS The macrophage population (CD68+) in the carotid plaques was dominated by "double-positive" (CD86+MRC1+) macrophages (67.8 %), followed by "M1-like" (CD86+MRC1-) (16.5 %), "M2-like" (CD86-MRC1+) (8.7 %) and "double-negative" (CD86-MRC1-) (7.0 %) macrophages. M1-like macrophages were more prevalent in unstable plaque sections than stable ones (p = 0.0022). Exposure to dexamethasone increased macrophage MRC1 gene expression in vitro and ex vivo. It also reduced the expression of the Oxidised Low-Density Lipoprotein Receptor 1 (OLR1) gene and protein, leading to reduced oxLDL uptake in foam cell assays. CONCLUSIONS Clinically relevant concentrations of glucocorticoids may shift human macrophages to a less inflammatory state, thus reducing their ability for oxidised LDL uptake. In contrast, this anti-inflammatory mechanism was not observed in response to statins. These findings suggest that glucocorticoids could help prevent ischemic events in patients with advanced atherosclerosis.
Collapse
Affiliation(s)
- Klaudia Kocsy
- Division of Neuroscience, School of Medicine and Population Health, The University of Sheffield, Sheffield, United Kingdom.
| | - Sumeet Deshmukh
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Shah Nawaz
- Division of Clinical Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Ali N Ali
- Division of Neuroscience, School of Medicine and Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Sheharyar Baig
- Division of Neuroscience, School of Medicine and Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Joyce S Balami
- Sheffield Teaching Hospitals NHS Foundation Trust, The University of Sheffield, Sheffield, United Kingdom
| | - Arshad Majid
- Division of Neuroscience, School of Medicine and Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Endre Kiss-Toth
- School of Medicine and Population Health, Healthy Lifespan Institute (HELSI), The University of Sheffield, Sheffield, United Kingdom
| | - Sheila Francis
- School of Medicine and Population Health, Healthy Lifespan Institute (HELSI), The University of Sheffield, Sheffield, United Kingdom
| | - Jessica Redgrave
- Sheffield Teaching Hospitals NHS Foundation Trust, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
19
|
Zheng Z, Yang T, Cao H, Yu J, Fang X, He X, Zou L, Tang D, Lu Z, Liu J, Yu L. Liang-Ge-San drives macrophages toward M2 polarization for alleviating lipopolysaccharide-induced acute lung injury via activating the miR-21/PTEN axis. Fitoterapia 2025; 184:106572. [PMID: 40318703 DOI: 10.1016/j.fitote.2025.106572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/17/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Acute lung injury (ALI) has high clinical mortality currently and no specific drugs available for its treatment. Although Liang-Ge-San (LGS), a traditional Chinese medicine formula, is known to promote inflammation resolution and shorten hospitalization duration of ALI, the mechanism is still unclear. Our results demonstrated that LGS regulated the dynamic balance of macrophage polarization as reflected by up-regulating the expression of anti-inflammatory factors (CD206, Arg-1 and IL-10) in advance to counteract the high expression of pro-inflammatory factors (CD86, iNOS, IL-6 and TNF-α) in vitro. MiR-21 concentration was elevated in LPS-challenged RAW264.7 cells and ALI mice. Moreover, the overexpression of miR-21 mimicked the anti-inflammatory effects of LGS, whereas a miR-21 inhibitor abolished the protective effects of LGS in vitro. Most importantly, LGS protected ALI mice from LPS which could be counteracted by the treatment of miR-21 antagomir. Furthermore, LGS could inhibit the transcriptional activity and protein expression of PTEN by up-regulating miR-21. In summary, LGS functions by regulating the miR-21/PTEN axis to induce a shift in macrophages from a pro-inflammatory phenotype to an anti-inflammatory phenotype, thereby alleviating LPS-induced ALI. This study supports the clinical evidence of LGS in the treatment of ALI.
Collapse
Affiliation(s)
- Zhuping Zheng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China; Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Tangjia Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Huihui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Jingtao Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Xiaochuan Fang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Xuemei He
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Lifang Zou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Dongkai Tang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China.
| | - Junshan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China.
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, International Joint Labaratory of Zebrafish Models of Human Diseases and Drug Discovery, Guangzhou 510515, PR China; Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
20
|
Long Z, Huang Y, Lin T, Xiao S, Chen K, Ying J, Wang K, Zhang Z, Wu L. Emodin Promotes Peripheral Nerve Repair by Modulating Inflammasome Activation Through Autophagy via the EGFR/PI3K/AKT/mTOR Pathway. Phytother Res 2025; 39:2324-2338. [PMID: 40135386 DOI: 10.1002/ptr.8469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/05/2025] [Accepted: 02/22/2025] [Indexed: 03/27/2025]
Abstract
To investigate the potential of emodin in promoting nerve regeneration following PNI by targeting macrophage polarization, NLRP3 inflammasome activation, autophagy, and the EGFR/PI3K/Akt/mTOR pathway. A cohort of 78 male Sprague-Dawley rats was used to develop models of sciatic nerve damage, with an additional 18 rats in the sham surgery group. The rats were randomly assigned to eight groups: Sham, Control, PNI + Emodin (20 mg/kg), PNI + Emodin (80 mg/kg), PNI + MCC950 (10 mg/kg), PNI + Rapamycin (2 mg/kg), PNI + Emodin (80 mg/kg) + 3-MA (15 mg/kg), and PNI + Emodin (80 mg/kg) + NSC 228155 (5 mg/kg). Emodin was administered intragastrical daily, while the inhibitors or agonist were administered via intraperitoneal injection, as per the respective dosages and schedules. The treatment period included assessments of nerve regeneration and functional recovery, such as histological staining, immunofluorescence for cellular markers, TEM for ultrastructural changes, SFI for functional recovery, and western blot analysis for autophagy and inflammatory proteins. IF and TEM images showed that emodin enhanced axonal and myelin regeneration. Histological analysis revealed emodin reduced muscular atrophy and collagen deposition. Emodin decreased pro-inflammatory macrophage markers (CD68) while increasing M2 markers (CD206), inhibited the NLRP3 inflammasome, and reduced IL-1β and caspase-1. It activated autophagy in Schwann cells, with increased LC3-II levels. Network pharmacology and molecular docking identified EGFR in the PI3K/AKT/mTOR pathway as a key target, with emodin inhibiting EGFR activation. This study reveals that emodin promotes early nerve recovery by enhancing functional outcomes, axonal remyelination, and reducing muscle atrophy. It boosts autophagy in Schwann cells, inhibits NLRP3 inflammasome activation, and promotes M2 macrophage polarization. These effects are closely related to the EGFR/PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Zhengyang Long
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou, China
| | - Yixun Huang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou, China
| | - Tao Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou, China
| | - Shanying Xiao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou, China
| | - Kaiye Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou, China
| | - Jiahao Ying
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou, China
| | - Ke Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou, China
| | - Zhe Zhang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou, China
| | - Long Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou, China
| |
Collapse
|
21
|
Fei X, Li N, Xu X, Zhu Y. Macrophage biology in the pathogenesis of Helicobacter pylori infection. Crit Rev Microbiol 2025; 51:399-416. [PMID: 39086061 DOI: 10.1080/1040841x.2024.2366944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Infection with H. pylori induces chronic gastric inflammation, progressing to peptic ulcer and stomach adenocarcinoma. Macrophages function as innate immune cells and play a vital role in host immune defense against bacterial infection. However, the distinctive mechanism by which H. pylori evades phagocytosis allows it to colonize the stomach and further aggravate gastric preneoplastic pathology. H. pylori exacerbates gastric inflammation by promoting oxidative stress, resisting macrophage phagocytosis, and inducing M1 macrophage polarization. M2 macrophages facilitate the proliferation, invasion, and migration of gastric cancer cells. Various molecular mechanisms governing macrophage function in the pathogenesis of H. pylori infection have been identified. In this review, we summarize recent findings of macrophage interactions with H. pylori infection, with an emphasis on the regulatory mechanisms that determine the clinical outcome of bacterial infection.
Collapse
Affiliation(s)
- Xiao Fei
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nianshuang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
22
|
Yu X, Song Y, Dong T, Ouyang W, Quan C, Shao L, Barasa L, Thompson PR, Zhang M, Ma J, Kurabayashi K, Li Y. Citrullination of NF-κB p65 by PAD2 as a Novel Therapeutic Target for Modulating Macrophage Polarization in Acute Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413253. [PMID: 40087815 PMCID: PMC12079445 DOI: 10.1002/advs.202413253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/11/2025] [Indexed: 03/17/2025]
Abstract
Mediating protein citrullination, peptidyl arginine deiminase 2 (PAD2) has recently been reported to influence macrophage phenotypes. However, the mechanisms of PAD2 on macrophage function in Pseudomonas aeruginosa (PA)-induced acute lung injury syndrome (ALI) remains unclear. Utilizing single-cell RNA sequencing and mass spectrometry-based proteomics, a new citrullination site at arginine 171 (R171) is discovered within nuclear factor- κB (NF-κB) p65 catalyzed by PAD2, which modulates PAD2-NF-κB p65-importin α3 pathway and its downstream M1/M2 macrophage polarization. Building on these findings, a cell-specific targeted therapeutic strategy using gold nanoparticles (AuNPs) conjugated with a novel PAD2 inhibitor, AFM41a, and an intercellular adhesion molecule-1 (ICAM-1) antibody is developed. This approach enables the selective delivery of the inhibitor to M1-polarized macrophages in the PA-infected alveolar niche. In vivo, this nanomedicine reduces excessive inflammation and promotes M1-to-M2 polarization to inhibit ALI. This study highlights the role of PAD2-mediated citrullination in macrophage polarization and introduces a promising nanoparticle-based therapy for PA-induced ALI.
Collapse
Affiliation(s)
- Xin Yu
- Department of SurgeryUniversity of Michigan Health SystemAnn ArborMI48109USA
- Department of Emergency MedicineSecond Affiliated HospitalZhejiang University School of MedicineNo.88 Jiefang RoadHangzhouZhejiang310009China
| | - Yujing Song
- Department of Mechanical and Aerospace EngineeringNew York University Tandon School of EngineeringBrooklynNY11201USA
- Department of Mechanical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Tao Dong
- Department of SurgeryUniversity of Michigan Health SystemAnn ArborMI48109USA
- Department of PhysiologyXuzhou Medical UniversityXu ZhouJiangsu221002China
| | - Wenlu Ouyang
- Department of SurgeryUniversity of Michigan Health SystemAnn ArborMI48109USA
- Department of Metabolism and EndocrinologyThe Second Xiangya HospitalChangsha410011China
| | - Chao Quan
- Department of SurgeryUniversity of Michigan Health SystemAnn ArborMI48109USA
- Department of UrologyThe Xiangya HospitalChangsha410013China
| | - Liujiazi Shao
- Department of SurgeryUniversity of Michigan Health SystemAnn ArborMI48109USA
- Department of AnesthesiologyBeijing Friendship HospitalCapital Medical UniversityNo.95 Yong‐an Road, Xicheng DistrictBeijing100050China
| | - Leonard Barasa
- Program in Chemical Biology, Department of Biochemistry and Molecular BiotechnologyUniversity of Massachusetts Chan Medical SchoolWorcesterMA01605USA
| | - Paul R. Thompson
- Program in Chemical Biology, Department of Biochemistry and Molecular BiotechnologyUniversity of Massachusetts Chan Medical SchoolWorcesterMA01605USA
| | - Mao Zhang
- Department of Emergency MedicineSecond Affiliated HospitalZhejiang University School of MedicineNo.88 Jiefang RoadHangzhouZhejiang310009China
| | - Jianjie Ma
- Department of SurgeryDivision of Surgical ScienceUniversity of VirginiaCharlottesvilleVA22903USA
| | - Katsuo Kurabayashi
- Department of Mechanical and Aerospace EngineeringNew York University Tandon School of EngineeringBrooklynNY11201USA
- Department of Chemical and Biomolecular EngineeringNew York University Tandon School of EngineeringBrooklynNY11201USA
| | - Yongqing Li
- Department of SurgeryUniversity of Michigan Health SystemAnn ArborMI48109USA
| |
Collapse
|
23
|
Araya-Sapag MJ, Lara-Barba E, García-Guerrero C, Herrera-Luna Y, Flores-Elías Y, Bustamante-Barrientos FA, Albornoz GG, Contreras-Fuentes C, Yantén-Fuentes L, Luque-Campos N, Vega-Letter AM, Toledo J, Luz-Crawford P. New mesenchymal stem/stromal cell-based strategies for osteoarthritis treatment: targeting macrophage-mediated inflammation to restore joint homeostasis. J Mol Med (Berl) 2025:10.1007/s00109-025-02547-8. [PMID: 40272537 DOI: 10.1007/s00109-025-02547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Macrophages are pivotal in osteoarthritis (OA) pathogenesis, as their dysregulated polarization can contribute to chronic inflammatory processes. This review explores the molecular and metabolic mechanisms that influence macrophage polarization and identifies potential strategies for OA treatment. Currently, non-surgical treatments for OA focus only on symptom management, and their efficacy is limited; thus, mesenchymal stem/stromal cells (MSCs) have gained attention for their anti-inflammatory and immunomodulatory capabilities. Emerging evidence suggests that small extracellular vesicles (sEVs) derived from MSCs can modulate macrophage function, thus offering potential therapeutic benefits in OA. Additionally, the transfer of mitochondria from MSCs to macrophages has shown promise in enhancing mitochondrial functionality and steering macrophages toward an anti-inflammatory M2-like phenotype. While further research is needed to confirm these findings, MSC-based strategies, including the use of sEVs and mitochondrial transfer, hold great promise for the treatment of OA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- María Jesús Araya-Sapag
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana Lara-Barba
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García-Guerrero
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yesenia Flores-Elías
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Guillermo G Albornoz
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Consuelo Contreras-Fuentes
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Liliana Yantén-Fuentes
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jorge Toledo
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile.
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
24
|
Holthaus M, Xiong X, Eghbalzadeh K, Großmann C, Geißen S, Piontek F, Mollenhauer M, Abdallah AT, Kamphausen T, Rothschild M, Wahlers T, Paunel-Görgülü A. Loss of peptidylarginine deiminase 4 mitigates maladaptive cardiac remodeling after myocardial infarction through inhibition of inflammatory and profibrotic pathways. Transl Res 2025; 280:1-16. [PMID: 40252995 DOI: 10.1016/j.trsl.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Inflammation and progressive fibrosis represent predictive risk factors for heart failure (HF) development following myocardial infarction (MI). Peptidylargininine deiminase 4 (PAD4) catalyzes the citrullination of arginine residues in polypeptides and has recently been identified as a contributor to HF pathogenesis. This study aimed to evaluate the role of PAD4 in monocytes / macrophages (Mo/Mφ) and cardiac fibroblasts (CFs) for cardiac repair following MI and HF progression. Cardiac Padi4 expression significantly increased in mice subjected to MI by permanent coronary artery ligation as well as in humans who died from MI. Transcriptome analysis revealed marked downregulation of inflammation-related genes in infarcted hearts and cardiac Mo/Mφ from global PAD4 knockout (PAD4-/-) mice on day 7 post-MI accompanied by increased frequency of reparative CD206+ macrophages. Mechanistically, pharmacological and genetic PAD4 inhibition abrogated nuclear NF-κB translocation and inflammatory gene expression in bone marrow-derived macrophages (BMDM). Simultaneously, reduced inflammation and diminished cardiac levels of transforming growth factor-β (TGF-β) along with impaired IL-6 / TGF-β signaling in PAD4-/- CFs were associated with decreased expression of fibrotic genes, reduced collagen deposition, improved cardiac function, and enhanced 28-day survival in PAD4-/- mice. Strikingly, whereas pharmacological PAD inhibition in the acute phase after MI exacerbated cardiac damage, treatment starting on day 7 ameliorated cardiac remodeling and improved long-term survival in mice. Collectively, we here identified PAD4 as a critical regulator of inflammatory genes in Mo/Mφ and of profibrotic pathways in CFs. Thus, therapeutic approaches directed against PAD4 are promising interventions to alleviate adverse cardiac remodeling and subsequent HF development.
Collapse
Affiliation(s)
- Michelle Holthaus
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Xiaolin Xiong
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kaveh Eghbalzadeh
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Clara Großmann
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Geißen
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Fabian Piontek
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ali T Abdallah
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne Germany
| | - Thomas Kamphausen
- Institute of Legal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Markus Rothschild
- Institute of Legal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
25
|
Hou Y, Lv Z, Hu Q, Zhu A, Niu H. The immune mechanisms of the urinary tract against infections. Front Cell Infect Microbiol 2025; 15:1540149. [PMID: 40308964 PMCID: PMC12040696 DOI: 10.3389/fcimb.2025.1540149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Urinary tract infection (UTI), a common clinical infectious disease, is marked by high incidence and frequent recurrence. Recurrent UTIs can cause severe complications, negatively affecting health. The emergence and spread of drug-resistant bacteria present significant challenges to UTI treatment. This article systematically reviews the key immune mechanisms in the body's defense against UTI pathogens. It discusses various immune response components, such as the urinary tract mucosal epithelium, neutrophils, macrophages, dendritic cells, mast cells, innate lymphocytes, T cells, and B cells, with the aim of providing insights for future UTI research.
Collapse
Affiliation(s)
- Yilin Hou
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuoxuan Lv
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Quanjie Hu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aisong Zhu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongxia Niu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Ahmed HS. Neuropharmacological effects of calycosin: a translational review of molecular mechanisms and therapeutic applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04154-3. [PMID: 40237798 DOI: 10.1007/s00210-025-04154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Calycosin, a naturally occurring isoflavonoid found predominantly in Astragalus membranaceus, exhibits significant therapeutic potential in various neurological conditions. Its multifaceted bioactive properties-antioxidant, anti-inflammatory, and anti-apoptotic-position it as a promising candidate for neuroprotection and neuroregeneration. This review explores calycosin's mechanisms of action, including its modulation of key signaling pathways such as HMGB1/TLR4/NF-κB (high mobility group box 1/toll-like receptor 4/nuclear factor kappa B), phosphatidylinositol-3-kinase (PI3 K)/Akt, ERK1/2 (extracellular signal-regulated kinase 1/2), and Hsp90/Akt/p38. In cerebral ischemia/reperfusion injury, calycosin reduces oxidative stress markers like ROS (reactive oxygen species) and MDA (malondialdehyde), enhances antioxidant enzymes (SOD (superoxide dismutase) and GPX (glutathione peroxidase)), and downregulates pro-inflammatory cytokines (TNF-α, IL-1β) through the HMGB1/TLR4/NF-κB pathway. It also inhibits autophagy via the STAT3/FOXO3a pathway and apoptosis by modulating Bax and Bcl-2 expression. In neuro-oncology, calycosin inhibits glioblastoma cell migration and invasion by modulating the TGF-β-mediated mesenchymal properties and suppressing the c-Met and CXCL10 signaling pathways. Additionally, it enhances the efficacy of temozolomide in glioma treatment through apoptotic pathways involving caspase-3 and caspase-9. Calycosin shows promise in Alzheimer's disease by reducing β-amyloid production and tau hyperphosphorylation via the GSK-3β pathway and improving mitochondrial function through the peroxisome proliferator-activated receptor gamma coactivator 1-Alpha (PGC-1α)/mitochondrial transcription factor A (TFAM) signaling pathway. In Parkinson's disease, calycosin mitigates oxidative stress, prevents dopaminergic neuronal death, and reduces neuroinflammation by inhibiting the TLR/NF-κB and MAPK pathways. It has also shown therapeutic potential in meningitis and even neuroprotective effects against hyperbilirubinemia-induced nerve injury. Despite these promising findings, further research, including detailed mechanistic studies and clinical trials, is needed to fully understand calycosin's therapeutic mechanisms and validate its potential in human subjects. Developing advanced delivery systems and exploring synergistic therapeutic strategies could further enhance its clinical application and effectiveness.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, K.R Road, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
27
|
Liu R, Jia L, Yu L, Lai D, Li Q, Zhang B, Guo E, Xu K, Luo Q. Interaction between post-tumor inflammation and vascular smooth muscle cell dysfunction in sepsis-induced cardiomyopathy. Front Immunol 2025; 16:1560717. [PMID: 40276499 PMCID: PMC12018406 DOI: 10.3389/fimmu.2025.1560717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/28/2025] [Indexed: 04/26/2025] Open
Abstract
Background Sepsis-induced cardiomyopathy (SIC) presents a critical complication in cancer patients, contributing notably to heart failure and elevated mortality rates. While its clinical relevance is well-documented, the intricate molecular mechanisms that link sepsis, tumor-driven inflammation, and cardiac dysfunction remain inadequately explored. This study aims to elucidate the interaction between post-tumor inflammation, intratumor heterogeneity, and the dysfunction of VSMC in SIC, as well as to evaluate the therapeutic potential of exercise training and specific pharmacological interventions. Methods Transcriptomic data from NCBI and GEO databases were analyzed to identify differentially expressed genes (DEGs) associated with SIC. Weighted gene co-expression network analysis (WGCNA), gene ontology (GO), and KEGG pathway enrichment analyses were utilized to elucidate the biological significance of these genes. Molecular docking and dynamics simulations were used to investigate drug-target interactions, and immune infiltration and gene mutation analyses were carried out by means of platforms like TIMER 2.0 and DepMap to comprehend the influence of DVL1 on immune responsiveness. Results Through the utilization of the datasets, we discovered the core gene DVL1 that exhibited remarkable up-regulated expression both in SIC and in diverse kinds of cancers, which were associated with poor prognosis and inflammatory responses. Molecular docking revealed that Digoxin could bind to DVL1 and reduce oxidative stress in SIC. The DVL1 gene module related to SIC was identified by means of WGCNA, and the immune infiltration analysis demonstrated the distinctive immune cell patterns associated with DVL1 expression and the impact of DVL1 on immunotherapeutic resistance. Conclusions DVL1 is a core regulator of SIC and other cancers and, therefore, can serve as a therapeutic target. The present study suggests that targeted pharmacological therapies to enhance response to exercise regimens may be a novel therapeutic tool to reduce the inflammatory response during sepsis, particularly in cancer patients. The identified drugs, Digoxin, require further in vivo and clinical studies to confirm their effects on SIC and their potential efforts to improve outcomes in immunotherapy-resistant cancer patients.
Collapse
Affiliation(s)
- Rui Liu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Lina Jia
- Hebei Medical University, Shijiazhuang, China
| | - Lin Yu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Detian Lai
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Qingzhu Li
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Bingyu Zhang
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Enwei Guo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Kailiang Xu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Qiancheng Luo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| |
Collapse
|
28
|
Mirazi H, Wood ST. Microfluidic chip-based co-culture system for modeling human joint inflammation in osteoarthritis research. Front Pharmacol 2025; 16:1579228. [PMID: 40271077 PMCID: PMC12015981 DOI: 10.3389/fphar.2025.1579228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Here we present a microfluidic model that allows for co-culture of human osteoblasts, chondrocytes, fibroblasts, and macrophages of both quiescent (M0) and pro-inflammatory (M1) phenotypes, maintaining initial viability of each cell type at 24 h of co-culture. We established healthy (M0-based) and diseased (M1-based) joint models within this system. An established disease model based on supplementation of IFN-γ and lipopolysaccharide in cell culture media was used to induce an M1 phenotype in macrophages to recapitulate inflammatory conditions found in Osteoarthritis. Cell viability was assessed using NucBlue™ Live and NucGreen™ Dead fluorescent stains, with mean viability of 83.9% ± 14% and 83.3% ± 12% for healthy and diseased models, respectively, compared with 93.3% ± 4% for cell in standard monoculture conditions. Cytotoxicity was assessed via a lactate dehydrogenase (LDH) assay and showed no measurable increase in lactate dehydrogenase release into the culture medium under co-culture conditions, indicating that neither model promotes a loss of cell membrane integrity due to cytotoxic effects. Cellular metabolic activity was assessed using a PrestoBlue™ assay and indicated increased cellular metabolic activity in co-culture, with levels 5.9 ± 3.2 times mean monolayer cell metabolic activity levels in the healthy joint model and 5.3 ± 3.4 times mean monolayer levels in the diseased model. Overall, these findings indicate that the multi-tissue nature of in vivo human joint conditions can be recapitulated by our microfluidic co-culture system at 24 h and thus this model serves as a promising tool for studying the pathophysiology of rheumatic diseases and testing potential therapeutics.
Collapse
Affiliation(s)
- Hosein Mirazi
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Scott T. Wood
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Portland Laboratory for Biotechnology and Health Sciences, University of New England, Portland, ME, United States
- Department of Biomedical Sciences, University of New England, Biddeford, ME, United States
| |
Collapse
|
29
|
Jafarzadeh S, Nemati M, Zandvakili R, Jafarzadeh A. Modulation of M1 and M2 macrophage polarization by metformin: Implications for inflammatory diseases and malignant tumors. Int Immunopharmacol 2025; 151:114345. [PMID: 40024215 DOI: 10.1016/j.intimp.2025.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Macrophages perform an essential role in the body's defense mechanisms and tissue homeostasis. These cells exhibit plasticity and are categorized into two phenotypes, including classically activated/M1 pro-inflammatory and alternatively activated/M2 anti-inflammatory phenotypes. Functional deviation in macrophage polarization occurs in different pathological conditions that need correction. In addition to antidiabetic impacts, metformin also possesses multiple biological activities, including immunomodulatory, anti-inflammatory, anti-tumorigenic, anti-aging, cardioprotective, hepatoprotective, and tissue-regenerative properties. Metformin can influence the polarization of macrophages toward M1 and M2 phenotypes. The ability of metformin to support M2 polarization and suppress M1 polarization could enhance its anti-inflammatory properties and potentiate its protective effects in conditions such as chronic inflammatory diseases, atherosclerosis, and obesity. However, in metformin-treated tumors, the proportion of M2 macrophages is decreased, while the frequency ratio of M1 macrophages is increased, indicating that metformin can modulate macrophage polarization from a pro-tumoral M2 state to an anti-tumoral M1 phenotype in malignancies. Metformin affects macrophage polarization through AMPK-dependent and independent pathways involving factors, such as NF-κB, mTOR, ATF, AKT/AS160, SIRT1, STAT3, HO-1, PGC-1α/PPAR-γ, and NLRP3 inflammasome. By modulating cellular metabolism and apoptosis, metformin can also influence macrophage polarization. This review provides comprehensive evidence regarding metformin's effects on macrophage polarization and the underlying mechanisms. The polarization-inducing capabilities of metformin may provide significant therapeutic applications in various inflammatory diseases and malignant tumors.
Collapse
Affiliation(s)
- Sara Jafarzadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
30
|
Zhang N, Sun L, Zhou S, Ji C, Cui T, Chu Q, Ye J, Liang S, Ma K, Liu Y, Li X, Guo X, Zhang W, Gu X, Cheng C, Zha Q, Tao S, Zhang Y, Chu J, Wu C, Zhang Y, Wang J, Liu Y, Liu L. Cholangiocarcinoma PDHA1 succinylation suppresses macrophage antigen presentation via alpha-ketoglutaric acid accumulation. Nat Commun 2025; 16:3177. [PMID: 40180922 PMCID: PMC11968997 DOI: 10.1038/s41467-025-58429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Gemcitabine combined with cisplatin is the first-line chemotherapy for advanced cholangiocarcinoma, but drug resistance remains a challenge, leading to unsatisfactory therapeutic effect. Here, we elucidate the possibility of chemotherapy regimens sensitized by inhibiting succinylation in patients with cholangiocarcinoma from the perspective of post-translational modification. Our omics analysis reveals that succinylation of PDHA1 lysine 83, a key enzyme in the tricarboxylic acid cycle, alters PDH enzyme activity, modulates metabolic flux, and leads to alpha-ketoglutaric acid accumulation in the tumor microenvironment. This process activates the OXGR1 receptor on macrophages, triggering MAPK signaling and inhibiting MHC-II antigen presentation, which promotes immune escape and tumor progression. Moreover, we show that inhibiting PDHA1 succinylation with CPI-613 enhances the efficacy of gemcitabine and cisplatin. Targeting PDHA1 succinylation may be a promising strategy to improve treatment outcomes in cholangiocarcinoma and warrants further clinical exploration.
Collapse
Affiliation(s)
- Ning Zhang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Shuo Zhou
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Qi Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Jiareng Ye
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Shuhang Liang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kun Ma
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Yufeng Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Xianying Li
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
- Hepatobiliary Surgery Department, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Xinyu Guo
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Weizhi Zhang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Xuetian Gu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Cheng Cheng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Qingrui Zha
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Shengwei Tao
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Yunguang Zhang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Junhui Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Yuchen Zhang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, China.
| | - Lianxin Liu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
31
|
Wang X, Zhou H, Li D, Zhao Z, Peng K, Xu X, Wang JJ, Wang Y, Wang J, Zhang JJ, Wan SS, Shi MQ, Chen J, Ding XG, Ji FH. Molecular Targeting of Intracellular Bacteria by Homotypic Recognizing Nanovesicles for Infected Pneumonia Treatment. Biomater Res 2025; 29:0172. [PMID: 40177029 PMCID: PMC11964281 DOI: 10.34133/bmr.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/21/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Although extensive antibiotic regimens have been implemented to address pathogen-infected pneumonia, existing strategies are constrained in their efficacy against intracellular bacteria, a prominent contributor to antibiotic resistance. In addition, the concurrent occurrence of a cytokine storm during antibiotic therapy presents a formidable obstacle in the management of pneumonia caused by pathogens. In the present study, an infection-targeting system that leverages M2-macrophage-derived vesicles [exosomes (Exos)] as vehicles to convey antibiotics (antibiotics@Exos) was developed for effective pneumonia management. The proposed system can enable antibiotics to be specifically delivered to infected macrophages in pneumonia through homotypic recognition and was found to exhibit an exceptional intracellular bactericidal effect. Moreover, M2-type vesicles exhibit a high degree of efficiency in reprogramming inflammatory macrophages toward an anti-inflammatory phenotype. As a result, the administration of antibiotics@Exos was found to substantical decrease the level of the infiltrated inflammatory cells and alleviate the inflammatory factor storm in the lungs of acute lung injury mice. This intervention resulted in the alleviation of reactive-oxygen-species-induced damage, reduction of pulmonary edema, and successful pneumonia treatment. This bioactive vesicle delivery system effectively compensates for the limitations of traditional antibiotic therapy regimens with pluralism effects, paving a new strategy for serious infectious diseases, especially acute pneumonia treatment.
Collapse
Affiliation(s)
- Xu Wang
- Department of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Zhou
- Department of General Surgery,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu , China
| | - Dan Li
- Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Zhe Zhao
- Suzhou Institute of Nano-Tech and Nano-Bionics, CAS Key Laboratory of Nano-Bio Interface Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology & Institute of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jia-Jia Wang
- Department of Pulmonary and Critical Care Medicine,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang Wang
- Department of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Wang
- Department of Intensive Care Medicine,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jing-Jing Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors,
Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Shuang-Shuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors,
Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Mai-Qing Shi
- Department of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Chen
- Department of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xian-Guang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors,
Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Fu-Hai Ji
- Department of Anesthesiology & Institute of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
32
|
Gu Y, Li Z, Zhou S, Han G. Recent advances in delivery systems of ginsenosides for oral diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156422. [PMID: 39951968 DOI: 10.1016/j.phymed.2025.156422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Ginsenosides, the principal active ingredients in ginseng, have anti-bacterial, anti-inflammatory, antioxidant, anticancer, osteogenic, cardioprotective, and neuroprotective properties. Oral diseases afflict about half of the world's population. Ginsenosides' multifunctional properties have led to substantial investigation into their potential to prevent and treat oral disorders. However, their low absorption and poor targeting limit their effectiveness. PURPOSE This review summarizes the latest research progress on ginsenoside-based drug delivery systems and the potential of ginsenosides in preventing and treating oral diseases to provide a theoretical basis for clinical applications. METHODS Using "ginsenoside", "drug delivery", "nanoparticles", "liposomes", "hydrogel", "oral disease", "toxicology", "pharmacology", "clinical translation" and combinations of these keywords in PubMed, Web of Science, and Science Direct. The search was conducted until December 2024. RESULTS The limitations of natural ginsenosides can be overcome by utilizing drug delivery systems to improve pharmacological activity, bioavailability and targeting. The multifunctional pharmacological activities of ginsenosides offer promising avenues for treating oral diseases. In addition, the susceptibility of the oral cavity to infection by pathogenic bacteria and the diluting effect of saliva pose significant challenges to treatment. The emergence of drug delivery marks a breakthrough in addressing these issues. CONCLUSION Ginsenoside-based drug delivery methods improve bioactivity, targeting, and reduce costs. This review emphasizes current advancements in ginsenosides within novel drug delivery systems, specifically on its potential in preventing and treating oral disorders. However, multiple well-designed clinical trials are needed to further evaluate the efficacy and safety of these drugs.
Collapse
Affiliation(s)
- Yuqing Gu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, PR China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, PR China
| | - Shu Zhou
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, 1500# Qinghua Road, Chaoyang District, Changchun, 130021, PR China.
| |
Collapse
|
33
|
Li C, Song Y, Meng X. The Role of Macrophages in Nerve Regeneration: Polarization and Combination with Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:162-173. [PMID: 38832865 DOI: 10.1089/ten.teb.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Peripheral nerve regeneration after trauma poses a substantial clinical challenge that has already been investigated for many years. Infiltration of immune cells is a critical step in the response to nerve damage that creates a supportive microenvironment for regeneration. In this work, we focus on a special type of immune cell, macrophage, in addressing the problem of neuronal regeneration. We discuss the complex endogenous mechanisms of peripheral nerve injury and regrowth vis-à-vis macrophages, including their recruitment, polarization, and interplay with Schwann cells post-trauma. Furthermore, we elucidate the underlying mechanisms by which exogenous stimuli govern the above events. Finally, we summarize the necessary roles of macrophages in peripheral nerve lesions and reconstruction. There are many challenges in controlling macrophage functions to achieve complete neuronal regeneration, even though considerable progress has been made in understanding the connection between these cells and peripheral nerve damage.
Collapse
Affiliation(s)
- Changqing Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanyu Song
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xianyu Meng
- Department of Orthopedics, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
34
|
Wen J, Li J, Wu Z. Neutrophil extracellular traps induced by diabetes aggravate periodontitis by inhibiting janus kinase/signal transducers and activators of transcription signaling in macrophages. J Dent Sci 2025; 20:869-876. [PMID: 40224106 PMCID: PMC11993069 DOI: 10.1016/j.jds.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/14/2024] [Indexed: 04/15/2025] Open
Abstract
Background/purpose Diabetes, which is a systemic disease, increases susceptibility to destructive periodontal diseases, which are characterized by infectious susceptibility, but the potential mechanisms remain unknown. The aim of this study was to investigate the mechanism of high glucose environment promoting the occurrence and development of local periodontal inflammation. Materials and methods In this study, the effects of neutrophil extracellular traps (NETs) on macrophage polarization and the mechanism were designed to verify whether this course plays a role in periodontal tissue impairment associated with diabetes. Here, we examined the impact of NETs on macrophages in vitro. NETs were isolated from cultures of neutrophils exposed to hyperglycemia. Mouse models of diabetic periodontitis (DP) and macrophage polarization were developed, and the degrees of NET formation in the periodontal tissue of DP mice were assessed. Furthermore, western blotting was performed to analyze the related mechanisms. Results The results revealed that hyperglycemia induced the formation of NETs, and abundant NET formation led to proinflammatory cytokine secretion by macrophages and low expression of JAK-2 and STAT-3 in vitro and in vivo. NETs regulated macrophage polarization through the JAK/STAT pathway. Conclusion These results suggest that NETs target proinflammatory cytokine secretion via the JAK/STAT pathway and may play important roles in DP progression and macrophage polarization, which indicates that therapeutically referring to this regulatory pathway might be a promising method for treating diabetes-associated inflammatory diseases.
Collapse
Affiliation(s)
- Jing Wen
- Changsha Stomatology Hosipital, Changsha, China
| | - Jingru Li
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Zhenhuan Wu
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Ning J, Sah RK, Wang J. Coculture of mesenchymal stem cells and macrophage: A narrative review. J Pharmacol Exp Ther 2025; 392:103531. [PMID: 40154096 DOI: 10.1016/j.jpet.2025.103531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/24/2025] [Indexed: 04/01/2025] Open
Abstract
Stem cell transplantation is a promising treatment for repairing damaged tissues, but challenges like immune rejection and ethical concerns remain. Mesenchymal stem cells (MSCs) offer high differentiation potential and immune regulatory activity, showing promise in treating diseases such as gynecological, neurological, and kidney disorders. With scientific progress, MSC applications are overcoming traditional treatment limitations. In MSCs-macrophage coculture, MSCs transform macrophages into anti-inflammatory M2 macrophages, reducing inflammation, whereas macrophages enhance MSCs osteogenic differentiation. This coculture is vital for immune modulation and tissue repair, with models varying by contact type and dimensional arrangements. Factors such as coculture techniques and cell ratios influence outcomes. Benefits include improved heart function, wound healing, reduced lung inflammation, and accelerated bone repair. Challenges include optimizing coculture conditions. This study reviews the methodologies, factors, and mechanisms of MSC-macrophage coculture, providing a foundation for tissue engineering applications. SIGNIFICANCE STATEMENT: This review underlines the significant role of mesenchymal stem cell-macrophage coculture, providing a foundation for tissue engineering application.
Collapse
Affiliation(s)
- Jun Ning
- Department of General Gynecology II, Gynecology and Obstetrics Center, the First Hospital of Jilin University, Changchun, China
| | - Rajiv Kumar Sah
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital, Houston, Texas
| | - Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
36
|
Li J, Wang L, Wang M, Zhang H. Activation of aryl hydrocarbon receptor attenuates intestinal inflammation by enhancing IRF4-mediated macrophage M2 polarization. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167735. [PMID: 39971258 DOI: 10.1016/j.bbadis.2025.167735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Crohn's disease (CD) is characterized by immune cell dysregulation, with macrophages playing an indisputable role. Macrophages can exhibit opposing polarization under different conditions, resulting in pro- or anti-inflammatory effects. The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, is implicated in intestinal inflammation by regulating both innate and adaptive immune responses. However, the regulatory mechanism between AhR and macrophages in colitis has not been thoroughly investigated. METHODS Macrophage polarization in the colonic tissue of active CD patients was assessed. Following colitis induction in mice by 2,4,6-trinitro-benzenesulfonic acid (TNBS), an intraperitoneal injection of the natural AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ) was administered. The severity of colitis was estimated, and macrophage polarization was detected. In an in vitro setting, bone marrow-derived macrophages (BMDMs) were polarized to the M2 phenotype in the presence or absence of FICZ. Interferon regulatory factor 4 (IRF4) siRNA was applied to knockdown IRF4 expression. M2-specific markers were quantified using quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and flow cytometry. RESULTS Compared with healthy controls, active CD patients exhibited a lower presence of M2 macrophages in colonic tissue. Experimentally, FICZ was found to protect mice against TNBS-induced colitis, as evidenced by reduced diarrhea, bloody stool, and weight loss. This effect was associated with an increase in M2 macrophages and the release of IL-10 in the intestine. In BMDMs, FICZ promoted the expressions of M2-specific markers, including Ym1, Fizz1, IL-10, and CD206. Furthermore, FICZ upregulated IRF4 expression. After IRF4 silencing with siRNA, the enhancement of macrophage M2 polarization by FICZ was significantly impaired. CONCLUSION Activation of AhR appears to have a beneficial effect on intestinal inflammation by promoting macrophage M2 polarization. This effect is partially mediated by the upregulation of IRF4 expression and may lead to new insight into the pathogenesis of CD.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Wang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyuan Wang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongjie Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
37
|
Zhang K, Jagannath C. Crosstalk between metabolism and epigenetics during macrophage polarization. Epigenetics Chromatin 2025; 18:16. [PMID: 40156046 PMCID: PMC11954343 DOI: 10.1186/s13072-025-00575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/17/2025] [Indexed: 04/01/2025] Open
Abstract
Macrophage polarization is a dynamic process driven by a complex interplay of cytokine signaling, metabolism, and epigenetic modifications mediated by pathogens. Upon encountering specific environmental cues, monocytes differentiate into macrophages, adopting either a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype, depending on the cytokines present. M1 macrophages are induced by interferon-gamma (IFN-γ) and are characterized by their reliance on glycolysis and their role in host defense. In contrast, M2 macrophages, stimulated by interleukin-4 (IL-4) and interleukin-13 (IL-13), favor oxidative phosphorylation and participate in tissue repair and anti-inflammatory responses. Metabolism is tightly linked to epigenetic regulation, because key metabolic intermediates such as acetyl-coenzyme A (CoA), α-ketoglutarate (α-KG), S-adenosylmethionine (SAM), and nicotinamide adenine dinucleotide (NAD+) serve as cofactors for chromatin-modifying enzymes, which in turn, directly influences histone acetylation, methylation, RNA/DNA methylation, and protein arginine methylation. These epigenetic modifications control gene expression by regulating chromatin accessibility, thereby modulating macrophage function and polarization. Histone acetylation generally promotes a more open chromatin structure conducive to gene activation, while histone methylation can either activate or repress gene expression depending on the specific residue and its methylation state. Crosstalk between histone modifications, such as acetylation and methylation, further fine-tunes macrophage phenotypes by regulating transcriptional networks in response to metabolic cues. While arginine methylation primarily functions in epigenetics by regulating gene expression through protein modifications, the degradation of methylated proteins releases arginine derivatives like asymmetric dimethylarginine (ADMA), which contribute directly to arginine metabolism-a key factor in macrophage polarization. This review explores the intricate relationships between metabolism and epigenetic regulation during macrophage polarization. A better understanding of this crosstalk will likely generate novel therapeutic insights for manipulating macrophage phenotypes during infections like tuberculosis and inflammatory diseases such as diabetes.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, School of Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA.
| |
Collapse
|
38
|
Shen L, Zhou Y, Gong J, Fan H, Liu L. The role of macrophages in hypertrophic scarring: molecular to therapeutic insights. Front Immunol 2025; 16:1503985. [PMID: 40226618 PMCID: PMC11986478 DOI: 10.3389/fimmu.2025.1503985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Hypertrophic Scar (HS) is a common fibrotic disease of the skin, usually caused by injury to the deep dermis due to trauma, burns, or surgical injury. The main feature of HS is the thickening and hardening of the skin, often accompanied by itching and pain, which seriously affects the patient's quality of life. Macrophages are involved in all stages of HS genesis through phenotypic changes. M1-type macrophages primarily function in the early inflammatory phase by secreting pro-inflammatory factors, while M2-type macrophages actively contribute to tissue repair and fibrosis. Despite advances in understanding HS pathogenesis, the precise mechanisms linking macrophage phenotypic changes to fibrosis remain incompletely elucidated. This review addresses these gaps by discussing the pathological mechanisms of HS formation, the phenotypic changes of macrophages at different stages of HS formation, and the pathways through which macrophages influence HS progression. Furthermore, emerging technologies for HS treatment and novel therapeutic strategies targeting macrophages are highlighted, offering potential avenues for improved prevention and treatment of HS.
Collapse
Affiliation(s)
| | | | | | - Hongqiao Fan
- Department of Galactophore, The First Hospital of Hunan University of Chinese
Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese
Medicine, Changsha, Hunan, China
| |
Collapse
|
39
|
Li D, Sun Y, Liu G, Liu C, Zhang G, Wang H, Sun S, An S. Layered Double Hydroxide Reshapes the Immune Microenvironment of Rheumatoid Arthritis through Small Mothers against Decapentaplegic 5. Biomater Res 2025; 29:0176. [PMID: 40161233 PMCID: PMC11951257 DOI: 10.34133/bmr.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/21/2025] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
Persistent synovitis is a pivotal pathological feature of rheumatoid arthritis (RA). However, the current rheumatoid drugs are accompanied by severe side effects and have limited anti-inflammatory capabilities. In this work, we designed a bioactive material-folic acid modified layered double hydroxides (FA-LDH), aiming at targeting M1 macrophages and modulating macrophage repolarization. The in vitro experiment showed that FA-LDH mitigated the release of proinflammatory cytokines and promoted the expression of M2 macrophage markers. In terms of the action mechanism, FA-LDH modulated the nucleocytoplasmic transport of the small mothers against decapentaplegic 5 (Smad5) protein by adjusting the pH within the immune microenvironment. Subsequently, relying on the interaction between phospho-Smad5 (pSmad5) and p65, the nuclear factor kappa B signaling pathway was down-regulated through inhibiting nuclear transport of p65. Additionally, FA-LDH exhibited excellent targeting capability toward M1 macrophages and strong accumulation capacity in inflamed joints. In vivo experiment showed that FA-LDH could relieve swelling of limbs, reduce the infiltration of inflammatory cells, and protect joint cartilage and subchondral bone structure in collagen-induced arthritis mice. In summary, this work introduces a strategy for utilizing bioactive FA-LDH in the treatment of RA, highlighting the potential of FA-LDH to alleviate inflammation and reshape the immune microenvironment through the pSmad5/p65 axis.
Collapse
Affiliation(s)
- Dengju Li
- Department of Joint Surgery,
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yawei Sun
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology,
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guangxian Liu
- Department of Orthopaedic,
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital,
Shandong University, Jinan, Shandong 250012, China
| | - Guojiang Zhang
- Department of Joint Surgery, Shandong Provincial Hospital,
Shandong University, Jinan, Shandong 250012, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital,
Shandong University, Jinan, Shandong 250012, China
| | - Shui Sun
- Department of Joint Surgery,
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Department of Joint Surgery, Shandong Provincial Hospital,
Shandong University, Jinan, Shandong 250012, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Senbo An
- Department of Joint Surgery,
Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
40
|
Steib A, Rozmer K, Szőke É, Kun J, Farkas N, Feller D, Pongrácz J, Pohóczky K, Helyes Z. The TRPA1 cation channel is upregulated by cigarette smoke in mouse and human macrophages modulating lung inflammation. Sci Rep 2025; 15:10661. [PMID: 40148437 PMCID: PMC11950515 DOI: 10.1038/s41598-025-95662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
Cigarette smoke (CS) is a well-known source of several inflammatory, cytotoxic and genotoxic compounds that cause chronic lung diseases. The transient receptor potential ankyrin 1 (TRPA1), a smoking-responsive, non-selective cation channel, is expressed by both capsaicin-sensitive peptidergic sensory nerves and non-neuronal cells of the lung, but there are few and controversial data on its expression and function on macrophages. Here, we investigated TRPA1 mRNA and protein expression in mouse and human lung tissues and human 3D spheroids, with a particular focus on its expression and potential regulatory effects on pro- and anti-inflammatory macrophage functions in response to CS. TRPA1 was stably expressed in both human and mouse alveolar macrophages, being upregulated after CS exposure and its functional activity was demonstrated in mouse macrophage culture. Moreover, besides CS, the TRPA1 genotype itself affected the expression of M1- (Il-1β, Il-23) and M2-type (Il-10, Tgfβ) macrophage cytokines. Furthermore, CS extract increased TRPA1 mRNA in human lung spheroids showing more prominent expression in macrophage-containing 3D aggregates, while CS extract influenced an elevated TGFβ expression specifically in macrophage-containing spheroids. These results suggest the fine-tuning role of TRPA1 activation in CS-induced airway inflammation, particularly in macrophages, but further studies are needed to draw precise conclusions.
Collapse
Affiliation(s)
- Anita Steib
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN PTE), Pécs, Hungary
| | - Katalin Rozmer
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN PTE), Pécs, Hungary
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN PTE), Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Diána Feller
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Judit Pongrácz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Krisztina Pohóczky
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary.
- National Laboratory for Drug Research and Development, Budapest, Hungary.
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN PTE), Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| |
Collapse
|
41
|
Liang X, Li Y, Wu Y, Wu T, Huang D, Tang Z, Cheng L, Tan C, Liao R, Zhao J, Liao Z, Luo Y, Liu Y. Human umbilical cord mesenchymal stem cell-derived microvesicles alleviate pulmonary fibrosis by inhibiting monocyte‒macrophage migration through ERK1/2 signaling-mediated suppression of CCL2 expression. Stem Cell Res Ther 2025; 16:145. [PMID: 40128840 PMCID: PMC11934500 DOI: 10.1186/s13287-025-04266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a disease with high morbidity and mortality rates, but effective treatment options are extremely limited. Mesenchymal stem cells (MSCs) and their derivatives show promise as potential therapeutics for PF. However, the underlying mechanisms responsible for these beneficial effects remain poorly understood. The objective of this study was to elucidate the specific mechanism through which microvesicles derived from human umbilical cord MSCs (MSC-MVs) alleviate PF. METHODS The effects of MSC-MVs on PF in bleomycin (BLM)-induced mice were assessed via histological staining, flow cytometry, and enzyme-linked immunosorbent assays (ELISAs). The potential therapeutic target was identified via RNA sequencing (RNA-seq) analysis, followed by validation via real-time quantitative polymerase chain reaction (RT‒qPCR), ELISAs, scratch testing, and western blotting (WB). RESULTS MSC-MVs significantly attenuated collagen fiber deposition and downregulated the expression of extracellular matrix components in the lungs of the BLM-induced mice. Moreover, this treatment substantially ameliorated lung inflammation by reducing the monocyte‒macrophage ratio and the TNF-α and IL-6 levels. Further analyses revealed that MSC-MVs inhibited the classic chemotactic CCL2/CCR2 axis of monocyte‒macrophages, leading to reduced recruitment of monocytes‒macrophages to the lungs, which decreased lung inflammation and prevented fibrotic progression. Both in vitro and in vivo findings demonstrated that MSC-MVs suppressed ERK1/2 phosphorylation followed by decreased CCL2 production to modulate monocyte-macrophage migration. CONCLUSIONS Our findings demonstrate that the protective effect of MSC-MVs against BLM-induced lung toxicity was achieved through the inhibition of the ERK1/2 signaling pathway, leading to the suppression of CCL2 expression and subsequent modulation of monocyte-macrophage migration, thereby establishing a theoretical basis for the effect of MSC-MVs in PF.
Collapse
Affiliation(s)
- Xiuping Liang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanhong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yinlan Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tong Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Deying Huang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziyi Tang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Cheng
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunyu Tan
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ronghui Liao
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhao
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zehui Liao
- Meishan People's Hospital, Meishan, Sichuan, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yi Liu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
42
|
Izuka S, Komai T, Tsuchida Y, Tsuchiya H, Okamura T, Fujio K. The role of monocytes and macrophages in idiopathic inflammatory myopathies: insights into pathogenesis and potential targets. Front Immunol 2025; 16:1567833. [PMID: 40181992 PMCID: PMC11965591 DOI: 10.3389/fimmu.2025.1567833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are heterogeneous autoimmune disorders characterized by muscle inflammation, weakness, and extramuscular manifestations such as interstitial lung disease, skin rash, arthritis, dysphagia, myocarditis and other systemic organ involvement. Although T and B cells have historically been central to the understanding of IIM immunopathology, monocytes and their differentiated progenitor cells, macrophages, are increasingly being recognized as critical mediators of both tissue damage and repair. In subtypes such as dermatomyositis, immune-mediated necrotizing myopathy and antisynthetase syndrome, macrophages infiltrate skeletal muscle and other affected tissues, contributing to inflammation via production of pro-inflammatory cytokines, chemokines, and reactive oxygen species. Dysregulated interferon signaling, mitochondrial stress, and aberrant metabolic states in these cells further perpetuate tissue injury in IIMs. Conversely, certain macrophage subsets can support muscle fiber regeneration and dampen inflammation, underscoring the dual roles these cells can play. Future research into the heterogeneity of monocytes and macrophages, including single-cell transcriptomic and metabolomic approaches, will help clarify disease mechanisms, identify biomarkers of disease activity and prognosis, and guide novel therapeutic strategies targeting these innate immune cells in IIM.
Collapse
Affiliation(s)
- Shinji Izuka
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Tsuchiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
43
|
Arruda BP, Martins PP, Kihara AH, Takada SH. Perinatal asphyxia and Alzheimer's disease: is there a correlation? Front Pediatr 2025; 13:1567719. [PMID: 40171172 PMCID: PMC11958199 DOI: 10.3389/fped.2025.1567719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
The perinatal development period is critical for the formation of brain structures responsible for cognitive functions. Disruptions during this phase, such as perinatal asphyxia, characterized by impaired gas exchange and hypoxia, can lead to long-lasting neuronal damage and increased susceptibility to neurodegenerative diseases, including Alzheimer's disease (AD). AD, the most common cause of dementia globally, is marked by amyloid plaques, neurofibrillary tangles, and progressive cognitive decline. Emerging evidence links perinatal asphyxia with an elevated risk of AD, highlighting the potential role of oxidative stress, neuroinflammation, and epigenetic modifications as mediators. This review explores the mechanisms underlying brain damage after perinatal asphyxia, emphasizing oxidative stress, inflammation, and epigenetic changes that contribute to lifelong neurodegenerative susceptibility. Additionally, biomarkers identified in animal models reveal parallels between perinatal asphyxia and AD pathology, such as amyloid precursor protein alterations, gliosis, and microglial activation. These findings suggest perinatal asphyxia may prime microglia and epigenetically alter gene expression, predisposing individuals to chronic neurodegeneration. Future research should leverage advanced methodologies, including transcriptomics, epigenomics, and aged brain organoid models, to elucidate early-life influences on AD development. Understanding these mechanisms may pave the way for novel prevention strategies targeting early-life risk factors for neurodegenerative diseases.
Collapse
Affiliation(s)
- Bruna Petrucelli Arruda
- Neurohistology Laboratory, Center for Computation, Mathematics and Cognition, Federal University of ABC, Sao Bernardo do Campo, São Paulo, Brazil
| | - Pamela Pinheiro Martins
- Neurohistology Laboratory, Center for Computation, Mathematics and Cognition, Federal University of ABC, Sao Bernardo do Campo, São Paulo, Brazil
| | - Alexandre Hiroaki Kihara
- Neurogenetics Laboratory, Center for Computation, Mathematics and Cognition, Federal University of ABC, Sao Bernardo do Campo, São Paulo, Brazil
| | - Silvia Honda Takada
- Neurohistology Laboratory, Center for Computation, Mathematics and Cognition, Federal University of ABC, Sao Bernardo do Campo, São Paulo, Brazil
| |
Collapse
|
44
|
Zhang Y, Chen X, Li J, Chen X, Zhao J, Liu Q, Li X, Wang X, Xiao Z. Seminal plasma exosome derived miR-26-5p can regulate decidual macrophage polarization via PTEN / PI3K / AKT signaling pathway. Sci Rep 2025; 15:9192. [PMID: 40097471 PMCID: PMC11914418 DOI: 10.1038/s41598-025-92880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
The immunomodulatory effects of seminal plasma (SP) on the maternal immune system play an important role in the implantation and development of the embryo. Decidual macrophages (dMΦs) are one of the major immune cells in the maternal-fetal immune microenvironment, and their M2-type polarization facilitates the establishment and maintenance of pregnancy. However, the role of SP on the polarization of dMΦs is unknown. In this study, we investigated the role and mechanism of SP on the polarization of dMΦs by gene chip sequencing as well as in vitro and in vivo experiments. The results revealed that SP promoted dMΦs M2-type polarization. Gene chip sequencing revealed that miR-26-5p was highly expressed in seminal exosomes (SEs) which could act on PTEN/PI3K/AKT signaling pathway and significantly promote MΦs M2 polarization. Moreover, SEs supplementation significantly reduced embryo resorption in spontaneously aborted mice. In conclusion, our study demonstrated that the SEs derived miR-26-5p in SP promoted the M2 polarization of dMΦs by targeting PTEN/PI3K/AKT signaling pathway, which created an immune-tolerant environment conducive to embryo implantation and development. This study provided new ideas for clinical SP-assisted therapy to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Yan Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiaolin Chen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jie Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jing Zhao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qing Liu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiaoling Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xinyu Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhuoni Xiao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
45
|
Zheng L, Zhao B, Ji R, Zhang Z, Liu Y, Zhao X, Cai J, Qiao T. Berbamine attenuates hind limb ischemia-reperfusion injury by eliminating lipid ROS and inhibiting p65 nuclear translocation. Front Pharmacol 2025; 16:1509860. [PMID: 40135236 PMCID: PMC11933021 DOI: 10.3389/fphar.2025.1509860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
This research aims to explore whether Berbamine (BBM) can mitigate tissue damage in mice resulting from hind limb muscle ischemia-reperfusion by scavenging lipid ROS and inhibiting p65 nuclear translocation. The hind limb ischemia-reperfusion (IR) injury model in mice was employed. Forty-eight mice (n = 12 per group) were randomly allocated into four groups: Sham group, IR group, IR + BBM (20 mg/kg) group, and IR + BBM (50 mg/kg) group. We observed that BBM pretreatment shielded against muscle damage and diminished levels of cell apoptosis compared to the control group. The mechanism likely involves reducing the movement of p65 into the nucleus and lessening the build-up of lipid ROS in muscle tissue. This action helps to decrease the release of substances that cause inflammation, ultimately reducing the inflammation in tissues that occurs as a result of hind limb IR. Our findings suggest that BBM has a protective impact on hindlimb ischemia-reperfusion injury, potentially due to its capacity to eliminate tissue lipid ROS and prevent p65 nuclear translocation.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Biao Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Run Ji
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhenxi Zhang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yutong Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoqi Zhao
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jing Cai
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
46
|
Dalaka E, Stefos GC, Politis I, Theodorou G. Immunomodulatory Properties of Sweet Whey-Derived Peptides in THP-1 Macrophages. Molecules 2025; 30:1261. [PMID: 40142037 PMCID: PMC11944360 DOI: 10.3390/molecules30061261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Sweet whey (SW), a by-product of cheese production, has potential immunomodulatory properties that could be beneficial in preventing inflammation-related diseases. This study investigated the effects of SW derived from bovine, caprine, ovine, or an ovine/caprine mixture of milk on inflammation-related gene expression in THP-1-derived macrophages, both with and without LPS stimulation. Cells were treated with SW-D-P3 (a fraction smaller than 3 kDa produced by in vitro digestion), and the expression of inflammation-related genes was assessed using quantitative PCR. Results showed that the expression of TLR2 and ICAM1 was attenuated in non-LPS-stimulated macrophages treated with SW-D-P3, regardless of animal origin. Moreover, the expression of TLR4, IL1B, and IL6 was decreased and the expression of an NF-κB subunit RELA and CXCL8 was elevated in a subset of samples treated with SW-D-P3, depending on the milk source. In LPS-challenged cells, the expression of CXCL8 was upregulated and the expression of IRF5 and TNFRSF1A was downregulated in SW-D-P3-treated cells, regardless of animal origin. On the other hand, a number of inflammation-related genes were differentially expressed depending on the animal origin of the samples. Moreover, the higher IL10 expression observed in cells treated with ovine/caprine SW-D-P3 compared to those treated with SW-D-P3 of bovine, caprine, or ovine origin suggests an anti-inflammatory response, in which alternatively activated macrophages (M2 polarization phenotype) may participate. Overall, these findings suggest that incorporating SW into the food industry, either as a standalone ingredient or supplement, may help to prevent inflammation-related diseases.
Collapse
Affiliation(s)
- Eleni Dalaka
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (G.C.S.); (I.P.)
| | | | | | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (G.C.S.); (I.P.)
| |
Collapse
|
47
|
Imamichi T, Yang J, Chen Q, Goswami S, Marquez M, Kariyawasam U, Sharma HN, Wiscovitch-Russo R, Li X, Aioi A, Adelsberger JW, Chang W, Higgins J, Sui H. Interleukin-27-polarized HIV-resistant M2 macrophages are a novel subtype of macrophages that express distinct antiviral gene profiles in individual cells: implication for the antiviral effect via different mechanisms in the individual cell-dependent manner. Front Immunol 2025; 16:1550699. [PMID: 40129989 PMCID: PMC11931227 DOI: 10.3389/fimmu.2025.1550699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction Interleukin (IL)-27 is an anti-viral cytokine. IL-27-treated monocyte-derived macrophages (27-Mac) suppressed HIV replication. Macrophages are generally divided into two subtypes, M1 and M2 macrophages. M2 macrophages can be polarized into M2a, M2b, M2c, and M2d by various stimuli. IL-6 and adenosine induce M2d macrophages. Since IL-27 is a member of the IL-6 family of cytokines, 27-Mac was considered M2d macrophages. In the current study, we compared biological function and gene expression profiles between 27-Mac and M2d subtypes. Methods Monocytes derived from health donors were differentiated to M2 using macrophage colony-stimulating factor. Then, the resulting M2 was polarized into different subtypes using IL-27, IL-6, or BAY60-658 (an adenosine analog). HIV replication was monitored using a p24 antigen capture assay, and the production of reactive oxygen species (ROS) was determined using a Hydrogen Peroxide Assay. Phagocytosis assay was run using GFP-labeled opsonized E. coli. Cytokine production was detected by the IsoPlexis system, and the gene expression profiles were analyzed using single-cell RNA sequencing (scRNA-seq). Results and Discussion 27-Mac and BAY60-658-polarized M2d (BAY-M2d) resisted HIV infection, but IL-6-polarized M2d (6-M2d) lacked the anti-viral effect. Although phagocytosis activity was comparable among the three macrophages, only 27-Mac, but neither 6-M2d nor BAY-M2d, enhanced the generation of ROS. The cytokine-producing profile of 27-Mac did not resemble that of the two subtypes. The scRNA-seq revealed that 27-Mac exhibited a different clustering pattern compared to other M2ds, and each 27-Mac expressed a distinct combination of anti-viral genes. Furthermore, 27-Mac did not express the biomarkers of M2a, M2b, and M2c. However, it significantly expressed CD38 (p<0.01) and secreted CXCL9 (p<0.001), which are biomarkers of M1. Conclusions These data suggest that 27-Mac may be classified as either an M1-like subtype or a novel subset of M2, which resists HIV infection mediated by a different mechanism in individual cells using different anti-viral gene products. Our results provide a new insight into the function of IL-27 and macrophages.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Suranjana Goswami
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Mayra Marquez
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Udeshika Kariyawasam
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Homa Nath Sharma
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Rosana Wiscovitch-Russo
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Xuan Li
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Akihiro Aioi
- Laboratory of Basic Research, Septem-Soken, Osaka, Japan
| | - Joseph W. Adelsberger
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jeanette Higgins
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
48
|
Raoufi A, Soleimani Samarkhazan H, Nouri S, Khaksari MN, Abbasi Sourki P, Sargazi Aval O, Baradaran B, Aghaei M. Macrophages in graft-versus-host disease (GVHD): dual roles as therapeutic tools and targets. Clin Exp Med 2025; 25:73. [PMID: 40048037 PMCID: PMC11885342 DOI: 10.1007/s10238-025-01588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
Graft-versus-host disease remains one of the most formidable barriers to the complete success of hematopoietic stem cell transplantation that has emerged as the curative approach for many hematopoietic malignancies because it affects quality of life and overall survival. Macrophages are among the important members of the immune system, which perform dual roles in GVHD as both therapeutic tools and targets. This review epitomizes the multifunctional role of macrophages in the pathophysiology of both acute and chronic GVHD. Macrophages play an important role in the early phase of GVHD because of their recruitment and infiltration into target organs. Furthermore, they polarize into two functionally different phenotypes, including M1 and M2. In the case of acute GVHD, most macrophages express the M1 phenotype characterized by the production of pro-inflammatory cytokines that contribute to tissue damage. In contrast, in chronic GVHD, macrophages tend toward the M2 phenotype associated with the repair of tissues and fibrosis. A critical balance among these phenotypes is central to the course and severity of GVHD. Further interactions of macrophages with other lymphocytes such as T cells, B cells, and fibroblast further determine the course of GVHD. Macrophage interaction associated with alloreactive T cells promotes inflammation. This is therefore important in inducing injuries of tissues during acute GVHD. Interaction of macrophages, B cell, fibroblast, and CD4+ T cells promotes fibrosis during chronic GVHD and, hence, the subsequent dysfunction of organs. These are some insights, while several challenges remain. First, the impact of the dominant cytokines in GVHD on the polarization of macrophages is incompletely characterized and sometimes controversial. Second, the development of targeted therapies able to modulate macrophage function without systemic side effects remains an area of ongoing investigation. Future directions involve the exploration of macrophage-targeted therapies, including small molecules, antibodies, and nanotechnology, which modulate macrophage behavior and improve patient outcomes. This underlines the fact that a profound understanding of the dual role of macrophages in GVHD is essential for developing new and more effective therapeutic strategies. Targeting macrophages might represent one avenue for decreasing the incidence and severity of GVHD and improving the success and safety of HSCT.
Collapse
Affiliation(s)
- Atieh Raoufi
- Department of Immunology, Student Research Committee, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Hamed Soleimani Samarkhazan
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Nouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Navid Khaksari
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Abbasi Sourki
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Omolbanin Sargazi Aval
- Department of Hematology, Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran.
| | - Mojtaba Aghaei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
49
|
Song M, Gao X, Cheng D, Li R, Wang X, Zeng T, Zhang C. Allyl methyl disulfide attenuates liver injury induced by concanavalin A by suppressing M1 polarization of macrophages and NLRP3 inflammasome activation. Int Immunopharmacol 2025; 149:114149. [PMID: 39908807 DOI: 10.1016/j.intimp.2025.114149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/07/2025]
Abstract
The rising prevalence of autoimmune hepatitis (AIH) and its intricate pathogenesis has escalated it to a global health issue. This study centered on investigating the effects of allyl methyl disulfide (AMDS) against concanavalin A (ConA)-induced AIH in mice and elucidate the possible mechanisms. Histopathology and blood biochemistry were performed to assess the protective effects of AMDS on ConA-challenged liver injury in C57BL/6 male mice. Then, Immunohistochemistry, Immunofluorescence, RT-qPCR, ELISA and Western blot assays were performed to test changes in the M1 polarization of macrophage and NLRP3 inflammasome activation. Additionally, J774A.1 and AML12 cells were co-cultured to further investigate protective mechanism of AMDS against AIH. We found that AMDS pretreatment significantly alleviated the elevation of the levels of liver injury marker enzymes, and liver pathological changes triggered by ConA. Additionally, AMDS antagonized liver neutrophil infiltration, liver macrophage M1 polarization, and the increase in serum IL-6 and TNF-α levels induced by ConA. Furthermore, the changes in protein and mRNA levels of crucial molecules in the NF-κB and NLRP3 inflammasome pathways after ConA challenge were restored by AMDS. Additionally, AMDS significantly ameliorated the ConA-induced morphological alterations, the release of IL-6 and TNF-α, and the activation of NLRP3 inflammasome pathway in J774A.1 macrophages. Lastly, in a conditioned co-culture system of AML12 and J774A.1 cells, administration of AMDS at a concentration of 25 μM prominently inhibited the mRNA levels of Tnf and Nos2 in AML12 cells. Collectively, AMDS ameliorates ConA-induced AIH by alleviating hepatic neutrophil infiltration, inhibiting M1-type macrophage polarization, and antagonizing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Mingjie Song
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuan Gao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan, Shandong 250014, China
| | - Ruilong Li
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuemeng Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Cuili Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
50
|
Joshi H, Anaya E, Addanki A, Almgren-Bell A, Todd EM, Morley SC. Mechanosensitivity of macrophage polarization: comparing small molecule leukadherin-1 to substrate stiffness. Front Immunol 2025; 16:1420325. [PMID: 40114914 PMCID: PMC11922956 DOI: 10.3389/fimmu.2025.1420325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Macrophages sustain tissue homeostasis through host defense and wound repair. To promote host defense, macrophages upregulate surface markers associated with antigen processing and secrete pro-inflammatory mediators such as IL-6 and IL-1β. After pathogen clearance, macrophages shift phenotype to promote wound repair. Shifts in phenotypes are termed "polarization" and have historically been modeled by exposure to soluble mediators such as LPS+IFNγ (host defense) or IL-4+IL-13 (tissue repair). Greater emphasis is now being placed on understanding how the mechanical environment of macrophages, such as tissue compliance, regulates macrophages responses. Here, we compare incubation of primary macrophages on collagen-coated silica gels of varying stiffness to treatment with the small molecule integrin activator, leukadherin-1 (LA1), to examine how substrate stiffness alters macrophage polarization in response to multiple stimuli. LA1 was developed as an immunomodulator to treat inflammatory diseases by impairing trafficking of inflammatory cells. A recent clinical trial examining LA1 as an immunomodulator in solid tumors was terminated early because no benefit was observed. We hypothesized that LA1 treatment may exert additional, unexpected effects on macrophage polarization by replicating mechanotransduction. Specifically, we hypothesized that LA1 would mimic effects of incubation on stiffer substrates, as both conditions would be predicted to activate integrins. Our results show that soft substrate (0.2 kPa) trends towards upregulation of host defense molecules, in contrast to prior reports using different experimental systems. We further show that soft substrates enhance NLRP3-mediated IL-1β production, compared to stiff, in both primary mouse and human macrophages. LA1 mimicked incubation on stiff substrates in inhibiting NLRP3 activation and in regulating expression of several surface markers but differed by reducing IL-6 production. Our results show that macrophage inflammatory responses are regulated by adhesion-based, integrin-mediated mechanical signaling. Modulation of NLRP3-mediated IL-1β production by LA1 supports the possibility of repurposing LA1 to treat NLRP3-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Hemant Joshi
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Edgar Anaya
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Anvitha Addanki
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Alison Almgren-Bell
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Elizabeth M. Todd
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| | - Sharon Celeste Morley
- Division of Infectious Diseases, Department of Pediatrics, Washington School of Medicine in St. Louis, St. Louis, MO, United States
- Division of Immunobiology, Department of Pathology and Immunology, Washington School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|