1
|
Khademi Z, Mottaghi-Dastjerdi N, Morad H, Sahebkar A. The role of CRISPR-Cas9 and CRISPR interference technologies in the treatment of autoimmune diseases. Autoimmun Rev 2025; 24:103816. [PMID: 40221070 DOI: 10.1016/j.autrev.2025.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Autoimmune disorders can be described as inappropriate immune responses directed against self-antigens, which account for substantial healthcare concerns around the world. Immunosuppression or immune modulation are the main therapeutic modalities for autoimmune disorders. These modalities, however, impair the ability of the immune system to fight against infections, thereby predisposing to opportunistic diseases. This review explores existing therapies for autoimmune disorders, highlighting their limitations and challenges. Additionally, it describes the potential of CRISPR-Cas9 technology as a novel therapeutic approach to address these challenges.
Collapse
Affiliation(s)
- Zahra Khademi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Mottaghi-Dastjerdi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Morad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Lee J, Yurkovetskiy LA, Reiman D, Frommer L, Strong Z, Chang A, Kahaly GJ, Khan AA, Chervonsky AV. Androgens contribute to sex bias of autoimmunity in mice by T cell-intrinsic regulation of Ptpn22 phosphatase expression. Nat Commun 2024; 15:7688. [PMID: 39227386 PMCID: PMC11372096 DOI: 10.1038/s41467-024-51869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Autoimmune diseases such as systemic lupus erythematosus (SLE) display a strong female bias. Although sex hormones have been associated with protecting males from autoimmunity, the molecular mechanisms are incompletely understood. Here we report that androgen receptor (AR) expressed in T cells regulates genes involved in T cell activation directly, or indirectly via controlling other transcription factors. T cell-specific deletion of AR in mice leads to T cell activation and enhanced autoimmunity in male mice. Mechanistically, Ptpn22, a phosphatase and negative regulator of T cell receptor signaling, is downregulated in AR-deficient T cells. Moreover, a conserved androgen-response element is found in the regulatory region of Ptpn22 gene, and the mutation of this transcription element in non-obese diabetic mice increases the incidence of spontaneous and inducible diabetes in male mice. Lastly, Ptpn22 deficiency increases the disease severity of male mice in a mouse model of SLE. Our results thus implicate AR-regulated genes such as PTPN22 as potential therapeutic targets for autoimmune diseases.
Collapse
MESH Headings
- Animals
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism
- Male
- Female
- Autoimmunity
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Mice
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/genetics
- Androgens/metabolism
- Mice, Knockout
- Lymphocyte Activation
- Mice, Inbred NOD
- Mice, Inbred C57BL
- Disease Models, Animal
- Signal Transduction
Collapse
Affiliation(s)
- Jean Lee
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, 60637, USA
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Leonid A Yurkovetskiy
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
- Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Derek Reiman
- Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
| | - Lara Frommer
- Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, 55101, Germany
| | - Zoe Strong
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Anthony Chang
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - George J Kahaly
- Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, 55101, Germany
| | - Aly A Khan
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA.
- Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA.
- Department of Family Medicine, The University of Chicago, Chicago, IL, 60637, USA.
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| | - Alexander V Chervonsky
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA.
- Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
3
|
Yau C, Danska JS. Cracking the type 1 diabetes code: Genes, microbes, immunity, and the early life environment. Immunol Rev 2024; 325:23-45. [PMID: 39166298 DOI: 10.1111/imr.13362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) results from a complex interplay of genetic predisposition, immunological dysregulation, and environmental triggers, that culminate in the destruction of insulin-secreting pancreatic β cells. This review provides a comprehensive examination of the multiple factors underpinning T1D pathogenesis, to elucidate key mechanisms and potential therapeutic targets. Beginning with an exploration of genetic risk factors, we dissect the roles of human leukocyte antigen (HLA) haplotypes and non-HLA gene variants associated with T1D susceptibility. Mechanistic insights gleaned from the NOD mouse model provide valuable parallels to the human disease, particularly immunological intricacies underlying β cell-directed autoimmunity. Immunological drivers of T1D pathogenesis are examined, highlighting the pivotal contributions of both effector and regulatory T cells and the multiple functions of B cells and autoantibodies in β-cell destruction. Furthermore, the impact of environmental risk factors, notably modulation of host immune development by the intestinal microbiome, is examined. Lastly, the review probes human longitudinal studies, unveiling the dynamic interplay between mucosal immunity, systemic antimicrobial antibody responses, and the trajectories of T1D development. Insights garnered from these interconnected factors pave the way for targeted interventions and the identification of biomarkers to enhance T1D management and prevention strategies.
Collapse
Affiliation(s)
- Christopher Yau
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jayne S Danska
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Brownlie RJ, Salmond RJ. Regulation of T Cell Signaling and Immune Responses by PTPN22. Mol Cell Biol 2024; 44:443-452. [PMID: 39039893 PMCID: PMC11486154 DOI: 10.1080/10985549.2024.2378810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/24/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) play central roles in the regulation of cell signaling, organismal development, cellular differentiation and proliferation, and cancer. In the immune system, PTPs regulate the activation, differentiation and effector function of lymphocytes and myeloid cells whilst single-nucleotide polymorphisms (SNPs) in PTP-encoding genes have been identified as risk factors for the development of autoimmunity. In this review we describe the roles for PTP nonreceptor type 22 (PTPN22) in the regulation of T lymphocyte signaling and activation in autoimmunity, infection and cancer. We summarize recent progress in our understanding of the regulation of PTPN22 activity, the impact of autoimmune disease-associated PTPN22 SNPs on T cell responses and describe approaches to harness PTPN22 as a target to improve T cell-based immunotherapies in cancer.
Collapse
|
5
|
Zhang ML, Li HB, Jin Y. Application and perspective of CRISPR/Cas9 genome editing technology in human diseases modeling and gene therapy. Front Genet 2024; 15:1364742. [PMID: 38666293 PMCID: PMC11043577 DOI: 10.3389/fgene.2024.1364742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) mediated Cas9 nuclease system has been extensively used for genome editing and gene modification in eukaryotic cells. CRISPR/Cas9 technology holds great potential for various applications, including the correction of genetic defects or mutations within the human genome. The application of CRISPR/Cas9 genome editing system in human disease research is anticipated to solve a multitude of intricate molecular biology challenges encountered in life science research. Here, we review the fundamental principles underlying CRISPR/Cas9 technology and its recent application in neurodegenerative diseases, cardiovascular diseases, autoimmune related diseases, and cancer, focusing on the disease modeling and gene therapy potential of CRISPR/Cas9 in these diseases. Finally, we provide an overview of the limitations and future prospects associated with employing CRISPR/Cas9 technology for diseases study and treatment.
Collapse
Affiliation(s)
- Man-Ling Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hong-Bin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yong Jin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
6
|
Orozco RC, Marquardt K, Pratumchai I, Shaikh AF, Mowen K, Domissy A, Teijaro JR, Sherman LA. Autoimmunity-associated allele of tyrosine phosphatase gene PTPN22 enhances anti-viral immunity. PLoS Pathog 2024; 20:e1012095. [PMID: 38512979 PMCID: PMC10987006 DOI: 10.1371/journal.ppat.1012095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 04/02/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
The 1858C>T allele of the tyrosine phosphatase PTPN22 is present in 5-10% of the North American population and is strongly associated with numerous autoimmune diseases. Although research has been done to define how this allele potentiates autoimmunity, the influence PTPN22 and its pro-autoimmune allele has in anti-viral immunity remains poorly defined. Here, we use single cell RNA-sequencing and functional studies to interrogate the impact of this pro-autoimmune allele on anti-viral immunity during Lymphocytic Choriomeningitis Virus clone 13 (LCMV-cl13) infection. Mice homozygous for this allele (PEP-619WW) clear the LCMV-cl13 virus whereas wildtype (PEP-WT) mice cannot. This is associated with enhanced anti-viral CD4 T cell responses and a more immunostimulatory CD8α- cDC phenotype. Adoptive transfer studies demonstrated that PEP-619WW enhanced anti-viral CD4 T cell function through virus-specific CD4 T cell intrinsic and extrinsic mechanisms. Taken together, our data show that the pro-autoimmune allele of Ptpn22 drives a beneficial anti-viral immune response thereby preventing what is normally a chronic virus infection.
Collapse
Affiliation(s)
- Robin C. Orozco
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kristi Marquardt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Isaraphorn Pratumchai
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Anam Fatima Shaikh
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kerri Mowen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Alain Domissy
- Genomics Core, Scripps Research, La Jolla, California, United States of America
| | - John R. Teijaro
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Linda A. Sherman
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| |
Collapse
|
7
|
Lotfi M, Butler AE, Sukhorukov VN, Sahebkar A. Application of CRISPR-Cas9 technology in diabetes research. Diabet Med 2024; 41:e15240. [PMID: 37833064 DOI: 10.1111/dme.15240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Diabetes is a chronic disorder with rapidly increasing prevalence that is a major global issue of our current era. There are two major types of diabetes. Polygenic forms of diabetes include type 1 diabetes (T1D) and type 2 diabetes (T2D) and its monogenic forms are maturity-onset diabetes of the young (MODY) and neonatal diabetes mellitus (NDM). There are no permanent therapeutic approaches for diabetes and current therapies rely on regular administration of various drugs or insulin injection. Recently, gene editing strategies have offered new promise for treating genetic disorders. Targeted genome editing is a fast-growing technology, recruiting programmable nucleases to specifically modify target genomic sequences. These targeted nucleases generate double-strand breaks at target regions in the genome, which induce cellular repair pathways including non-homologous end joining (NHEJ) and homology-directed repair (HDR). Clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a novel gene-editing system, permitting precise genome modification. CRISPR/Cas9 has great potential for various applications in diabetic research such as gene screening, generation of diabetic animal models and treatment. In this article, gene-editing strategies are summarized with a focus on the CRISPR/Cas9 approach in diabetes research.
Collapse
Affiliation(s)
- Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
El Nahas R, Al-Aghbar MA, Herrero L, van Panhuys N, Espino-Guarch M. Applications of Genome-Editing Technologies for Type 1 Diabetes. Int J Mol Sci 2023; 25:344. [PMID: 38203514 PMCID: PMC10778854 DOI: 10.3390/ijms25010344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells by the immune system. Although conventional therapeutic modalities, such as insulin injection, remain a mainstay, recent years have witnessed the emergence of novel treatment approaches encompassing immunomodulatory therapies, such as stem cell and β-cell transplantation, along with revolutionary gene-editing techniques. Notably, recent research endeavors have enabled the reshaping of the T-cell repertoire, leading to the prevention of T1D development. Furthermore, CRISPR-Cas9 technology has demonstrated remarkable potential in targeting endogenous gene activation, ushering in a promising avenue for the precise guidance of mesenchymal stem cells (MSCs) toward differentiation into insulin-producing cells. This innovative approach holds substantial promise for the treatment of T1D. In this review, we focus on studies that have developed T1D models and treatments using gene-editing systems.
Collapse
Affiliation(s)
- Rana El Nahas
- Laboratory of Immunoregulation, Translational Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (R.E.N.); (M.A.A.-A.)
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Mohammad Ameen Al-Aghbar
- Laboratory of Immunoregulation, Translational Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (R.E.N.); (M.A.A.-A.)
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Nicholas van Panhuys
- Laboratory of Immunoregulation, Translational Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (R.E.N.); (M.A.A.-A.)
| | - Meritxell Espino-Guarch
- Laboratory of Immunoregulation, Translational Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (R.E.N.); (M.A.A.-A.)
| |
Collapse
|
9
|
Newman JRB, Concannon P, Ge Y. UBASH3A Interacts with PTPN22 to Regulate IL2 Expression and Risk for Type 1 Diabetes. Int J Mol Sci 2023; 24:ijms24108671. [PMID: 37240014 DOI: 10.3390/ijms24108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
UBASH3A is a negative regulator of T cell activation and IL-2 production and plays key roles in autoimmunity. Although previous studies revealed the individual effects of UBASH3A on risk for type 1 diabetes (T1D; a common autoimmune disease), the relationship of UBASH3A with other T1D risk factors remains largely unknown. Given that another well-known T1D risk factor, PTPN22, also inhibits T cell activation and IL-2 production, we investigated the relationship between UBASH3A and PTPN22. We found that UBASH3A, via its Src homology 3 (SH3) domain, physically interacts with PTPN22 in T cells, and that this interaction is not altered by the T1D risk coding variant rs2476601 in PTPN22. Furthermore, our analysis of RNA-seq data from T1D cases showed that the amounts of UBASH3A and PTPN22 transcripts exert a cooperative effect on IL2 expression in human primary CD8+ T cells. Finally, our genetic association analyses revealed that two independent T1D risk variants, rs11203203 in UBASH3A and rs2476601 in PTPN22, interact statistically, jointly affecting risk for T1D. In summary, our study reveals novel interactions, both biochemical and statistical, between two independent T1D risk loci, and suggests how these interactions may affect T cell function and increase risk for T1D.
Collapse
Affiliation(s)
- Jeremy R B Newman
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Patrick Concannon
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yan Ge
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Stanford SM, Bottini N. Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov 2023; 22:273-294. [PMID: 36693907 PMCID: PMC9872771 DOI: 10.1038/s41573-022-00618-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
Protein phosphatases act as key regulators of multiple important cellular processes and are attractive therapeutic targets for various diseases. Although extensive effort has been dedicated to phosphatase-targeted drug discovery, early expeditions for competitive phosphatase inhibitors were plagued by druggability issues, leading to the stigmatization of phosphatases as difficult targets. Despite challenges, persistent efforts have led to the identification of several drug-like, non-competitive modulators of some of these enzymes - including SH2 domain-containing protein tyrosine phosphatase 2, protein tyrosine phosphatase 1B, vascular endothelial protein tyrosine phosphatase and protein phosphatase 1 - reigniting interest in therapeutic targeting of phosphatases. Here, we discuss recent progress in phosphatase drug discovery, with emphasis on the development of selective modulators that exhibit biological activity. The roles and regulation of protein phosphatases in immune cells and their potential as powerful targets for immuno-oncology and autoimmunity indications are assessed.
Collapse
Affiliation(s)
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
11
|
Anderson W, Barahmand-pour-Whitman F, Linsley PS, Cerosaletti K, Buckner JH, Rawlings DJ. PTPN22 R620W gene editing in T cells enhances low-avidity TCR responses. eLife 2023; 12:e81577. [PMID: 36961507 PMCID: PMC10065793 DOI: 10.7554/elife.81577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/21/2023] [Indexed: 03/25/2023] Open
Abstract
A genetic variant in the gene PTPN22 (R620W, rs2476601) is strongly associated with increased risk for multiple autoimmune diseases and linked to altered TCR regulation and T cell activation. Here, we utilize Crispr/Cas9 gene editing with donor DNA repair templates in human cord blood-derived, naive T cells to generate PTPN22 risk edited (620W), non-risk edited (620R), or knockout T cells from the same donor. PTPN22 risk edited cells exhibited increased activation marker expression following non-specific TCR engagement, findings that mimicked PTPN22 KO cells. Next, using lentiviral delivery of T1D patient-derived TCRs against the pancreatic autoantigen, islet-specific glucose-6 phosphatase catalytic subunit-related protein (IGRP), we demonstrate that loss of PTPN22 function led to enhanced signaling in T cells expressing a lower avidity self-reactive TCR, but not a high-avidity TCR. In this setting, loss of PTPN22 mediated enhanced proliferation and Th1 skewing. Importantly, expression of the risk variant in association with a lower avidity TCR also increased proliferation relative to PTPN22 non-risk T cells. Together, these findings suggest that, in primary human T cells, PTPN22 rs2476601 contributes to autoimmunity risk by permitting increased TCR signaling and activation in mildly self-reactive T cells, thereby potentially expanding the self-reactive T cell pool and skewing this population toward an inflammatory phenotype.
Collapse
Affiliation(s)
- Warren Anderson
- Center for Immunity and Immunotherapies, Seattle Children's Research InstituteSeattleUnited States
| | | | - Peter S Linsley
- Benaroya Research Institute at Virginia MasonSeattleUnited States
| | | | - Jane H Buckner
- Benaroya Research Institute at Virginia MasonSeattleUnited States
| | - David J Rawlings
- Department of Pediatrics and Immunology, University of WashingtonSeattleUnited States
| |
Collapse
|
12
|
Giallongo S, Lo Re O, Resnick I, Raffaele M, Vinciguerra M. Gene Editing and Human iPSCs in Cardiovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:275-298. [DOI: 10.1007/978-981-19-5642-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
13
|
Wefers B, Wurst W, Kühn R. Gene Editing in Mouse Zygotes Using the CRISPR/Cas9 System. Methods Mol Biol 2023; 2631:207-230. [PMID: 36995669 DOI: 10.1007/978-1-0716-2990-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Engineering of the mouse germline is a key technology in biomedical research for studying the function of genes in health and disease. Since the first knockout mouse was described in 1989, gene targeting was based on recombination of vector encoded sequences in mouse embryonic stem cell lines and their introduction into preimplantation embryos to obtain germline chimeric mice. This approach has been replaced in 2013 by the application of the RNA-guided CRISPR/Cas9 nuclease system, which is introduced into zygotes and directly creates targeted modifications in the mouse genome. Upon the introduction of Cas9 nuclease and guide RNAs into one-cell embryos, sequence-specific double-strand breaks are created that are highly recombinogenic and processed by DNA repair enzymes. Gene editing commonly refers to the diversity of DSB repair products that include imprecise deletions or precise sequence modifications copied from repair template molecules. Since gene editing can now be easily applied directly in mouse zygotes, it has rapidly become the standard procedure for generating genetically engineered mice. This article covers the design of guide RNAs, knockout and knockin alleles, options for donor delivery, preparation of reagents, microinjection or electroporation of zygotes, and the genotyping of pups derived from gene editing projects.
Collapse
Affiliation(s)
- Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany.
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
- Technische Universität München-Weihenstephan, Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
14
|
Tizaoui K, Shin JI, Jeong GH, Yang JW, Park S, Kim JH, Hwang SY, Park SJ, Koyanagi A, Smith L. Genetic Polymorphism of PTPN22 in Autoimmune Diseases: A Comprehensive Review. Medicina (B Aires) 2022; 58:medicina58081034. [PMID: 36013501 PMCID: PMC9415475 DOI: 10.3390/medicina58081034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
It is known that the etiology and clinical outcomes of autoimmune diseases are associated with a combination of genetic and environmental factors. In the case of the genetic factor, the SNPs of the PTPN22 gene have shown strong associations with several diseases. The recent exploding numbers of genetic studies have made it possible to find these associations rapidly, and a variety of autoimmune diseases were found to be associated with PTPN22 polymorphisms. Proteins encoded by PTPN22 play a key role in the adaptative and immune systems by regulating both T and B cells. Gene variants, particularly SNPs, have been shown to significantly disrupt several immune functions. In this review, we summarize the mechanism of how PTPN22 and its genetic variants are involved in the pathophysiology of autoimmune diseases. In addition, we sum up the findings of studies reporting the genetic association of PTPN22 with different types of diseases, including type 1 diabetes mellitus, systemic lupus erythematosus, juvenile idiopathic arthritis, and several other diseases. By understanding these findings comprehensively, we can explain the complex etiology of autoimmunity and help to determine the criteria of disease diagnosis and prognosis, as well as medication developments.
Collapse
Affiliation(s)
- Kalthoum Tizaoui
- Department of Basic Sciences, Division of Histology and Immunology, Faculty of Medicine Tunis, Tunis El Manar University, Tunis 2092, Tunisia;
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Gwang Hun Jeong
- College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Seoyeon Park
- Yonsei University College of Medicine, Seoul 06273, Korea; (S.P.); (S.Y.H.)
| | - Ji Hong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2019-3352; Fax: +82-2-3461-9473
| | - Soo Young Hwang
- Yonsei University College of Medicine, Seoul 06273, Korea; (S.P.); (S.Y.H.)
| | - Se Jin Park
- Department of Pediatrics, Eulji University School of Medicine, Daejeon 35233, Korea;
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain;
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Lee Smith
- Centre for Health Performance and Wellbeing, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| |
Collapse
|
15
|
Arena A, Belcastro E, Ceccacci F, Petrini S, Conti LA, Pagliarosi O, Giorda E, Sennato S, Schiaffini R, Wang P, Paulson JC, Mancini G, Fierabracci A. Improvement of Lipoplexes With a Sialic Acid Mimetic to Target the C1858T PTPN22 Variant for Immunotherapy in Endocrine Autoimmunity. Front Immunol 2022; 13:838331. [PMID: 35355982 PMCID: PMC8959661 DOI: 10.3389/fimmu.2022.838331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/15/2022] [Indexed: 01/10/2023] Open
Abstract
The C1858T variant of the protein tyrosine phosphatase N22 (PTPN22) gene is associated with pathophysiological phenotypes in several autoimmune conditions, namely, Type 1 diabetes and autoimmune thyroiditis. The R620W variant protein, encoded by C1858T, leads to a gain of function mutation with paradoxical reduced T cell activation. We previously exploited a novel personalized immunotherapeutic approach based on siRNA delivered by liposomes (lipoplexes, LiposiRNA) that selectively inhibit variant allele expression. In this manuscript, we functionalize lipoplexes carrying siRNA for variant C1858T with a high affinity ligand of Siglec-10 (Sig10L) coupled to lipids resulting in lipoplexes (LiposiRNA-Sig10L) that enhance delivery to Siglec-10 expressing immunocytes. LiposiRNA-Sig10L lipoplexes more efficiently downregulated variant C1858T PTPN22 mRNA in PBMC of heterozygous patients than LiposiRNA without Sig10L. Following TCR engagement, LiposiRNA-Sig10L more significantly restored IL-2 secretion, known to be paradoxically reduced than in wild type patients, than unfunctionalized LiposiRNA in PBMC of heterozygous T1D patients.
Collapse
Affiliation(s)
- Andrea Arena
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Eugenia Belcastro
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesca Ceccacci
- Centro Nazionale Ricerche Institute for Biological Systems (CNR -ISB), Secondary Office of Rome-Reaction Mechanisms c/o Department of Chemistry, Sapienza University, Rome, Italy
| | - Stefania Petrini
- Research Laboratories, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Libenzio Adrian Conti
- Research Laboratories, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Olivia Pagliarosi
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ezio Giorda
- Research Laboratories, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Simona Sennato
- CNR Institute for Complex Systems, Secondary Office of Rome c/o Department of Physics, Sapienza University Rome, Rome, Italy
| | - Riccardo Schiaffini
- Diabetes and Growth Pathology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Peng Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - James C. Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Giovanna Mancini
- Centro Nazionale Ricerche Institute for Biological Systems (CNR-ISB), Area della Ricerca di Roma 1, Monterotondo, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
16
|
Kühn R. Genome engineering in rodents - status quo and perspectives. Lab Anim 2021; 56:83-87. [PMID: 34674587 DOI: 10.1177/00236772211051842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The introduction of the CRISPR-Cas9 system in 2013 has revolutionized experimental genetics in mice and rats. This commentary gives an overview on the use of CRISPR either for gene editing in the germline or for editing and beyond editing in somatic cells. Future perspectives are opened by emerging CRISPR technologies that could enable genome engineering at larger scale.
Collapse
Affiliation(s)
- Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Germany
| |
Collapse
|
17
|
Orozco RC, Marquardt K, Mowen K, Sherman LA. Proautoimmune Allele of Tyrosine Phosphatase, PTPN22, Enhances Tumor Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 207:1662-1671. [PMID: 34417261 DOI: 10.4049/jimmunol.2100304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022]
Abstract
The 1858C>T allele of the tyrosine phosphatase PTPN22 (causing amino acid substitution R620W in encoded protein lymphoid tyrosine phosphatase) is present in 5-10% of the North American population and is strongly associated with numerous autoimmune diseases. Although much research has been done to define how this allele potentiates autoimmunity, the influence PTPN22 and its proautoimmune allele have in tumor immunity is poorly defined. To interrogate the role this allele may have in the antitumor immune response, we used CRISPR/Cas9 to generate mice in which the ortholog of lymphoid tyrosine phosphatase, PEST domain-enriched protein (PEP), is mutated at position 619 to produce the relevant proautoimmune mutation (R619W). Results of this study show that mice homozygous for this alteration (PEP-619WW) resist tumor growth as compared with wild-type mice. Consistent with these results, tumors from PEP-619WW mice have more CD45 infiltrates containing more activated CD8 T cells and CD4 T cells. In addition, there are more conventional dendritic cell type 1 (cDC1) cells and fewer myeloid-derived suppressor cells in tumors from PEP-619WW mice. Interestingly, the tumor-infiltrating PEP-619WW cDC1 cells have decreased PD-L1 expression compared with cDC1 cells from PEP-wild-type mice. Taken together, our data show that the proautoimmune allele of Ptpn22 drives a strong antitumor response in innate and adaptive immune cells resulting in superior control of tumors.
Collapse
Affiliation(s)
- Robin C Orozco
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Kristi Marquardt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Kerri Mowen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Linda A Sherman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
18
|
Torun FM, Bilgin HI, Kaplan OI. MSABrowser: dynamic and fast visualization of sequence alignments, variations and annotations. BIOINFORMATICS ADVANCES 2021; 1:vbab009. [PMID: 36700112 PMCID: PMC9710668 DOI: 10.1093/bioadv/vbab009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Indexed: 01/28/2023]
Abstract
Summary Sequence alignment is an excellent way to visualize the similarities and differences between DNA, RNA or protein sequences, yet it is currently difficult to jointly view sequence alignment data with genetic variations, modifications such as post-translational modifications and annotations (i.e. protein domains). Here, we present the MSABrowser tool that makes it easy to co-visualize genetic variations, modifications and annotations on the respective positions of amino acids or nucleotides in pairwise or multiple sequence alignments. MSABrowser is developed entirely in JavaScript and works on any modern web browser at any platform, including Linux, Mac OS X and Windows systems without any installation. MSABrowser is also freely available for the benefit of the scientific community. Availability and implementation MSABrowser is released as open-source and web-based software under MIT License. The visualizer, documentation, all source codes and examples are available at https://thekaplanlab.github.io/ and GitHub repository https://github.com/thekaplanlab/msabrowser. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Furkan M Torun
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| | - Halil I Bilgin
- Department of Computer Engineering, Abdullah Gul University, Kayseri 38080, Turkey
| | - Oktay I Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey,To whom correspondence should be addressed.
| |
Collapse
|
19
|
Perry DJ, Peters LD, Lakshmi PS, Zhang L, Han Z, Wasserfall CH, Mathews CE, Atkinson MA, Brusko TM. Overexpression of the PTPN22 Autoimmune Risk Variant LYP-620W Fails to Restrain Human CD4 + T Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:849-859. [PMID: 34301848 PMCID: PMC8323970 DOI: 10.4049/jimmunol.2000708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
A missense mutation (R620W) of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), which encodes lymphoid-tyrosine phosphatase (LYP), confers genetic risk for multiple autoimmune diseases including type 1 diabetes. LYP has been putatively demonstrated to attenuate proximal T and BCR signaling. However, limited data exist regarding PTPN22 expression within primary T cell subsets and the impact of the type 1 diabetes risk variant on human T cell activity. In this study, we demonstrate endogenous PTPN22 is differentially expressed and dynamically controlled following activation. From control subjects homozygous for the nonrisk allele, we observed 2.1- (p < 0.05) and 3.6-fold (p < 0.001) more PTPN22 transcripts in resting CD4+ memory and regulatory T cells (Tregs), respectively, over naive CD4+ T cells, with expression peaking 24 h postactivation. When LYP was overexpressed in conventional CD4+ T cells, TCR signaling and activation were blunted by LYP-620R (p < 0.001) but only modestly affected by the LYP-620W risk variant versus mock-transfected control, with similar results observed in Tregs. LYP overexpression only impacted proliferation following activation by APCs but not anti-CD3- and anti-CD28-coated microbeads, suggesting LYP modulation of pathways other than TCR. Notably, proliferation was significantly lower with LYP-620R than with LYP-620W overexpression in conventional CD4+ T cells but was similar in Treg. These data indicate that the LYP-620W variant is hypomorphic in the context of human CD4+ T cell activation and may have important implications for therapies seeking to restore immunological tolerance in autoimmune disorders.
Collapse
Affiliation(s)
- Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Leeana D Peters
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Priya Saikumar Lakshmi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Lin Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Zhao Han
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL
| |
Collapse
|
20
|
Eksi YE, Sanlioglu AD, Akkaya B, Ozturk BE, Sanlioglu S. Genome engineering and disease modeling via programmable nucleases for insulin gene therapy; promises of CRISPR/Cas9 technology. World J Stem Cells 2021; 13:485-502. [PMID: 34249224 PMCID: PMC8246254 DOI: 10.4252/wjsc.v13.i6.485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Targeted genome editing is a continually evolving technology employing programmable nucleases to specifically change, insert, or remove a genomic sequence of interest. These advanced molecular tools include meganucleases, zinc finger nucleases, transcription activator-like effector nucleases and RNA-guided engineered nucleases (RGENs), which create double-strand breaks at specific target sites in the genome, and repair DNA either by homologous recombination in the presence of donor DNA or via the error-prone non-homologous end-joining mechanism. A recently discovered group of RGENs known as CRISPR/Cas9 gene-editing systems allowed precise genome manipulation revealing a causal association between disease genotype and phenotype, without the need for the reengineering of the specific enzyme when targeting different sequences. CRISPR/Cas9 has been successfully employed as an ex vivo gene-editing tool in embryonic stem cells and patient-derived stem cells to understand pancreatic beta-cell development and function. RNA-guided nucleases also open the way for the generation of novel animal models for diabetes and allow testing the efficiency of various therapeutic approaches in diabetes, as summarized and exemplified in this manuscript.
Collapse
Affiliation(s)
- Yunus E Eksi
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Ahter D Sanlioglu
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Bahar Akkaya
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Bilge Esin Ozturk
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey.
| |
Collapse
|
21
|
Tizaoui K, Terrazzino S, Cargnin S, Lee KH, Gauckler P, Li H, Shin JI, Kronbichler A. The role of PTPN22 in the pathogenesis of autoimmune diseases: A comprehensive review. Semin Arthritis Rheum 2021; 51:513-522. [PMID: 33866147 DOI: 10.1016/j.semarthrit.2021.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/16/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
The incidence of autoimmune diseases is increasing worldwide, thus stimulating studies on their etiopathogenesis, derived from a complex interaction between genetic and environmental factors. Genetic association studies have shown the PTPN22 gene as a shared genetic risk factor with implications in multiple autoimmune disorders. By encoding a protein tyrosine phosphatase expressed by the majority of cells belonging to the innate and adaptive immune systems, the PTPN22 gene may have a fundamental role in the development of immune dysfunction. PTPN22 polymorphisms are associated with rheumatoid arthritis, type 1 diabetes, systemic lupus erythematosus, and many other autoimmune conditions. In this review, we discuss the progress in our understanding of how PTPN22 impacts autoimmunity in both humans and animal models. In addition, we highlight the pathogenic significance of the PTPN22 gene, with particular emphasis on its role in T and B cells, and its function in innate immune cells, such as monocytes, dendritic and natural killer cells. We focus particularly on the complexity of PTPN22 interplay with biological processes of the immune system. Findings highlight the importance of studying the function of disease-associated PTPN22 variants in different cell types and open new avenues of investigation with the potential to drive further insights into mechanisms of PTPN22. These new insights will reveal important clues to the molecular mechanisms of prevalent autoimmune diseases and propose new potential therapeutic targets.
Collapse
Affiliation(s)
- Kalthoum Tizaoui
- Department of Basic Sciences, Division of Histology and Immunology, Faculty of Medicine Tunis, Tunis El Manar University, Tunis 1068, Tunisia
| | - Salvatore Terrazzino
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Philipp Gauckler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Han Li
- University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
Clark M, Kroger CJ, Ke Q, Tisch RM. The Role of T Cell Receptor Signaling in the Development of Type 1 Diabetes. Front Immunol 2021; 11:615371. [PMID: 33603744 PMCID: PMC7884625 DOI: 10.3389/fimmu.2020.615371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
T cell receptor (TCR) signaling influences multiple aspects of CD4+ and CD8+ T cell immunobiology including thymic development, peripheral homeostasis, effector subset differentiation/function, and memory formation. Additional T cell signaling cues triggered by co-stimulatory molecules and cytokines also affect TCR signaling duration, as well as accessory pathways that further shape a T cell response. Type 1 diabetes (T1D) is a T cell-driven autoimmune disease targeting the insulin producing β cells in the pancreas. Evidence indicates that dysregulated TCR signaling events in T1D impact the efficacy of central and peripheral tolerance-inducing mechanisms. In this review, we will discuss how the strength and nature of TCR signaling events influence the development of self-reactive T cells and drive the progression of T1D through effects on T cell gene expression, lineage commitment, and maintenance of pathogenic anti-self T cell effector function.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
23
|
Shi X, Shao F, Li Z, Kang L, Liu J, Kissler S, Zhou Z, Jia L, Zheng P. Regulation of B cell homeostasis by Ptpn22 contributes to type 1 diabetes in NOD mice. Endocrine 2020; 67:535-543. [PMID: 31732921 DOI: 10.1007/s12020-019-02120-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE A coding variant in PTPN22 (C1858T) is one of the most important genetic risk factors in type 1 diabetes (T1D). The role of the PTPN22 risk allele in B cells is still incompletely understood and has not been investigated directly in T1D. This study aimed to explore the role of PTPN22 in the homeostasis of B cells and its influence in T1D. METHODS Wild-type (WT) and Ptpn22 inducible knockdown (KD) NOD mice were treated with 200 μg/ml doxycycline at the age of 10 weeks for 1-2 months. B cell compositions in the bone marrow, peritoneal cavity and spleen were examined. The pathogenicity of Ptpn22 KD B cells was explored by adoptive cell transfer. RESULTS Ptpn22 silencing increased the frequency of recirculating mature B cells in the bone marrow, decreased the frequency of B-1a cells in the peritoneal cavity and suppressed the formation of marginal zone B cells and plasma cells in the spleen. Changes in the composition of the peripheral B cell compartment caused by altered cell proliferation while rates of apoptosis were not affected. Significantly, co-transfer of Ptpn22 KD B cells with NY8.3 diabetogenic T cells diminished the frequency of diabetes in recipient NOD.scid mice compared with co-transfer of WT B cells. CONCLUSIONS Our study constitutes the first functional study of Ptpn22 in B cells in NOD mice. Our findings suggest that Ptpn22 variation contributes to T1D by modifying the B cell compartment and support a gain-of-function for the PTPN22 disease variant.
Collapse
Affiliation(s)
- Xiajie Shi
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Feng Shao
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Zhixia Li
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Lin Kang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Junbin Liu
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Stephan Kissler
- Section for Immunobiology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Zhiguang Zhou
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China.
| | - Lijing Jia
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Peilin Zheng
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China.
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China.
| |
Collapse
|
24
|
El-Kenawy A, Benarba B, Neves AF, de Araujo TG, Tan BL, Gouri A. Gene surgery: Potential applications for human diseases. EXCLI JOURNAL 2019; 18:908-930. [PMID: 31762718 PMCID: PMC6868916 DOI: 10.17179/excli2019-1833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
Abstract
Gene therapy became in last decade a new emerging therapeutic era showing promising results against different diseases such as cancer, cardiovascular diseases, diabetes, and neurological disorders. Recently, the genome editing technique for eukaryotic cells called CRISPR-Cas (Clustered Regulatory Interspaced Short Palindromic Repeats) has enriched the field of gene surgery with enhanced applications. In the present review, we summarized the different applications of gene surgery for treating human diseases such as cancer, diabetes, nervous, and cardiovascular diseases, besides the molecular mechanisms involved in these important effects. Several studies support the important therapeutic applications of gene surgery in a large number of health disorders and diseases including β-thalassemia, cancer, immunodeficiencies, diabetes, and neurological disorders. In diabetes, gene surgery was shown to be effective in type 1 diabetes by triggering different signaling pathways. Furthermore, gene surgery, especially that using CRISPR-Cas possessed important application on diagnosis, screening and treatment of several cancers such as lung, liver, pancreatic and colorectal cancer. Nevertheless, gene surgery still presents some limitations such as the design difficulties and costs regarding ZFNs (Zinc Finger Nucleases) and TALENs (Transcription Activator-Like Effector Nucleases) use, off-target effects, low transfection efficiency, in vivo delivery-safety and ethical issues.
Collapse
Affiliation(s)
- Ayman El-Kenawy
- Department of Pathology, College of Medicine, Taif University, Saudi Arabia
- Department of Molecular Biology, GEBRI, University of Sadat City, P.O. Box 79, Sadat City, Egypt
| | - Bachir Benarba
- Laboratory Research on Biological Systems and Geomatics, Faculty of Nature and Life Sciences, University of Mascara, Algeria
| | - Adriana Freitas Neves
- Institute of Biotechnology, Molecular Biology Laboratory, Universidade Federal de Goias, Catalao, Brazil
| | - Thaise Gonçalves de Araujo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, Brazil
| | - Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Faculty of Medicine, University of Annaba, Algeria
| |
Collapse
|
25
|
Farr GH, Imani K, Pouv D, Maves L. Functional testing of a human PBX3 variant in zebrafish reveals a potential modifier role in congenital heart defects. Dis Model Mech 2018; 11:dmm035972. [PMID: 30355621 PMCID: PMC6215422 DOI: 10.1242/dmm.035972] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Whole-genome and exome sequencing efforts are increasingly identifying candidate genetic variants associated with human disease. However, predicting and testing the pathogenicity of a genetic variant remains challenging. Genome editing allows for the rigorous functional testing of human genetic variants in animal models. Congenital heart defects (CHDs) are a prominent example of a human disorder with complex genetics. An inherited sequence variant in the human PBX3 gene (PBX3 p.A136V) has previously been shown to be enriched in a CHD patient cohort, indicating that the PBX3 p.A136V variant could be a modifier allele for CHDs. Pbx genes encode three-amino-acid loop extension (TALE)-class homeodomain-containing DNA-binding proteins with diverse roles in development and disease, and are required for heart development in mouse and zebrafish. Here, we used CRISPR-Cas9 genome editing to directly test whether this Pbx gene variant acts as a genetic modifier in zebrafish heart development. We used a single-stranded oligodeoxynucleotide to precisely introduce the human PBX3 p.A136V variant in the homologous zebrafish pbx4 gene (pbx4 p.A131V). We observed that zebrafish that are homozygous for pbx4 p.A131V are viable as adults. However, the pbx4 p.A131V variant enhances the embryonic cardiac morphogenesis phenotype caused by loss of the known cardiac specification factor, Hand2. Our study is the first example of using precision genome editing in zebrafish to demonstrate a function for a human disease-associated single nucleotide variant of unknown significance. Our work underscores the importance of testing the roles of inherited variants, not just de novo variants, as genetic modifiers of CHDs. Our study provides a novel approach toward advancing our understanding of the complex genetics of CHDs.
Collapse
Affiliation(s)
- Gist H Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kimia Imani
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- University of Washington, Seattle, WA 98195, USA
| | - Darren Pouv
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- University of Washington, Seattle, WA 98195, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Brownlie RJ, Zamoyska R, Salmond RJ. Regulation of autoimmune and anti-tumour T-cell responses by PTPN22. Immunology 2018; 154:377-382. [PMID: 29512901 PMCID: PMC6002233 DOI: 10.1111/imm.12919] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
A number of polymorphisms in immune-regulatory genes have been identified as risk factors for the development of autoimmune disease. PTPN22 (that encodes a tyrosine phosphatase) has been associated with the development of several autoimmune diseases, including type 1 diabetes, rheumatoid arthritis and systemic lupus erythematosus. PTPN22 regulates the activity and effector functions of multiple important immune cell types, including lymphocytes, granulocytes and myeloid cells. In this review, we describe the role of PTPN22 in regulating T-cell activation and effector responses. We discuss progress in our understanding of the impact of PTPN22 in autoimmune disease in humans and mouse models, as well as recent evidence suggesting that genetic manipulation of PTPN22 expression might enhance the efficacy of anti-tumour T-cell responses.
Collapse
Affiliation(s)
- Rebecca J. Brownlie
- Leeds Institute of Cancer and PathologySt James's University HospitalUniversity of LeedsLeedsUK
| | - Rose Zamoyska
- Ashworth LaboratoriesInstitute of Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
| | - Robert J. Salmond
- Leeds Institute of Cancer and PathologySt James's University HospitalUniversity of LeedsLeedsUK
| |
Collapse
|
27
|
Coley WD, Zhao Y, Benck CJ, Liu Y, Hotta-Iwamura C, Rahman MJ, Tarbell KV. Loss of Zbtb32 in NOD mice does not significantly alter T cell responses. F1000Res 2018; 7:318. [PMID: 29707204 PMCID: PMC5909056 DOI: 10.12688/f1000research.13864.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background: We previously identified the transcriptional regulator Zbtb32 as a factor that can promote T cell tolerance in the Non-Obese Diabetic (NOD) mouse, a model of Type 1 diabetes. Antigen targeted to DCIR2
+ dendritic cells (DCs)
in vivo inhibited both diabetes and effector T cell expansion in NOD mice. Furthermore, Zbtb32 was preferentially induced in autoreactive CD4 T cells stimulated by these tolerogenic DCIR2
+ DCs, and overexpression of Zbtb32 in islet-specific T cells inhibited the diabetes development by limiting T cell proliferation and cytokine production. Methods: To further understand the role of Zbtb32 in T cell tolerance induction, we have now used CRISPR to target the Zbtb32 gene for deletion directly in NOD mice and characterized the mutant mice. We hypothesized that the systemic loss of Zbtb32 in NOD mice would lead to increased T cell activation and increased diabetes pathogenesis. Results: Although NOD.Zbtb32
-/- male NOD mice showed a trend towards increased diabetes incidence compared to littermate controls, the difference was not significant. Furthermore, no significant alteration in lymphocyte number or function was observed. Importantly,
in vitro stimulation of lymphocytes from NOD.Zbtb32
-/- mice did not produce the expected hypersensitive phenotype observed in other genetic strains, potentially due to compensation by homologous genes. Conclusions: The loss of Zbtb32 in the NOD background does not result in the expected T cell activation phenotype.
Collapse
Affiliation(s)
- William D Coley
- Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda , MD, 20892, USA
| | - Yongge Zhao
- Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda , MD, 20892, USA
| | - Charles J Benck
- Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda , MD, 20892, USA
| | - Yi Liu
- Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda , MD, 20892, USA
| | - Chie Hotta-Iwamura
- Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda , MD, 20892, USA
| | - M Jubayer Rahman
- Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda , MD, 20892, USA
| | - Kristin V Tarbell
- Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda , MD, 20892, USA.,Department of Inflammation and Oncology, Amgen, Inc, South San Francisco, CA, USA
| |
Collapse
|
28
|
Chen YG, Mathews CE, Driver JP. The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Front Endocrinol (Lausanne) 2018; 9:51. [PMID: 29527189 PMCID: PMC5829040 DOI: 10.3389/fendo.2018.00051] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For more than 35 years, the NOD mouse has been the primary animal model for studying autoimmune diabetes. During this time, striking similarities to the human disease have been uncovered. In both species, unusual polymorphisms in a major histocompatibility complex (MHC) class II molecule confer the most disease risk, disease is caused by perturbations by the same genes or different genes in the same biological pathways and that diabetes onset is preceded by the presence of circulating autoreactive T cells and autoantibodies that recognize many of the same islet antigens. However, the relevance of the NOD model is frequently challenged due to past failures translating therapies from NOD mice to humans and because the appearance of insulitis in mice and some patients is different. Nevertheless, the NOD mouse remains a pillar of autoimmune diabetes research for its usefulness as a preclinical model and because it provides access to invasive procedures as well as tissues that are rarely procured from patients or controls. The current article is focused on approaches to improve the NOD mouse by addressing reasons why immune therapies have failed to translate from mice to humans. We also propose new strategies for mixing and editing the NOD genome to improve the model in ways that will better advance our understanding of human diabetes. As proof of concept, we report that diabetes is completely suppressed in a knock-in NOD strain with a serine to aspartic acid substitution at position 57 in the MHC class II Aβ. This supports that similar non-aspartic acid substitutions at residue 57 of variants of the human class II HLA-DQβ homolog confer diabetes risk.
Collapse
Affiliation(s)
- Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - John P. Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- *Correspondence: John P. Driver,
| |
Collapse
|
29
|
Birling MC, Herault Y, Pavlovic G. Modeling human disease in rodents by CRISPR/Cas9 genome editing. Mamm Genome 2017; 28:291-301. [PMID: 28677007 PMCID: PMC5569124 DOI: 10.1007/s00335-017-9703-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/21/2017] [Indexed: 02/08/2023]
Abstract
Modeling human disease has proven to be a challenge for the scientific community. For years, generating an animal model was complicated and restricted to very few species. With the rise of CRISPR/Cas9, it is now possible to generate more or less any animal model. In this review, we will show how this technology is and will change our way to obtain relevant disease animal models and how it should impact human health.
Collapse
Affiliation(s)
- Marie-Christine Birling
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.
| | - Yann Herault
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Guillaume Pavlovic
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
| |
Collapse
|
30
|
Galvani G, Fousteri G. PTPN22 and islet-specific autoimmunity: What have the mouse models taught us? World J Diabetes 2017; 8:330-336. [PMID: 28751955 PMCID: PMC5507829 DOI: 10.4239/wjd.v8.i7.330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/11/2017] [Accepted: 05/15/2017] [Indexed: 02/05/2023] Open
Abstract
An allelic variant of the protein tyrosin phosphatase non-receptor 22 (PTPN22) gene, PTPN22 R620W, constitutes the strongest non-HLA genetic risk factor for the development of type 1 diabetes (T1D). A number of studies using mouse models have addressed how PTPN22 predisposes to T1D. PTPN22 downmodulation, overexpression or expression of the variant gene in genetically manipulated mice has generated controversial results. These discrepancies probably derive from the fact that PTPN22 has differential effects on innate and adaptive immune responses. Moreover, the effects of PTPN22 are dependent on other genetic variables. Here we discuss these findings and try to explain the discrepancies. Exploring the mechanism by which PTPN22 contributes to islet-specific autoimmunity could help us understand its role in T1D pathogenesis and exploit it as a potential therapeutic target to prevent the disease.
Collapse
|
31
|
Sackett SD, Rodriguez A, Odorico JS. The Nexus of Stem Cell-Derived Beta-Cells and Genome Engineering. Rev Diabet Stud 2017. [PMID: 28632820 DOI: 10.1900/rds.2017.14.39] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetes, type 1 and type 2 (T1D and T2D), are diseases of epidemic proportions, which are complicated and defined by genetics, epigenetics, environment, and lifestyle choices. Current therapies consist of whole pancreas or islet transplantation. However, these approaches require life-time immunosuppression, and are compounded by the paucity of available donors. Pluripotent stem cells have advanced research in the fields of stem cell biology, drug development, disease modeling, and regenerative medicine, and importantly allows for the interrogation of therapeutic interventions. Recent developments in beta-cell differentiation and genomic modifications are now propelling investigations into the mechanisms behind beta-cell failure and autoimmunity, and offer new strategies for reducing the propensity for immunogenicity. This review discusses the derivation of endocrine lineage cells from human pluripotent stem cells for the treatment of diabetes, and how the editing or manipulation of their genomes can transcend many of the remaining challenges of stem cell technologies, leading to superior transplantation and diabetes drug discovery platforms.
Collapse
Affiliation(s)
- Sara D Sackett
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| | - Aida Rodriguez
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| | - Jon S Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| |
Collapse
|
32
|
Perri V, Pellegrino M, Ceccacci F, Scipioni A, Petrini S, Gianchecchi E, Lo Russo A, De Santis S, Mancini G, Fierabracci A. Use of short interfering RNA delivered by cationic liposomes to enable efficient down-regulation of PTPN22 gene in human T lymphocytes. PLoS One 2017; 12:e0175784. [PMID: 28437437 PMCID: PMC5402975 DOI: 10.1371/journal.pone.0175784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/01/2017] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes and thyroid disease are T cell-dependent autoimmune endocrinopathies. The standard substitutive administration of the deficient hormones does not halt the autoimmune process; therefore, development of immunotherapies aiming to preserve the residual hormonal cells, is of crucial importance. PTPN22 C1858T mutation encoding for the R620W lymphoid tyrosine phosphatase variant, plays a potential pathophysiological role in autoimmunity. The PTPN22 encoded protein Lyp is a negative regulator of T cell antigen receptor signaling; R620W variant, leading to a gain of function with paradoxical reduced T cell activation, may represent a valid therapeutic target. We aimed to develop novel wild type PTPN22 short interfering RNA duplexes (siRNA) and optimize their delivery into Jurkat T cells and PBMC by using liposomal carriers. Conformational stability, size and polydispersion of siRNA in lipoplexes was measured by CD spectroscopy and DLS. Lipoplexes internalization and toxicity evaluation was assessed by confocal microscopy and flow cytometry analysis. Their effect on Lyp expression was evaluated by means of Western Blot and confocal microscopy. Functional assays through engagement of TCR signaling were established to evaluate biological consequences of down-modulation. Both Jurkat T cells and PBMC were efficiently transfected by stable custom lipoplexes. Jurkat T cell morphology and proliferation was not affected. Lipoplexes incorporation was visualized in CD3+ but also in CD3- peripheral blood immunotypes without signs of toxicity, damage or apoptosis. Efficacy in affecting Lyp protein expression was demonstrated in both transfected Jurkat T cells and PBMC. Moreover, impairment of Lyp inhibitory activity was revealed by increase of IL-2 secretion in culture supernatants of PBMC following anti-CD3/CD28 T cell receptor-driven stimulation. The results of our study open the pathway to future trials for the treatment of autoimmune diseases based on the selective inhibition of variant PTPN22 allele using lipoplexes of siRNA antisense oligomers.
Collapse
Affiliation(s)
- Valentina Perri
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Area, Children’s Hospital Bambino Gesù, Rome, Italy
| | - Marsha Pellegrino
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Area, Children’s Hospital Bambino Gesù, Rome, Italy
| | - Francesca Ceccacci
- CNR Chemical Methodologies Institute-Section Mechanisms of reaction (CNR-IMC-SMR) c/o Sapienza University, Rome, Italy
| | - Anita Scipioni
- Department of Chemistry, Sapienza University, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Children’s Hospital Bambino Gesù, Rome, Italy
| | - Elena Gianchecchi
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Area, Children’s Hospital Bambino Gesù, Rome, Italy
| | - Anna Lo Russo
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Area, Children’s Hospital Bambino Gesù, Rome, Italy
| | | | | | - Alessandra Fierabracci
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Area, Children’s Hospital Bambino Gesù, Rome, Italy
| |
Collapse
|
33
|
Li M, Beauchemin H, Popovic N, Peterson A, d'Hennezel E, Piccirillo CA, Sun C, Polychronakos C. The common, autoimmunity-predisposing 620Arg > Trp variant of PTPN22 modulates macrophage function and morphology. J Autoimmun 2017; 79:74-83. [PMID: 28237724 DOI: 10.1016/j.jaut.2017.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 01/02/2023]
Abstract
The C1858T single nucleotide polymorphism (SNP) in PTPN22 (protein tyrosine phosphatase nonreceptor 22) leads to the 620 Arg to Trp polymorphism in its encoded human protein LYP. This allelic variant is associated with multiple autoimmune diseases, including type 1 diabetes (T1D), Crohn's disease, rheumatoid arthritis and systemic lupus erythematosus. However, the underlying mechanisms are poorly understood. To study how this polymorphism influences the immune system, we generated a mouse strain with a knock-in of the Trp allele, imitating the human disease-associated variant. We did not find significant difference between the polymorphic and the wild type mice on the proportion of total CD4 T cell, CD8 T cell, NK cell, memory T lymphocyte, macrophage, dendritic cells in both peripheral lymph nodes and spleen. However, macrophages from Trp/Trp mice showed altered morphology and enhanced function, including higher expression of MHCII and B7 molecules and increased phagocytic ability, which further leads to a higher T-cell activation by specific antigen. Our model shows no alteration in immune cell profile by the Trp allele, but brings up macrophages as an important player to consider in explaining the PTPN22 Trp allele effect on autoimmune disease risk.
Collapse
Affiliation(s)
- Meihang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Institute of McGill University Health Centre, Child Health and Human Development Program, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Hugues Beauchemin
- Research Institute of McGill University Health Centre, Child Health and Human Development Program, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Natalija Popovic
- Research Institute of McGill University Health Centre, Child Health and Human Development Program, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Alan Peterson
- Department of Oncology, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Eva d'Hennezel
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; Translational Immunology Unit, Program in Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; Translational Immunology Unit, Program in Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Constantin Polychronakos
- Research Institute of McGill University Health Centre, Child Health and Human Development Program, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|