1
|
Chu C, Huang Y, Cao L, Ji S, Zhu B, Shen Q. Role of macrophages in peritoneal dialysis-associated peritoneal fibrosis. Ren Fail 2025; 47:2474203. [PMID: 40044628 PMCID: PMC11884102 DOI: 10.1080/0886022x.2025.2474203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Peritoneal dialysis (PD) can be used as renal replacement therapy when chronic kidney disease (CKD) progresses to end-stage renal disease. However, peritoneal fibrosis (PF) is a major cause of PD failure. Studies have demonstrated that PD fluid contains a significantly larger numbers of macrophages compared with the healthy individuals. During PD, macrophages can secrete cytokines to keep peritoneal tissue in sustained low-grade inflammation, and participate in the regulation of fibrosis-related signaling pathways, such as NF-κB, TGF-β/Smad, IL4/STAT6, and PI3K/AKT. A series of basic pathological changes occurs in peritoneal tissues, including epithelial mesenchymal transformation, overgeneration of neovasculature, and abnormal deposition of extracellular matrix. This review focuses on the role of macrophages in promoting PF during PD, summarizes the targets of macrophage-related inhibition of fibrosis, and provides new ideas for clinical research on delaying PF, maintaining the function and integrity of peritoneum, prolonging duration of PD as a renal replacement modality, and achieving longer survival in CKD patients.
Collapse
Affiliation(s)
- Chenling Chu
- Department of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Ying Huang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Department of Public Health and Preventive Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luxi Cao
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shuiyu Ji
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Bin Zhu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Quanquan Shen
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital Bijie Hospital, Bijie, Guizhou, China
| |
Collapse
|
2
|
Rastegar-Moghaddam SH, Akbarian M, Rajabian A, Alipour F, Hojjati Shargh A, Masoomi R, Ebrahimzadeh Bideskan A, Hosseini M. Potential therapeutic impacts of vitamin D on hypothyroid-induced heart and kidney fibrosis and oxidative status in male rat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5237-5248. [PMID: 39535596 DOI: 10.1007/s00210-024-03593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
There are several interactions between thyroid hormones (THs) and kidney and heart function. Consequently, THs deficit results in profound changes in renal and cardiac function regulation. Interestingly, emerging evidence suggests that vitamin D (Vit D) may benefit to fibrotic lesions in various tissues. Herein, this study was designed to investigate the potential impact of Vit D on renal and cardiac fibrosis in hypothyroid rats. Forty male Wistar rats were divided into four groups as follow: control, hypothyroid (0.05% PTU in drinking water), and hypothyroid + Vit D (PTU and doses of 100 or 500 IU/kg/day, by gavage) groups. After 6 weeks, biochemical parameters such as creatinine and urea in serum samples, and oxidative stress markers including malondialdehyde (MDA), total thiol groups, and superoxide dismutase (SOD) in renal and cardiac tissues homogenate were measured. Also, renal and cardiac fibrosis was evaluated histologically using Masson's trichrome staining. Hypothyroidism significantly increased creatinine and urea. Also, in hypothyroid group renal and cardiac fibrosis as well as MDA were increased, while anti-oxidative markers including total thiol group and SOD were decreased. Administration of Vit D significantly improved these alterations in oxidative stress markers and fibrosis in renal and cardiac tissues. In conclusion, this study highlighted that Vit D supplementation reduced renal and cardiac fibrosis and improved oxidative stress. These results support the emerging experimental findings linking Vit D being introduced as a potential therapeutic agent.
Collapse
Affiliation(s)
| | - Mahsan Akbarian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Reza Masoomi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh Bideskan
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Bidaki A, Rezaei N, Kazemi S, Ali SN, Ziaei S, Moeinzadeh A, Hosseini F, Noorbazargan H, Farmani AR, Ren Q. 3D printed bioengineered scaffold containing chitosan, alginate, and Barijeh-loaded niosomes enabled efficient antibiofilm activity and wound healing. Int J Biol Macromol 2025:143743. [PMID: 40316113 DOI: 10.1016/j.ijbiomac.2025.143743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/31/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
In this study, we developed a novel biocompatible wound scaffold by encapsulating Barijeh (Bar), a plant-derived antibacterial compound, with niosome (Nio). The Nio-Bar formulation was incorporated into a chitosan (CS) and alginate (AL) hydrogel mixture, followed by 3D printing to create a three-dimensional scaffold, namely Nio-Bar@CS-AL. The obtained scaffold showed notable degradation, reaching 68 % (w/w) within 14 days. Nio-Bar@CS-AL displayed strong antibacterial activity and led to a >5-log reduction of both Pseudomonas aeruginosa and Staphylococcus aureus, far surpassing the performance of CS-AL scaffolds. Further, it effectively reduced biofilm formation by 74 %-80 % for both pathogens, and showed no cytotoxicity toward human fibroblast (HFF) cells, ensuring safety for wound application. In an in vivo murine wound model, Nio-Bar@CS-AL facilitated over 90 % wound healing after 10-day. Tissue integration was signaled by a twofold increase of TGF-β expression and a reduction of IL-6 expression to near-baseline levels, thereby mitigating inflammation. Histopathological analysis revealed a much higher collagen deposition, a key indicator of effective healing, in scaffold-treated wounds compared to the control. These results suggest that Nio-Bar@CS-AL holds promising clinical potential for treating wound infections and defects, offering a multifaceted strategy to improve wound healing outcomes.
Collapse
Affiliation(s)
- Ali Bidaki
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Niloufar Rezaei
- Department of Chemical Engineering, Pennsylvania State University, PA 16802, USA
| | - Sara Kazemi
- Bogomolets National Medical University, Kyiv, Ukraine
| | - Saba Naeimaei Ali
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Seyedehrozhin Ziaei
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hosseini
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland.
| |
Collapse
|
4
|
Raghavan P. Muscle physiology in spasticity and muscle stiffness. Toxicon 2025; 259:108350. [PMID: 40216366 DOI: 10.1016/j.toxicon.2025.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
This paper examines the physiological changes in spastic muscles contributing to spasticity and muscle stiffness, focusing on the underlying mechanisms and their clinical implications. Spasticity, which is prevalent in neurological conditions such as multiple sclerosis, cerebral palsy, spinal cord injury, stroke, and traumatic brain injury, is characterized by disordered sensorimotor control and often results in increased muscle stiffness and resistance to movement. Recent developments in the understanding of spasticity suggest the importance of architectural changes in muscles that may contribute to increased passive resistance, potentiate reflex mechanisms, and progression to fibrosis, with hyaluronan (HA), a glycosaminoglycan, playing a pivotal in modulating the properties of the muscle extracellular matrix (ECM). The hyaluronan hypothesis of muscle stiffness postulates that the accumulation and biophysical alteration of HA in the ECM of muscle increases its viscosity, resulting in increased passive mechanical resistance. This is turn mayincrease muscle sensitivity to stretch, potentiating spasticity, and lead to cellular differentiation of myofibroblasts to fibroblasts ultimately leading to fibrosis and contracture. A deeper understanding of HA's role in ECM dynamics offers promising avenues for novel treatments aimed at mitigating stiffness and preventing long-term disability in patients with spasticity.
Collapse
Affiliation(s)
- Preeti Raghavan
- Departments of Physical Medicine and Rehabilitation and Neurology, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
5
|
Bäck E, Bjärkby J, Escudero-Ibarz L, Tångefjord S, Jirholt J, Ding M. Enhancing throughput and robustness of the fibroblast to myofibroblast transition assay. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 32:100226. [PMID: 40090552 DOI: 10.1016/j.slasd.2025.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/28/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive age-related lung disease with an average survival of 3-5 years post-diagnosis if left untreated. It is characterized by lung fibrosis, inflammation, and destruction of lung architecture, leading to worsening respiratory symptoms and physiological impairment, ultimately culminating in progressive respiratory failure. The development of novel therapeutics for the treatment of IPF represents a significant unmet medical need. Fibroblast to myofibroblast transition (FMT) in response to fibrogenic mediators such as transforming growth factor beta 1 (TGF-β1) has been identified as a key cellular phenotype driving the formation of myofibroblasts and lung fibrosis in IPF. Establishing a robust and high-throughput in vitro human FMT assay is crucial for uncovering new disease targets and for efficiently screening compounds for the advancement of novel therapeutics aimed at targeting myofibroblast activity. However, creating a robust FMT assay suitable for high-throughput drug screening has proven challenging due to the requisite level of automation. In this study, we focus on evaluating different automation approaches for liquid exchange and compound dosing in the human FMT assay. A semi-automated assay, capable of screening a large number of compounds that inhibit TGF-β1-induced FMT in both Normal Human Lung Fibroblasts (NHLF) and IPF-patient derived Disease Human Lung Fibroblasts (IPF-DHLF), has been successfully developed and optimized. We demonstrate that the optimized FMT assay using liquid handling automation exhibits great assay reproducibility, shows good assay translation using human lung fibroblasts from normal healthy versus IPF-patients, and demonstrates acceptable human primary donor variability. This allows for the standardization of comparisons of compound anti-fibrotic potency across IPF projects.
Collapse
Affiliation(s)
- Elisabeth Bäck
- Bioscience, Respiratory, Inflammation and Autoimmune, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jessica Bjärkby
- Bioscience, Respiratory, Inflammation and Autoimmune, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Stefan Tångefjord
- Bioscience, Respiratory, Inflammation and Autoimmune, R&D, AstraZeneca, Gothenburg, Sweden
| | - Johan Jirholt
- Bioscience, Respiratory, Inflammation and Autoimmune, R&D, AstraZeneca, Gothenburg, Sweden
| | - Mei Ding
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
6
|
Guo C, Rizkalla AS, Hamilton DW. FGF and TGF-β growth factor isoform modulation of human gingival and periodontal ligament fibroblast wound healing phenotype. Matrix Biol 2025; 136:9-21. [PMID: 39756500 DOI: 10.1016/j.matbio.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/18/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Release of growth factors in the tissue microenvironment is a critical process in the repair and regeneration of periodontal tissues, regulating fibroblast behavior and phenotype. As a result of the complex architecture of the periodontium, distinct fibroblast populations in the periodontal ligament and gingival connective tissue exist in close proximity. Growth factor therapies for periodontal regeneration have gained traction, but quantification of their effects on multiple different fibroblast populations that are required for repair has been poorly investigated. In this study, we examined the effects of TGF-β1, TGF-β3, FGF-2, and FGF-9 on human gingival fibroblasts (hGF) and human periodontal ligament cells (hPDL), as well as the combined effects of TGF-β3 and FGF-2. We show that FGF-2 enhances cell migration while TGF-β1 and TGF-β3 promotes matrix production, and TGF-β1 promotes fibroblast to myofibroblast transition. Interestingly, the combination of TGF-β3 and FGF-2, acting through both p-SMAD3 and p-ERK pathways, mitigates the inhibitory effects of TGF-β3 on migration in hPDL cells, suggesting synergistic and complimentary effects of FGF-2 and TGF-β3. Additionally, fibronectin production in hGF increased when treated with the combined TGF-β3+FGF-2 compared to FGF-2 alone, indicating that the effects of TGF-β3 in promoting extracellular matrix production are still active in the combined treatment condition. Finally, our study highlights that FGF-9 did not influence migration, α-SMA expression, or extracellular matrix production in either cell type, emphasizing the unique roles of specific growth factors in cellular responses. The synergistic effects observed with combined TGF-β3 and FGF-2 treatments present promising avenues for further research and clinical advancements in regenerative medicine.
Collapse
Affiliation(s)
- Chengyu Guo
- Department of Anatomy and Cell Biology, Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada
| | - Amin S Rizkalla
- Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Department of Chemical and Biochemical, Thompson Engineering Building, Western University, London, Ontario, N6A 5B9, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada.
| |
Collapse
|
7
|
Khang A, Barmore A, Tseropoulos G, Bera K, Batan D, Anseth KS. Automated prediction of fibroblast phenotypes using mathematical descriptors of cellular features. Nat Commun 2025; 16:2841. [PMID: 40121192 PMCID: PMC11929917 DOI: 10.1038/s41467-025-58082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
Fibrosis is caused by pathological activation of resident fibroblasts to myofibroblasts that leads to aberrant tissue stiffening and diminished function of affected organs with limited pharmacological interventions. Despite the prevalence of myofibroblasts in fibrotic tissue, existing methods to grade fibroblast phenotypes are typically subjective and qualitative, yet important for screening of new therapeutics. Here, we develop mathematical descriptors of cell morphology and intracellular structures to identify quantitative and interpretable cell features that capture the fibroblast-to-myofibroblast phenotypic transition in immunostained images. We train and validate models on features extracted from over 3000 primary heart valve interstitial cells and test their predictive performance on cells treated with the small molecule drugs 5-azacytidine and bisperoxovanadium (HOpic), which inhibited and promoted myofibroblast activation, respectively. Collectively, this work introduces an analytical framework that unveils key features associated with distinct fibroblast phenotypes via quantitative image analysis and is broadly applicable for high-throughput screening assays of candidate treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Alex Khang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Abigail Barmore
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Kaustav Bera
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Dilara Batan
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
8
|
Nardone V, Ruggiero D, Chini MG, Bruno I, Lauro G, Terracciano S, Nebbioso A, Bifulco G, Cappabianca S, Reginelli A. From Bench to Bedside: Translational Approaches to Cardiotoxicity in Breast Cancer, Lung Cancer, and Lymphoma Therapies. Cancers (Basel) 2025; 17:1059. [PMID: 40227572 PMCID: PMC11987928 DOI: 10.3390/cancers17071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Cardiotoxicity represents a critical challenge in cancer therapy, particularly in the treatment of thoracic tumors, such as lung cancer and lymphomas, as well as breast cancer. These malignancies stand out for their high prevalence and the widespread use of cardiotoxic treatments, such as chemotherapy, radiotherapy, and immunotherapy. This work underscores the importance of preclinical models in uncovering the mechanisms of cardiotoxicity and developing targeted prevention and mitigation strategies. In vitro models provide valuable insights into cellular processes, enabling the observation of changes in cell viability and function following exposure to various drugs or ionizing radiation. Complementarily, in vivo animal models offer a broader perspective, allowing for evaluating of both short- and long-term effects and a better understanding of chronic toxicity and cardiac diseases. By integrating these approaches, researchers can identify potential mechanisms of cardiotoxicity and devise effective prevention strategies. This analysis highlights the central role of preclinical models in advancing knowledge of cardiotoxic effects associated with common therapeutic regimens for thoracic and breast cancers.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Dafne Ruggiero
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| |
Collapse
|
9
|
Yildiz Gulhan P, Eroz R, Ozturk CE, Yekenkurul D, Altinsoy HB, Gulec Balbay E, Ercelik M, Davran F, Yildiz S. Determination of both the expression and serum levels of epidermal growth factor and transforming growth factor β1 genes in COVID-19. Sci Rep 2025; 15:9771. [PMID: 40118922 PMCID: PMC11928509 DOI: 10.1038/s41598-025-92304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/26/2025] [Indexed: 03/24/2025] Open
Abstract
We aimed to evaluate the effects of both the expression and serum levels of Epidermal growth factor (EGF) and Transforming growth factor-β1 (TGF-β1) genes in patients with different degrees of cellular damage as mild, moderate, severe, and critical illness that can lead to fibrosis caused by SARS-CoV-2. Totally 45 individuals (male: 21(46.67%); female: 24(53.33%)) with COVID-19 infection were included in this study. Four groups were constituted as mild (n = 16)], moderate (n = 10), severe (n = 10), and critical (n = 9) according to the severity of the disease. Blood samples were drawn from the patients, and all of the hemograms, EGF and TGFβ1 gene expression, and serum levels were evaluated. The mean age of individuals was 57.311 ± 18.383 (min: 28, max: 94). Significant differences were found among the groups for PLT (χ2 = 9.955; p = 0.019), CRP (χ2 = 7.693; p = 0.053), Ferritin (χ2 = 22.196; p < 0.001), D-dimer (χ2 = 21.982; p = 0.000), LDH (χ2 = 21.807; p < 0.001) and all these parameters (exclude PLT in severe groups) was increased depending on the severity of the disease. Additionally, significant differences were detected for EGF (χ2 = 29.528; p < 0.001), TGFB1 (χ2 = 28.981; p < 0.001) expression (that increased depending on the disease severity), and EGF (χ2 = 7.84; p = 0.049), TGFB1 (χ2 = 17.451; p = 0.001) serum concentration levels (that decreased depending on the disease severity). This study found statistically significant differences for both EGF 2-ΔΔCt. TGFβ1 2-ΔΔCt and EGF, TGFβ1 serum concentration values among all patient groups. As disease severity increased, EGF 2-ΔΔCt. TGFβ1 2-ΔΔCt levels increased, while EGF and TGFβ1 serum concentration levels decreased. Perhaps this study will be useful in managing COVID-19 infection severity and pulmonary fibrosis cases secondary to COVID-19.
Collapse
Affiliation(s)
- Pinar Yildiz Gulhan
- Department of Chest Diseases, Faculty of Medicine, Duzce University, Konuralp Campus, 81010, Duzce, Turkey.
| | - Recep Eroz
- Department of Medical Genetics, Aksaray University Medical Faculty, Aksaray, Turkey
| | | | - Dilek Yekenkurul
- Department of Infection Diseases, Duzce University Medical Faculty, Duzce, Turkey
| | | | - Ege Gulec Balbay
- Department of Chest Diseases, Faculty of Medicine, Duzce University, Konuralp Campus, 81010, Duzce, Turkey
| | - Merve Ercelik
- Department of Chest Diseases, Faculty of Medicine, Duzce University, Konuralp Campus, 81010, Duzce, Turkey
| | - Fatih Davran
- Department of Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Seyma Yildiz
- Deparment of Hematology, Gazi University, Ankara, Turkey
| |
Collapse
|
10
|
Tiskratok W, Chuinsiri N, Limraksasin P, Kyawsoewin M, Jitprasertwong P. Extracellular Matrix Stiffness: Mechanotransduction and Mechanobiological Response-Driven Strategies for Biomedical Applications Targeting Fibroblast Inflammation. Polymers (Basel) 2025; 17:822. [PMID: 40292716 PMCID: PMC11946729 DOI: 10.3390/polym17060822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
The extracellular matrix (ECM) is a dynamic network providing mechanical and biochemical cues that regulate cellular behavior. ECM stiffness critically influences fibroblasts, the primary ECM producers, particularly in inflammation and fibrosis. This review explores the role of ECM stiffness in fibroblast-driven inflammation and tissue remodeling, focusing on the physicochemical and biological mechanisms involved. Engineered materials, hydrogels, and polydimethylsiloxane (PDMS) are highlighted for replicating tissue-specific stiffness, enabling precise control over cell-matrix interactions. The surface functionalization of substrate materials, including collagen, polydopamine, and fibronectin, enhances bioactivity and fibroblast adhesion. Key mechanotransduction pathways, such as integrin signaling and YAP/TAZ activation, are related to regulating fibroblast behaviors and inflammatory responses. The role of fibroblasts in driving chronic inflammatory diseases emphasizes their therapeutic potentials. Advances in ECM-modifying strategies, including tunable biomaterials and hydrogel-based therapies, are explored for applications in tissue engineering, drug delivery, anti-inflammatory treatments, and diagnostic tools for the accurate diagnosis and prognosis of ECM stiffness-related inflammatory diseases. This review integrates mechanobiology with biomedical innovations, providing a comprehensive prognosis of fibroblast responses to ECM stiffness and outlining future directions for targeted therapies.
Collapse
Affiliation(s)
- Watcharaphol Tiskratok
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| | - Nontawat Chuinsiri
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.L.); (M.K.)
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.L.); (M.K.)
| | - Paiboon Jitprasertwong
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
11
|
Sanchez BC, Ortiz RM, Grasis JA. Human adenovirus serotype 5 infection dysregulates cysteine, purine, and unsaturated fatty acid metabolism in fibroblasts. FASEB J 2025; 39:e70411. [PMID: 40052831 PMCID: PMC11887610 DOI: 10.1096/fj.202402726r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 03/09/2025]
Abstract
Viral infections can cause cellular dysregulation of metabolic reactions. Viruses alter host metabolism to meet their replication needs. The impact of viruses on specific metabolic pathways is not well understood, even in well-studied viruses, such as human adenovirus. Adenoviral infection is known to influence cellular glycolysis and respiration; however, global effects on overall cellular metabolism in response to infection are unclear. Furthermore, few studies have employed an untargeted approach, combining emphasis on viral dosage and infection. To address this, we employed untargeted metabolomics to quantify the dynamic metabolic shifts in fibroblasts infected with human adenovirus serotype 5 (HAdV-5) at three dosages (0.5, 1.0, and 2.0 multiplicity of infection [MOI]) and across 4 time points (6-, 12-, 24-, and 36-h post-infection [HPI]). The greatest differences in individual metabolites were observed at 6- and 12-h post-infection, correlating with the early phase of the HAdV-5 infection cycle. In addition to its effects on glycolysis and respiration, adenoviral infection downregulates cysteine and unsaturated fatty acid metabolism while upregulating aspects of purine metabolism. These results reveal specific metabolic pathways dysregulated by adenoviral infection and the associated dynamic shifts in metabolism, suggesting that viral infections alter energetics via profound changes in lipid, nucleic acid, and protein metabolism. The results revealed previously unconsidered metabolic pathways disrupted by HAdV-5 that can alter cellular metabolism, thereby prompting further investigation into HAdV mechanisms and antiviral targeting.
Collapse
Affiliation(s)
- Bailey‐J C. Sanchez
- Quantitative and Systems Biology, School of Natural SciencesUniversity of CaliforniaMercedCaliforniaUSA
| | - Rudy M. Ortiz
- Quantitative and Systems Biology, School of Natural SciencesUniversity of CaliforniaMercedCaliforniaUSA
| | - Juris A. Grasis
- Quantitative and Systems Biology, School of Natural SciencesUniversity of CaliforniaMercedCaliforniaUSA
| |
Collapse
|
12
|
Potter MJ, Heywood JD, Coeyman SJ, Richardson WJ. Heart Scar-In-A-Dish: Tissue Culture Platform to Study Myocardial Infarct Healing In Vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640625. [PMID: 40060569 PMCID: PMC11888419 DOI: 10.1101/2025.02.28.640625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Myocardial Infarction (MI) is a major contributor to morbidity and mortality, wherein blood flow is blocked to a portion of the left ventricle and leads to myocardial necrosis and scar formation. Cardiac remodeling in response to MI is a major determinant of patient prognosis, so many therapies are under development to improve infarct healing. Part of this development involves in vitro therapy screening which can be accelerated by engineered heart tissues (EHTs). Unfortunately, EHTs often over-simplify the infarcted tissue microarchitecture by neglecting spatial variation found in infarcted ventricles. MI results in a spatially heterogeneous environment with an infarct zone composed mostly of extracellular matrix (ECM) and cardiac fibroblasts, contrasted with a remote (non-infarct) zone composed mostly of cardiomyocytes, and a border zone transitioning in between. The heterogeneous structure is accompanied by heterogeneous mechanics where the passive infarct zone is cyclically stretched under tension as the remote zone cyclically contracts with every heartbeat. We present an in vitro 3-dimensional tissue culture platform focused on mimicking the heterogeneous mechanical environment of post-infarct myocardium. Herein, EHTs were subjected to a cryowound injury to induce localized cell death in a central portion of beating tissues composed of neonatal rat cardiomyocytes and cardiac fibroblasts. After injury, the remote zone continued to contract (i.e., negative strains) while the wounded zone was cyclically stretched (i.e., positive tensile strains) with intermediate strains in the border zone. We also observed increased tissue stiffnesses in the wounded zone and border zone following injury, while the remote zone did not show the same stiffening. Collectively, this work establishes a novel in vitro platform for characterizing myocardial wound remodeling with both spatial and temporal resolution, contributing to a deeper understanding of MI and offering insights for potential therapeutic approaches.
Collapse
Affiliation(s)
- M J Potter
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - J D Heywood
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - S J Coeyman
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - W J Richardson
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
13
|
Zhao T, Su Y. Mechanisms and Therapeutic Potential of Myofibroblast Transformation in Pulmonary Fibrosis. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2025; 2:10001. [PMID: 40190620 PMCID: PMC11970920 DOI: 10.70322/jrbtm.2025.10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and fatal disease with an increasing incidence and limited therapeutic options. It is characterized by the formation and deposition of excess extracellular matrix proteins resulting in the gradual replacement of normal lung architecture by fibrous tissue. The cellular and molecular mechanism of IPF has not been fully understood. A hallmark in IPF is pulmonary fibroblast to myofibroblast transformation (FMT). During excessive lung repair upon exposure to harmful stimuli, lung fibroblasts transform into myofibroblasts under stimulation of cytokines, chemokines, and vesicles from various cells. These mediators interact with lung fibroblasts, initiating multiple signaling cascades, such as TGFβ1, MAPK, Wnt/β-catenin, NF-κB, AMPK, endoplasmic reticulum stress, and autophagy, contributing to lung FMT. Furthermore, single-cell transcriptomic analysis has revealed significant heterogeneity among lung myofibroblasts, which arise from various cell types and are adapted to the altered microenvironment during pathological lung repair. This review provides an overview of recent research on the origins of lung myofibroblasts and the molecular pathways driving their formation, with a focus on the interactions between lung fibroblasts and epithelial cells, endothelial cells, and macrophages in the context of lung fibrosis. Based on these molecular insights, targeting the lung FMT could offer promising avenues for the treatment of IPF.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
14
|
Dolskii A, dos Santos SAA, Andrake M, Franco-Barraza J, Dunbrack RL, Cukierman E. Exploring the potential role of palladin in modulating human CAF/ECM functional units. Cytoskeleton (Hoboken) 2025; 82:175-185. [PMID: 39239855 PMCID: PMC11882928 DOI: 10.1002/cm.21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Fibroblasts, crucial for maintaining tissue homeostasis, significantly shape the tumor microenvironment (TME). In pancreatic cancer, a highly aggressive malignancy, cancer-associated fibroblast (CAF)/extracellular matrix (ECM) units dominate the TME, influencing tumor initiation, progression, and treatment responses. Palladin, an actin-associated protein, is vital for fibroblast structural integrity and activation, playing a key role in CAF/ECM functionality. Palladin interacts with cytoskeletal proteins such as alpha-actinin (α-Act) and can therefore regulate other proteins like syndecans, modulating cytoskeletal features, cell adhesion, integrin recycling, and signaling. In this review, we propose that targeting the palladin/α-Act/syndecan interaction network could modulate CAF/ECM units, potentially shifting the TME from a tumor-promoting to a tumor-suppressive state. In silico data and reported studies to suggest that stabilizing palladin-α-Act interactions, via excess palladin, influences syndecan functions; potentially modulating integrin endocytosis via syndecan engagement with protein kinase C alpha as opposed to syndecan binding to α-Act. This mechanism can then affect the distribution of active α5β1-integrin between the plasma membrane and known intracellular vesicular compartments, thereby influencing the tumor-suppressive versus tumor-promoting functions of CAF/ECM units. Understanding these interactions offers likely future therapeutic avenues for stroma normalization in pancreatic and other cancers, aiming to inhibit tumor progression and improve future treatment outcomes.
Collapse
Affiliation(s)
| | | | - Mark Andrake
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| | - Janusz Franco-Barraza
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| | - Roland L. Dunbrack
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| |
Collapse
|
15
|
Sharip A, Kunz J. Mechanosignaling via Integrins: Pivotal Players in Liver Fibrosis Progression and Therapy. Cells 2025; 14:266. [PMID: 39996739 PMCID: PMC11854242 DOI: 10.3390/cells14040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Liver fibrosis, a consequence of chronic liver injury, represents a major global health burden and is the leading cause of liver failure, morbidity, and mortality. The pathological hallmark of this condition is excessive extracellular matrix deposition, driven primarily by integrin-mediated mechanotransduction. Integrins, transmembrane heterodimeric proteins that serve as primary ECM receptors, orchestrate complex mechanosignaling networks that regulate the activation, differentiation, and proliferation of hepatic stellate cells and other ECM-secreting myofibroblasts. These mechanical signals create self-reinforcing feedback loops that perpetuate the fibrotic response. Recent advances have provided insight into the roles of specific integrin subtypes in liver fibrosis and revealed their regulation of key downstream effectors-including transforming growth factor beta, focal adhesion kinase, RhoA/Rho-associated, coiled-coil containing protein kinase, and the mechanosensitive Hippo pathway. Understanding these mechanotransduction networks has opened new therapeutic possibilities through pharmacological manipulation of integrin-dependent signaling.
Collapse
Affiliation(s)
- Aigul Sharip
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 020000, Kazakhstan;
- Laboratory of Bioinformatics and Systems Biology, National Laboratory Astana, Astana 020000, Kazakhstan
| | - Jeannette Kunz
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 020000, Kazakhstan;
| |
Collapse
|
16
|
Kang M, Ko UH, Oh EJ, Kim HM, Chung HY, Shin JH. Tension-sensitive HOX gene expression in fibroblasts for differential scar formation. J Transl Med 2025; 23:168. [PMID: 39930512 PMCID: PMC11808978 DOI: 10.1186/s12967-025-06191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Scar formation is a common end-point of the wound healing process, but its mechanisms, particularly in relation to abnormal scars such as hypertrophic scars and keloids, remain not fully understood. This study unveils a novel mechanistic insight into scar formation by examining the differential expression of Homeobox (HOX) genes in response to mechanical forces in fibroblasts derived from normal skin, hypertrophic scars, and keloids. METHODS We isolated fibroblasts from different scar types and conducted RNA sequencing (RNA-Seq) to identify differential gene expression patterns among the fibroblasts. Computational modeling provided insight into tension alterations following injury, and these findings were complemented by in vitro experiments where fibroblasts were subjected to exogenous tensile stress to investigate the link between mechanical tension and cellular behavior. RESULTS Our study revealed differential HOX gene expression among fibroblasts derived from normal skin, hypertrophic scars, and keloids. Computational simulations predicted injury-induced tension reduction in the skin, and in vitro experiments revealed a negative correlation between tension and fibroblast proliferation. Importantly, we discovered that applying mechanical tension to fibroblasts can modulate HOX gene expression, suggesting a pivotal role of mechanical cues in scar formation and wound healing. CONCLUSION This study proposes a model wherein successful wound healing and scar formation are critically dependent on maintaining tensional homeostasis in the skin, mediated by tension-sensitive HOX genes. Our findings highlight the potential of targeting mechanotransduction pathways and tension-sensitive HOX gene expression as therapeutic strategies for abnormal scar prevention and treatment, offering a new perspective on the complex process of scar formation.
Collapse
Affiliation(s)
- Minwoo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ung Hyun Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Eun Jung Oh
- Department of Plastic & Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyun Mi Kim
- Department of Plastic & Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ho Yun Chung
- Department of Plastic & Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
17
|
Li Y, Xing Y, Liu N, Liu B, Wang Z. SOX9: a key transcriptional regulator in organ fibrosis. Front Pharmacol 2025; 16:1507282. [PMID: 39974732 PMCID: PMC11835943 DOI: 10.3389/fphar.2025.1507282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
The SOX9 gene locus is not only extensive but also intricate, and it could promote fibrosis in different organs or tissues, including cardiac fibrosis, liver fibrosis, kidney fibrosis, pulmonary fibrosis, as well as other organ fibrosis. Many disorders are associated with the process of fibrosis; moreover, fibrosis is a common symptom of chronic inflammatory diseases, characterized by the accumulation of excessive components in the extracellular matrix through different signaling pathways. The advanced stage of the fibrotic process leads to organ dysfunction and, ultimately, death. In this review, we first give an overview of the original structure and functions of SOX9. Second, we will discuss the role of SOX9 in fibrosis in various organs or tissues. Third, we describe and reveal the possibility of SOX9 as an antifibrotic treatment target. Finally, we will focus on the application of novel technologies for SOX9 and the subsequent investigation of fibrosis.
Collapse
Affiliation(s)
| | | | | | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Zhihui Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Allen RS, Seifert AW. Spiny mice (Acomys) have evolved cellular features to support regenerative healing. Ann N Y Acad Sci 2025; 1544:5-26. [PMID: 39805008 PMCID: PMC11830558 DOI: 10.1111/nyas.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Spiny mice (Acomys spp.) are warm-blooded (homeothermic) vertebrates whose ability to restore missing tissue through regenerative healing has coincided with the evolution of unique cellular and physiological adaptations across different tissue types. This review seeks to explore how these bizarre rodents deploy unique or altered injury response mechanisms to either enhance tissue repair or fully regenerate excised tissue compared to closely related, scar-forming mammals. First, we examine overall trends in healing Acomys tissues, including the cellular stress response, the ability to activate and maintain cell cycle progression, and the expression of certain features in reproductive adults that are normally associated with embryos. Second, we focus on specific cell types that exhibit precisely regulated proliferation to restore missing tissue. While Acomys utilize many of the same cell types involved in scar formation, these cells exhibit divergent activation profiles during regenerative healing. Considered together, current lines of evidence support sustained deployment of proregenerative pathways in conjunction with transient activation of fibrotic pathways to facilitate regeneration and improve tissue repair in Acomys.
Collapse
Affiliation(s)
- Robyn S. Allen
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Ashley W. Seifert
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
- The Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, USA
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
19
|
Hou ZG, Xing MC, Luo JX, Xu YH, Zhang LH, Gao XW, Wang JJ, Hanafiah F, Khor W, Hao X, Zhao X, Wu CB. Single-cell transcriptome sequencing analysis of physiological and immune profiling of crucian carp (Carassius auratus) gills. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110087. [PMID: 39662647 DOI: 10.1016/j.fsi.2024.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/13/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Gills are the main respiratory organs of fish and bear important physiological and immunological functions, but the functional heterogeneity of interlamellar cell mass (ILCM) at the single-cell level has rarely been reported. Here, we identified 19 cell types from the gills of crucian carp (Carassius auratus) by single-cell RNA sequencing (scRNA-seq) in combination with histological analysis. We annotated ILCM and analyzed its functional heterogeneity at the single-cell level for the first time. Functional enrichment analysis and cell cycle analysis identified ILCM as a type of metabolically active cells in a state of constant proliferation, and identified the major pathways responsible for ILCM immunoregulation. Histological analysis revealed the morphology and positional relationships of 6 cell types. Meanwhile, the gene regulatory network of ILCM was established through weighted gene co-expression network analysis (WGCNA), and one transcription factor and five hub genes related to immunoregulation were identified. We found that pyroptosis might be an important pathway responsible for the immune response of ILCM. Our findings provide an insight into the physiological and immune functions of gills and ILCM at the single-cell level and lay a solid foundation for further exploration of the molecular mechanism of ILCM immunity functions.
Collapse
Affiliation(s)
- Zhi-Guang Hou
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Meng-Chao Xing
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Jia-Xing Luo
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Yi-Huan Xu
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Li-Han Zhang
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China.
| | - Xiao-Wei Gao
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Jiang-Jiang Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Fazhan Hanafiah
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu, 21030, Malaysia
| | - Waiho Khor
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu, 21030, Malaysia
| | - Xin Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China
| | - Xin Zhao
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China.
| | - Cheng-Bin Wu
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066003, Hebei, China.
| |
Collapse
|
20
|
Lingampally A, Truchi M, Mauduit O, Delcroix V, Vasquez-Pacheco E, Gautier-Isola M, Chu X, Khadim A, Chao CM, Zabihi M, Taghizadeh S, Rivetti S, Marega M, Moiseenko A, Hadzic S, Vazquez-Armendariz AI, Herold S, Günther S, Millar-Büchner P, Koepke J, Samakovlis C, Wilhelm J, Bartkuhn M, Braun T, Weissmann N, Zhang J, Wygrecka M, Makarenkova HP, Günther A, Seeger W, Chen C, El Agha E, Mari B, Bellusci S. Evidence for a lipofibroblast-to- Cthrc1 + myofibroblast reversible switch during the development and resolution of lung fibrosis in young mice. Eur Respir J 2025; 65:2300482. [PMID: 39401861 PMCID: PMC11799885 DOI: 10.1183/13993003.00482-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/24/2024] [Indexed: 02/08/2025]
Abstract
BACKGROUND Fibrosis is often associated with aberrant repair mechanisms that ultimately lead to organ failure. In the lung, idiopathic pulmonary fibrosis (IPF) is a fatal form of interstitial lung disease for which there is currently no curative therapy. From the cell biology point of view, the cell of origin and eventual fate of activated myofibroblasts (aMYFs) have taken centre stage, as these cells are believed to drive structural remodelling and lung function impairment. While aMYFs are now widely believed to originate from alveolar fibroblasts, the heterogeneity and ultimate fate of aMYFs during fibrosis resolution remain elusive. We have shown previously that aMYF dedifferentiation and acquisition of a lipofibroblast (LIF)-like phenotype represent a route of fibrosis resolution. METHODS In this study, we combined genetic lineage tracing and single-cell transcriptomics in mice, and data mining of human IPF datasets to decipher the heterogeneity of aMYFs and investigate differentiation trajectories during fibrosis resolution. Furthermore, organoid cultures were utilised as a functional readout for the alveolar mesenchymal niche activity during various phases of injury and repair in mice. RESULTS Our data demonstrate that aMYFs consist of four subclusters displaying unique pro-alveologenic versus pro-fibrotic profiles. Alveolar fibroblasts displaying a high LIF-like signature largely constitute both the origin and fate of aMYFs during fibrogenesis and resolution, respectively. The heterogeneity of aMYFs is conserved in humans and a significant proportion of human aMYFs displays a high LIF signature. CONCLUSION Our work identifies a subcluster of aMYFs that is potentially relevant for future management of IPF.
Collapse
Affiliation(s)
- Arun Lingampally
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- A. Lingampally and M. Truchi contributed equally
| | - Marin Truchi
- Université Côte d'Azur, UMR CNRS 7275 Inserm 1323, IPMC, FHU-OncoAge, IHU RespiERA, Valbonne, France
- A. Lingampally and M. Truchi contributed equally
| | - Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Esmeralda Vasquez-Pacheco
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Marine Gautier-Isola
- Université Côte d'Azur, UMR CNRS 7275 Inserm 1323, IPMC, FHU-OncoAge, IHU RespiERA, Valbonne, France
| | - Xuran Chu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Ali Khadim
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | | | - Mahsa Zabihi
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Sara Taghizadeh
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Stefano Rivetti
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Manuela Marega
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Alena Moiseenko
- Immunology and Respiratory Department, Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Stefan Hadzic
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life and Medical Sciences Institute, Bonn, Germany
| | - Susanne Herold
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, Bad Nauheim, Germany
| | - Pamela Millar-Büchner
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Janine Koepke
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Christos Samakovlis
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Jochen Wilhelm
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Marek Bartkuhn
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, Bad Nauheim, Germany
| | - Norbert Weissmann
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - JinSan Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Malgorzata Wygrecka
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Andreas Günther
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Werner Seeger
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Chengshui Chen
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- C. Chen, E. El Agha, B. Mari and S. Bellusci contributed equally to this article as lead authors and supervised the work
| | - Elie El Agha
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- C. Chen, E. El Agha, B. Mari and S. Bellusci contributed equally to this article as lead authors and supervised the work
| | - Bernard Mari
- Université Côte d'Azur, UMR CNRS 7275 Inserm 1323, IPMC, FHU-OncoAge, IHU RespiERA, Valbonne, France
- C. Chen, E. El Agha, B. Mari and S. Bellusci contributed equally to this article as lead authors and supervised the work
| | - Saverio Bellusci
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Laboratory of Extracellular Lung Matrix Remodelling, Department of Internal Medicine, Cardio-Pulmonary Institute and Institute for Lung Health, Universities of Giessen and Marburg Lung Center (UGMLC), member of The German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- C. Chen, E. El Agha, B. Mari and S. Bellusci contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
21
|
Levuschkina YG, Dugina VB, Shagieva GS, Boichuk SV, Eremin II, Khromova NV, Kopnin PB. Induction of Fibroblast-to-Myofibroblast Differentiation by Changing Cytoplasmic Actin Ratio. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:289-298. [PMID: 40254406 DOI: 10.1134/s000629792460412x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 04/22/2025]
Abstract
Myofibroblasts, which play a crucial role in the tumour microenvironment, represent a promising avenue for research in the field of oncotherapy. This study investigates the potential for the induced differentiation of human fibroblasts into myofibroblasts through downregulation of the γ-cytoplasmic actin (γ-CYA) achieved by RNA interference. A decrease in the γ-CYA expression in human subcutaneous fibroblasts resulted in upregulation of myofibroblast markers, including α-smooth muscle actin (α-SMA), ED-A FN, and type III collagen. These changes were accompanied by notable alterations in cellular morphology, characterized by a significant increase in cell area and the formation of pronounced supermature focal adhesions. Downregulation of γ-CYA resulted in the compensatory increase in expression of the β-cytoplasmic actin and α-SMA, and formation of the characteristic α-SMA-positive stress fibers. In conclusion, our results demonstrate that a decrease in the γ-CYA expression leads to myofibroblastic trans-differentiation of human subcutaneous fibroblasts.
Collapse
Affiliation(s)
- Yulia G Levuschkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vera B Dugina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Galina S Shagieva
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Sergey V Boichuk
- Department of Pathology, Kazan State Medical University, Moscow, 420012, Russia
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, Moscow, 119454, Russia
| | - Ilya I Eremin
- Petrovsky National Research Center of Surgery, Moscow, 119991, Russia
| | - Natalia V Khromova
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Pavel B Kopnin
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.
| |
Collapse
|
22
|
Zhao S, Kong H, Qi D, Qiao Y, Li Y, Cao Z, Wang H, He X, Liu H, Yang H, Gao S, Liu T, Xie J. Epidermal stem cell derived exosomes-induced dedifferentiation of myofibroblasts inhibits scarring via the miR-203a-3p/PIK3CA axis. J Nanobiotechnology 2025; 23:56. [PMID: 39881312 PMCID: PMC11776291 DOI: 10.1186/s12951-025-03157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation. Epidermal stem cell-derived extracellular vesicles (EpiSC-EVs) were isolated via ultracentrifugation and filtration, followed by miRNA sequencing to identify miRNAs targeting key molecules. After in vitro and in vivo treatment with EpiSC-EVs, we assessed antifibrotic effects through scratch assays, collagen contraction assays, Western blotting, and immunofluorescence. Transcriptomic sequencing and rescue experiments were used to investigate the molecular mechanism by which miR-203a-3p in EpiSC-EVs induces myofibroblast dedifferentiation. Our results indicate that PIK3CA is overexpressed in HS tissues and positively correlates with fibrosis. EpiSC-EVs were absorbed by scar-derived fibroblasts, promoting dedifferentiation from myofibroblasts to quiescent fibroblasts. Mechanistically, miR-203a-3p in EpiSC-EVs plays an essential role in inhibiting PIK3CA expression and PI3K/AKT/mTOR pathway hyperactivation, thereby reducing scar formation. In vivo studies confirmed that EpiSC-EVs attenuate excessive scarring through the miR-203a-3p/PIK3CA axis, suggesting EpiSC-EVs as a promising therapeutic approach for HS.
Collapse
Affiliation(s)
- Shixin Zhao
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Haoran Kong
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Dahu Qi
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Yushuang Qiao
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Yu Li
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Zhiming Cao
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Hanwen Wang
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xuefeng He
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Hengdeng Liu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Hao Yang
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Suyue Gao
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Tao Liu
- Department of Traumatic Orthopedics, Henan Provincial People's Hospital & The People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China.
- Henan Orthopedics Research Institute, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China.
| | - Julin Xie
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
23
|
Xu YL, Huang M, Zhang Y, Su XY, Huang M, Zou NY, Jiao YR, Sun YC, Liu L, Lei YH, Li CJ. Polycystin-1 regulates tendon-derived mesenchymal stem cells fate and matrix organization in heterotopic ossification. Bone Res 2025; 13:11. [PMID: 39833160 PMCID: PMC11746979 DOI: 10.1038/s41413-024-00392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/24/2024] [Accepted: 11/13/2024] [Indexed: 01/22/2025] Open
Abstract
Mechanical stress modulates bone formation and organization of the extracellular matrix (ECM), the interaction of which affects heterotopic ossification (HO). However, the mechanically sensitive cell populations in HO and the underlying mechanism remain elusive. Here, we show that the mechanical protein Polysyctin-1 (PC1, Pkd1) regulates CTSK lineage tendon-derived mesenchymal stem cell (TDMSC) fate and ECM organization, thus affecting HO progression. First, we revealed that CTSK lineage TDMSCs are the major source of osteoblasts and fibroblasts in HO and are responsive to mechanical cues via single-cell RNA sequencing analysis and experiments with a lineage tracing mouse model. Moreover, we showed that PC1 mediates the mechanosignal transduction of CTSK lineage TDMSCs to regulate osteogenic and fibrogenic differentiation and alters the ECM architecture by facilitating TAZ nuclear translocation. Conditional gene depletion of Pkd1 or Taz in CTSK lineage cells and pharmaceutical intervention in the PC1-TAZ axis disrupt osteogenesis, fibrogenesis and ECM organization, and consequently attenuate HO progression. These findings suggest that mechanically sensitive CTSK-lineage TDMSCs contribute to heterotopic ossification through PC1-TAZ signaling axis mediated cell fate determination and ECM organization.
Collapse
Affiliation(s)
- Yi Li Xu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
- Department of Orthodontics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yang Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, 410013, China
| | - Xin Ying Su
- Department of Orthodontics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Min Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Nan Yu Zou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yu Rui Jiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yu Chen Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yong Hua Lei
- Department of Orthodontics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Chang Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Laboratory Animal Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
24
|
Aubert A, Goeres J, Liu A, Kao M, Richardson KC, Jung K, Hinz B, Crawford RI, Granville DJ. Potential implications of granzyme B in keloids and hypertrophic scars through extracellular matrix remodeling and latent TGF-β activation. Front Immunol 2025; 15:1484462. [PMID: 39885984 PMCID: PMC11779620 DOI: 10.3389/fimmu.2024.1484462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Keloid scars (KS) and hypertrophic scars (HS) are fibroproliferative wound healing defects characterized by excessive accumulation of extracellular matrix (ECM) in the dermis of affected individuals. Although transforming growth factor (TGF)-β is known to be involved in the formation of KS and HS, the molecular mechanisms responsible for its activation remain unclear. In this study we investigated Granzyme B (GzmB), a serine protease with established roles in fibrosis and scarring through the cleavage of ECM proteins, as a potential new mediator of TGF-β activation in KS and HS. Increased GzmB-positive mast cells were identified in the dermis of KS and HS but not healthy skin controls. Elevated levels of substance P, a neuropeptide involved in mast cell degranulation, suggest that GzmB is released extracellularly, as confirmed by the significant reduction of the established extracellular GzmB substrate decorin in KS and HS. Similarly, presence of latent TGF-β binding protein 1 (LTBP1), a protein involved in the extracellular tethering of latent TGF-β, was disrupted proximal to the dermal-epidermal junction (DEJ) of GzmBhigh KS and HS lesions. Using LTBP1-enriched medium as well as purified LTBP1, its cleavage by GzmB was confirmed in vitro. Increased TGF-β/Smad signaling pathway was observed in keratinocytes treated with GzmB-digested LTBP1 and was abolished by the addition of a pan-TGF-β inhibitor, suggesting that GzmB cleavage of LTBP1 contributes to TGF-β activation. In dermal fibroblasts, GzmB also cleaved cell-derived LTBP1 and induced TGF-β activation through the cleavage of one or more unidentified fibroblast-secreted proteins. Altogether, the present results suggest that GzmB contributes to KS and HS through ECM remodeling and TGF-β activation.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
| | - Jenna Goeres
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
| | - Amy Liu
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
| | - Martin Kao
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
| | - Katlyn C. Richardson
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Keenan Research Institute for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Richard I. Crawford
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Dermatology and Skin Science, University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
| |
Collapse
|
25
|
Cambria E, Blazeski A, Ko EC, Thai T, Dantes S, Barbie DA, Shelton SE, Kamm RD. Myofibroblasts reduce angiogenesis and vasculogenesis in a vascularized microphysiological model of lung fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632378. [PMID: 39868191 PMCID: PMC11760796 DOI: 10.1101/2025.01.10.632378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Lung fibrosis, characterized by chronic and progressive scarring, has no cure. Hallmarks are the accumulation of myofibroblasts and extracellular matrix, as well as vascular remodeling. The crosstalk between myofibroblasts and vasculature is poorly understood, with conflicting reports on whether angiogenesis and vessel density are increased or decreased in lung fibrosis. We developed a microphysiological system that recapitulates the pathophysiology of lung fibrosis and disentangles myofibroblast-vascular interactions. Lung myofibroblasts maintained their phenotype in 3D without exogenous TGF-β and displayed anti-angiogenic and anti-vasculogenic activities when cultured with endothelial cells in a microfluidic device. These effects, including decreased endothelial sprouting, altered vascular morphology, and increased vascular permeability, were mediated by increased TGF-β1 and reduced VEGF secretion. Pharmacological interventions targeting these cytokines restored vascular morphology and permeability, demonstrating the potential of this model to screen anti-fibrotic drugs. This system provides insights into myofibroblast-vascular crosstalk in lung fibrosis and offers a platform for therapeutic development.
Collapse
Affiliation(s)
- Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adriana Blazeski
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Eunkyung Clare Ko
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shania Dantes
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sarah E. Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
26
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
27
|
Liu M, Liu X, Zhang J, Liang S, Gong Y, Shi S, Yuan X. Single-cell RNA sequencing reveals the heterogeneity of myofibroblasts in wound repair. Genomics 2025; 117:110982. [PMID: 39706310 DOI: 10.1016/j.ygeno.2024.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Skin wound repair involves myofibroblasts crucial for tissue integrity. This study utilized single-cell RNA sequencing to explore myofibroblast diversity in various wound healing scenarios. Analysis of 89,148 cells from skin ulcers, keloids, and normal scars identified 13 cell clusters. Myofibroblast subcluster analysis unveiled 11 subsets, with subclusters 1 and 9 predominant in ulcers. Subcluster 1 exhibited heightened matrix metalloproteinase expression and involvement in bacterial response and angiogenesis, crucial in inflammation. Tissue validation confirmed subcluster 1 significance., while animal models supported upregulated CA12, TDO2, and IL-7R in chronic ulcers. These findings illuminate myofibroblast heterogeneity and their impact on wound healing, offering insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Miaonan Liu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxuan Liu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingchi Zhang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shaocong Liang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Gong
- Department of Burns and Wound Repairing, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shengjun Shi
- Department of Burns and Wound Repairing, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Xiaopeng Yuan
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Laboratory Medicine, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University; Shenzhen 518020, Guangdong China..
| |
Collapse
|
28
|
Ren F, Aliper A, Chen J, Zhao H, Rao S, Kuppe C, Ozerov IV, Zhang M, Witte K, Kruse C, Aladinskiy V, Ivanenkov Y, Polykovskiy D, Fu Y, Babin E, Qiao J, Liang X, Mou Z, Wang H, Pun FW, Torres-Ayuso P, Veviorskiy A, Song D, Liu S, Zhang B, Naumov V, Ding X, Kukharenko A, Izumchenko E, Zhavoronkov A. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat Biotechnol 2025; 43:63-75. [PMID: 38459338 PMCID: PMC11738990 DOI: 10.1038/s41587-024-02143-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/16/2024] [Indexed: 03/10/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease with a high mortality rate. Putative drug targets in IPF have failed to translate into effective therapies at the clinical level. We identify TRAF2- and NCK-interacting kinase (TNIK) as an anti-fibrotic target using a predictive artificial intelligence (AI) approach. Using AI-driven methodology, we generated INS018_055, a small-molecule TNIK inhibitor, which exhibits desirable drug-like properties and anti-fibrotic activity across different organs in vivo through oral, inhaled or topical administration. INS018_055 possesses anti-inflammatory effects in addition to its anti-fibrotic profile, validated in multiple in vivo studies. Its safety and tolerability as well as pharmacokinetics were validated in a randomized, double-blinded, placebo-controlled phase I clinical trial (NCT05154240) involving 78 healthy participants. A separate phase I trial in China, CTR20221542, also demonstrated comparable safety and pharmacokinetic profiles. This work was completed in roughly 18 months from target discovery to preclinical candidate nomination and demonstrates the capabilities of our generative AI-driven drug-discovery pipeline.
Collapse
Affiliation(s)
- Feng Ren
- Insilico Medicine Shanghai Ltd., Shanghai, China
- Insilico Medicine AI Limited, Abu Dhabi, UAE
| | - Alex Aliper
- Insilico Medicine AI Limited, Abu Dhabi, UAE
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Jian Chen
- Department of Clinical Pharmacology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Heng Zhao
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Sujata Rao
- Insilico Medicine US Inc., New York, NY, USA
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
- Department of Nephrology, University Clinic RWTH Aachen, Aachen, Germany
| | - Ivan V Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Klaus Witte
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Chris Kruse
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | - Yan Ivanenkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | - Yanyun Fu
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | | | - Junwen Qiao
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Xing Liang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Zhenzhen Mou
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Hui Wang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Pedro Torres-Ayuso
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, PA, USA
| | | | - Dandan Song
- Department of Clinical Pharmacology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Sang Liu
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Bei Zhang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Vladimir Naumov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital Shanghai Medical College, Fudan University, Shanghai, China
| | - Andrey Kukharenko
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Evgeny Izumchenko
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Alex Zhavoronkov
- Insilico Medicine AI Limited, Abu Dhabi, UAE.
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China.
- Insilico Medicine US Inc., New York, NY, USA.
- Insilico Medicine Canada Inc, Montreal, Quebec, Canada.
| |
Collapse
|
29
|
Dietrich J, Kang A, Tielemans B, Verleden SE, Khalil H, Länger F, Bruners P, Mentzer SJ, Welte T, Dreher M, Jonigk DD, Ackermann M. The role of vascularity and the fibrovascular interface in interstitial lung diseases. Eur Respir Rev 2025; 34:240080. [PMID: 39909504 PMCID: PMC11795288 DOI: 10.1183/16000617.0080-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/24/2024] [Indexed: 02/07/2025] Open
Abstract
Interstitial lung disease (ILD) is a clinical term that refers to a diverse group of non-neoplastic lung diseases. This group includes idiopathic and secondary pulmonary entities that are often associated with progressive pulmonary fibrosis. Currently, therapeutic approaches based on specific structural targeting of pulmonary fibrosis are limited to nintedanib and pirfenidone, which can only slow down disease progression leading to a lower mortality rate. Lung transplantation is currently the only available curative treatment, but it is associated with high perioperative mortality. The pulmonary vasculature plays a central role in physiological lung function, and vascular remodelling is considered a hallmark of the initiation and progression of pulmonary fibrosis. Different patterns of pulmonary fibrosis commonly exhibit detectable pathological features such as morphomolecular changes, including intussusceptive and sprouting angiogenesis, vascular morphometry, broncho-systemic anastomoses, and aberrant angiogenesis-related gene expression patterns. Dynamic cellular interactions within the fibrovascular interface, such as endothelial activation and endothelial-mesenchymal transition, are also observed. This review aims to summarise the current clinical, radiological and pathological diagnostic algorithm for different ILDs, including usual interstitial pneumonia/idiopathic pulmonary fibrosis, non-specific interstitial pneumonia, alveolar fibroelastosis/pleuroparenchymal fibroelastosis, hypersensitivity pneumonitis, systemic sclerosis-related ILD and coronavirus disease 2019 injury. It emphasises an interdisciplinary clinicopathological perspective. Additionally, the review covers current therapeutic strategies and knowledge about associated vascular abnormalities.
Collapse
Affiliation(s)
- Jana Dietrich
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
- J. Dietrich and A. Kang share first authorship
| | - Alice Kang
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
- J. Dietrich and A. Kang share first authorship
| | - Birger Tielemans
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
| | - Stijn E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Edegem, Belgium
- Department of Respiratory Medicine, University Hospital Antwerp, Edegem, Belgium
| | - Hassan Khalil
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Thoracic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Florian Länger
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
| | - Philipp Bruners
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Thoracic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Danny D Jonigk
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- D.D. Jonigk and M. Ackermann share senior authorship
| | - Maximilian Ackermann
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Anatomy, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
- D.D. Jonigk and M. Ackermann share senior authorship
| |
Collapse
|
30
|
Kim DW, Kim S, Han J, Belday K, Li E, Mahoney N, Blackshaw S, Rajaii F. Transcriptomic profiling of thyroid eye disease orbital fat demonstrates differences in adipogenicity and IGF-1R pathway. JCI Insight 2024; 9:e182352. [PMID: 39704170 DOI: 10.1172/jci.insight.182352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Despite recent advances in the treatment of thyroid eye disease thyroid-related eye disease (TED), marked gaps remain in our understanding of the underlying molecular mechanisms, particularly concerning the insulin-like growth factor-1 receptor (IGF-1R) pathway. To dissect the pathophysiology of TED, we used single-nucleus RNA-Seq to analyze orbital fat specimens from both patients with TED and matched individuals acting as controls. The analysis demonstrated a marked increase in the proportion of fibroblasts transitioning to adipogenesis in the orbital fat of patients with TED compared with that in control patients. This was associated with diverse alterations in immune cell composition. Significant alterations in the IGF-1R signaling pathway were noted between TED specimens and those from control patients, indicating a potential pathological mechanism driven by IGF-1R signaling abnormalities. Additionally, our data showed that linsitinib, a small-molecule inhibitor of IGF-1R, effectively reduced adipogenesis in TED orbital fibroblasts in vitro, suggesting its potential utility as a therapeutic agent. Our findings reveal that, beyond immune dysfunction, abnormal IGF-1R signaling leading to enhanced adipogenesis is a crucial pathogenic mechanism in TED.
Collapse
Affiliation(s)
- Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, and
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Soohyun Kim
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeong Han
- Baylor College of Medicine, Houston, Texas, USA
| | - Karan Belday
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Li
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Mahoney
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology
- Institute for Cell Engineering, and
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fatemeh Rajaii
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Huang W, Zheng J, Wang M, Du LY, Bai L, Tang H. The potential therapeutic role of melatonin in organ fibrosis: a comprehensive review. Front Med (Lausanne) 2024; 11:1502368. [PMID: 39735699 PMCID: PMC11681627 DOI: 10.3389/fmed.2024.1502368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024] Open
Abstract
Organ fibrosis is a pathological process characterized by the inability of normal tissue cells to regenerate sufficiently to meet the dynamic repair demands of chronic injury, resulting in excessive extracellular matrix deposition and ultimately leading to organ dysfunction. Despite the increasing depth of research in the field of organ fibrosis and a more comprehensive understanding of its pathogenesis, effective treatments for fibrosis-related diseases are still lacking. Melatonin, a neuroendocrine hormone synthesized by the pineal gland, plays a crucial role in regulating biological rhythms, sleep, and antioxidant defenses. Recent studies have shown that melatonin may have potential in inhibiting organ fibrosis, possibly due to its functions in anti-oxidative stress, anti-inflammation, remodeling the extracellular matrix (ECM), inhibiting epithelial-mesenchymal transition (EMT), and regulating apoptosis, thereby alleviating fibrosis. This review aims to explore the therapeutic potential of melatonin in fibrosis-related human diseases using findings from various in vivo and in vitro studies. These discoveries should provide important insights for the further development of new drugs to treat fibrosis.
Collapse
Affiliation(s)
- Wei Huang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Juan Zheng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ming Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ling-Yao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Sun Z, Chen G. Impact of heterogeneity in liver matrix and intrahepatic cells on the progression of hepatic fibrosis. Tissue Cell 2024; 91:102559. [PMID: 39293139 DOI: 10.1016/j.tice.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Liver fibrosis is a disease with a high prevalence worldwide. The development of hepatic fibrosis results from a combination of factors within the liver, such as extracellular matrix (ECM) deposition, hepatic stellate cells (HSCs) activation, collagen cross-linking, and inflammatory response. Heterogeneity in fibrotic liver is the result of a combination of heterogeneity in the intrahepatic microenvironment as well as heterogeneous expression of fibrosis-associated enzymes and cells, complicating the study of the mechanisms underlying the progression of liver fibrosis. The role of this heterogeneity on the crosstalk between cells and matrix and on the fibrotic process is worth exploring. In this paper, we will describe the phenomenon and mechanism of heterogeneity of liver matrix and intrahepatic cells in the process of hepatic fibrosis and discuss the crosstalk between heterogeneous factors on the development of fibrosis. The elucidation of heterogeneity is important for a deeper understanding of the pathological mechanisms of liver fibrosis as well as for clinical diagnosis and targeted therapies.
Collapse
Affiliation(s)
- Zhongtao Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
33
|
Ding L, Lin H, Yang Z, Zhang P, Chen X. Polycaprolactone/gelatin-QAS/bioglass nanofibres accelerate diabetic chronic wound healing by improving dysfunction of fibroblasts. Int J Biol Macromol 2024; 283:136699. [PMID: 39442840 DOI: 10.1016/j.ijbiomac.2024.136699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Worldwide, more than 25 % of patients with diabetes develop chronic diabetic wounds in their lifetime. Infection and dysfunctional fibroblasts represent two significant etiological factors contributing to impaired wound healing in patients with diabetes. It is therefore evident that the development of wound dressings with both anti-infective and DM fibroblast modulating functions has the potential for clinical applications. In this study, a PCL/gelatine-quaternary ammonium salts (QAS)/bioglass (BG) electrospun nanofibrous membrane was developed with physico-chemical and biological properties that not only meet the clinical requirements for wound dressings but also exhibit remarkable moisturising (water adsorption rate of 382.39 ± 4.36 %) and tear-resistance properties (a tear strength of ~5.5 MPa). The incorporation of QAS and BG has enhanced the biocompatibility and bioactivity of the nanofibres, while also imparting remarkable antimicrobial properties. The antibacterial efficacy of PGQ-BG against E. coli and S. aureus was found to be 92.8 ± 0.78 % and 99.3 ± 0.55 %, respectively. Moreover, it was demonstrated that PGQ-BG nanofibers exerted a promoting effect on the extracellular matrix (ECM) in dysfunctional fibroblasts and upregulated the expression level of α-smooth muscle actin (α-SMA), a marker of their differentiation to myofibroblasts in vitro and in vivo. Furthermore, the COL-III/COL-I ratio was significantly increased, indicating that PGQ-BG may also accelerate wound healing. The nanofibrous dressing reduced scar formation by increasing the COL-III/COL-I ratio. This is the first report of BG improving fibroblast dysfunction via COL-III and COL-I promotion in fibroblasts, both in vitro and in vivo. Therefore, this novel bioactive nanofibrous dressing represents an effective and safe therapeutic strategy for improving chronic wound healing in patients with diabetes.
Collapse
Affiliation(s)
- Lin Ding
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Hao Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Zhengyu Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Peng Zhang
- School of Stomatology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519040, China.
| | - Xiaofeng Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
34
|
Zubair R, Ishii L, Loyal J, Hartman N, Fabi SG. SPLASH: Split-Body Randomized Clinical Trial of Poly- l -Lactic Acid for Adipogenesis and Volumization of the Hip Dell. Dermatol Surg 2024; 50:1155-1162. [PMID: 39503574 DOI: 10.1097/dss.0000000000004417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
BACKGROUND Injectable poly- l -lactic acid (PLLA-SCA) increases extracellular matrix to improve skin quality. The hip dell is an underappreciated element of gluteal aesthetics. Adipose tissue has roles in aesthetics and skin functioning. OBJECTIVE To investigate the efficacy of PLLA-SCA treatment to induce adipogenesis and volumize the hip dell. MATERIALS AND METHODS This was a double-blinded, split-body trial of 15 women with hip dell volume deficits. Each subject was randomized to have 1 hip dell treated with 150 mg of PLLA-SCA while the contralateral hip dell received the equivalent volume of saline. Subjects received 3 treatments at 1-month intervals and were followed for 9 months. Assessments included physician global aesthetic improvement scale, ultrasonography, and histologic examination. RESULTS Blinded investigators rated PLLA-SCA-treated hip dells as improved and much improved. The dermis and adipose layers increased in thickness by 26.1% and 27%. These measures, in addition to collagen and elastic fiber quality, were significantly improved compared with saline-treated hip dells, which did not change from baseline. Subject satisfaction was also significantly greater on the PLLA-SCA-treated side. No subject experienced significant adverse effects. CONCLUSION Poly- l -lactic acid is a safe and effective method for durable volumization and aesthetic improvement of the hip dell. PLLA-SCA may promote adipogenesis and elastogenesis.
Collapse
Affiliation(s)
| | - Lisa Ishii
- Aesthetic Solutions, Chapel Hill, North Carolina
| | | | - Nina Hartman
- Washington Institute of Dermatologic Laser Surgery, Washington, District of Columbia;and
| | - Sabrina G Fabi
- Cosmetic Laser Dermatology, San Diego, California
- University of California San Diego, San Diego, California
| |
Collapse
|
35
|
Chen H, Wang M, Zhang Z, Lin F, Guo B, Lu Q, Lash GE, Li P. Oxidative stress drives endometrial fibrosis via TGF-β1/MAPK signaling pathway in breast cancer. FASEB J 2024; 38:e70172. [PMID: 39548950 DOI: 10.1096/fj.202401257rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024]
Abstract
Breast cancer patients have high serum reactive oxygen species (ROS) levels, which exert toxicity on the ovary. However, it is still unclear whether tumor-derived ROS play a role in endometrial development and function in breast cancer. Breast cancer patients and healthy controls were recruited and endometrial thickness was measured by transvaginal ultrasound (TVUS). Xenograft tumors of the breast cancer cell line MDA-MB-231 in a female BALB/c nude mice model were established, and the therapeutic mechanism of vitamin C (VC) was investigated on uterine pathology in vivo and the contribution of co-culture of breast cancer cell and endometrial epithelial cell on this process was examined in vitro. Median thickness in endometria was lower in breast cancer patients and tumor-bearing mice compared to controls. A gene signature of uteri in tumor-bearing mice demonstrated differential expression of genes (DEGs) regulating extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT), and activation of TGF-β and MAPK signaling pathways. In addition, ROS, EMT- and ECM-related protein levels were enhanced in uteri in tumor-bearing mice, as well as in Ishikawa cells which were co-cultured with MDA-MB-231 cells compared to controls. Supplementation with VC reduced endometrial damage, inhibited the EMT process and collagen deposition, and maintained better histologic architecture of uteri in tumor-bearing mice via inactivation of the TGF-β1/p38MAPK pathway. In women with breast cancer oxidative stress in the endometrium results in a fibrotic response as a consequence of EMT. VC could alleviate endometrial fibrosis via TGF-β1/p38MAPK pathway and provide new predictive and therapeutic targets for fertility preservation in younger breast cancer patients.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China
| | - Minghua Wang
- Department of Pathology, Longgang District People's Hospital, Shenzhen, China
| | - Zhejun Zhang
- Department of Pathology, Jinan University First Affiliated Hospital, Guangzhou, China
| | - Fangfang Lin
- Department of Ultrasound, Jinan University First Affiliated Hospital, Guangzhou, China
| | - Bihui Guo
- Department of Obstetrics and Gynecology, Huizhou Second Maternal and Child Health Hospital, Huizhou, China
| | - Qinsheng Lu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Gendie E Lash
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ping Li
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China
| |
Collapse
|
36
|
Zhao G, Hu Y. Mechanistic insights into intrauterine adhesions. Semin Immunopathol 2024; 47:3. [PMID: 39613882 DOI: 10.1007/s00281-024-01030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
Intrauterine adhesions (IUA), also known as Asherman's syndrome, arise from damage to the basal layer of the endometrium, frequently caused by intrauterine interventions. This damage leads to nonregenerative healing of endometrium resulting in replacement by fibrous connective tissue, which bring about the adherence of opposing endometrium to render the uterine cavity and/or cervical canal partially or completely obliterated. IUA is a common cause of the refractory uterine infertility. Hysteroscopy is the gold standard for diagnosis of IUA. However, the method of accurately predicting the likelihood of achieving a live birth in the future remains established. Classical treatments have shown limited success, particularly in severe cases. Therefore, utilizing new research methods to deepen the understanding of the pathogenesis of IUA will facilitate the new treatment approaches to be found. In this article we briefly described the advances in the pathogenesis of IUA, with focus on inflammation and parenchymal cellular homeostasis disruption, defects in autophagy and the role of ferroptosis, and we also outlined the progress in IUA therapy.
Collapse
Affiliation(s)
- Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
37
|
Samulevich ML, Carman LE, Aneskievich BJ. Critical Analysis of Cytoplasmic Progression of Inflammatory Signaling Suggests Potential Pharmacologic Targets for Wound Healing and Fibrotic Disorders. Biomedicines 2024; 12:2723. [PMID: 39767629 PMCID: PMC11726985 DOI: 10.3390/biomedicines12122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Successful skin wound healing is dependent on an interplay between epidermal keratinocytes and dermal fibroblasts as they react to local extracellular factors (DAMPs, PAMPs, cytokines, etc.) surveyed from that environment by numerous membrane receptors (e.g., TLRs, cytokine receptors, etc.). In turn, those receptors are the start of a cytoplasmic signaling pathway where balance is key to effective healing and, as needed, cell and matrix regeneration. When directed through NF-κB, these signaling routes lead to transient responses to the benefit of initiating immune cell recruitment, cell replication, local chemokine and cytokine production, and matrix protein synthesis. The converse can also occur, where ongoing canonical NF-κB activation leads to chronic, hyper-responsive states. Here, we assess three key players, TAK1, TNFAIP3, and TNIP1, in cytoplasmic regulation of NF-κB activation, which, because of their distinctive and yet inter-related functions, either promote or limit that activation. Their balanced function is integral to successful wound healing, given their significant control over the expression of inflammation-, fibrosis-, and matrix remodeling-associated genes. Intriguingly, these three proteins have also been emphasized in dysregulated NF-κB signaling central to systemic sclerosis (SSc). Notably, diffuse SSc shares some tissue features similar to an excessive inflammatory/fibrotic wound response without eventual resolution. Taking a cue from certain instances of aberrant wound healing and SSc having some shared aspects, e.g., chronic inflammation and fibrosis, this review looks for the first time, to our knowledge, at what those pathologies might have in common regarding the cytoplasmic progression of NF-κB-mediated signaling. Additionally, while TAK1, TNFAIP3, and TNIP1 are often investigated and reported on individually, we propose them here as three proteins whose consequences of function are very highly interconnected at the signaling focus of NF-κB. We thus highlight the emerging promise for the eventual clinical benefit derived from an improved understanding of these integral signal progression modulators. Depending on the protein, its indirect or direct pharmacological regulation has been reported. Current findings support further intensive studies of these points in NF-κB regulation both for their basic function in healthy cells as well as with the goal of targeting them for translational benefit in multiple cutaneous wound healing situations, whether stemming from acute injury or a dysregulated inflammatory/fibrotic response.
Collapse
Affiliation(s)
- Michael L. Samulevich
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (M.L.S.); (L.E.C.)
| | - Liam E. Carman
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (M.L.S.); (L.E.C.)
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
38
|
Jiang Y, Fu Z, Chen Y, Jin Q, Yang Y, Lin Z, Li C, Gao Y, Dong Z, He Y, Mao X, He Y, Zhang Q, Zhang Q, Li N. Mapping and tracing Grem1 + stromal cells in an Apc Min/+ mouse utilizing cryopreserved intestinal sections prepared via modified Swiss-roll technique. iScience 2024; 27:111173. [PMID: 39563897 PMCID: PMC11574797 DOI: 10.1016/j.isci.2024.111173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/18/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024] Open
Abstract
Grem1+ cancer-associated fibroblasts (CAFs) are crucial in colorectal cancer (CRC) development, yet technical challenges have limited understanding of their origins, spatiotemporal distribution, and potential roles. Here, we devised a custom mold, optimizing the gut Swiss-roll technique to create a single cryopreserved slide for comprehensive staining. Our integrated approach uncovered a marked increase in Grem1+ CAFs within Apc Min/+ mouse tumors at 12 weeks, compared to normal mucosa. Subsequent lineage tracing in Grem1-CreER T2 ; R26-LSL-tdTomato; Apc Min/+ mice revealed that most Grem1+ CAFs infiltrating the tumor core originated from Grem1+ intestinal reticular stem cells (iRSCs). A minor subset of Grem1+ CAFs, located in the submucosa, retained characteristics of Grem1+ intestinal sub-epithelial myofibroblasts (ISEMFs). Altogether, CAFs derived from Grem1+ iRSCs may serve as a principal stromal cell type driving early-stage CRC progression, while Grem1+ ISEMFs contribute less from a more distant location. Hence, targeting Grem1+ CAFs presents an early and promising therapeutic strategy in CRC.
Collapse
Affiliation(s)
- Youheng Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhang Fu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Department of Geriatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanfang Chen
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Qunlong Jin
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yanming Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Zerong Lin
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Changxue Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yunfei Gao
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Department of Otolaryngology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Zepeng Dong
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yang He
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518107, China
| | - Xinjun Mao
- Department of Anesthesiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yulong He
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Qingyuan Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Qi Zhang
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- China-UK Institute for Frontier Science, Shenzhen 518107, China
| |
Collapse
|
39
|
Grigorieva O, Basalova N, Dyachkova U, Novoseletskaya E, Vigovskii M, Arbatskiy M, Kulebyakina M, Efimenko A. Modeling the profibrotic microenvironment in vitro: Model validation. Biochem Biophys Res Commun 2024; 733:150574. [PMID: 39208646 DOI: 10.1016/j.bbrc.2024.150574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Establishing the molecular and cellular mechanisms of fibrosis requires the development of validated and reproducible models. The complexity of in vivo models challenges the monitoring of an individual cell fate, in some cases making it impossible. However, the set of factors affecting cells in vitro culture systems differ significantly from in vivo conditions, insufficiently reproducing living systems. Thus, to model profibrotic conditions in vitro, usually the key profibrotic factor, transforming growth factor beta (TGFβ-1) is used as a single factor. TGFβ-1 stimulates the differentiation of fibroblasts into myofibroblasts, the main effector cells promoting the development and progression of fibrosis. However, except for soluble factors, the rigidity and composition of the extracellular matrix (ECM) play a critical role in the differentiation process. To develop the model of more complex profibrotic microenvironment in vitro, we used a combination of factors: decellularized ECM synthesized by human dermal fibroblasts in the presence of ascorbic acid if cultured as cell sheets and recombinant TGFβ-1 as a supplement. When culturing human mesenchymal stromal cells derived from adipose tissue (MSCs) under described conditions, we observed differentiation of MSCs into myofibroblasts due to increased number of cells with stress fibrils with alpha-smooth muscle actin (αSMA), and increased expression of myofibroblast marker genes such as collagen I, EDA-fibronectin and αSMA. Importantly, secretome of MSCs changed in these profibrotic microenvironment: the secretion of the profibrotic proteins SPARC and fibulin-2 increased, while the secretion of the antifibrotic hepatocyte growth factor (HGF) decreased. Analysis of transciptomic pattern of regulatory microRNAs in MSCs revealed 49 miRNAs with increased expression and 3 miRNAs with decreased expression under profibrotic stimuli. Bioinformatics analysis confirmed that at least 184 gene targets of the differently expressed miRNAs genes were associated with fibrosis. To further validate the developed model of profibrotic microenvironment, we cultured human dermal fibroblasts in these conditions and observed increased expression of fibroblast activation protein (FAPa) after 12 h of cultivation as well as increased level of αSMA and higher number of αSMA + stress fibrils after 72 h. The data obtained allow us to conclude that the conditions formed by the combination of profibrotic ECM and TGFβ-1 provide a complex profibrotic microenvironment in vitro. Thus, this model can be applicable in studying the mechanism of fibrosis development, as well as for the development of antifibrotic therapy.
Collapse
Affiliation(s)
- Olga Grigorieva
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia.
| | - Nataliya Basalova
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Uliana Dyachkova
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Ekaterina Novoseletskaya
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Maksim Vigovskii
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Mikhail Arbatskiy
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Maria Kulebyakina
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| | - Anastasia Efimenko
- Center for Regenerative Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 119192, Moscow, Russia
| |
Collapse
|
40
|
Fan W, Qu Y, Yuan X, Shi H, Liu G. Loureirin B Accelerates Diabetic Wound Healing by Promoting TGFβ/Smad-Dependent Macrophage M2 Polarization: A Concerted Analytical Approach Through Single-Cell RNA Sequencing and Experimental Verification. Phytother Res 2024. [PMID: 39532388 DOI: 10.1002/ptr.8373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Diabetic wound (DW) represent a significant clinical challenge and often fail to heal effectively. Loureirin B (LB), a flavonoid extracted from dragon's blood, has shown potential by influencing macrophage polarization and promoting wound healing. However, its mechanisms and efficacy in DW remain to be explored. This study employed single-cell RNA sequencing to analyze the classification of cells in diabetic foot ulcers and to identify the related mechanisms influenced by macrophages. Molecular docking was used to predict the interactions of LB with key proteins in the TGFβ/Smad signaling pathway. The effects of LB on macrophage polarization and wound healing were further validated through in vitro and in vivo experiments using a DW model. Single-cell analysis identified specific macrophage subtypes involved in the DW healing process and highlighted the role of the TGFβ/Smad pathway. Molecular docking suggested the potential action within the TGFβ/Smad pathway. In vitro studies showed that under high glucose conditions, LB promoted macrophage polarization from pro-inflammatory M1 to healing-promoting M2 and ECM production in fibroblasts by activating TGF-β/Smad signaling. In vivo, LB treatment enhanced wound healing rates in diabetic mice and promoted macrophage M2 polarization and fibroblast synthesis of ECM by activating TGF-β/Smad signaling. LB regulates macrophage M2 polarization and fibroblast synthesis of ECM by activating TGF-β/Smad signaling to promote DW healing. These findings suggest that LB could be a potential therapeutic agent for improving DW healing, emphasizing the need for further clinical studies to explore its efficacy and mechanisms in human subjects.
Collapse
Affiliation(s)
- Weijing Fan
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yin Qu
- Department of Anorectal Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Yuan
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongshuo Shi
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guobin Liu
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
41
|
Suhardi V, Oktarina A, Niu Y, Sosa B, Retzky J, Greenblatt M, Ivashkiv L, Bostrom M, Yang X. A Murine Model of Non-Wear-Particle-Induced Aseptic Loosening. Biomimetics (Basel) 2024; 9:673. [PMID: 39590245 PMCID: PMC11592190 DOI: 10.3390/biomimetics9110673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The current murine models of peri-implant osseointegration failure are associated with wear particles. However, the current clinical osseointegration failure is not associated with wear particles. Here, we develop a murine model of osseointegration failure not associated with wear particles and validate it by comparing the cellular composition of interfacial tissues with human samples collected during total joint arthroplasty revision for aseptic loosening. MATERIALS AND METHODS Thirty-two 16-week-old female C57BL/6 mice underwent implantation with a press-fitted roughened titanium implant (Control, n = 11) to induce normal osseointegration and a press-fitted smooth polymethylmethacrylate implant (PMMA, n = 11), a loosely fitted smooth titanium implant (Smooth-Ti, n = 5) or a loosely fitted roughened titanium implant (Overdrill, n = 5) to induce osseointegration failure. Pullout testing was used to determine the strength of the bone-implant interface (n = 6 of each for Control and PMMA groups) at 2 weeks after implantation. Histology (n = 2/group) and immunofluorescence (n = 3/group) were used to determine the cellular composition of bone-implant interfacial tissue, and this was compared with two human samples. RESULTS Osseointegration failure was confirmed with grossly loosening implants and the presence of fibrous tissue identified via histology. The maximum pullout load in the PMMA group was 87% lower than in the Control group (2.8 ± 0.6 N vs. 21 ± 1.5 N, p < 0.001). With immunofluorescence, abundant fibroblasts (PDGFRα+ TCF4+ and PDGFRα+ Pu1+) were observed in osseointegration failure groups and the human samples, but not in controls. Interestingly, CD146+PDGFRα+ and LepR+PDGFRα+ mesenchymal progenitors, osteoblasts (OPN+), vascular endothelium (EMCN+) cells were observed in all groups, indicating dynamic osteogenic activity. Macrophages, only M2, were observed in conditions producing fibrous tissue. CONCLUSIONS In this newly developed non-wear-particle-related murine osseointegration failure model, the cellular composition of human and murine interfacial tissue implicates specific populations of fibroblasts in fibrous tissue formation and implies that these cells may derive from mesenchymal stem cells.
Collapse
Affiliation(s)
- Vincentius Suhardi
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
| | - Anastasia Oktarina
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
| | - Yingzhen Niu
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050052, China
| | - Branden Sosa
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
| | - Julia Retzky
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
| | - Matthew Greenblatt
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lionel Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
| | - Mathias Bostrom
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
42
|
Yang X, Liang H, Tang Y, Dong R, Liu Q, Pang W, Su L, Gu X, Liu M, Wu Q, Xue X, Zhan J. Soybean Extract Ameliorates Lung Injury induced by Uranium Inhalation: An integrated strategy of network pharmacology, metabolomics, and transcriptomics. Biomed Pharmacother 2024; 180:117451. [PMID: 39326101 DOI: 10.1016/j.biopha.2024.117451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
AIM This study aimed to evaluate the protective effect of soybean extract (SE) against uranium-induced lung injury in rats. MATERIALS AND METHODS A rat lung injury model was established through nebulized inhalation of uranyl nitrate. Pretreatment with SE or sterile water (control group) by gavage for seven days before uranium exposure and until the experiment endpoints. The levels of uranium in lung tissues were detected by ICP-MS. Paraffin embedding-based hematoxylin & eosin staining and Masson's staining for the lung tissue were performed to observe the histopathological imaging features. A public database was utilized to analyze the network pharmacological association between SE and lung injury. The expression levels of proteins indicating fibrosis were measured by enzyme-linked immunosorbent assay. RNA-seq transcriptomic and LC-MS/MS targeted metabolomics were conducted in lung tissues. RESULTS Uranium levels in the lung tissues were lower in SE-pretreated rats than in the uranium-treated group. Inflammatory cell infiltration and the deposition of extracellular matrix were attenuated, and the levels of alpha-smooth muscle actin, transforming growth factor beta1, and hydroxyproline decreased in SE-pretreated rats compared to the uranium-treated group. Active ingredients of SE were related to inflammation, oxidative stress, and drug metabolism. A total of 67 differentially expressed genes and 39 differential metabolites were identified in the SE-pretreated group compared to the uranium-treated group, focusing on the drug metabolism-cytochrome P450, glutathione metabolism, IL-17 signaling pathway, complement, and coagulation cascades. CONCLUSIONS These findings suggest that SE may ameliorate uranium-induced pulmonary inflammation and fibrosis by regulating glutathione metabolism, chronic inflammation, and immune regulation.
Collapse
Affiliation(s)
- Xin Yang
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Hongying Liang
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Yufu Tang
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Ruifeng Dong
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Qimiao Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Wanqing Pang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Lixia Su
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Xiaona Gu
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Mengya Liu
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Qingdong Wu
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Xiangming Xue
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China.
| | - Jingming Zhan
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China.
| |
Collapse
|
43
|
Zhou Y, Liang P, Bi T, Tang B, Zhu X, Liu X, Wang H, Shen H, Sun Q, Yang S, Ren W. Angiotensin II depends on hippo/YAP signaling to reprogram angiogenesis and promote liver fibrosis. Cell Signal 2024; 123:111355. [PMID: 39173854 DOI: 10.1016/j.cellsig.2024.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Liver fibrosis is a chronic pathological process in which the abnormal proliferation of connective tissue is induced by various pathogenic factors. During the process of fibrosis, excessive angiogenesis is observed. Physiological angiogenesis has the potential to impede the progression of liver fibrosis through augmenting matrix metalloenzyme activity; however, pathological angiogenesis can exacerbate liver fibrosis by promoting collagen accumulation. Therefore, a key scientific research focus in the treatment of liver diseases is to search for the "on-off" mechanism that regulates angiogenesis from normal proliferation to pathological proliferation. In this study, we found that excessive angiogenesis appeared during the initial phase of hepatic fibrosis without mesenchymal characteristics. In addition, angiogenesis accompanied by significant endothelial-to-mesenchymal transition (EndMT) was observed in mice after the intraperitoneal injection of angiotensin II (Ang II). Interestingly, the changes in Yes-associated protein (YAP) activity in endothelial cells (ECs) can affect the regulation of angiogenesis by Ang II. The results of in vitro experiments revealed that the regulatory influence of Ang II on ECs was significantly attenuated upon suppression of YAP activity. Furthermore, the function of Ang II in regulating angiogenesis during fibrosis was investigated in liver-specific transgenic mice. The results revealed that Ang II gene deletion could restrain liver fibrosis and EndMT. Meanwhile, Ang II deletion downregulated the profibrotic YAP signaling pathway in ECs. The small molecule AT1R agonist olmesartan targeting Ang II-YAP signaling could also alleviate liver fibrosis. In conclusion, this study identified Ang II as a pivotal regulator of EndMT during the progression of liver fibrosis and evaluated the therapeutic effect of the Ang II-targeted drug olmesartan on liver fibrosis.
Collapse
Affiliation(s)
- Yanan Zhou
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 853, China
| | - Tao Bi
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Bo Tang
- Department of Pathology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xiaoning Zhu
- Department of Hepatobiliary, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xinyue Liu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Hong Wang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 853, China.
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
44
|
Lin M, Lee Y, Liao J, Chou C, Yang Y. PTGES is involved in myofibroblast differentiation via HIF-1α-dependent glycolysis pathway. J Cell Mol Med 2024; 28:e70157. [PMID: 39417702 PMCID: PMC11484478 DOI: 10.1111/jcmm.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Patients with lung cancer usually exhibit poor prognoses and low 5-year survival rates. Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are both chronic lung dysfunctions resulting in lung fibrosis and increased risk of lung cancer. Myofibroblasts contribute to the progression of asthma, COPD and IPF, leading to fibrosis in the airway and lungs. A growing body of evidence demonstrates that metabolic reprogramming is a major hallmark of fibrosis, being important in the progression of fibrosis. Using gene expression microarray, we identified and validated that the lipid metabolic pathway was upregulated in lung fibroblasts upon interleukin (IL)-4, IL-13 and tumour necrosis factor (TNF)-α treatment. In this study, we described that prostaglandin E synthase (PTGES) was upregulated in lung fibroblasts after IL-4, IL-13 and TNF-α treatments. PTGES increased α-SMA levels and promoted lung fibroblast cell migration and invasion abilities. Furthermore, PTGES was upregulated in a lung fibrosis rat model in vivo. PTGES increased AKT phosphorylation, leading to activation of the HIF-1α-glycolysis pathway in lung fibroblast cells. HIF-1α inhibitor or 2-DG treatments reduced α-SMA expression in recombinant PTGES (rPTGES)-treated lung fibroblast cells. Targeting PGE2 signalling in PTGES-overexpressing cells by a PTGES inhibitor reduced α-SMA expression. In conclusion, the results of this study demonstrate that PTGES increases the expression of myofibroblast marker via HIF-1α-dependent glycolysis and contributes to myofibroblast differentiation.
Collapse
Affiliation(s)
- Min‐Hsi Lin
- Division of Chest MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Yi‐Chen Lee
- Department of Anatomy, School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Jia‐Bin Liao
- Department of Pathology and Laboratory MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Chih‐Yu Chou
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Yi‐Fang Yang
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
| |
Collapse
|
45
|
Pan H, Song J, An Q, Chen J, Zheng W, Zhang L, Gu J, Deng C, Yang B. Inhibition of Ubiquitin C-Terminal Hydrolase L1 Facilitates Cutaneous Wound Healing via Activating TGF-β/Smad Signalling Pathway in Fibroblasts. Exp Dermatol 2024; 33:e15186. [PMID: 39367569 DOI: 10.1111/exd.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/27/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCHL1) plays vital roles in cell proliferation, angiogenesis, inflammation and oxidative stress. Nevertheless, it is unclear whether UCHL1 could regulate the biologic behaviour of cells and ultimately influences wound healing. We aim to illustrate the roles and the underlying mechanism of UCHL1 in cutaneous wound healing. Murine full-thickness excisional wound model was utilised to study the effects of UCHL1 on wound healing through topical administration of the UCHL1 inhibitor LDN57444, followed by assessment of wound areas and histological alterations. Subsequently, ethynyldeoxyuridine, scratch and transwell assays were performed to examine fibroblast migration and proliferation. The extracellular matrix (ECM)-related genes expression and transforming growth factor-β (TGF-β)/Smad signalling pathways activation were investigated by immuno-fluorescent staining, Western blots and quantitative reverse transcription polymerase chain reaction. We identified elevated UCHL1 expression in non-healing wound tissues. The UCHL1 expression displayed a dynamic change and reached a peak on Day-7 post-wounding during the healing process in mice. Cutaneous administration of LDN57444 promoted wound healing by facilitating collagen deposition, myofibroblast activation and angiogenesis. In vitro experiments demonstrated that UCHL1 concentration dependently inhibited migration, ECM synthesis and activation of human dermal fibroblasts, which was mechanistically related to downregulation of TGF-β/Smad signalling. Furthermore, these effects could be reversed by TGF-β inhibitor SB431542. Our findings reveal that UCHL1 is a negative regulator of cutaneous wound healing and considered as a novel prospective therapeutic target for effective wound healing.
Collapse
Affiliation(s)
- Huihui Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jinru Song
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qing An
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Chen
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wenyue Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Litian Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jingjing Gu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chengcheng Deng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Bazsó A, Szodoray P, Shoenfeld Y, Kiss E. Biomarkers reflecting the pathogenesis, clinical manifestations, and guide therapeutic approach in systemic sclerosis: a narrative review. Clin Rheumatol 2024; 43:3055-3072. [PMID: 39210206 PMCID: PMC11442557 DOI: 10.1007/s10067-024-07123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Systemic sclerosis (SSc) is a progressive autoimmune disorder that mainly affects the skin. There are other clinical manifestations as renal, pulmonary, cardiovascular, and gastrointestinal tract involvements. Based on the skin involvement there are two subtypes of SSc, as limited cutaneous SSc (lSSc) which involves the acral part of the body and diffuse cutaneous SSc (dSSc) resulting in significant skin thickening of the body. Despite of the extensive research the pathomechanism is not fully clarified, how Ssc develops, moreover identifying biomarkers to predict the clinical outcome and prognosis still remains challenging. Circulating biomarkers can be crucial to define the diagnosis, to predict the prognosis and monitor the clinical course. However, only some patients are responsive to the therapy in SSc, and there is a need to reach the ideal therapy for any individual to prevent or slow down the progression in early stages of the disease. In this narrative review, our purpose was to summarize the potential biomarkers in Ssc, describe their role in the diagnosis, pathomechanism, clinical course, organ manifestations, as well as the response to the therapy. Biomarkers assessment aids in the evaluation of disease progression, and disease outcome.
Collapse
Affiliation(s)
- Anna Bazsó
- Department of Clinical Immunology, Adult and Paediatric Rheumatology, National Institute of Locomotor System Disorders and Disabilities, Budapest, Hungary.
| | - Péter Szodoray
- Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Yehuda Shoenfeld
- Reichmann University, Herzelia, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 5265601, Tel-Hashomer, Israel
| | - Emese Kiss
- Department of Clinical Immunology, Adult and Paediatric Rheumatology, National Institute of Locomotor System Disorders and Disabilities, Budapest, Hungary
- Division of Locomotor System and Rheumatology Prevention, Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
47
|
Li X, Liu Y, Tang Y, Xia Z. Transformation of macrophages into myofibroblasts in fibrosis-related diseases: emerging biological concepts and potential mechanism. Front Immunol 2024; 15:1474688. [PMID: 39386212 PMCID: PMC11461261 DOI: 10.3389/fimmu.2024.1474688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) transforms macrophages into myofibroblasts in a specific inflammation or injury microenvironment. MMT is an essential biological process in fibrosis-related diseases involving the lung, heart, kidney, liver, skeletal muscle, and other organs and tissues. This process consists of interacting with various cells and molecules and activating different signal transduction pathways. This review deeply discussed the molecular mechanism of MMT, clarified crucial signal pathways, multiple cytokines, and growth factors, and formed a complex regulatory network. Significantly, the critical role of transforming growth factor-β (TGF-β) and its downstream signaling pathways in this process were clarified. Furthermore, we discussed the significance of MMT in physiological and pathological conditions, such as pulmonary fibrosis and cardiac fibrosis. This review provides a new perspective for understanding the interaction between macrophages and myofibroblasts and new strategies and targets for the prevention and treatment of MMT in fibrotic diseases.
Collapse
Affiliation(s)
- Xiujun Li
- Health Science Center, Chifeng University, Chifeng, China
| | - Yuyan Liu
- Rehabilitation Medicine College, Shandong Second Medical University, Jinan, China
| | - Yongjun Tang
- Department of Emergency, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Zhaoyi Xia
- Department of Library, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Library, Jinan Children’s Hospital, Jinan, China
| |
Collapse
|
48
|
Kim J, Won C, Ham S, Han H, Shin S, Jang J, Lee S, Kwon C, Cho S, Park H, Lee D, Lee WJ, Lee T, Lee JH. Increased Susceptibility to Mechanical Stretch Drives the Persistence of Keloid Fibroblasts: An Investigation Using a Stretchable PDMS Platform. Biomedicines 2024; 12:2169. [PMID: 39457482 PMCID: PMC11504861 DOI: 10.3390/biomedicines12102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Keloids are a common fibrotic disease of the skin, with the pathological hallmark of excessive extracellular matrix synthesis due to abnormal fibroblast activity. Since keloids clinically arise in areas of high mechanical tension, the mechanotransductory pathway may be attributed to its pathogenesis. We aimed to establish a preclinical platform to elucidate the underlying mechanism of keloid development and its clinical persistence. METHODS We fabricated a mechanically stretchable polydimethylsiloxane cell culture platform; with its mimicry of the in vivo cyclic stretch of skeletal muscles, cells showed higher proliferation compared with conventional modalities. RESULTS In response to mechanical strain, TGF-β and type 1 collagen showed significant increases, suggesting possible TGF-β/Smad pathway activation via mechanical stimulation. Protein candidates selected by proteomic analysis were evaluated, indicating that key molecules involved in cell signaling and oxidative stress were significantly altered. Additionally, the cytoskeletal network of keloid fibroblasts showed increased expression of its components after periodic mechanical stimulation. CONCLUSIONS Herein, we demonstrated and validated the existing body of knowledge regarding profibrotic mechanotransduction signaling pathways in keloid fibroblasts. Cyclic stretch, as a driving force, could help to decipher the tension-mediated biomechanical processes, leading to the development of optimized therapeutic targets.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Chihyeong Won
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Seoyoon Ham
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Heetak Han
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Sungsik Shin
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Jieun Jang
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Sanghyeon Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Chaebeen Kwon
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Sungjoon Cho
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Hyeonjoo Park
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Dongwon Lee
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (D.L.); (W.J.L.)
| | - Won Jai Lee
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (D.L.); (W.J.L.)
| | - Taeyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Ju Hee Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| |
Collapse
|
49
|
Xu Q, Liu H, Ding Shiwen Fan X, Lv W, Jiang Y, Liang Y, Xu H, Dai J. PGC-1α regulates endoplasmic reticulum stress in IPF-derived fibroblasts. Int Immunopharmacol 2024; 138:112514. [PMID: 38943974 DOI: 10.1016/j.intimp.2024.112514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 07/01/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is considered to be associated with aging. Both ER stress and the unfolded protein response (UPR) have been associated with pulmonary fibrosis via key mechanisms including AEC apoptosis, EMT, altered myofibroblast differentiation, and M2 macrophage polarization. A relationship between ER stress and aging has also been demonstrated in vitro, with increased p16 and p21 levels seen in lung epithelial cells of older IPF patients. The mechanism underlying ER stress regulation of IPF fibroblasts is still unclear. In this study, we aimed to delineate ER stress regulation in IPF-derived fibroblasts. Here, we found that ER stress markers (p-eIF2α, p-IREα, ATF6) and fibrosis markers (α-SMA and Collagen-I) were significantly increased in lung tissues of IPF patients and bleomycin-induced mouse models. Notably, the expression of PGC-1α was decreased in fibroblasts. In vivo experiments were designed using an AAV-6 vector mediated conditional PGC-1α knockout driven by a specific α-SMA promoter. Ablation of PGC-1α expression in fibroblasts promoted ER stress and supported the development of pulmonary fibrosis in a bleomycin-induced mouse model. In another experimental group, mice with conditional knockout of PGC-1α in fibroblasts and injected intraperitoneally with 4-PBA (an endoplasmic reticulum stress inhibitor) were protected from lung fibrosis. We further constructed an AAV-6 vector mediated PGC-1α overexpression model driven by a specific Collagen-I promoter. Overexpression of PGC-1α in fibroblasts suppressed ER stress and attenuated development of pulmonary fibrosis in bleomycin-induced mouse models. Taken together, this study identified PGC-1α as a promising target for developing novel therapeutic options for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Qinghua Xu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Huarui Liu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xiaorui Ding Shiwen Fan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Wenting Lv
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yuxian Jiang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yi Liang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Hongyang Xu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
50
|
Crowe LP, Gioseffi A, Bertolini MS, Docampo R. Inorganic Polyphosphate Is in the Surface of Trypanosoma cruzi but Is Not Significantly Secreted. Pathogens 2024; 13:776. [PMID: 39338967 PMCID: PMC11434814 DOI: 10.3390/pathogens13090776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease, an infection that can lead to the development of cardiac fibrosis, which is characterized by the deposition of extracellular matrix (ECM) components in the interstitial region of the myocardium. The parasite itself can induce myofibroblast differentiation of cardiac fibroblast in vitro, leading to increased expression of ECM. Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate that can also induce myofibroblast differentiation and deposition of ECM components and is highly abundant in T. cruzi. PolyP can modify proteins post-translationally by non-enzymatic polyphosphorylation of lysine residues of poly-acidic, serine-(S) and lysine (K)-rich (PASK) motifs. In this work, we used a bioinformatics screen and identified the presence of PASK domains in several surface proteins of T. cruzi. We also detected polyP in the external surface of its different life cycle stages and confirmed the stimulation of host cell fibrosis by trypomastigote infection. However, we were not able to detect significant secretion of the polymer or activation of transforming growth factor beta (TGF-β), an important factor for the generation of fibrosis by inorganic polyP- or trypomastigote-conditioned medium.
Collapse
Affiliation(s)
- Logan P. Crowe
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA (M.S.B.)
| | - Anna Gioseffi
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA (M.S.B.)
| | - Mayara S. Bertolini
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA (M.S.B.)
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA (M.S.B.)
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|