1
|
Yuan M, Tian X, Ma W, Zhang R, Zou X, Jin Y, Zheng N, Wu Z, Wang Y. miRNA-431-5p enriched in EVs derived from IFN-β stimulated MSCs potently inhibited ZIKV through CD95 downregulation. Stem Cell Res Ther 2024; 15:435. [PMID: 39563434 PMCID: PMC11575116 DOI: 10.1186/s13287-024-04040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/03/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Zika virus (ZIKV) primarily spreads through mosquito bites and can lead to microcephaly in infants and Guillain-Barre syndrome in adults. It is noteworthy that ZIKV can persist in the semen of infected males for extended periods and can be sexually transmitted. Infection with ZIKV has severe pathological manifestations on the testicular tissues of male mice, resulting in reduced sperm motility and fertility. However, there are no approved prophylactic vaccines or therapeutics available to treat Zika virus infection. METHODS Using a male type I and II interferon receptor-deficient (ifnar1(-/-) ifngr1(-/-)) C57BL/6 (AG6) mouse model infected with ZIKV as a representative model, we evaluated the degree of testicular damage and viral replication in various organs in mice treated with EVs derived from MSC-stimulated with IFN-β (IFNβ-EVs) and treated with controls. We measured testicle size, detected viral load in various organs, and analyzed gene expression to assess treatment efficacy. RESULTS Our findings demonstrated that intravenous administration of IFNβ-EVs effectively suppressed ZIKV replication in the testes. Investigation with in-depth RNA sequencing analysis found that IFN-β treatment changed the cargo miRNA of EVs. Notably, miR-431-5p was identified to be significantly enriched in IFNβ-EVs and exhibited potent antiviral activity in vitro. We showed that CD95 was a direct downstream target for miR-431-5p and played a role in facilitating ZIKV replication. miR-431-5p effectively downregulated the expression of CD95 protein, consequently promoted the phosphorylation and nuclear localization of NF-kB, which resulted in the activation of anti-viral status, leading to the suppression of viral replication. CONCLUSIONS Our study demonstrated that the EVs produced by IFNβ-treated MSCs could effectively convey antiviral activity.
Collapse
Affiliation(s)
- Meng Yuan
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, 210093, China
| | - Xiaoyan Tian
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, 210093, China
| | - Wenyuan Ma
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, 210093, China
| | - Rui Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, PR China
| | - Xue Zou
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Yu Jin
- Department of Clinical Medicine, Medical School of Nanjing University , Nanjing, 210093, China.
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Nan Zheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, 210093, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, People's Republic of China.
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School,Nanjing University, Yangzhou, China.
| |
Collapse
|
2
|
Anggraeni N, Vuong CK, Silvia P, Fukushige M, Yamashita T, Obata-Yasuoka M, Hamada H, Ohneda O. Mesenchymal stem cell-derived extracellular vesicles reduce inflammatory responses to SARS-CoV-2 and Influenza viral proteins via miR-146a/NF-κB pathway. Sci Rep 2024; 14:26649. [PMID: 39496662 PMCID: PMC11535355 DOI: 10.1038/s41598-024-77258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
The risk of severe disease caused by co-infection with SARS-CoV-2 and influenza virus (IAV) raises an annual concern for global public health. Extracellular vesicles (EV) derived from mesenchymal stem cells (MSC) possess anti-inflammatory properties that can attenuate the inflammatory cytokine levels induced by viral infection. However, the effects of MSC-EV treatment on SARS-CoV-2 and IAV co-infection have not been elucidated. In the present study, we co-induced lung epithelial cells (EpiC) with SARS-CoV-2 Spike protein (S) and H1N1 influenza viral HA protein (HA) and found robust upregulation of inflammatory cytokines in comparison to those induced by either S or HA protein. Consequently, treatment of lung endothelial cells (EC) with conditioned medium from EpiC co-induced by both S and HA proteins resulted in increased apoptosis and impaired angiogenic ability, suggesting the effects of co-induction on epithelial-endothelial crosstalk. In addition, lung EpiC co-induced by both S and HA proteins showed paracrine effects on the recruitment of immune cells, including monocytes, macrophages and neutrophils. Of Note, EV derived from Wharton Jelly's MSC (WJ-EV) transferred miR-146a to recipient lung EpiC, which impaired TRAF6 and IRAK1, resulting in the downregulation of NF-κB pathway and secretion of inflammatory cytokines, rescuing the epithelial-endothelial crosstalk, and reducing the elevation of immune cell recruitment. Moreover, the anti-inflammatory properties of WJ-EV are affected by type 2 Diabetes Mellitus. WJ-EV derived from donors with type 2 Diabetes Mellitus contained less miR-146a and showed impaired ability to downregulate the NF-κB pathway and inflammatory cytokines in recipient cells. Taken together, our findings demonstrate the role of miR-146a in targeting the NF-κB pathway in the anti-inflammatory abilities of WJ-EV, which is a promising strategy to rescue the epithelial-endothelial crosstalk altered by co-infection with SARS-CoV-2 and IAV.
Collapse
Affiliation(s)
- Neni Anggraeni
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1, Tsukuba, 305-8575, Japan
| | - Cat-Khanh Vuong
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1, Tsukuba, 305-8575, Japan
| | - Precella Silvia
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1, Tsukuba, 305-8575, Japan
| | - Mizuho Fukushige
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1, Tsukuba, 305-8575, Japan
| | - Toshiharu Yamashita
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1, Tsukuba, 305-8575, Japan
| | - Mana Obata-Yasuoka
- Department of Obstetrics and Gynecology, University of Tsukuba, Tsukuba, Japan
| | - Hiromi Hamada
- Department of Obstetrics and Gynecology, University of Tsukuba, Tsukuba, Japan
| | - Osamu Ohneda
- Graduate School of Comprehensive Human Science, Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, 1-1-1, Tsukuba, 305-8575, Japan.
| |
Collapse
|
3
|
Lee JH, Jeon H, Lötvall J, Cho BS. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles in SARS-CoV-2 and H1N1 influenza-induced acute lung injury. J Extracell Vesicles 2024; 13:e12495. [PMID: 39254228 PMCID: PMC11386330 DOI: 10.1002/jev2.12495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/11/2024] [Indexed: 09/11/2024] Open
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have shown anti-inflammatory potential in multiple inflammatory diseases. In the March 2022 issue of the Journal of Extracellular Vesicles, it was shown that EVs from human MSCs can suppress severe acute respiratory distress syndrome, coronavirus 2 (SARS-CoV-2) replication and can mitigate the production and release of infectious virions. We therefore hypothesized that MSC-EVs have an anti-viral effect in SARS-CoV-2 infection in vivo. We extended this question to ask whether also other respiratory viral infections could be treated by MSC-EVs. Adipose stem cell-derived EVs (ASC-EVs) were isolated using tangential flow filtration from conditioned media obtained from a multi-flask cell culture system. The effects of the ASC-EVs were tested in Vero E6 cells in vitro. ASC-EVs were also given i.v. to SARS-CoV-2 infected Syrian Hamsters, and H1N1 influenza virus infected mice. The ASC-EVs attenuated SARS-CoV-2 virus replication in Vero E6 cells and reduced body weight and signs of lung injury in infected Syrian hamsters. Furthermore, ASC-EVs increased the survival rate of influenza A-infected mice and attenuated signs of lung injury. In summary, this study suggests that ASC-EVs can have beneficial therapeutic effects in models of virus-infection-associated acute lung injury and may potentially be developed to treat lung injury in humans.
Collapse
Affiliation(s)
- Jun Ho Lee
- ExoCoBio Exosome Institute (EEI)ExoCoBio Inc., STE 306, 19 Gasan digital 1‐roGeumcheon‐guSeoulRepublic of Korea
| | - Hyungtaek Jeon
- ExoCoBio Exosome Institute (EEI)ExoCoBio Inc., STE 306, 19 Gasan digital 1‐roGeumcheon‐guSeoulRepublic of Korea
| | - Jan Lötvall
- Krefting Research Centre, The Sahlgrenska AcademyBOX 424GothenburgSweden
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI)ExoCoBio Inc., STE 306, 19 Gasan digital 1‐roGeumcheon‐guSeoulRepublic of Korea
| |
Collapse
|
4
|
Ważny Ł, Whiteside TL, Pietrowska M. Oncoviral Infections and Small Extracellular Vesicles. Viruses 2024; 16:1291. [PMID: 39205265 PMCID: PMC11359865 DOI: 10.3390/v16081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Small extracellular vesicles (sEV) are small membrane-bound nanovesicles with a size range below 200 nm that are released by all types of cells. sEV carry a diverse cargo of proteins, lipids, glycans, and nucleic acids that mimic the content of producer cells. sEV mediate intercellular communication and play a key role in a broad variety of physiological and pathological conditions. Recently, numerous reports have emerged examining the role of sEV in viral infections. A significant number of similarities in the sEV biogenesis pathways and the replication cycles of viruses suggest that sEV might influence the course of viral infections in diverse ways. Besides directly modulating virus propagation by transporting the viral cargo (complete virions, proteins, RNA, and DNA), sEV can also modify the host antiviral response and increase the susceptibility of cells to infection. The network of mutual interactions is particularly complex in the case of oncogenic viruses, deserving special consideration because of its significance in cancer progression. This review summarizes the current knowledge of interactions between sEV and oncogenic viruses, focusing on sEV abilities to modulate the carcinogenic properties of oncoviruses.
Collapse
Affiliation(s)
- Łukasz Ważny
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|
5
|
Tang Y, Zou X, Liu P, Dai Y, Wang S, Su X, Yu Y, Tang W, Zhou J, Li C, Mei H, Xiao N, Ou Y, Wang J, Lu G, Lin G, Cheng L. Human umbilical cord-derived mesenchymal stem cell transplantation improves the long COVID. J Med Virol 2024; 96:e29757. [PMID: 38899432 DOI: 10.1002/jmv.29757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
No effective treatments can ameliorate symptoms of long COVID patients. Our study assessed the safety and efficacy of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) in the treatment of long COVID patients. Ten long COVID patients were enrolled and received intravenous infusions of UC-MSCs on Days 0, 7, and 14. Adverse events and clinical symptoms were recorded, and chest-high-resolution CT (HRCT) images and laboratory parameters were analyzed. During UC-MSCs treatment and follow-up, we did not observe serious adverse events, the symptoms of long COVID patients were significantly relieved in a short time, especially sleep difficulty, depression or anxiety, memory issues, and so forth, and the lung lesions were also repaired. The routine laboratory parameters did not exhibit any significant abnormalities following UC-MSCs transplantation (UMSCT). The proportion of regulatory T cells gradually increased, but it was not statistically significant until 12 months. The proportion of naive B cells was elevated, while memory B cells, class-switched B-cells, and nonswitched B-cells decreased at 1 month after infusion. Additionally, we observed a transient elevation in circulating interleukin (IL)-6 after UMSCT, while tumor necrosis factor (TNF)-α, IL-17A, and IL-10 showed no significant changes. The levels of circulating immunoglobulin (Ig) M increased significantly at month 2, while IgA increased significantly at month 6. Furthermore, the SARS-CoV-2 IgG levels remained consistently high in all patients at Month 6, and there was no significant decrease during the subsequent 12-month follow-up. UMSCT was safe and tolerable in long COVID patients. It showed potential in alleviating long COVID symptoms and improving interstitial lung lesions.
Collapse
Affiliation(s)
- Yuling Tang
- The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiao Zou
- National Engineering Research Center of Human Stem cell, Changsha, China
| | - Ping Liu
- The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yanni Dai
- National Engineering Research Center of Human Stem cell, Changsha, China
| | - Siqi Wang
- National Engineering Research Center of Human Stem cell, Changsha, China
| | - Xian Su
- National Engineering Research Center of Human Stem cell, Changsha, China
| | - Yan Yu
- National Engineering Research Center of Human Stem cell, Changsha, China
| | - Wenfang Tang
- The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jia Zhou
- National Engineering Research Center of Human Stem cell, Changsha, China
| | - Chuang Li
- National Engineering Research Center of Human Stem cell, Changsha, China
| | - Hua Mei
- National Engineering Research Center of Human Stem cell, Changsha, China
| | - Na Xiao
- National Engineering Research Center of Human Stem cell, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Yangqi Ou
- National Engineering Research Center of Human Stem cell, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jian Wang
- National Engineering Research Center of Human Stem cell, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guangxiu Lu
- National Engineering Research Center of Human Stem cell, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- National Engineering Research Center of Human Stem cell, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Lamei Cheng
- National Engineering Research Center of Human Stem cell, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Lee HJ, Park JH, Park IH, Shin OS. Stimulator of Interferon Gene Agonists Induce an Innate Antiviral Response against Influenza Viruses. Viruses 2024; 16:855. [PMID: 38932148 PMCID: PMC11209029 DOI: 10.3390/v16060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
The devastating effects of COVID-19 have highlighted the importance of prophylactic and therapeutic strategies to combat respiratory diseases. Stimulator of interferon gene (STING) is an essential component of the host defense mechanisms against respiratory viral infections. Although the role of the cGAS/STING signaling axis in the innate immune response to DNA viruses has been thoroughly characterized, mounting evidence shows that it also plays a key role in the prevention of RNA virus infections. In this study, we investigated the role of STING activation during Influenza virus (IFV) infection. In both mouse bone marrow-derived macrophages and monocytic cell line THP-1 differentiated with PMA, we found that dimeric amidobenzimidazole (diABZI), a STING agonist, had substantial anti-IFV activity against multiple strains of IFV, including A/H1N1, A/H3N2, B/Yamagata, and B/Victoria. On the other hand, a pharmacological antagonist of STING (H-151) or the loss of STING in human macrophages leads to enhanced viral replication but suppressed IFN expression. Furthermore, diABZI was antiviral against IFV in primary air-liquid interface cultures of nasal epithelial cells. Our data suggest that STING agonists may serve as promising therapeutic antiviral agents to combat IFV.
Collapse
Affiliation(s)
- Hyun Jung Lee
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Joo-Hoo Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University, Seoul 08308, Republic of Korea
| | - Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University, Seoul 08308, Republic of Korea
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| |
Collapse
|
7
|
Zhao L, Chen J, Bai B, Song G, Zhang J, Yu H, Huang S, Wang Z, Lu G. Topical drug delivery strategies for enhancing drug effectiveness by skin barriers, drug delivery systems and individualized dosing. Front Pharmacol 2024; 14:1333986. [PMID: 38293666 PMCID: PMC10825035 DOI: 10.3389/fphar.2023.1333986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Topical drug delivery is widely used in various diseases because of the advantages of not passing through the gastrointestinal tract, avoiding gastrointestinal irritation and hepatic first-pass effect, and reaching the lesion directly to reduce unnecessary adverse reactions. The skin helps the organism to defend itself against a huge majority of external aggressions and is one of the most important lines of defense of the body. However, the skin's strong barrier ability is also a huge obstacle to the effectiveness of topical medications. Allowing the bioactive, composition in a drug to pass through the stratum corneum barrier as needed to reach the target site is the most essential need for the bioactive, composition to exert its therapeutic effect. The state of the skin barrier, the choice of delivery system for the bioactive, composition, and individualized disease detection and dosing planning influence the effectiveness of topical medications. Nowadays, enhancing transdermal absorption of topically applied drugs is the hottest research area. However, enhancing transdermal absorption of drugs is not the first choice to improve the effectiveness of all drugs. Excessive transdermal absorption enhances topical drug accumulation at non-target sites and the occurrence of adverse reactions. This paper introduces topical drug delivery strategies to improve drug effectiveness from three perspectives: skin barrier, drug delivery system and individualized drug delivery, describes the current status and shortcomings of topical drug research, and provides new directions and ideas for topical drug research.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiamei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bai Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guili Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiwei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanghua Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Tao YC, Chen EQ. Mesenchymal Stem Cells Therapy for COVID-19: From Basic Research to Clinical Trial. Curr Stem Cell Res Ther 2024; 19:55-62. [PMID: 36654468 DOI: 10.2174/1574888x18666230118122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 01/19/2023]
Abstract
The novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a serious challenge for human health. In severe cases, patients suffer from acute respiratory distress syndrome even organ failure, usually owing to the dysregulated immune response and widespread inflammation. Considering that there is no known cure for COVID-19 despite the increased morbidity and mortality rate of COVID-19, modalities targeting immunity and inflammation may be promising therapeutics against COVID-19. Mesenchymal stem cells (MSCs) possessing immunomodulatory, anti-inflammatory, anti-apoptotic, and antiviral properties, can be of potential benefit to a subset of severe and critically ill patients with COVID-19. In the present study, we described the underlying mechanisms of MSCs therapy and provided a thorough research study on the recent clinical trials of MSCs for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan-610041, P.R. China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan-610041, P.R. China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan-610041, P.R. China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan-610041, P.R. China
| |
Collapse
|
9
|
da Silva MDV, Piva M, Martelossi-Cebinelli G, Stinglin Rosa Ribas M, Hoffmann Salles Bianchini B, K Heintz O, Casagrande R, Verri WA. Stem cells and pain. World J Stem Cells 2023; 15:1035-1062. [PMID: 38179216 PMCID: PMC10762525 DOI: 10.4252/wjsc.v15.i12.1035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Pain can be defined as an unpleasant sensory and emotional experience caused by either actual or potential tissue damage or even resemble that unpleasant experience. For years, science has sought to find treatment alternatives, with minimal side effects, to relieve pain. However, the currently available pharmacological options on the market show significant adverse events. Therefore, the search for a safer and highly efficient analgesic treatment has become a priority. Stem cells (SCs) are non-specialized cells with a high capacity for replication, self-renewal, and a wide range of differentiation possibilities. In this review, we provide evidence that the immune and neuromodulatory properties of SCs can be a valuable tool in the search for ideal treatment strategies for different types of pain. With the advantage of multiple administration routes and dosages, therapies based on SCs for pain relief have demonstrated meaningful results with few downsides. Nonetheless, there are still more questions than answers when it comes to the mechanisms and pathways of pain targeted by SCs. Thus, this is an evolving field that merits further investigation towards the development of SC-based analgesic therapies, and this review will approach all of these aspects.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Maiara Piva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Mariana Stinglin Rosa Ribas
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Beatriz Hoffmann Salles Bianchini
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Olivia K Heintz
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, State University of Londrina, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Paraná, Brazil.
| |
Collapse
|
10
|
Meng Y, Li C, Liang Y, Jiang Y, Zhang H, Ouyang J, Zhang W, Deng R, Tan Q, Yu X, Luo Z. Umbilical Cord Mesenchymal-Stem-Cell-Derived Exosomes Exhibit Anti-Oxidant and Antiviral Effects as Cell-Free Therapies. Viruses 2023; 15:2094. [PMID: 37896871 PMCID: PMC10612094 DOI: 10.3390/v15102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The oxidative stress induced by the accumulation of reactive oxygen species (ROS) can lead to cell aging and death. Equally, the skeletal muscle usually hosts enteroviral persistent infection in inflammatory muscle diseases. As excellent bioactive products, the exosomes derived from umbilical cord mesenchymal stem cells (ucMSCs) have been proven to be safe and have low immunogenicity with a potential cell-free therapeutic function. Here, exosomes derived from ucMSCs (ucMSC-EXO) were extracted and characterized. In a model of oxidative damage to skin fibroblasts (HSFs) under exposure to H2O2, ucMSC-EXO had an observable repairing effect for the HSFs suffering from oxidative damage. Furthermore, ucMSC-EXO inhibited mitogen-activated protein kinases (MAPK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa-B (NF-κB) signaling pathways, thereby promoting p21 protein expression while decreasing lamin B1 protein expression, and finally alleviated oxidative stress-induced cell damage and aging. In a model of rhabdomyosarcoma (RD) cells being infected by enterovirus 71 (EV71) and coxsackievirus B3 (CVB3), the ucMSC-EXO enhanced the expression of interferon-stimulated gene 15 (ISG15) and ISG56 to inhibit enteroviral replication, whereafter reducing the virus-induced proinflammatory factor production. This study provides a promising therapeutic strategy for ucMSC-EXO in anti-oxidative stress and antiviral effects, which provides insight into extending the function of ucMSC-EXO in cell-free therapy.
Collapse
Affiliation(s)
- Yi Meng
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
| | - Chengcheng Li
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
| | - Yicong Liang
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
| | - Yu Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; (Y.J.); (H.Z.)
| | - Haonan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; (Y.J.); (H.Z.)
| | - Jianhua Ouyang
- Foshan Institute of Medical Microbiology, Foshan 528315, China; (J.O.); (R.D.)
| | - Wen Zhang
- Guangdong Longfan Biological Science and Technology Company, Foshan 528315, China; (W.Z.); (Q.T.)
| | - Rumei Deng
- Foshan Institute of Medical Microbiology, Foshan 528315, China; (J.O.); (R.D.)
| | - Qiuping Tan
- Guangdong Longfan Biological Science and Technology Company, Foshan 528315, China; (W.Z.); (Q.T.)
| | - Xiaolan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; (Y.J.); (H.Z.)
| | - Zhen Luo
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
- Foshan Institute of Medical Microbiology, Foshan 528315, China; (J.O.); (R.D.)
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
11
|
Thomaidou AC, Goulielmaki M, Tsintarakis A, Zoumpourlis P, Toya M, Christodoulou I, Zoumpourlis V. miRNA-Guided Regulation of Mesenchymal Stem Cells Derived from the Umbilical Cord: Paving the Way for Stem-Cell Based Regeneration and Therapy. Int J Mol Sci 2023; 24:ijms24119189. [PMID: 37298143 DOI: 10.3390/ijms24119189] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
The human body is an abundant source of multipotent cells primed with unique properties that can be exploited in a multitude of applications and interventions. Mesenchymal stem cells (MSCs) represent a heterogenous population of undifferentiated cells programmed to self-renew and, depending on their origin, differentiate into distinct lineages. Alongside their proven ability to transmigrate toward inflammation sites, the secretion of various factors that participate in tissue regeneration and their immunoregulatory function render MSCs attractive candidates for use in the cytotherapy of a wide spectrum of diseases and conditions, as well as in different aspects of regenerative medicine. In particular, MSCs that can be found in fetal, perinatal, or neonatal tissues possess additional capabilities, including predominant proliferation potential, increased responsiveness to environmental stimuli, and hypoimmunogenicity. Since microRNA (miRNA)-guided gene regulation governs multiple cellular functions, miRNAs are increasingly being studied in the context of driving the differentiation process of MSCs. In the present review, we explore the mechanisms of miRNA-directed differentiation of MSCs, with a special focus on umbilical cord-derived mesenchymal stem cells (UCMSCs), and we identify the most relevant miRNAs and miRNA sets and signatures. Overall, we discuss the potent exploitations of miRNA-driven multi-lineage differentiation and regulation of UCMSCs in regenerative and therapeutic protocols against a range of diseases and/or injuries that will achieve a meaningful clinical impact through maximizing treatment success rates, while lacking severe adverse events.
Collapse
Affiliation(s)
- Arsinoe C Thomaidou
- Laboratory of Clinical Virology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Marialena Toya
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Ioannis Christodoulou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| |
Collapse
|
12
|
Ambrożej D, Stelmaszczyk-Emmel A, Czystowska-Kuźmicz M, Feleszko W. "Liquid biopsy" - extracellular vesicles as potential novel players towards precision medicine in asthma. Front Immunol 2022; 13:1025348. [PMID: 36466836 PMCID: PMC9714548 DOI: 10.3389/fimmu.2022.1025348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/31/2022] [Indexed: 12/02/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as vital mediators in intracellular communication in the lung microenvironment. Environmental exposure to various triggers (e.g., viruses, allergens) stimulates the EV-mediated cascade of pro-inflammatory responses that play a key role in the asthma pathomechanism. This complex EV-mediated crosstalk in the asthmatic lung microenvironment occurs between different cell types, including airway epithelial cells and immune cells. The cargo composition of EVs mirrors hereby the type and activation status of the parent cell. Therefore, EVs collected in a noninvasive way (e.g., in nasal lavage, serum) could inform on the disease status as a "liquid biopsy", which is particularly important in the pediatric population. As a heterogeneous disease, asthma with its distinct endotypes and phenotypes requires more investigation to develop novel diagnostics and personalized case management. Filling these knowledge gaps may be facilitated by further EV research. Here, we summarize the contribution of EVs in the lung microenvironment as potential novel players towards precision medicine in the development of asthma. Although rapidly evolving, the EV field is still in its infancy. However, it is expected that a better understanding of the role of EVs in the asthma pathomechanism will open up new horizons for precision medicine diagnostic and therapeutic solutions.
Collapse
Affiliation(s)
- Dominika Ambrożej
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | | | - Wojciech Feleszko
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Antiviral Effects of Adipose Tissue-Derived Mesenchymal Stem Cells Secretome against Feline Calicivirus and Feline Herpesvirus Type 1. Viruses 2022; 14:v14081687. [PMID: 36016308 PMCID: PMC9415135 DOI: 10.3390/v14081687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have excellent anti-inflammatory and immunomodulatory capabilities and therapeutic effects in some viral diseases. The therapeutic impact of MSCs mainly relies on the paracrine effects of various secreted substances. Feline calicivirus (FCV) and feline herpesvirus type 1 (FHV1) are common and highly prevalent pathogens causing upper respiratory diseases, and FCV is associated with gingivostomatitis in cats. Recently, feline MSC treatment has been reported to improve the clinical symptoms of feline chronic gingivostomatitis, but the antiviral effects of feline MSCs on FCV and FHV1 are not known. In this study, we evaluated the antiviral efficacy of using feline MSC secretome as a conditioned medium on FCV and FHV1 viral replication in Crandell–Reese feline kidney (CRFK) cells, and RNA sequencing was used to analyze how the CRFK cells were altered by the MSC secretomes. The feline MSC secretome did not inhibit FCV or FHV1 viral entry into the CRFK cells but had antiviral effects on the replication of both FCV and FHV1 in a dose-dependent manner.
Collapse
|