1
|
Cavalcante KVN, Ferreira-Junior MD, Moreira MCDS, Marques SM, Fajemiroye JO, Miranda RA, Lisboa PC, Moura EGD, Xavier CH, Colombari E, Gomes RM, Pedrino GR. Skinny fat model of metabolic syndrome induced by a high-salt/sucrose diet in young male rats. Br J Nutr 2025; 133:171-181. [PMID: 39539044 DOI: 10.1017/s0007114524002927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Childhood and puberty can affect metabolism, leading to tissue injury and malfunction later in life. The consumption of high-processed foods rich in salt and sugar is increasing in middle- and high-income countries, especially among young people. It is necessary to evaluate the effects of high salt and sugar levels in the youth on most injured organs during metabolic challenges. We aimed to investigate whether high-salt/sucrose intake affects whole-body development and leads to end-organ injury. Weaned male Wistar rats were divided into two groups: a control group fed a standard diet and tap water, and an experimental group (SS) fed a standard diet and a beverage containing 1·8 % NaCl and 20 % sucrose instead of tap water. The animals were treated for 60 d, starting after weaning at 21 d of age, after which the animals were subjected to glucose and insulin tolerance tests, urine collection and heart rate monitoring and euthanised for sample collection at 81 d of age. SS showed reduced body weight gain and increased food intake of sodium/sucrose solution. Interestingly, high-salt/sucrose intake led to increased body adiposity, liver lipid inclusion, heart rate and renal dysfunction. SS exhibits increased levels of PPAR alpha to counterbalance the hypertrophy of brown adipose tissue. Our findings reveal that the SS rat model exhibits non-obvious obesity with end-organ damage and preserved brown adipose tissue function. This model closely parallels human conditions with normal BMI but elevated visceral adiposity, providing a relevant tool for studying atypical metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Stefanne Madalena Marques
- Neuroscience and Cardiovascular Physiology Research Center, Federal University of Goiás, Goiânia, GO, Brazil
| | | | | | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Rodrigo Mello Gomes
- Laboratory of Endocrine Physiology and Metabolism, Federal University of Goiás, Goiânia, GO, Brazil
| | - Gustavo Rodrigues Pedrino
- Neuroscience and Cardiovascular Physiology Research Center, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
2
|
Visintin PV, Zampieri BL, Griesi-Oliveira K. Chemical transdifferentiation of somatic cells to neural cells: a systematic review. EINSTEIN-SAO PAULO 2024; 22:eRW0423. [PMID: 39661857 PMCID: PMC11634374 DOI: 10.31744/einstein_journal/2024rw0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/21/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Transdifferentiation is the conversion of a specific somatic cell into another cell type, bypassing a transient pluripotent state. This implies a faster method to generate cells of interest with the additional benefit of reduced tumorigenic risk for clinical use. OBJECTIVE We describe protocols that use small molecules as direct conversion inducers, without the need for exogenous factors, to evaluate the potential of cell transdifferentiation for pharmacological and clinical applications. METHODS In this systematic review, using PRISMA guidelines, we conducted a personalized search strategy in four databases (PubMed, Scopus, Embase, and Web Of Science), looking for experimental works that used exclusively small molecules for transdifferentiation of non-neural cell types into neural lineage cells. RESULTS We explored the main biological mechanisms involved in direct cell conversion induced by different small molecules used in 33 experimental in vitro and in vitro transdifferentiation protocols. We also summarize the main characteristics of these protocols, such as the chemical cocktails used, time for transdifferentiation, and conversion efficiency. CONCLUSION Small molecules-based protocols for neuronal transdifferentiation are reasonably safe, economical, accessible, and are a promising alternative for future use in regenerative medicine and pharmacology.
Collapse
Affiliation(s)
- Paulo Victor Visintin
- Hospital Israelita Albert EinsteinSão PauloSPBrazilHospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Bruna Lancia Zampieri
- Hospital Israelita Albert EinsteinSão PauloSPBrazilHospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Karina Griesi-Oliveira
- Hospital Israelita Albert EinsteinSão PauloSPBrazilHospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Hosoda C, Mitani S, Sakata A, Kasuda S, Onodera Y, Takabayashi Y, Shima M, Tatsumi K. MEK inhibitor PD0325901 upregulates CD34 expression in endothelial cells via inhibition of ERK phosphorylation. Regen Ther 2024; 26:654-662. [PMID: 39281105 PMCID: PMC11401103 DOI: 10.1016/j.reth.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction CD34-positive endothelial progenitor cells (EPCs) promote angiogenesis and are a promising tool for regenerative cell therapy of ischemic diseases. However, the number and quality of CD34-positive cells decrease owing to various external and internal factors; thus, an efficient method is needed to establish CD34-positive EPCs. The generation of functional cells by reprogramming, that is, manipulating cell fate via gene transfer and/or treatment with chemical compounds, has recently been reported. Therefore, we aimed to generate CD34-positive cells by the reprogramming of endothelial cells (ECs). Methods Based on previous reports, seven candidate chemical compounds were selected to reprogram human umbilical vein ECs (HUVECs) to CD34-positive cells. Following stimulation with the chemical compounds, the expression of CD34 was evaluated using quantitative PCR, flow cytometry, and immunocytochemistry. Results HUVECs treated with the compounds exhibited increased CD34 expression. We cultured cells in alternate media lacking one of the seven compounds and found no CD34 expression in cells treated with PD0325901-free media, suggesting that PD0325901-a MEK inhibitor-mainly contributed to the increase in CD34 expression. We found that 98% of cells were CD34-positive after PD0325901 treatment alone for 7 d. Western blotting revealed that the phosphorylation of ERK was suppressed in PD0325901-treated cells. No upregulation of CD34 was observed in fibroblast cell lines, even after PD0325901 treatment. These results suggested that PD0325901 induces CD34-positive cells by inhibiting ERK phosphorylation in ECs. Conclusions CD34 expression was strongly induced in ECs by treatment with the MEK inhibitor PD0325901 in vitro. Our study provides a useful reference for the establishment of CD34-positive EPCs and will contribute to the development of regenerative therapies, especially for ischemic diseases.
Collapse
Affiliation(s)
- Chihiro Hosoda
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Seiji Mitani
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Asuka Sakata
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shogo Kasuda
- Department of Legal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yu Onodera
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yoko Takabayashi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Midori Shima
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kohei Tatsumi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
4
|
Keshri R, Detraux D, Phal A, McCurdy C, Jhajharia S, Chan TC, Mathieu J, Ruohola-Baker H. Next-generation direct reprogramming. Front Cell Dev Biol 2024; 12:1343106. [PMID: 38371924 PMCID: PMC10869521 DOI: 10.3389/fcell.2024.1343106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024] Open
Abstract
Tissue repair is significantly compromised in the aging human body resulting in critical disease conditions (such as myocardial infarction or Alzheimer's disease) and imposing a tremendous burden on global health. Reprogramming approaches (partial or direct reprogramming) are considered fruitful in addressing this unmet medical need. However, the efficacy, cellular maturity and specific targeting are still major challenges of direct reprogramming. Here we describe novel approaches in direct reprogramming that address these challenges. Extracellular signaling pathways (Receptor tyrosine kinases, RTK and Receptor Serine/Theronine Kinase, RSTK) and epigenetic marks remain central in rewiring the cellular program to determine the cell fate. We propose that modern protein design technologies (AI-designed minibinders regulating RTKs/RSTK, epigenetic enzymes, or pioneer factors) have potential to solve the aforementioned challenges. An efficient transdifferentiation/direct reprogramming may in the future provide molecular strategies to collectively reduce aging, fibrosis, and degenerative diseases.
Collapse
Affiliation(s)
- Riya Keshri
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Damien Detraux
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ashish Phal
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, College of Engineering, University of Washington, Seattle, WA, United States
| | - Clara McCurdy
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Samriddhi Jhajharia
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Tung Ching Chan
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, College of Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Arai K, Saito F, Miyazaki M, Kushige H, Izu Y, Maeta N, Yamazoe K. Small Molecules Temporarily Induce Neuronal Features in Adult Canine Dermal Fibroblasts. Int J Mol Sci 2023; 24:15804. [PMID: 37958789 PMCID: PMC10648228 DOI: 10.3390/ijms242115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Several methods have been developed to generate neurons from other cell types for performing regeneration therapy and in vitro studies of central nerve disease. Small molecules (SMs) can efficiently induce neuronal features in human and rodent fibroblasts without transgenes. Although canines have been used as a spontaneous disease model of human central nerve, efficient neuronal reprogramming method of canine cells have not been well established. We aimed to induce neuronal features in adult canine dermal fibroblasts (ACDFs) by SMs and assess the permanency of these changes. ACDFs treated with eight SMs developed a round-shaped cell body with branching processes and expressed neuronal proteins, including βIII-tubulin, microtubule-associated protein 2 (MAP2), and neurofilament-medium. Transcriptome profiling revealed the upregulation of neuron-related genes, such as SNAP25 and GRIA4, and downregulation of fibroblast-related genes, such as COL12A1 and CCN5. Calcium fluorescent imaging demonstrated an increase in intracellular Ca2+ concentration upon stimulation with glutamate and KCl. Although neuronal features were induced similarly in basement membrane extract droplet culture, they diminished after culturing without SMs or in vivo transplantation into an injured spinal cord. In conclusion, SMs temporarily induce neuronal features in ACDFs. However, the analysis of bottlenecks in the neuronal induction is crucial for optimizing the process.
Collapse
Affiliation(s)
- Kiyotaka Arai
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoi-no-oka, Imabari 794-8555, Japan; (M.M.); (H.K.); (N.M.); (K.Y.)
| | - Fumiyo Saito
- Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoi-no-oka, Imabari 794-8555, Japan;
| | - Masashi Miyazaki
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoi-no-oka, Imabari 794-8555, Japan; (M.M.); (H.K.); (N.M.); (K.Y.)
| | - Haruto Kushige
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoi-no-oka, Imabari 794-8555, Japan; (M.M.); (H.K.); (N.M.); (K.Y.)
| | - Yayoi Izu
- Department of Laboratory Animal Science, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoi-no-oka, Imabari 794-8555, Japan;
| | - Noritaka Maeta
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoi-no-oka, Imabari 794-8555, Japan; (M.M.); (H.K.); (N.M.); (K.Y.)
| | - Kazuaki Yamazoe
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoi-no-oka, Imabari 794-8555, Japan; (M.M.); (H.K.); (N.M.); (K.Y.)
| |
Collapse
|
6
|
Rus CM, Polla DL, Di Bucchianico S, Fischer S, Hartkamp J, Hartmann G, Alpagu Y, Cozma C, Zimmermann R, Bauer P. Neuronal progenitor cells-based metabolomics study reveals dysregulated lipid metabolism and identifies putative biomarkers for CLN6 disease. Sci Rep 2023; 13:18550. [PMID: 37899458 PMCID: PMC10613621 DOI: 10.1038/s41598-023-45789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023] Open
Abstract
Neuronal ceroid lipofuscinosis 6 (CLN6) is a rare and fatal autosomal recessive disease primarily affecting the nervous system in children. It is caused by a pathogenic mutation in the CLN6 gene for which no therapy is available. Employing an untargeted metabolomics approach, we analyzed the metabolic changes in CLN6 subjects to see if this system could potentially yield biomarkers for diagnosis and monitoring disease progression. Neuronal-like cells were derived from human fibroblast lines from CLN6-affected subjects (n = 3) and controls (wild type, n = 3). These were used to assess the potential of a neuronal-like cell-based metabolomics approach to identify CLN6 distinctive and specific biomarkers. The most impacted metabolic profile is associated with sphingolipids, glycerophospholipids metabolism, and calcium signaling. Over 2700 spectral features were screened, and fifteen metabolites were identified that differed significantly between both groups, including the sphingolipids C16 GlcCer, C24 GlcCer, C24:1 GlcCer and glycerophospholipids PG 40:6 and PG 40:7. Of note, these fifteen metabolites were downregulated in the CLN6 disease group. This study is the first to analyze the metabolome of neuronal-like cells with a pathogenic mutation in the CLN6 gene and to provide insights into their metabolomic alterations. This could allow for the development of novel biomarkers for monitoring CLN6 disease.
Collapse
Affiliation(s)
- Corina-Marcela Rus
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany.
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Albert-Einstein Straße 27, 18059, Rostock, Germany.
| | | | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Albert-Einstein Straße 27, 18059, Rostock, Germany
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein Straße 25, 18059, Rostock, Germany
| | | | - Jörg Hartkamp
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | | | - Yunus Alpagu
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | - Claudia Cozma
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Albert-Einstein Straße 27, 18059, Rostock, Germany
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein Straße 25, 18059, Rostock, Germany
| | - Peter Bauer
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| |
Collapse
|
7
|
Zhang Y, Li X, Xing J, Zhou J, Li H. Chemical Transdifferentiation of Somatic Cells: Unleashing the Power of Small Molecules. Biomedicines 2023; 11:2913. [PMID: 38001913 PMCID: PMC10669320 DOI: 10.3390/biomedicines11112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Chemical transdifferentiation is a technique that utilizes small molecules to directly convert one cell type into another without passing through an intermediate stem cell state. This technique offers several advantages over other methods of cell reprogramming, such as simplicity, standardization, versatility, no ethical and safety concern and patient-specific therapies. Chemical transdifferentiation has been successfully applied to various cell types across different tissues and organs, and its potential applications are rapidly expanding as scientists continue to explore new combinations of small molecules and refine the mechanisms driving cell fate conversion. These applications have opened up new possibilities for regenerative medicine, disease modeling, drug discovery and tissue engineering. However, there are still challenges and limitations that need to be overcome before chemical transdifferentiation can be translated into clinical practice. These include low efficiency and reproducibility, incomplete understanding of the molecular mechanisms, long-term stability and functionality of the transdifferentiated cells, cell-type specificity and scalability. In this review, we compared the commonly used methods for cell transdifferentiation in recent years and discussed the current progress and future perspective of the chemical transdifferentiation of somatic cells and its potential impact on biomedicine. We believe that with ongoing research and technological advancements, the future holds tremendous promise for harnessing the power of small molecules to shape the cellular landscape and revolutionize the field of biomedicine.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Xuefeng Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Jianyu Xing
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150006, China;
| | - Jinsong Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Hai Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| |
Collapse
|
8
|
Kurahashi T, Nishime C, Nishinaka E, Komaki Y, Seki F, Urano K, Harada Y, Yoshikawa T, Dai P. Transplantation of Chemical Compound-Induced Cells from Human Fibroblasts Improves Locomotor Recovery in a Spinal Cord Injury Rat Model. Int J Mol Sci 2023; 24:13853. [PMID: 37762156 PMCID: PMC10530737 DOI: 10.3390/ijms241813853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The development of regenerative medicine using cell therapy is eagerly awaited for diseases such as spinal cord injury (SCI), for which there has been no radical cure. We previously reported the direct conversion of human fibroblasts into neuronal-like cells using only chemical compounds; however, it is unclear whether chemical compound-induced neuronal-like (CiN) cells are clinically functional. In this study, we partially modified the method of inducing CiN cells (termed immature CiN cells) and examined their therapeutic efficacy, in a rat model of SCI, to investigate whether immature CiN cells are promising for clinical applications. Motor function recovery, after SCI, was assessed using the Basso, Beattie, and Bresnahan (BBB) test, as well as the CatWalk analysis. We found that locomotor recovery, after SCI in the immature CiN cell-transplanted group, was partially improved compared to that in the control group. Consistent with these results, magnetic resonance imaging (MRI) and histopathological analyses revealed that nerve recovery or preservation improved in the immature CiN cell-transplanted group. Furthermore, transcriptome analysis revealed that immature CiN cells highly express hepatocyte growth factor (HGF), which has recently been shown to be a promising therapeutic agent against SCI. Our findings suggest that immature CiN cells may provide an alternative strategy for the regenerative therapy of SCI.
Collapse
Affiliation(s)
- Toshihiro Kurahashi
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (T.K.); (T.Y.)
| | - Chiyoko Nishime
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (C.N.); (E.N.); (Y.K.); (F.S.); (K.U.)
| | - Eiko Nishinaka
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (C.N.); (E.N.); (Y.K.); (F.S.); (K.U.)
| | - Yuji Komaki
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (C.N.); (E.N.); (Y.K.); (F.S.); (K.U.)
| | - Fumiko Seki
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (C.N.); (E.N.); (Y.K.); (F.S.); (K.U.)
| | - Koji Urano
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (C.N.); (E.N.); (Y.K.); (F.S.); (K.U.)
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Toshikazu Yoshikawa
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (T.K.); (T.Y.)
- Louis Pasteur Center for Medical Research, 103-5 Tanaka-Monzen-cho, Sakyo-ku, Kyoto 606-8225, Japan
| | - Ping Dai
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (T.K.); (T.Y.)
| |
Collapse
|
9
|
Lear BP, Moore DL. Moving CNS axon growth and regeneration research into human model systems. Front Neurosci 2023; 17:1198041. [PMID: 37425013 PMCID: PMC10324669 DOI: 10.3389/fnins.2023.1198041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Axon regeneration is limited in the adult mammalian central nervous system (CNS) due to both intrinsic and extrinsic factors. Rodent studies have shown that developmental age can drive differences in intrinsic axon growth ability, such that embryonic rodent CNS neurons extend long axons while postnatal and adult CNS neurons do not. In recent decades, scientists have identified several intrinsic developmental regulators in rodents that modulate growth. However, whether this developmentally programmed decline in CNS axon growth is conserved in humans is not yet known. Until recently, there have been limited human neuronal model systems, and even fewer age-specific human models. Human in vitro models range from pluripotent stem cell-derived neurons to directly reprogrammed (transdifferentiated) neurons derived from human somatic cells. In this review, we discuss the advantages and disadvantages of each system, and how studying axon growth in human neurons can provide species-specific knowledge in the field of CNS axon regeneration with the goal of bridging basic science studies to clinical trials. Additionally, with the increased availability and quality of 'omics datasets of human cortical tissue across development and lifespan, scientists can mine these datasets for developmentally regulated pathways and genes. As there has been little research performed in human neurons to study modulators of axon growth, here we provide a summary of approaches to begin to shift the field of CNS axon growth and regeneration into human model systems to uncover novel drivers of axon growth.
Collapse
Affiliation(s)
| | - Darcie L. Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Fujii Y, Arima M, Murakami Y, Sonoda KH. Rhodopsin-positive cell production by intravitreal injection of small molecule compounds in mouse models of retinal degeneration. PLoS One 2023; 18:e0282174. [PMID: 36821627 PMCID: PMC9949636 DOI: 10.1371/journal.pone.0282174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
We aimed to verify whether the intravitreal injection of small molecule compounds alone can create photoreceptor cells in mouse models of retinal degeneration. Primary cultured mouse Müller cells were stimulated in vitro with combinations of candidate compounds and the rhodopsin expression was measured on day 7 using polymerase chain reaction and immunostaining. We used 6-week-old N-methyl-N-nitrosourea-treated and 4-week-old rd10 mice as representative in vivo models of retinal degeneration. The optimal combination of compounds selected via in vitro screening was injected into the vitreous and the changes in rhodopsin expression were investigated on day 7 using polymerase chain reaction and immunostaining. The origin of rhodopsin-positive cells was also analyzed via lineage tracing and the recovery of retinal function was assessed using electroretinography. The in vitro mRNA expression of rhodopsin in Müller cells increased 30-fold, and 25% of the Müller cells expressed rhodopsin protein 7 days after stimulation with a combination of 4 compounds: transforming growth factor-β inhibitor, bone morphogenetic protein inhibitor, glycogen synthase kinase 3 inhibitor, and γ-secretase inhibitor. The in vivo rhodopsin mRNA expression and the number of rhodopsin-positive cells in the outer retina were significantly increased on day 7 after the intravitreal injection of these 4 compounds in both N-methyl-N-nitrosourea-treated and rd10 mice. Lineage tracing in td-Tomato mice treated with N-methyl-N-nitrosourea suggested that the rhodopsin-positive cells originated from endogenous Müller cells, accompanied with the recovery of the rhodopsin-derived scotopic function. It was suggested that rhodopsin-positive cells generated by compound stimulation contributes to the recovery of retinal function impaired by degeneration.
Collapse
Affiliation(s)
- Yuya Fujii
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan,Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan,* E-mail:
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
A single cell-based computational platform to identify chemical compounds targeting desired sets of transcription factors for cellular conversion. Stem Cell Reports 2023; 18:131-144. [PMID: 36400030 PMCID: PMC9859931 DOI: 10.1016/j.stemcr.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Cellular conversion can be induced by perturbing a handful of key transcription factors (TFs). Replacement of direct manipulation of key TFs with chemical compounds offers a less laborious and safer strategy to drive cellular conversion for regenerative medicine. Nevertheless, identifying optimal chemical compounds currently requires large-scale screening of chemical libraries, which is resource intensive. Existing computational methods aim at predicting cell conversion TFs, but there are no methods for identifying chemical compounds targeting these TFs. Here, we develop a single cell-based platform (SiPer) to systematically prioritize chemical compounds targeting desired TFs to guide cellular conversions. SiPer integrates a large compendium of chemical perturbations on non-cancer cells with a network model and predicted known and novel chemical compounds in diverse cell conversion examples. Importantly, we applied SiPer to develop a highly efficient protocol for human hepatic maturation. Overall, SiPer provides a valuable resource to efficiently identify chemical compounds for cell conversion.
Collapse
|
12
|
Nakamura T, Iwata M, Hamano M, Eguchi R, Takeshita JI, Yamanishi Y. Small compound-based direct cell conversion with combinatorial optimization of pathway regulations. Bioinformatics 2022; 38:ii99-ii105. [PMID: 36124791 DOI: 10.1093/bioinformatics/btac475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION Direct cell conversion, direct reprogramming (DR), is an innovative technology that directly converts source cells to target cells without bypassing induced pluripotent stem cells. The use of small compounds (e.g. drugs) for DR can help avoid carcinogenic risk induced by gene transfection; however, experimentally identifying small compounds remains challenging because of combinatorial explosion. RESULTS In this article, we present a new computational method, COMPRENDRE (combinatorial optimization of pathway regulations for direct reprograming), to elucidate the mechanism of small compound-based DR and predict new combinations of small compounds for DR. We estimated the potential target proteins of DR-inducing small compounds and identified a set of target pathways involving DR. We identified multiple DR-related pathways that have not previously been reported to induce neurons or cardiomyocytes from fibroblasts. To overcome the problem of combinatorial explosion, we developed a variant of a simulated annealing algorithm to identify the best set of compounds that can regulate DR-related pathways. Consequently, the proposed method enabled to predict new DR-inducing candidate combinations with fewer compounds and to successfully reproduce experimentally verified compounds inducing the direct conversion from fibroblasts to neurons or cardiomyocytes. The proposed method is expected to be useful for practical applications in regenerative medicine. AVAILABILITY AND IMPLEMENTATION The code supporting the current study is available at the http://labo.bio.kyutech.ac.jp/~yamani/comprendre. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Toru Nakamura
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Michio Iwata
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Momoko Hamano
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Ryohei Eguchi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Jun-Ichi Takeshita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
13
|
Wang J, Chen S, Pan C, Li G, Tang Z. Application of Small Molecules in the Central Nervous System Direct Neuronal Reprogramming. Front Bioeng Biotechnol 2022; 10:799152. [PMID: 35875485 PMCID: PMC9301571 DOI: 10.3389/fbioe.2022.799152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
The lack of regenerative capacity of neurons leads to poor prognoses for some neurological disorders. The use of small molecules to directly reprogram somatic cells into neurons provides a new therapeutic strategy for neurological diseases. In this review, the mechanisms of action of different small molecules, the approaches to screening small molecule cocktails, and the methods employed to detect their reprogramming efficiency are discussed, and the studies, focusing on neuronal reprogramming using small molecules in neurological disease models, are collected. Future research efforts are needed to investigate the in vivo mechanisms of small molecule-mediated neuronal reprogramming under pathophysiological states, optimize screening cocktails and dosing regimens, and identify safe and effective delivery routes to promote neural regeneration in different neurological diseases.
Collapse
Affiliation(s)
| | | | | | - Gaigai Li
- *Correspondence: Gaigai Li, ; Zhouping Tang,
| | | |
Collapse
|
14
|
Olesen MA, Villavicencio-Tejo F, Quintanilla RA. The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders. Transl Neurodegener 2022; 11:36. [PMID: 35787292 PMCID: PMC9251940 DOI: 10.1186/s40035-022-00308-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Neurological disorders (NDs) are characterized by progressive neuronal dysfunction leading to synaptic failure, cognitive impairment, and motor injury. Among these diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have raised a significant research interest. These disorders present common neuropathological signs, including neuronal dysfunction, protein accumulation, oxidative damage, and mitochondrial abnormalities. In this context, mitochondrial impairment is characterized by a deficiency in ATP production, excessive production of reactive oxygen species, calcium dysregulation, mitochondrial transport failure, and mitochondrial dynamics deficiencies. These defects in mitochondrial health could compromise the synaptic process, leading to early cognitive dysfunction observed in these NDs. Interestingly, skin fibroblasts from AD, PD, HD, and ALS patients have been suggested as a useful strategy to investigate and detect early mitochondrial abnormalities in these NDs. In this context, fibroblasts are considered a viable model for studying neurodegenerative changes due to their metabolic and biochemical relationships with neurons. Also, studies of our group and others have shown impairment of mitochondrial bioenergetics in fibroblasts from patients diagnosed with sporadic and genetic forms of AD, PD, HD, and ALS. Interestingly, these mitochondrial abnormalities have been observed in the brain tissues of patients suffering from the same pathologies. Therefore, fibroblasts represent a novel strategy to study the genesis and progression of mitochondrial dysfunction in AD, PD, HD, and ALS. This review discusses recent evidence that proposes fibroblasts as a potential target to study mitochondrial bioenergetics impairment in neurological disorders and consequently to search for new biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
15
|
Ochiai M, Nguyen HT, Kurihara N, Hirano M, Tajima Y, Yamada TK, Iwata H. Directly Reprogrammed Neurons as a Tool to Assess Neurotoxicity of the Contaminant 4-Hydroxy-2',3,5,5'-tetrachlorobiphenyl (4'OH-CB72) in Melon-Headed Whales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8159-8168. [PMID: 34061511 DOI: 10.1021/acs.est.1c01074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Whales accumulate high levels of environmental pollutants. Exposure to polychlorinated biphenyls (PCBs) and their metabolites (OH-PCBs) could be linked to abnormal behavior, which may lead to mass stranding of marine mammals. Whales may thus suffer from adverse effects such as neuronal dysfunction, yet testing the neurotoxicity of these compounds has never been feasible for these species. This study established neurons chemically reprogrammed from fibroblasts of mass stranded melon-headed whales (Peponocephala electra) and used them for in vitro neurotoxicity assays. Exposure to 4-hydroxy-2',3,5,5'-tetrachlorobiphenyl (4'OH-CB72), a metabolite of PCBs, caused apoptosis in the reprogrammed neurons. Transcriptome analysis of 4'OH-CB72-treated whale neurons showed altered expressions of genes associated with oxidative phosphorylation, chromatin degradation, axonal transport, and neurodegenerative diseases. These results suggest that 4'OH-CB72 exposure may induce neurodegeneration through disrupted apoptotic processes. A comparison of the results with human reprogrammed neurons revealed the specific effects on the whale neurons. Our noninvasive approach using fibroblast-derived neurons is useful for hazard and risk assessments of neurotoxicity in whales.
Collapse
Affiliation(s)
- Mari Ochiai
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577, Japan
| | - Hoa Thanh Nguyen
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577, Japan
| | - Nozomi Kurihara
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi City, Yamaguchi 753-8515, Japan
| | - Masashi Hirano
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577, Japan
| | - Yuko Tajima
- Division of Vertebrates, Department of Zoology, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki 305-0005, Japan
| | - Tadasu K Yamada
- Division of Vertebrates, Department of Zoology, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki 305-0005, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577, Japan
| |
Collapse
|
16
|
Napolitano F, Rapakoulia T, Annunziata P, Hasegawa A, Cardon M, Napolitano S, Vaccaro L, Iuliano A, Wanderlingh LG, Kasukawa T, Medina DL, Cacchiarelli D, Gao X, di Bernardo D, Arner E. Automatic identification of small molecules that promote cell conversion and reprogramming. Stem Cell Reports 2021; 16:1381-1390. [PMID: 33891873 PMCID: PMC8185468 DOI: 10.1016/j.stemcr.2021.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/04/2022] Open
Abstract
Controlling cell fate has great potential for regenerative medicine, drug discovery, and basic research. Although transcription factors are able to promote cell reprogramming and transdifferentiation, methods based on their upregulation often show low efficiency. Small molecules that can facilitate conversion between cell types can ameliorate this problem working through safe, rapid, and reversible mechanisms. Here, we present DECCODE, an unbiased computational method for identification of such molecules based on transcriptional data. DECCODE matches a large collection of drug-induced profiles for drug treatments against a large dataset of primary cell transcriptional profiles to identify drugs that either alone or in combination enhance cell reprogramming and cell conversion. Extensive validation in the context of human induced pluripotent stem cells shows that DECCODE is able to prioritize drugs and drug combinations enhancing cell reprogramming. We also provide predictions for cell conversion with single drugs and drug combinations for 145 different cell types.
Collapse
Affiliation(s)
- Francesco Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA) 80078, Italy; Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Trisevgeni Rapakoulia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Patrizia Annunziata
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli (NA) 80078, Italy
| | - Akira Hasegawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045 Japan
| | - Melissa Cardon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045 Japan
| | - Sara Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA) 80078, Italy
| | - Lorenzo Vaccaro
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli (NA) 80078, Italy
| | - Antonella Iuliano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA) 80078, Italy
| | | | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045 Japan
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA) 80078, Italy; Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli (NA) 80078, Italy; Department of Translational Medicine, University of Naples Federico II, Naples, Italy.
| | - Xin Gao
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA) 80078, Italy; Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy.
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045 Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8528 Japan.
| |
Collapse
|
17
|
Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol 2021; 22:410-424. [PMID: 33619373 DOI: 10.1038/s41580-021-00335-z] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies.
Collapse
|
18
|
Liu D, Rychkov G, Al-Hawwas M, Manaph NPA, Zhou F, Bobrovskaya L, Liao H, Zhou XF. Conversion of human urine-derived cells into neuron-like cells by small molecules. Mol Biol Rep 2020; 47:2713-2722. [PMID: 32185687 DOI: 10.1007/s11033-020-05370-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/04/2020] [Indexed: 01/04/2023]
Abstract
Neural cell transplantation is an effective way for treatment of neurological diseases. However, the absence of transplantable human neurons remains a barrier for clinical therapies. Human urine-derived cells, namely renal cells and urine stem cells, have become a good source of cells for reprogramming or trans-differentiation research. Here, we show that human urine-derived cells can be partially converted into neuron-like cells by applying a cocktail of small molecules. Gene expression analysis has shown that these induced cells expressed some neuron-specific genes, and a proportion of the cells are GABAergic neurons. Moreover, whole-cell patch clamping recording has shown that some induced cells have neuron-specific voltage gated Na+ and K+ currents but have failed to generate Ca2+ currents and action potentials. Taken together, these results suggest that induced neuronal cells from human urine-derived cells may be useful for neurological disease modelling, drug screening and cell therapies.
Collapse
Affiliation(s)
- Donghui Liu
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Grigori Rychkov
- Discipline of Medicine, School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | | | - Fiona Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
- Discipline of Medicine, School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Hong Liao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
19
|
A developed serum-free medium and an optimized chemical cocktail for direct conversion of human dermal fibroblasts into brown adipocytes. Sci Rep 2020; 10:3775. [PMID: 32111895 PMCID: PMC7048747 DOI: 10.1038/s41598-020-60769-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/17/2020] [Indexed: 01/12/2023] Open
Abstract
Brown adipocytes coordinate systemic energy metabolism associated with the pathogenesis of obesity and related metabolic diseases including type 2 diabetes. We have previously reported chemical compound-induced brown adipocytes (ciBAs) converted from human dermal fibroblasts without using transgenes. In this study, to reveal a precise molecular mechanism underlying the direct conversion and human adipocyte browning, we developed serum-free brown adipogenic medium (SFBAM) with an optimized chemical cocktail consisting of Rosiglitazone, Forskolin, and BMP7. During the direct conversion, treatment with BMP7 enhanced Ucp1 expression rather than the conversion efficiency in the absence of BMP signalling inhibitors. Moreover, treatment with a TGF-β signalling pathway inhibitor was no longer required in the serum-free medium, likely because the TGF-β pathway was already suppressed. SFBAM and the chemical cocktail efficiently converted human dermal fibroblasts into ciBAs within four weeks. The ciBAs exhibited increased mitochondrial levels, elevated oxygen consumption rate, and a response to β-adrenergic receptor agonists. Thus the ciBAs converted by the serum-free medium and the chemical cocktail provide a novel model of human brown (beige) adipocytes applicable for basic research, drug screening, and clinical applications.
Collapse
|
20
|
Agustin AT, Safitri A, Fatchiyah F. An in Silico Approach Reveals the Potential Function of Cyanidin-3-o-glucoside of Red Rice in Inhibiting the Advanced Glycation End Products (AGES)-Receptor (RAGE) Signaling Pathway. Acta Inform Med 2020; 28:170-179. [PMID: 33417643 PMCID: PMC7780823 DOI: 10.5455/aim.2020.28.170-179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: Advanced glycation end products (AGEs) contribute to the pathogenesis of chronic inflammation, diabetes, micro and macrovascular complications, and neurodegenerative diseases through the binding with RAGE. Natural compounds can act as an alternative in disease therapy related to the AGEs-RAGE interactions. Cyanidin-3-O-glucoside is one of the potential anthocyanins found in red rice. Cyanidin-3-O-glucoside in red rice may interfere with the AGEs-RAGE signaling so that the potential mechanism of their interaction needs to be elucidated. Aim: This study aimed to investigate the potency of cyanidin-3-O-glucoside in red rice as an inhibitor of AGE-RAGE signaling pathway through in silico analysis. Methods: Our study used the 3D structures of AGEs and Cyanidin-3-O-glucoside compounds from PubChem and Receptor for AGEs (RAGE) from the RCSB Protein Data Bank (PDB) database. The molecular interactions of those compounds and RAGE were established using Hex 8.0 software, then visualized using Discovery Studio 2016 software. Results: Argypirimidine, pentosidine, pyrralline, and imidazole bound to the ligand-binding domain of RAGE with the binding energy of -247 kcal/mol, -350.4 kcal/mol, -591.1 kcal/mol, and -100.4 kcal/mol, respectively. The presence of cyanidin-3-O-glucoside in the imidazole-RAGE-cyanidin-3-O-glucoside complex could inhibit the interaction of imidazole-RAGE with a binding energy of -299 kcal/mol, which was lower than of imidazole-RAGE complex. The establishment of AGEs-Cyanidin-3-O-glucoside-RAGE complex showed that cyanidin-3-O-glucoside, which bound first to Argypirimidine and Pyrralline, could bound to RAGE at the same residue as those two AGEs did with the binding energy of -411.8 kcal/mol and -1305 kcal/mol, respectively. Based on the binding site location and energy, cyanidin-3-O-glucoside might have a biological function as an inhibitor of AGEs-RAGE interactions, which was more likely through the establishment of AGEs-cyanidin-3-O-glucoside-RAGE. Conclusion: This study suggests that cyanidin-3-O-glucoside in red rice can be a potential AGEs-RAGE inhibitor, leading to the regulation of the pro-inflammatory and oxidative damage in the cellular pathway.
Collapse
Affiliation(s)
- Ayu Tri Agustin
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia.,Research Center of Smart Molecule of Natural Genetics Resource, Brawijaya University, Malang, Indonesia
| | - Anna Safitri
- Research Center of Smart Molecule of Natural Genetics Resource, Brawijaya University, Malang, Indonesia.,Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Fatchiyah Fatchiyah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia.,Research Center of Smart Molecule of Natural Genetics Resource, Brawijaya University, Malang, Indonesia
| |
Collapse
|
21
|
Xu G, Wu F, Gu X, Zhang J, You K, Chen Y, Getachew A, Zhuang Y, Zhong X, Lin Z, Guo D, Yang F, Pan T, Wei H, Li YX. Direct Conversion of Human Urine Cells to Neurons by Small Molecules. Sci Rep 2019; 9:16707. [PMID: 31723223 PMCID: PMC6854089 DOI: 10.1038/s41598-019-53007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Transdifferentiation of other cell type into human neuronal cells (hNCs) provides a platform for neural disease modeling, drug screening and potential cell-based therapies. Among all of the cell donor sources, human urine cells (hUCs) are convenient to obtain without invasive harvest procedure. Here, we report a novel approach for the transdifferentiation of hUCs into hNCs. Our study demonstrated that a combination of seven small molecules (CAYTFVB) cocktail induced transdifferentiation of hUCs into hNCs. These chemical-induced neuronal cells (CiNCs) exhibited typical neuron-like morphology and expressed mature neuronal markers. The neuronal-like morphology revealed in day 1, and the Tuj1-positive CiNCs reached to about 58% in day 5 and 38.36% Tuj1+/MAP2+ double positive cells in day 12. Partial electrophysiological properties of CiNCs was obtained using patch clamp. Most of the CiNCs generated using our protocol were glutamatergic neuron populations, whereas motor neurons, GABAergic or dopaminergic neurons were merely detected. hUCs derived from different donors were converted into CiNCs in this work. This method may provide a feasible and noninvasive approach for reprogramming hNCs from hUCs for disease models and drug screening.
Collapse
Affiliation(s)
- Guosheng Xu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangzhou Blood Center, Guangzhou, China
| | - Feima Wu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaotong Gu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiaye Zhang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Kai You
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Chen
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Anteneh Getachew
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuanqi Zhuang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofen Zhong
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zuoxian Lin
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dongsheng Guo
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fan Yang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tingcai Pan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongcheng Wei
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yin-Xiong Li
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
22
|
Chen S, Zhang J, Zhang D, Jiao J. Acquisition of functional neurons by direct conversion: Switching the developmental clock directly. J Genet Genomics 2019; 46:459-465. [PMID: 31771824 DOI: 10.1016/j.jgg.2019.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 10/08/2019] [Indexed: 01/04/2023]
Abstract
Identifying approaches for treating neurodegeneration is a thorny task but is important for a growing number of patients. Researchers have focused on discovering the underlying molecular mechanisms of reprogramming and optimizing the technologies for acquiring neurons. Direct conversion is one of the most important processes for treating neurological disorders. Induced neurons derived from direct conversion, which bypass the pluripotency stage, are more effective, more quickly obtained, and are safer than those produced via induced pluripotent stem cells (iPSCs). Based on iPSC strategies, scientists have derived methods to obtain functional neurons by direct conversion, such as neuron-related transcriptional factors, small molecules, microRNAs, and epigenetic modifiers. In this review, we discuss the present strategies for direct conversion of somatic cells into functional neurons and the potentials of direct conversion for producing functional neurons and treating neurodegeneration.
Collapse
Affiliation(s)
- Shuangquan Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Juan Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongming Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwei Jiao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
23
|
Oteng A, Loregger A, van Weeghel M, Zelcer N, Kersten S. Industrial Trans Fatty Acids Stimulate SREBP2-Mediated Cholesterogenesis and Promote Non-Alcoholic Fatty Liver Disease. Mol Nutr Food Res 2019; 63:e1900385. [PMID: 31327168 PMCID: PMC6790681 DOI: 10.1002/mnfr.201900385] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/01/2019] [Indexed: 12/24/2022]
Abstract
SCOPE The mechanisms underlying the deleterious effects of trans fatty acids on plasma cholesterol and non-alcoholic fatty liver disease (NAFLD) are unclear. Here, the aim is to investigate the molecular mechanisms of action of industrial trans fatty acids. METHODS AND RESULTS Hepa1-6 hepatoma cells were incubated with elaidate, oleate, or palmitate. C57Bl/6 mice were fed diets rich in trans-unsaturated, cis-unsaturated, or saturated fatty acids. Transcriptomics analysis of Hepa1-6 cells shows that elaidate but not oleate or palmitate induces expression of genes involved in cholesterol biosynthesis. Induction of cholesterogenesis by elaidate is mediated by increased sterol regulatory element-binding protein 2 (SREBP2) activity and is dependent on SREBP cleavage-activating protein (SCAP), yet independent of liver-X receptor and ubiquitin regulatory X domain-containing protein 8. Elaidate decreases intracellular free cholesterol levels and represses the anticholesterogenic effect of exogenous cholesterol. In mice, the trans-unsaturated diet increases the ratio of liver to gonadal fat mass, steatosis, hepatic cholesterol levels, alanine aminotransferase activity, and fibrosis markers, suggesting enhanced NAFLD, compared to the cis-unsaturated and saturated diets. CONCLUSION Elaidate induces cholesterogenesis in vitro by activating the SCAP-SREBP2 axis, likely by lowering intracellular free cholesterol and attenuating cholesterol-dependent repression of SCAP. This pathway potentially underlies the increase in liver cholesterol and NAFLD by industrial trans fatty acids.
Collapse
Affiliation(s)
- Antwi‐Boasiako Oteng
- Nutrition, Metabolism and Genomics GroupDivision of Human Nutrition and HealthWageningen University6708 WEWageningenThe Netherlands
| | - Anke Loregger
- Department of Medical BiochemistryAcademic Medical CenterUniversity of Amsterdam1105 AZAmsterdamThe Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic DiseasesAmsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences1105 AZAmsterdamThe Netherlands
| | - Noam Zelcer
- Department of Medical BiochemistryAcademic Medical CenterUniversity of Amsterdam1105 AZAmsterdamThe Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics GroupDivision of Human Nutrition and HealthWageningen University6708 WEWageningenThe Netherlands
| |
Collapse
|
24
|
Ge JY, Zheng YW, Liu LP, Isoda H, Oda T. Impelling force and current challenges by chemicals in somatic cell reprogramming and expansion beyond hepatocytes. World J Stem Cells 2019; 11:650-665. [PMID: 31616541 PMCID: PMC6789182 DOI: 10.4252/wjsc.v11.i9.650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/07/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
In the field of regenerative medicine, generating numerous transplantable functional cells in the laboratory setting on a large scale is a major challenge. However, the in vitro maintenance and expansion of terminally differentiated cells are challenging because of the lack of specific environmental and intercellular signal stimulations, markedly hindering their therapeutic application. Remarkably, the generation of stem/progenitor cells or functional cells with effective proliferative potential is markedly in demand for disease modeling, cell-based transplantation, and drug discovery. Despite the potent genetic manipulation of transcription factors, integration-free chemically defined approaches for the conversion of somatic cell fate have garnered considerable attention in recent years. This review aims to summarize the progress thus far and discuss the advantages, limitations, and challenges of the impact of full chemicals on the stepwise reprogramming of pluripotency, direct lineage conversion, and direct lineage expansion on somatic cells. Owing to the current chemical-mediated induction, reprogrammed pluripotent stem cells with reproducibility difficulties, and direct lineage converted cells with marked functional deficiency, it is imperative to generate the desired cell types directly by chemically inducing their potent proliferation ability through a lineage-committed progenitor state, while upholding the maturation and engraftment capacity posttransplantation in vivo. Together with the comprehensive understanding of the mechanism of chemical drives, as well as the elucidation of specificity and commonalities, the precise manipulation of the expansion for diverse functional cell types could broaden the available cell sources and enhance the cellular function for clinical application in future.
Collapse
Affiliation(s)
- Jian-Yun Ge
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Li-Ping Liu
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
25
|
Abu-Dawud R, Graffmann N, Ferber S, Wruck W, Adjaye J. Pluripotent stem cells: induction and self-renewal. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0213. [PMID: 29786549 DOI: 10.1098/rstb.2017.0213] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cells (PSCs) lie at the heart of modern regenerative medicine due to their properties of unlimited self-renewal in vitro and their ability to differentiate into cell types representative of the three embryonic germ layers-mesoderm, ectoderm and endoderm. The derivation of induced PSCs bypasses ethical concerns associated with the use of human embryonic stem cells and also enables personalized cell-based therapies. To exploit their regenerative potential, it is essential to have a firm understanding of the molecular processes associated with their induction from somatic cells. This understanding serves two purposes: first, to enable efficient, reliable and cost-effective production of excellent quality induced PSCs and, second, to enable the derivation of safe, good manufacturing practice-grade transplantable donor cells. Here, we review the reprogramming process of somatic cells into induced PSCs and associated mechanisms with emphasis on self-renewal, epigenetic control, mitochondrial bioenergetics, sub-states of pluripotency, naive ground state, naive and primed. A meta-analysis identified genes expressed exclusively in the inner cell mass and in the naive but not in the primed pluripotent state. We propose these as additional biomarkers defining naive PSCs.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- R Abu-Dawud
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Zahrawi Street, Riyadh 11211, Saudi Arabia
| | - N Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - S Ferber
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - W Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - J Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
26
|
Zhavoronkov A, Mamoshina P, Vanhaelen Q, Scheibye-Knudsen M, Moskalev A, Aliper A. Artificial intelligence for aging and longevity research: Recent advances and perspectives. Ageing Res Rev 2019; 49:49-66. [PMID: 30472217 DOI: 10.1016/j.arr.2018.11.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/07/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022]
Abstract
The applications of modern artificial intelligence (AI) algorithms within the field of aging research offer tremendous opportunities. Aging is an almost universal unifying feature possessed by all living organisms, tissues, and cells. Modern deep learning techniques used to develop age predictors offer new possibilities for formerly incompatible dynamic and static data types. AI biomarkers of aging enable a holistic view of biological processes and allow for novel methods for building causal models-extracting the most important features and identifying biological targets and mechanisms. Recent developments in generative adversarial networks (GANs) and reinforcement learning (RL) permit the generation of diverse synthetic molecular and patient data, identification of novel biological targets, and generation of novel molecular compounds with desired properties and geroprotectors. These novel techniques can be combined into a unified, seamless end-to-end biomarker development, target identification, drug discovery and real world evidence pipeline that may help accelerate and improve pharmaceutical research and development practices. Modern AI is therefore expected to contribute to the credibility and prominence of longevity biotechnology in the healthcare and pharmaceutical industry, and to the convergence of countless areas of research.
Collapse
|
27
|
Romo-Vaquero M, Cortés-Martín A, Loria-Kohen V, Ramírez-de-Molina A, García-Mantrana I, Collado MC, Espín JC, Selma MV. Deciphering the Human Gut Microbiome of Urolithin Metabotypes: Association with Enterotypes and Potential Cardiometabolic Health Implications. Mol Nutr Food Res 2018; 63:e1800958. [PMID: 30471188 DOI: 10.1002/mnfr.201800958] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/22/2018] [Indexed: 11/11/2022]
Abstract
SCOPE The gut microbiota ellagitannin-metabolizing phenotypes (i.e., urolithin metabotypes [UMs]) are proposed as potential cardiovascular disease (CVD) risk biomarkers because the host blood lipid profile is reported to be associated with specific UMs. However, the link for this association remains unknown so far. METHODS AND RESULTS The gut microbiome of 249 healthy individuals is analyzed using 16S rDNA sequencing analysis. Individuals are also stratified by UMs (UM-A, UM-B, and UM-0) and enterotypes (Bacteroides, Prevotella, and Ruminococcus). Associations of UMs discriminating bacteria with CVD risk markers are investigated. Distribution and gut microbiota composition of UMs and enterotypes are not coincident. Almost half of the discriminating genera between UM-A and UM-B belongs to the Coriobacteriaceae family. UM-B individuals present higher blood cholesterol levels and higher alpha-diversity, including Coriobacteriaceae family, than those of UM-A. Coriobacteriaceae, whose abundance is the highest in UM-B, is positively correlated with total cholesterol, LDL cholesterol, and body mass index. CONCLUSIONS Results herein suggest that the family Coriobacteriaceae could be a link between individuals' UMs and their blood cholesterol levels. Further research is needed to explore the mechanisms of the host metabolic phenotype, including cholesterol excretion products, to modulate this bacterial family.
Collapse
Affiliation(s)
- María Romo-Vaquero
- Laboratory of Food & Health Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100, Murcia, Spain
| | - Adrián Cortés-Martín
- Laboratory of Food & Health Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100, Murcia, Spain
| | - Viviana Loria-Kohen
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Ana Ramírez-de-Molina
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Izaskun García-Mantrana
- Group of Lactic Bacteria and Probiotics, Department of Biotechnology, IATA-CSIC, 46980, Valencia, Spain
| | - María Carmen Collado
- Group of Lactic Bacteria and Probiotics, Department of Biotechnology, IATA-CSIC, 46980, Valencia, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100, Murcia, Spain
| | - María Victoria Selma
- Laboratory of Food & Health Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100, Murcia, Spain
| |
Collapse
|
28
|
Chanoumidou K, Hadjimichael C, Athanasouli P, Ahlenius H, Klonizakis A, Nikolaou C, Drakos E, Kostouros A, Stratidaki I, Grigoriou M, Kretsovali A. Groucho related gene 5 (GRG5) is involved in embryonic and neural stem cell state decisions. Sci Rep 2018; 8:13790. [PMID: 30214018 PMCID: PMC6137157 DOI: 10.1038/s41598-018-31696-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 08/20/2018] [Indexed: 12/16/2022] Open
Abstract
Groucho related gene 5 (GRG5) is a multifunctional protein that has been implicated in late embryonic and postnatal mouse development. Here, we describe a previously unknown role of GRG5 in early developmental stages by analyzing its function in stem cell fate decisions. By both loss and gain of function approaches we demonstrate that ablation of GRG5 deregulates the Embryonic Stem Cell (ESC) pluripotent state whereas its overexpression leads to enhanced self-renewal and acquisition of cancer cell-like properties. The malignant characteristics of teratomas generated by ESCs that overexpress GRG5 reveal its pro-oncogenic potential. Furthermore, transcriptomic analysis and cell differentiation approaches underline GRG5 as a multifaceted signaling regulator that represses mesendodermal-related genes. When ESCs exit pluripotency, GRG5 promotes neuroectodermal specification via Wnt and BMP signaling suppression. Moreover, GRG5 promotes the neuronal reprogramming of fibroblasts and maintains the self-renewal of Neural Stem Cells (NSCs) by sustaining the activity of Notch/Hes and Stat3 signaling pathways. In summary, our results demonstrate that GRG5 has pleiotropic roles in stem cell biology functioning as a stemness factor and a neural fate specifier.
Collapse
Affiliation(s)
- Konstantina Chanoumidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupoli, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.,Lund Stem Cell Center, University Hospital, SE-221 84, Lund, Sweden
| | - Christiana Hadjimichael
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
| | - Paraskevi Athanasouli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.,Department of Biology, University of Crete, 71409, Heraklion, Crete, Greece
| | - Henrik Ahlenius
- Lund Stem Cell Center, University Hospital, SE-221 84, Lund, Sweden
| | - Antonis Klonizakis
- Department of Biology, University of Crete, 71409, Heraklion, Crete, Greece
| | | | - Elias Drakos
- School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Antonis Kostouros
- School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Irene Stratidaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
| | - Maria Grigoriou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupoli, Greece
| | - Androniki Kretsovali
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.
| |
Collapse
|
29
|
Chemical conversion of human and mouse fibroblasts into motor neurons. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1151-1167. [PMID: 30159682 DOI: 10.1007/s11427-018-9359-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/16/2018] [Indexed: 01/25/2023]
Abstract
Transplantation of motor neurons can provide long-term functional benefits in animal models of neurodegenerative motor neuron diseases such as amyotrophic lateral sclerosis and traumatic spinal cord injury. Although embryonic stem cells can differentiate into motor neurons, alternative sources of motor neurons may be controllable for disease modeling and transplantation. Here, we show that human and mouse fibroblasts can be efficiently and directly converted into motor neurons by a cocktail of five small molecules, without the involvement of the neural progenitor stage. The chemically-induced motor neurons display the distinct neuronal morphology and express motor neuron markers. Interestingly, when the same chemical compounds were soaked in beads and implanted in the hypodermis of the back skins of mice, surrounding cells begin to express motor neuron markers, indicating in vivo motor neuron reprogramming. Taken together, we provide an efficient approach for chemically converting human and mouse fibroblasts into motor neurons suitable for cell replacement therapy and neurodegenerative disease modeling.
Collapse
|
30
|
Kaity B, Sarkar R, Chakrabarti B, Mitra MK. Reprogramming, oscillations and transdifferentiation in epigenetic landscapes. Sci Rep 2018; 8:7358. [PMID: 29743499 PMCID: PMC5943272 DOI: 10.1038/s41598-018-25556-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/19/2018] [Indexed: 11/21/2022] Open
Abstract
Waddington’s epigenetic landscape provides a phenomenological understanding of the cell differentiation pathways from the pluripotent to mature lineage-committed cell lines. In light of recent successes in the reverse programming process there has been significant interest in quantifying the underlying landscape picture through the mathematics of gene regulatory networks. We investigate the role of time delays arising from multi-step chemical reactions and epigenetic rearrangement on the cell differentiation landscape for a realistic two-gene regulatory network, consisting of self-promoting and mutually inhibiting genes. Our work provides the first theoretical basis of the transdifferentiation process in the presence of delays, where one differentiated cell type can transition to another directly without passing through the undifferentiated state. Additionally, the interplay of time-delayed feedback and a time dependent chemical drive leads to long-lived oscillatory states in appropriate parameter regimes. This work emphasizes the important role played by time-delayed feedback loops in gene regulatory circuits and provides a framework for the characterization of epigenetic landscapes.
Collapse
Affiliation(s)
- Bivash Kaity
- IIT Bombay, Department of Physics, Mumbai, 400076, India
| | - Ratan Sarkar
- Indian Institute of Science, Centre for High Energy Physics, Bangalore, 560012, India
| | | | - Mithun K Mitra
- IIT Bombay, Department of Physics, Mumbai, 400076, India.
| |
Collapse
|
31
|
Chemical compound-based direct reprogramming for future clinical applications. Biosci Rep 2018; 38:BSR20171650. [PMID: 29739872 PMCID: PMC5938430 DOI: 10.1042/bsr20171650] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Recent studies have revealed that a combination of chemical compounds enables direct reprogramming from one somatic cell type into another without the use of transgenes by regulating cellular signaling pathways and epigenetic modifications. The generation of induced pluripotent stem (iPS) cells generally requires virus vector-mediated expression of multiple transcription factors, which might disrupt genomic integrity and proper cell functions. The direct reprogramming is a promising alternative to rapidly prepare different cell types by bypassing the pluripotent state. Because the strategy also depends on forced expression of exogenous lineage-specific transcription factors, the direct reprogramming in a chemical compound-based manner is an ideal approach to further reduce the risk for tumorigenesis. So far, a number of reported research efforts have revealed that combinations of chemical compounds and cell-type specific medium transdifferentiate somatic cells into desired cell types including neuronal cells, glial cells, neural stem cells, brown adipocytes, cardiomyocytes, somatic progenitor cells, and pluripotent stem cells. These desired cells rapidly converted from patient-derived autologous fibroblasts can be applied for their own transplantation therapy to avoid immune rejection. However, complete chemical compound-induced conversions remain challenging particularly in adult human-derived fibroblasts compared with mouse embryonic fibroblasts (MEFs). This review summarizes up-to-date progress in each specific cell type and discusses prospects for future clinical application toward cell transplantation therapy.
Collapse
|
32
|
Direct conversion from skin fibroblasts to functional dopaminergic neurons for biomedical application. BIOMEDICAL DERMATOLOGY 2017. [DOI: 10.1186/s41702-017-0004-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Li X, Zhang P, Jiang S, Ding B, Zuo X, Li Y, Cao Z, Zhang Y. Aging adult porcine fibroblasts can support nuclear transfer and transcription factor-mediated reprogramming. Anim Sci J 2017; 89:289-297. [PMID: 28971562 DOI: 10.1111/asj.12871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/08/2017] [Indexed: 11/30/2022]
Abstract
Somatic cell nuclear transfer (SCNT) and induced pluripotent stem cells (iPSCs) technology are two classical reprogramming methods. Donor cell types can affect the reprogramming results in the above two methods. We here used porcine embryonic fibroblasts (PEFs) and adult porcine ear skin fibroblasts (APEFs) and adipose-derived stem cells (ADSCs) as donor cells for SCNT and source cells for iPSCs to study their in vitro developmental capability and colony-formation efficiency, respectively. For SCNT, fusion and cleavage rate has no significant difference among PEFs, ADSCs and APEFs. The rate and total cell number of blastocysts in the APEF group were significant lower than that in PEFs and ADSCs. For transcription factor-mediated reprogramming, the reprogramming efficiency of ADSCs were significantly higher than PEFs and APEFs and there is no significant difference between PEFs and APEFs. Furthermore, PEFs, APEFs and ADSCs can be used to generate iPSCs. Fianlly, somatic cloned pigs could still be successfully generated from APEFs, suggesting terminally differentiated aging adult somatic cells could be reprogrammed into a totipotent state. Considering the easy availability of animal tissue and the costs of establishing cell lines, aging porcine ear fibroblasts can support nuclear transfer-mediated and transcription factor-based reprogramming.
Collapse
Affiliation(s)
- Xia Li
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Pengfei Zhang
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Shaoshuai Jiang
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Biao Ding
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaoyuan Zuo
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Yunsheng Li
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Zubing Cao
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
34
|
Qin H, Zhao A, Fu X. Small molecules for reprogramming and transdifferentiation. Cell Mol Life Sci 2017; 74:3553-3575. [PMID: 28698932 PMCID: PMC11107793 DOI: 10.1007/s00018-017-2586-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 01/15/2023]
Abstract
Pluripotency reprogramming and transdifferentiation induced by transcription factors can generate induced pluripotent stem cells, adult stem cells or specialized cells. However, the induction efficiency and the reintroduction of exogenous genes limit their translation into clinical applications. Small molecules that target signaling pathways, epigenetic modifications, or metabolic processes can regulate cell development, cell fate, and function. In the recent decade, small molecules have been widely used in reprogramming and transdifferentiation fields, which can promote the induction efficiency, replace exogenous genes, or even induce cell fate conversion alone. Small molecules are expected as novel approaches to generate new cells from somatic cells in vitro and in vivo. Here, we will discuss the recent progress, new insights, and future challenges about the use of small molecules in cell fate conversion.
Collapse
Affiliation(s)
- Hua Qin
- Tianjin Medical University, Tianjin, 300070, China
| | - Andong Zhao
- Tianjin Medical University, Tianjin, 300070, China
| | - Xiaobing Fu
- Key Laboratory of Wound Repair and Regeneration of PLA, The First Hospital Affiliated to the PLA General Hospital, 51 Fu Cheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
35
|
Takeda Y, Harada Y, Yoshikawa T, Dai P. Direct conversion of human fibroblasts to brown adipocytes by small chemical compounds. Sci Rep 2017; 7:4304. [PMID: 28655922 PMCID: PMC5487346 DOI: 10.1038/s41598-017-04665-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/17/2017] [Indexed: 01/09/2023] Open
Abstract
Brown adipocytes play an important role in human energy metabolism and prevention of obesity and diabetes. Induced pluripotent stem cells (iPSCs) represent a promising source for brown adipocytes; however, exogenous gene induction is generally required for iPSCs generation, which might cause undesired effects particularly in long-term treatment after transplantation. We have previously reported a cocktail of six small chemical compounds that enables a conversion of human fibroblasts into chemical compound-induced neuronal cells (CiNCs). Here, we report that modified combinations of the chemical compounds and rosiglitazone, a PPARγ agonist, afforded direct conversion of human fibroblasts into brown adipocytes. The chemical compound-induced brown adipocytes (ciBAs) exhibit induction of human brown adipocyte-specific genes such as Ucp1, Ckmt1, Cited1 and other adipocyte-specific genes such as Fabp4, AdipoQ, and Pparγ. Treatment with either isoproterenol or Forskolin further induced the expression of Ucp1, suggesting that β adrenergic receptor signalling in ciBAs could be functional for induction of thermogenic genes. Moreover, oxygen consumption rates were elevated in ciBAs along with increase of cellular mitochondria. Our findings might provide an easily accessible approach for generating human brown adipocytes from fibroblasts and offer therapeutic potential for the management of obesity, diabetes, and related metabolic disorders.
Collapse
Affiliation(s)
- Yukimasa Takeda
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshikazu Yoshikawa
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ping Dai
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
36
|
Coelho OGL, da Silva BP, Rocha DMUP, Lopes LL, Alfenas RDCG. Polyunsaturated fatty acids and type 2 diabetes: Impact on the glycemic control mechanism. Crit Rev Food Sci Nutr 2017; 57:3614-3619. [DOI: 10.1080/10408398.2015.1130016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Bárbara Pereira da Silva
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Lílian Lelis Lopes
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
37
|
Wegscheid ML, Anastasaki C, Gutmann DH. Human stem cell modeling in neurofibromatosis type 1 (NF1). Exp Neurol 2017; 299:270-280. [PMID: 28392281 DOI: 10.1016/j.expneurol.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 01/03/2023]
Abstract
The future of precision medicine is heavily reliant on the use of human tissues to identify the key determinants that account for differences between individuals with the same disorder. This need is exemplified by the neurofibromatosis type 1 (NF1) neurogenetic condition. As such, individuals with NF1 are born with a germline mutation in the NF1 gene, but may develop numerous distinct neurological problems, ranging from autism and attention deficit to brain and peripheral nerve sheath tumors. Coupled with accurate preclinical mouse models, the availability of NF1 patient-derived induced pluripotent stem cells (iPSCs) provides new opportunities to define the critical factors that underlie NF1-associated nervous system disease pathogenesis and progression. In this review, we discuss the generation and potential applications of iPSC technology to the study of NF1.
Collapse
Affiliation(s)
- Michelle L Wegscheid
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
38
|
Takayama Y, Wakabayashi T, Kushige H, Saito Y, Shibuya Y, Shibata S, Akamatsu W, Okano H, Kida YS. Brief exposure to small molecules allows induction of mouse embryonic fibroblasts into neural crest-like precursors. FEBS Lett 2017; 591:590-602. [PMID: 28129669 PMCID: PMC5347899 DOI: 10.1002/1873-3468.12572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 12/11/2022]
Abstract
In this study, we propose a novel method for inducing neuronal cells by briefly exposing them to small‐molecule cocktails in a step‐by‐step manner. Global gene expression analysis with immunohistochemical staining and calcium flux assays reveal the generation of neurons from mouse embryonic fibroblasts. In addition, time‐lapse imaging of neural precursor‐specific enhancer expression and global gene expression analyses show that the neurons are generated by passing through a neural crest‐like precursor stage. Consistent with these results, the neural crest‐like cells are able to differentiate into neural crest lineage cells, such as sympathetic neurons, adipocytes, osteocytes, and smooth muscle cells. Therefore, these results indicate that brief exposure to chemical compounds could expand and induce a substantial multipotent cell population without viral transduction.
Collapse
Affiliation(s)
- Yuzo Takayama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Tamami Wakabayashi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hiroko Kushige
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Shinjuku-ku, Tokyo, Japan
| | - Yoichiro Shibuya
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.,Department of Plastic and Reconstructive Surgery, University of Tsukuba, Ibaraki, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yasuyuki S Kida
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
39
|
Xu Z, Chu X, Jiang H, Schilling H, Chen S, Feng J. Induced dopaminergic neurons: A new promise for Parkinson's disease. Redox Biol 2017; 11:606-612. [PMID: 28110217 PMCID: PMC5256671 DOI: 10.1016/j.redox.2017.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 12/28/2022] Open
Abstract
Motor symptoms that define Parkinson’s disease (PD) are caused by the selective loss of nigral dopaminergic (DA) neurons. Cell replacement therapy for PD has been focused on midbrain DA neurons derived from human fetal mesencephalic tissue, human embryonic stem cells (hESC) or human induced pluripotent stem cells (iPSC). Recent development in the direct conversion of human fibroblasts to induced dopaminergic (iDA) neurons offers new opportunities for transplantation study and disease modeling in PD. The iDA neurons are generated directly from human fibroblasts in a short period of time, bypassing lengthy differentiation process from human pluripotent stem cells and the concern for potentially tumorigenic mitotic cells. They exhibit functional dopaminergic neurotransmission and relieve locomotor symptoms in animal models of Parkinson’s disease. In this review, we will discuss this recent development and its implications to Parkinson’s disease research and therapy.
Fibroblasts can be directly converted to induced dopaminergic neurons by transcription factors. Many different types of cells can be converted to induced neurons in vitro and in vivo. Appropriate cell culture conditions enhance the direct conversion to induced neurons. The conversion to induced neurons is enhanced by G1 arrest and p53 attenuation. iDA neurons is a promising tool for PD research and therapy.
Collapse
Affiliation(s)
- Zhimin Xu
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA; Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Science and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xingkun Chu
- Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Science and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Houbo Jiang
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Haley Schilling
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Shengdi Chen
- Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Science and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Feng
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
40
|
Chen Y, Pu J, Zhang B. Progress and Challenges of Cell Replacement Therapy for Neurodegenerative Diseases Based on Direct Neural Reprogramming. Hum Gene Ther 2016; 27:962-970. [PMID: 27589383 DOI: 10.1089/hum.2016.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases are characterized by protein aggregation and progressive degeneration of neurons, causing severe functional deficiency in cognition, behavior, and movement. Until now, there has been no effective treatment available in the clinic. Considering the selective loss of specific neurons in the human brain in the pathogenesis of these diseases, generating functional neurons in vitro or in vivo to replace the lost neurons represents a novel strategy to treat neurodegenerative diseases. Human embryonic stem cells and induced pluripotent stem cells have good potential for cell replacement therapy. However, limitations, such as the possibility of tumor formation, have hindered its applications. Recently, a novel approach, direct neural reprogramming, in which somatic cells are reprogrammed to functional neurons without a stem-cell state, has emerged an alternative for cell replacement. Specific human somatic cells can be reprogrammed to functional subtype neurons via the introduction of transcription factors, microRNAs, or small molecules in vitro and in vivo, thereby reducing the risk of carcinogenesis. Studies demonstrated symptomatic relief when induced neurons were transplanted into animal models. Although the direct neural reprogramming holds great promise for cell replacement therapy, there remain a number of challenges for its clinical application, including low efficiency, unclear mechanisms, and safety concerns. This review highlights the progress and challenges of this technique, and discusses perspectives for its applications in cell replacement.
Collapse
Affiliation(s)
- Ying Chen
- Department of Neurology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University , Zhejiang, People's Republic of China
| | - Jiali Pu
- Department of Neurology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University , Zhejiang, People's Republic of China
| | - Baorong Zhang
- Department of Neurology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University , Zhejiang, People's Republic of China
| |
Collapse
|
41
|
Xu A, Cheng L. Chemical transdifferentiation: closer to regenerative medicine. Front Med 2016; 10:152-65. [PMID: 27142989 DOI: 10.1007/s11684-016-0445-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/21/2016] [Indexed: 12/15/2022]
Abstract
Cell transdifferentiation, which directly switches one type of differentiated cells into another cell type, is more advantageous than cell reprogramming to generate pluripotent cells and differentiate them into functional cells. This process is crucial in regenerative medicine. However, the cell-converting strategies, which mainly depend on the virus-mediated expression of exogenous genes, have clinical safety concerns. Small molecules with compelling advantages are a potential alternative in manipulating cell fate conversion. In this review, we briefly retrospect the nature of cell transdifferentiation and summarize the current developments in the research of small molecules in promoting cell conversion. Particularly, we focus on the complete chemical compound-induced cell transdifferentiation, which is closer to the clinical translation in cell therapy. Despite these achievements, the mechanisms underpinning chemical transdifferentiation remain largely unknown. More importantly, identifying drugs that induce resident cell conversion in vivo to repair damaged tissue remains to be the end-goal in current regenerative medicine.
Collapse
Affiliation(s)
- Aining Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
42
|
Petersen GF, Strappe PM. Generation of diverse neural cell types through direct conversion. World J Stem Cells 2016; 8:32-46. [PMID: 26981169 PMCID: PMC4766249 DOI: 10.4252/wjsc.v8.i2.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/18/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace, thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost. The process of neural direct conversion, in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency, shows great potential, with evidence of the generation of a range of functional neural cell types both in vitro and in vivo, through viral and non-viral delivery of exogenous factors, as well as chemical induction methods. Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells, with prospective roles in the investigation of neurological disorders, including neurodegenerative disease modelling, drug screening, and cellular replacement for regenerative medicine applications, however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option. In this review, we describe the generation of diverse neural cell types via direct conversion of somatic cells, with comparison against stem cell-based approaches, as well as discussion of their potential research and clinical applications.
Collapse
|
43
|
Toyokuni S. Chemical conversion of human fibroblasts into neuronal cells: dawn of future clinical trials. J Clin Biochem Nutr 2015; 56:165. [PMID: 26060344 PMCID: PMC4454077 DOI: 10.3164/jcbn.56-3-editorial] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|