1
|
Mu-u-min RBA, Diane A, Allouch A, Al-Siddiqi HH. Immune Evasion in Stem Cell-Based Diabetes Therapy-Current Strategies and Their Application in Clinical Trials. Biomedicines 2025; 13:383. [PMID: 40002796 PMCID: PMC11853723 DOI: 10.3390/biomedicines13020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Human pancreatic islet transplantation shows promise for long-term glycemic control in diabetes patients. A shortage of healthy donors and the need for continuous immunosuppressive therapy complicates this. Enhancing our understanding of the immune tolerance mechanisms related to graft rejection is crucial to generate safer transplantation strategies. This review will examine advancements in immune protection strategies for stem cell-derived islet therapy and discuss key clinical trials involving stem cell-derived β-cells and their protective strategies against the host immune system. Methods: A comprehensive literature search was performed on peer-reviewed publications on Google Scholar, Pubmed, and Scopus up to September 2024 to extract relevant studies on the various strategies of immune evasion of stem cell-derived β-cells in humans. The literature search was extended to assimilate all relevant clinical studies wherein stem cell-derived β-cells are transplanted to treat diabetes. Results: Our analysis highlighted the importance of human pluripotent stem cells (hPSCs) as a potentially unlimited source of insulin-producing β-cells. These cells can be transplanted as an effective source of insulin in diabetes patients if they can be protected against the host immune system. Various strategies of immune protection, such as encapsulation and genetic manipulation, are currently being studied and clinically tested. Conclusions: Investigating immune tolerance in hPSC-derived islets may help achieve a cure for diabetes without relying on exogenous insulin. Although reports of clinical trials show promise in reducing insulin dependency in patients, their safety and efficacy needs to be further studied to promote their use as a long-term solution to cure diabetes.
Collapse
Affiliation(s)
- Razik Bin Abdul Mu-u-min
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (A.D.); (H.H.A.-S.)
| | - Abdoulaye Diane
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (A.D.); (H.H.A.-S.)
| | - Asma Allouch
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar;
| | - Heba Hussain Al-Siddiqi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (A.D.); (H.H.A.-S.)
| |
Collapse
|
2
|
Madkor HR, Abd El-Aziz MK, Abd El-Maksoud MS, Ibrahim IM, Ali FEM. Stem Cells Reprogramming in Diabetes Mellitus and Diabetic Complications: Recent Advances. Curr Diabetes Rev 2025; 21:21-37. [PMID: 38173073 DOI: 10.2174/0115733998275428231210055650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The incidence of diabetes mellitus (DM) is dramatically increasing worldwide, and it is expected to affect 700 million cases by 2045. Diabetes influences health care economics, human quality of life, morbidity, and mortality, which were primarily seen extensively in developing countries. Uncontrolled DM, which results in consistent hyperglycemia, may lead to severe life-threatening complications such as nephropathy, retinopathy, neuropathy, and cardiovascular complications. METHODOLOGY In addition to traditional therapies with insulin and oral anti-diabetics, researchers have developed new approaches for treatment, including stem cell (SC) therapy, which exhibits promising outcomes. Besides its significant role in treating type one DM (T1DM) and type two DM (T2DM), it can also attenuate diabetic complications. Furthermore, the development of insulin- producing cells can be achieved by using the different types of SCs, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and multiple types of adult stem cells, such as pancreatic, hepatic, and mesenchymal stem cells (MSC). All these types have been extensively studied and proved their ability to develop insulin-producing cells, but every type has limitations. CONCLUSION This review aims to enlighten researchers about recent advances in stem cell research and their potential benefits in DM and diabetic complications.
Collapse
Affiliation(s)
- Hafez R Madkor
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | | | | | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
3
|
Gomaa S, Nassef M, Hafez A. Potentials of bone marrow cells-derived from naïve or diabetic mice in autoimmune type 1 diabetes: immunomodulatory, anti-inflammatory, anti hyperglycemic, and antioxidative. Endocrine 2024; 86:959-979. [PMID: 39014283 PMCID: PMC11554735 DOI: 10.1007/s12020-024-03929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The scarcity of transplanted human islet tissue and the requirement for immunosuppressive drugs to prevent the rejection of allogeneic grafts have hindered the treatment of autoimmune type 1 diabetes mellitus (T1DM) through islet transplantation. However, there is hope in adoptively transferred bone marrow cells (BMCs) therapy, which has emerged as a propitious pathway for forthcoming medications. BMCs have the potential to significantly impact both replacement and regenerative therapies for a range of disorders, including diabetes mellitus, and have demonstrated anti-diabetic effects. AIM The main goal of this study is to evaluate the effectiveness of adoptively transferred bone marrow cells derived from either naïve mice (nBMCs) or diabetic mice (dBMCs) in treating a T1DM mice model. METHODS Male Swiss albino mice were starved for 16 h and then injected with streptozotocin (STZ) at a dose of 40 mg/kg body weight for 5 consecutive days to induce T1DM. After 14 days, the diabetic mice were distributed into four groups. The first group served as a diabetic control treated with sodium citrate buffer, while the other three groups were treated for two weeks, respectively, with insulin (subcutaneously at a dose of 8 U/kg/day), nBMCs (intravenously at a dose of 1 × 106 cells/mouse/once), and dBMCs (intravenously at a dose of 1 × 106 cells/mouse/once). RESULTS It is worth noting that administering adoptively transferred nBMCs or adoptively transferred dBMCs to STZ-induced T1DM mice resulted in a significant amelioration in glycemic condition, accompanied by a considerable reduction in the level of blood glucose and glycosylated hemoglobin % (HbA1C %), ultimately restoring serum insulin levels to their initial state in control mice. Administering nBMCs or dBMCs to STZ-induced T1DM mice led to a remarkable decrease in levels of inflammatory cytokine markers in the serum, including interferon-γ (INF-γ), tumor necrosis factor- α (TNF-α), tumor growth factor-β (TGF-β), interleukin-1 β (L-1β), interlekin-4 (IL-4), interleukin-6 (IL-6), and interleukin-10 (IL-10). Additionally, STZ-induced T1DM mice, when treated with nBMCs or dBMCs, experienced a notable rise in total immunoglobulin (Ig) level. Furthermore, there was a significant reduction in the levels of islet cell autoantibodies (ICA) and insulin autoantibodies (IAA). Furthermore, the serum of STZ-induced T1DM mice showed a significant increase in Zinc transporter 8 antigen protein (ZnT8), islet antigen 2 protein (IA-2), and glutamic acid decarboxylase antigen protein (GAD) levels. Interestingly, the administration of nBMCs or dBMCs resulted in a heightened expression of IA-2 protein in STZ-induced T1DM mice treated with nBMCs or dBMCs. Furthermore, the level of malondialdehyde (MDA) was increased, while the levels of catalase (CAT) and superoxide dismutase (SOD) were decreased in non-treated STZ-induced T1DM mice. However, when nBMCs or dBMCs were administered to STZ-induced T1DM mice, it had a significant impact on reducing oxidative stress. This was accomplished by reducing the levels of MDA in the serum and enhancing the activities of enzymatic antioxidants like CAT and SOD. STZ-induced T1DM mice displayed a significant elevation in the levels of liver enzymes ALT and AST, as well as heightened levels of creatinine and urea. Considering the crucial roles of the liver and kidney in metabolism and excretion, this research further examined the effects of administering nBMCs or dBMCs to STZ-induced T1DM mice. Notably, the administration of these cells alleviated the observed effects. CONCLUSION The present study suggests that utilizing adoptively transferred nBMCs or adoptively transferred dBMCs in the treatment of T1DM led to noteworthy decreases in blood glucose levels, possibly attributed to their capacity to enhance insulin secretion and improve the performance of pancreatic islets. Additionally, BMCs may exert their beneficial effects on the pancreatic islets of diabetic mice through their immunomodulatory, antioxidant, anti-inflammatory, and anti-oxidative stress properties.
Collapse
Affiliation(s)
- Soha Gomaa
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Mohamed Nassef
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Amira Hafez
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Chen J, Hou X, Yang Y, Wang C, Zhou J, Miao J, Gong F, Ge F, Chen W. Immune checkpoint inhibitors-induced diabetes mellitus (review). Endocrine 2024; 86:451-458. [PMID: 38955861 DOI: 10.1007/s12020-024-03942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have become extensively utilized in the early-stage treatment of various cancers, offering additional therapeutic possibilities for patients with advanced cancer. However, certain patient populations are susceptible to experiencing toxic adverse effects from ICIs, such as thyrotoxicosis, rashes, among others. Specifically, ICIDM, induced by immune checkpoint inhibitors, exhibits characteristics similar to insulin-dependent diabetes mellitus (Type 1 Diabetes Mellitus, T1DM). ICIDM is characterized by a rapid onset and may coincide with severe ketoacidosis. Despite a favorable response to insulin therapy, patients typically require lifelong insulin dependence. After discussing the autoimmune adverse effects and the specifics of ICIs-induced diabetes mellitus (ICIDM), it is important to note that certain patient populations are particularly susceptible to experiencing toxic adverse effects from ICIs. Specifically, ICIDM, which is triggered by immune checkpoint inhibitors, mirrors the characteristics of insulin-dependent diabetes mellitus (Type 1 Diabetes Mellitus, T1DM). This article conducts an in-depth analysis of the literature to explore the pathogenesis, disease progression, and treatment strategies applicable to diabetes induced by immune checkpoint inhibitors (ICIDM).
Collapse
Affiliation(s)
- Jiayi Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Xiaochen Hou
- Academy of Biomedical Engineering, Kunming Medical University, Yunnan, 650500, China
| | - Yang Yang
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Chenxi Wang
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Jie Zhou
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Jingge Miao
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Fuhong Gong
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Fei Ge
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China.
| | - Wenlin Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China.
| |
Collapse
|
5
|
Zorina A, Zorin V, Isaev A, Kudlay D, Manturova N, Ustugov A, Kopnin P. Current Status of Biomedical Products for Gene and Cell Therapy of Recessive Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2024; 25:10270. [PMID: 39408598 PMCID: PMC11476579 DOI: 10.3390/ijms251910270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/20/2024] Open
Abstract
This detailed review describes innovative strategies and current products for gene and cell therapy at different stages of research and development to treat recessive dystrophic epidermolysis bullosa (RDEB) which is associated with the functional deficiency of collagen type VII alpha 1 (C7) caused by defects in the COL7A1 gene. The use of allogenic mesenchymal stem/stromal cells, which can be injected intradermally and intravenously, appears to be the most promising approach in the field of RDEB cell therapy. Injections of genetically modified autologous dermal fibroblasts are also worth mentioning under this framework. The most common methods of RDEB gene therapy are gene replacement using viral vectors and gene editing using programmable nucleases. Ex vivo epidermal transplants (ETs) based on autologous keratinocytes (Ks) have been developed using gene therapy methods; one such ET successively passed phase III clinical trials. Products based on the use of two-layer transplants have also been developed with both types of skin cells producing C7. Gene products have also been developed for local use. To date, significant progress has been achieved in the development of efficient biomedical products to treat RDEB, one of the most severe hereditary diseases.
Collapse
Affiliation(s)
- Alla Zorina
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
- Skincell LLC, Moscow 119333, Russia
| | - Vadim Zorin
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
- Skincell LLC, Moscow 119333, Russia
| | - Artur Isaev
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
| | - Dmitry Kudlay
- Department of Pharmacology, The I. M. Sechenov First Moscow State Medical University (The Sechenov University), Moscow 119991, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Natalia Manturova
- Department of Plastic and Reconstructive surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- JSC Plastic Surgery and Cosmetology Institute, Moscow 125047, Russia
| | - Andrei Ustugov
- Department of Plastic and Reconstructive surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- JSC Plastic Surgery and Cosmetology Institute, Moscow 125047, Russia
| | - Pavel Kopnin
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow 115522, Russia
| |
Collapse
|
6
|
Okten SB, Ozcan P, Tok OE, Devranoglu B, Cetin C, Tanoglu FB, Ficicioglu C. The Protective Effect of Adipose-Derived Stromal Vascular Fraction on Ovarian Function in Rats with Cyclophosphamide-Induced Ovarian Damage. Gynecol Obstet Invest 2024; 90:120-128. [PMID: 39265557 DOI: 10.1159/000541049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/15/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE The aim of this study was to investigate if adipose-derived stromal vascular fraction (SVF) treatment has any protective effect on ovarian function in rats with cyclophosphamide (CP) induced ovarian damage. DESIGN This was an experimental animal study. PARTICIPANTS/MATERIALS, SETTING, METHODS 25 mature cycling Wistar-Albino rats were randomized into four groups (n = 5 per group). Rats in groups 1 and 2 received single dose of intraperitoneal (i.p.) 1 mL/kg sodium chloride 0.9% (NaCl). Groups 3 and 4 received single dose of 75 mg/kg i.p. CP. On seventh day, SVF was prepared from adipose tissues of 5 additional rats and groups 1 and 3 received 0.9% NaCl i.p. injections while groups 2 and 4 received 0.2 mL i.p. injections of SVF. On day 21 all rats were euthanized, and serum anti-mullerian hormone (AMH) levels, primordial, primary, secondary, antral, and atretic follicle counts, AMH positive staining follicle counts along with AMH staining intensity of the follicles were evaluated. RESULTS Among two CP induced ovarian damaged groups, SVF treated group showed significantly higher secondary and antral follicle and lower atretic follicle counts, significantly higher mean serum AMH levels, AMH positive antral follicle count and higher intensity of AMH positive follicle scores for primary, secondary, and antral follicles when compared to untreated group. Moreover, group 1 showed no significant difference for all parameters except antral follicle count and AMH positive staining intensity scores for antral follicles when compared to group 4. LIMITATIONS This study was conducted on experimental rat model. CONCLUSION Our study demonstrated a significant protective effect of SVF against CP-induced ovarian damage which reveals the apparent need for further investigation of its precise mechanisms of action as it may provide a new treatment approach for women with premature ovarian failure.
Collapse
Affiliation(s)
- Sabri Berkem Okten
- Acibadem Health Group, Acibadem Kozyatagi Hospital, Department of Obstetrics, Gynecology and Reproductive Medicine, İstanbul, Turkey
| | - Pinar Ozcan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Bezmialem University, İstanbul, Turkey
| | - Olgu Enis Tok
- Istanbul Medipol University- School of Medicine and Research Institude for Health Sciences and Technologies, Histology and Embryology, Istanbul, Turkey
| | - Belgin Devranoglu
- Zeynep Kamil Maternity and Children's Training and Research Hospital, Department of Obstetrics and Gynecology, İstanbul, Turkey
| | - Caglar Cetin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Bezmialem University, İstanbul, Turkey
| | - Fatma Basak Tanoglu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Bezmialem University, İstanbul, Turkey
| | - Cem Ficicioglu
- Acibadem Health Group, Acibadem Kozyatagi Hospital, Department of Obstetrics, Gynecology and Reproductive Medicine, İstanbul, Turkey
| |
Collapse
|
7
|
Niknam B, Ayenehdeh JM, Hossein-Khannazer N, Vosough M, Tajik N. Adipose Tissue-Derived Mesenchymal Stromal Cells Modulate Inflammatory Response and Improve Allograft Islet Transplant in Mice Model of Type 1 Diabetes. Endocr Res 2024; 49:223-231. [PMID: 38982737 DOI: 10.1080/07435800.2024.2377286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Type 1 diabetes mellitus (T1DM) is an autoimmune disease where immune cells attack insulin-producing beta cells. Islet transplantation is a promising treatment for T1DM. This study aims to evaluate the effects of adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with pancreatic islet transplantation using hydrogel. METHODS T1DM mouse model was established using streptozotocin (STZ). Islets and AT-MSCs were co-embedded in a hydrogel and transplanted into diabetic mice. Five groups with six animals in each (control, hydrogel alone, AT-MSCs embedded hydrogel, islet embedded in hydrogel, and islet + AT-MSCs co-imbedded into a hydrogel) were evaluated in terms of blood glucose, insulin levels and serum and lavage cytokine production. RESULTS During 32 days, blood glucose levels decreased from over 400 mg/dl to less than 150 mg/dl in the transplanted mice. Analysis showed increased transformation growth factor beta (TGF-β1) and IL-4 levels, while IL-17 and IFN-γ levels significantly decreased in the MSC-treated groups. CONCLUSION These findings suggest that using AT-MSCs with hydrogel could be a beneficial alternative for enhancing pancreatic islet engraftment and function.
Collapse
Affiliation(s)
- Bahare Niknam
- Immunology Research Center (IRC), Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Mohammadi Ayenehdeh
- Immunology Research Center (IRC), Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nader Tajik
- Immunology Research Center (IRC), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Salama RAA, Patni MAMF, Ba-Hutair SNM, Wadid NA, Akikwala MS. Exploring Novel Treatment Modalities for Type 1 Diabetes Mellitus: Potential and Prospects. Healthcare (Basel) 2024; 12:1485. [PMID: 39120188 PMCID: PMC11311856 DOI: 10.3390/healthcare12151485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Despite the effectiveness of insulin injections in managing hyperglycemia in type 1 diabetes mellitus (T1DM), they fall short in addressing autoimmunity and regenerating damaged islets. This review aims to explore the potential and prospects of emerging treatment modalities for T1DM, including mesenchymal stem cells (MSCs), MSC-derived exosomes, gene therapy, islet allotransplantation, pancreatic islet cell transplantation, and teplizumab. We review emerging treatment modalities for T1DM, highlighting several promising strategies with varied mechanisms and outcomes. Mesenchymal stem cells demonstrate potential in modulating the immune response and preserving or restoring beta-cell function, although variability in sources and administration routes necessitates further standardization. Similarly, MSC-derived exosomes show promise in promoting beta-cell regeneration and immune regulation, supported by early-stage studies showing improved glucose homeostasis in animal models, albeit with limited clinical data. Gene therapy, utilizing techniques like CRISPR-Cas9, offers targeted correction of genetic defects and immune modulation; however, challenges in precise delivery and ensuring long-term safety persist. Islet allotransplantation and pancreatic islet cell transplantation have achieved some success in restoring insulin independence, yet challenges such as donor scarcity and immunosuppression-related complications remain significant. Teplizumab, an anti-CD3 monoclonal antibody, has demonstrated potential in delaying T1DM onset by modulating immune responses and preserving beta-cell function, with clinical trials indicating prolonged insulin production capability. Despite significant progress, standardization, long-term efficacy, and safety continue to pose challenges across these modalities. Conclusion: While these therapies demonstrate significant potential, challenges persist. Future research should prioritize optimizing these treatments and validating them through extensive clinical trials to enhance T1DM management and improve patient outcomes.
Collapse
Affiliation(s)
- Rasha Aziz Attia Salama
- Department of Community Medicine, College of Medicine, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates; (R.A.A.S.); (N.A.W.)
- Kasr El Aini Faculty of Medicine, Cairo University, Giza 12525, Egypt
| | - Mohamed Anas Mohamed Faruk Patni
- Department of Community Medicine, College of Medicine, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates; (R.A.A.S.); (N.A.W.)
| | - Shadha Nasser Mohammed Ba-Hutair
- Department of Obstetrics and Gynecology, College of Medicine, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Nihal Amir Wadid
- Department of Community Medicine, College of Medicine, Ras Al Khaimah Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates; (R.A.A.S.); (N.A.W.)
| | | |
Collapse
|
9
|
He R, Chen Y. The Role of Adipose Tissue-derived Exosomes in Chronic Metabolic Disorders. Curr Med Sci 2024; 44:463-474. [PMID: 38900388 DOI: 10.1007/s11596-024-2902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Excessive fat deposition in obese subjects promotes the occurrence of metabolic diseases, such as type 2 diabetes mellitus (T2DM), cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Adipose tissue is not only the main form of energy storage but also an endocrine organ that not only secretes adipocytokines but also releases many extracellular vesicles (EVs) that play a role in the regulation of whole-body metabolism. Exosomes are a subtype of EVs, and accumulating evidence indicates that adipose tissue exosomes (AT Exos) mediate crosstalk between adipose tissue and multiple organs by being transferred to targeted cells or tissues through paracrine or endocrine mechanisms. However, the roles of AT Exos in crosstalk with metabolic organs remain to be fully elucidated. In this review, we summarize the latest research progress on the role of AT Exos in the regulation of metabolic disorders. Moreover, we discuss the potential role of AT Exos as biomarkers in metabolic diseases and their clinical application.
Collapse
Affiliation(s)
- Rui He
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Laboratory of Endocrinology & Metabolism, Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory of Endocrinology & Metabolism, Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, 430030, China.
| |
Collapse
|
10
|
Ghaffari-Nasab A, Ghiasi F, Keyhanmanesh R, Roshangar L, Salmani Korjan E, Nazarpoor N, Mirzaei Bavil F. Bone marrow-derived c-kit positive stem cell administration protects against diabetes-induced nephropathy in a rat model by reversing PI3K/AKT/GSK-3β pathway and inhibiting cell apoptosis. Mol Cell Biochem 2024; 479:603-615. [PMID: 37129768 DOI: 10.1007/s11010-023-04750-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Stem cell-based therapy has been proposed as a novel therapeutic strategy for diabetic nephropathy. This study was designed to evaluate the effect of systemic administration of rat bone marrow-derived c-kit positive (c-kit+) cells on diabetic nephropathy in male rats, focusing on PI3K/AKT/GSK-3β pathway and apoptosis as a possible therapeutic mechanism. Twenty-eight animals were randomly classified into four groups: Control group (C), diabetic group (D), diabetic group, intravenously received 50 μl phosphate-buffered saline (PBS) containing 3 × 105 c-kit- cells (D + ckit-); and diabetic group, intravenously received 50 μl PBS containing 3 × 105 c-Kit positive cells (D + ckit+). Control and diabetic groups intravenously received 50 μl PBS. C-kit+ cell therapy could reduce renal fibrosis, which was associated with attenuation of inflammation as indicated by decreased TNF-α and IL-6 levels in the kidney tissue. In addition, c-kit+ cells restored the expression levels of PI3K, pAKT, and GSK-3β proteins. Furthermore, renal apoptosis was decreased following c-kit+ cell therapy, evidenced by the lower apoptotic index in parallel with the increased Bcl-2 and decreased Bax and Caspase-3 levels. Our results showed that in contrast to c-kit- cells, the administration of c-kit+ cells ameliorate diabetic nephropathy and suggested that c-kit+ cells could be an alternative cell source for attenuating diabetic nephropathy.
Collapse
Affiliation(s)
- Arshad Ghaffari-Nasab
- Faculty of Medicine, Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Ghiasi
- Faculty of Medicine, Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
| | - Rana Keyhanmanesh
- Faculty of Medicine, Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
| | - Leila Roshangar
- Faculty of Medicine, Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
| | - Elnaz Salmani Korjan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Nazarpoor
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Mirzaei Bavil
- Faculty of Medicine, Stem Cell Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Ghoneim MA, Gabr MM, El-Halawani SM, Refaie AF. Current status of stem cell therapy for type 1 diabetes: a critique and a prospective consideration. Stem Cell Res Ther 2024; 15:23. [PMID: 38281991 PMCID: PMC10823744 DOI: 10.1186/s13287-024-03636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Over the past decade, there had been progress in the development of cell therapy for insulin-dependent diabetes. Nevertheless, important hurdles that need to be overcome still remain. Protocols for the differentiation of pluripotent stem cells into pancreatic progenitors or fully differentiated β-cells have been developed. The resulting insulin-producing cells can control chemically induced diabetes in rodents and were the subject of several clinical trials. However, these cells are immunogenic and possibly teratogenic for their transplantation, and an immunoisolation device and/or immunosuppression is needed. A growing number of studies have utilized genetic manipulations to produce immune evasive cells. Evidence must be provided that in addition to the expected benefit, gene manipulations should not lead to any unforeseen complications. Mesenchymal stem/stromal cells (MSCs) can provide a viable alternative. MSCs are widely available from many tissues. They can form insulin-producing cells by directed differentiation. Experimentally, evidence has shown that the transplantation of allogenic insulin-producing cells derived from MSCs is associated with a muted allogeneic response that does not interfere with their functionality. This can be explained by the immunomodulatory functions of the MSC subpopulation that did not differentiate into insulin-producing cells. Recently, exosomes derived from naive MSCs have been used in the experimental domain to treat diabetes in rodents with varying degrees of success. Several mechanisms for their beneficial functions were proposed including a reduction in insulin resistance, the promotion of autophagy, and an increase in the T regulatory population. However, euglycemia was not achieved in any of these experiments. We suggest that exosomes derived from β-cells or insulin-producing cells (educated) can provide a better therapeutic effect than those derived from undifferentiated cells.
Collapse
|
12
|
Mei L, Yuwei Y, Weiping L, Zhiran X, Bingzheng F, Jibing C, Hongjun G. Strategy for Clinical Setting of Co-transplantation of Mesenchymal Stem Cells and Pancreatic Islets. Cell Transplant 2024; 33:9636897241259433. [PMID: 38877672 PMCID: PMC11179456 DOI: 10.1177/09636897241259433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/16/2024] Open
Abstract
Islet transplantation may be the most efficient therapeutic technique for patients with type 1 diabetes mellitus (T1DM). However, the clinical application of this method is faced with numerous limitations, including isolated islet apoptosis, recipient rejection, and graft vascular reconstruction. Mesenchymal stem cells (MSCs) possess anti-apoptotic, immunomodulatory, and angiogenic properties. Here, we review recent studies on co-culture and co-transplantation of islets with MSCs. We have summarized the methods of preparation of co-transplantation, especially the merits of co-culture, and the effects of co-transplantation. Accumulating experimental evidence shows that co-culture of islets with MSCs promotes islet survival, enhances islet secretory function, and prevascularizes islets through various pretransplant preparations. This review is expected to provide a reference for exploring the use of MSCs for clinical islet co-transplantation.
Collapse
Affiliation(s)
- Liang Mei
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yang Yuwei
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Liang Weiping
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xu Zhiran
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Bingzheng
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Chen Jibing
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, China
| | - Gao Hongjun
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, China
| |
Collapse
|
13
|
Derafsh E, Ebrahimzadeh F, Kahrizi MS, Kayedi M, Shojaei N, Rahimi S, Alesaeidi S, Ghafouri K. The therapeutic effects of mesenchymal stem cell (MSCs) exosomes in covid-19 disease; Focusing on dexamethasone therapy. Pathol Res Pract 2023; 251:154815. [PMID: 37797382 DOI: 10.1016/j.prp.2023.154815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
The study of diseases, specifically their aetiologies, their step-by-step progressions (pathogenesis), and their impact on normal structure and function, is the focus of pathology, a branch of science and medicine. In therapeutic fields, it is critical to decrease significantly elevated levels of proinflammatory cytokines. The immunomodulatory drugs such as dexamethasone have been used in several of inflammatory diseases such as Covid-19. The use of dexamethasone alone or in combination with other drugs or method such as mesenchymal stem cell (MSC) is one of the most up-to-date discussions about Covid-19. In this review, we first examined the effects of dexamethasone as monotherapy on inflammatory cytokines and then examined studies that used combination therapy of dexamethasone and other drugs such as Baricitinib, Tofacitinib and tocilizumab. Also, therapeutic aspects of MSCs are examined in this review.
Collapse
Affiliation(s)
- Ehsan Derafsh
- Department of Basic Medical Science, Windsor University School of Medicine, Brighton's Estate, Cayton, Saint Kitts and Nevis
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, lran
| | | | - Mehrdad Kayedi
- Department of radiology. Shiraz university of medical sciences, Shiraz, iran
| | - Niloofar Shojaei
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shiva Rahimi
- School of medicine,fasa university of medical sciences,Fasa, Iran
| | - Samira Alesaeidi
- Department of Internal medicine and rheumatology, ⁎Rheumatology Research Center⁎, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kimia Ghafouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Al-Dhalimy AMB, Salim HM, Shather AH, Naser IH, Hizam MM, Alshujery MK. The pathological and therapeutically role of mesenchymal stem cell (MSC)-derived exosome in degenerative diseases; Particular focus on LncRNA and microRNA. Pathol Res Pract 2023; 250:154778. [PMID: 37683391 DOI: 10.1016/j.prp.2023.154778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
By releasing exosomes, which create the ideal milieu for the resolution of inflammation, mesenchymal stem cells (MSCs) enhance tissue healing and have strong immunomodulatory capabilities. MSCs-derived exosome also can affect tumor progress by a myriad of mechanisms. Exosomes function as a cell-cell communication tool to affect cellular activity in recipient cells and include an array of efficient bioactive chemicals. Understanding the fundamental biology of inflammation ablation, tissue homeostasis, and the creation of therapeutic strategies is particularly interested in the horizontal transfer of exosomal long non-coding RNAs (lncRNA) and microRNAs (miRNAs) to recipient cells, where they affect target gene expression. Herein, we propose an exosomal lncRNA and microRNA profile in neurological, renal, cardiac, lung, and liver diseases as well as skin wounds and arthritis.
Collapse
Affiliation(s)
| | - Haitham Mukhlif Salim
- Ministry of Health, Directorat of the Public Health, Health Promotion Departments, Baghdad, Iraq
| | - A H Shather
- Department of Computer Engineering Technology, Al Kitab University, Altun Kopru, Kirkuk 00964, Iraq
| | - Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University, 51001 Hillah, Babil, Iraq
| | - Manar Mohammed Hizam
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | |
Collapse
|
15
|
Fang J, Wei H, Wang H, Wang J, Liu H, Chen Y, Chen L, Lu L, Zhang Q, Pan R, Cui E, Luo X. Human placenta-derived mesenchymal stem cell administration protects against acute lung injury in a mouse model. J Cell Biochem 2023; 124:1249-1258. [PMID: 37450693 DOI: 10.1002/jcb.30445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
This study aims to investigate the effect of placenta-derived mesenchymal stem cells (PMSCs) administration on tissue repair following acute lung injury (ALI). PMSCs were transplanted intravenously to a mouse model of lipopolysaccharide-induced ALI. The therapeutic effects were determined by evaluating several indicators, including pathology; the wet/dry ratio of the lungs; blood gas analysis; the total protein content, cell numbers, and the activity of myeloperoxidase (MPO) in bronchial alveolar lavage fluid (BALF); and the levels of anti-inflammatory and proinflammatory cytokines in serum and BALF. To investigate the underlying mechanism, PMSC-derived exosomes were used for ALI treatment. Administration of PMSCs improved the degree of lung injury, reduced inflammation, increased the expression levels of anti-inflammatory cytokines, and protected lung function. As expected, the effects of PMSC-derived exosomes in the ALI model were similar to those of PMSCs, both in terms of improved lung function and reduced inflammation. These findings suggest that PMSCs have ameliorating effects on ALI that are potentially mediated via their secreted exosomes.
Collapse
Affiliation(s)
- Junbiao Fang
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Hanwei Wei
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Hongfa Wang
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Junkai Wang
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Huizi Liu
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Yue Chen
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Long Chen
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Ling Lu
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Qiang Zhang
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Enhai Cui
- Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Xiaopan Luo
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| |
Collapse
|
16
|
Dantas JR, Araujo DB, Silva KR, Souto DL, Pereira MDFC, Raggio LR, Claudio-da Silva C, Couri CE, Maiolino A, Rebellato CLK, Daga DR, Senegaglia AC, Brofman PRS, Baptista LS, Oliveira JEPD, Zajdenverg L, Rodacki M. Adipose Tissue-Derived Stromal/Stem Cells Transplantation with Cholecalciferol Supplementation in Recent-Onset Type 1 Diabetes Patients: Twelve Months Follow-Up. Horm Metab Res 2023; 55:536-545. [PMID: 37192655 DOI: 10.1055/a-2094-1039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To evaluate safety and therapeutic effect along 12 months of allogenic adipose tissue-derived stromal/stem cells (ASCs) transplantation with cholecalciferol (VITD) in patients with recent-onset type 1 diabetes (T1D). Prospective, phase II, open trial, pilot study in which patients with recent onset T1D received ASCs (1xKgx106 cells) and VITD 2000UI/day for 12 months (group 1) and were compared to controls with standard insulin therapy (group 2). Adverse events, C-peptide area under the curve (CPAUC), insulin dose, HbA1c and frequency of FoxP3+ in CD4+ or CD8+ T-cells(flow cytometry) were evaluated at baseline(T0), after 3(T3), 6(T6) and 12 months(T12). Eleven patients completed follow up (7:group 1;4:group 2). Group 1 had lower insulin requirement at T3(0.24±0.18vs0.53±0.23UI/kg,p=0.04), T6(0.24±0.15vs0.66±0.33 UI/kg,p=0.04) and T12(0.39±0.15vs0.74±0.29 UI/Kg,p=0.04).HbA1c was lower at T6 (50.57±8.56vs72.25±10.34 mmol/mol,p=0.01), without differences at T12 (57.14±11.98 in group 1 vs. 73.5±14.57 mmol/min in group 2, p=0.16). CPAUC was not significantly different between groups at T0(p=0.07), higher in group 1 at T3(p=0.04) and T6(p=0.006), but similar at T12(p=0.23). IDAA1c was significantly lower in group 1 than group 2 at T3,T6 and T12 (p=0.006, 0.006 and 0.042, respectively). IDDA1c was inversely correlated to FoxP3 expression in CD4 and CD8+ T cells at T6 (p<0.001 and p=0.01, respectively). In group 1, one patient had recurrence of a benign teratoma that was surgically removed, not associated to the intervention. ASCs with VITD without immunosuppression were safe and associated lower insulin requirements, better glycemic control, and transient better pancreatic function in recent onset T1D, but the potential benefits were not sustained.
Collapse
Affiliation(s)
- Joana R Dantas
- Nutrology and Diabetes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Batista Araujo
- Nutrology and Diabetes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, Instituto Nacional de Metrologia Qualidade e Tecnologia Campus de Xerem, Duque de Caxias, Brazil
- Histology and Embryology Departament, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Lopes Souto
- Nutrology and Diabetes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Luiz Ronir Raggio
- Institute of Public Health Studies, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Carlos Eduardo Couri
- Internal Medicine, Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto, Ribeirao Preto, Brazil
| | - Angelo Maiolino
- Hematology Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Debora Regina Daga
- Core Cell Technology, Pontifical Catholic University of Parana, Curitiba, Brazil
| | | | | | - Leandra S Baptista
- Laboratory of Tissue Bioengineering, Instituto Nacional de Metrologia Qualidade e Tecnologia Campus de Xerem, Duque de Caxias, Brazil
- Center for Biological Research (Numpex-Bio), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lenita Zajdenverg
- Nutrology and Diabetes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Melanie Rodacki
- Nutrology and Diabetes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Ahmed OM, Saleh AS, Ahmed EA, Ghoneim MM, Ebrahim HA, Abdelgawad MA, Abdel-Gabbar M. Efficiency of Bone Marrow-Derived Mesenchymal Stem Cells and Hesperetin in the Treatment of Streptozotocin-Induced Type 1 Diabetes in Wistar Rats. Pharmaceuticals (Basel) 2023; 16:859. [PMID: 37375806 PMCID: PMC10303997 DOI: 10.3390/ph16060859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) was established to be ameliorated by islet transplantation, but the shortage of the transplanted human islet tissue and the use of immunosuppressive drugs to inhibit the rejection of allogeneic grafts make this type of therapy is limited. Nowadays, therapy with stem cells is one of the most promising future treatments. This kind of therapy could have a profound impact on both replacement, as well as regenerative therapies, to improve or even cure various disorders, including diabetes mellitus. Flavonoids have also been shown to possess anti-diabetic effects. Thus, this study aims to evaluate the effectiveness of the bone marrow-derived mesenchymal stem cells (BM-MSCs) and hesperetin in the treatment of a T1DM rat model. T1DM was induced in male Wistar rats that had been starved for 16 h via intraperitoneal injection of STZ at a dose of 40 mg/kg body weight (b.wt.). After 10 days of STZ injection, the diabetic rats were allocated into four groups. The first diabetic animal group was considered a diabetic control, while the other three diabetic animal groups were treated for six weeks, respectively, with hesperetin (given orally at a dose of 20 mg/kg b.wt.), BM-MSCs (injected intravenously at a dose of 1 × 106 cells/rat/week), and their combination (hesperetin and BM-MSCs). The use of hesperetin and BM-MSCs in the treatment of STZ-induced diabetic animals significantly improved the glycemic state, serum fructosamine, insulin and C-peptide levels, liver glycogen content, glycogen phosphorylase, glucose-6-phosphatase activities, hepatic oxidative stress, and mRNA expressions of NF-κB, IL-1β, IL-10, P53, and Bcl-2 in pancreatic tissue. The study suggested the therapy with both hesperetin and BM-MSCs produced marked antihyperglycemic effects, which may be mediated via their potencies to ameliorate pancreatic islet architecture and insulin secretory response, as well as to decrease hepatic glucose output in diabetic animals. The improvement effects of hesperetin and BM-MSCs on the pancreatic islets of diabetic rats may be mediated via their antioxidant, anti-inflammatory, and antiapoptotic actions.
Collapse
Affiliation(s)
- Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef 62521, Egypt;
- Experimental Obesity and Diabetes Research Lab (EODRL), Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Ablaa S. Saleh
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef 62521, Egypt
| | - Eman A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef 62521, Egypt;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef 62521, Egypt
| |
Collapse
|
18
|
Wei J, Wang Z, Han T, Chen J, Ou Y, Wei L, Zhu X, Wang K, Yan Z, Han YP, Zheng X. Extracellular vesicle-mediated intercellular and interorgan crosstalk of pancreatic islet in health and diabetes. Front Endocrinol (Lausanne) 2023; 14:1170237. [PMID: 37305058 PMCID: PMC10248434 DOI: 10.3389/fendo.2023.1170237] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Diabetes mellitus (DM) is a systemic metabolic disease with high mortality and morbidity. Extracellular vesicles (EVs) have emerged as a novel class of signaling molecules, biomarkers and therapeutic agents. EVs-mediated intercellular and interorgan crosstalk of pancreatic islets plays a crucial role in the regulation of insulin secretion of β-cells and insulin action in peripheral insulin target tissues, maintaining glucose homeostasis under physiological conditions, and it's also involved in pathological changes including autoimmune response, insulin resistance and β-cell failure associated with DM. In addition, EVs may serve as biomarkers and therapeutic agents that respectively reflect the status and improve function and viability of pancreatic islets. In this review, we provide an overview of EVs, discuss EVs-mediated intercellular and interorgan crosstalk of pancreatic islet under physiological and diabetic conditions, and summarize the emerging applications of EVs in the diagnosis and treatment of DM. A better understanding of EVs-mediated intercellular and interorgan communication of pancreatic islets will broaden and enrich our knowledge of physiological homeostasis maintenance as well as the development, diagnosis and treatment of DM.
Collapse
Affiliation(s)
- Junlun Wei
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Tingrui Han
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaoting Chen
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yiran Ou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Wei
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyue Zhu
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Wang
- Department of Vascular Surgery, University Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhe Yan
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Huang CC, Kang M, Leung K, Lu Y, Shirazi S, Gajendrareddy P, Ravindran S. Micro RNA based MSC EV engineering: Targeting the BMP2 cascade for bone repair. Front Cell Dev Biol 2023; 11:1127594. [PMID: 36846585 PMCID: PMC9945088 DOI: 10.3389/fcell.2023.1127594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Mesenchymal stem cell derived extracellular vesicles (MSC EVs) possess excellent immunomodulatory and therapeutic properties. While beneficial, from a translational perspective, extracellular vesicles with consistent functionality and target specificity are required to achieve the goals of precision medicine and tissue engineering. Prior research has identified that the miRNA composition of mesenchymal stem cell derived extracellular vesicles contributes significantly towards extracellular vesicles functionality. In this study, we hypothesized that mesenchymal stem cell derived extracellular vesicle functionality can be rendered pathway-specific using a miRNA-based extracellular vesicles engineering approach. To test this hypothesis, we utilized bone repair as a model system and the BMP2 signaling cascade as the targeted pathway. We engineered mesenchymal stem cell extracellular vesicles to possess increased levels of miR-424, a potentiator of the BMP2 signaling cascade. We evaluated the physical and functional characteristics of these extracellular vesicles and their enhanced ability to trigger the osteogenic differentiation of naïve mesenchymal stem cell in vitro and facilitate bone repair in vivo. Results indicated that the engineered extracellular vesicles retained their extracellular vesicles characteristics and endocytic functionality and demonstrated enhanced osteoinductive function by activating SMAD1/5/8 phosphorylation and mesenchymal stem cell differentiation in vitro and enhanced bone repair in vivo. Furthermore, the inherent immunomodulatory properties of the mesenchymal stem cell derived extracellular vesicles remained unaltered. These results serve as a proof-of-concept for miRNA-based extracellular vesicles engineering approaches for regenerative medicine applications.
Collapse
Affiliation(s)
- Chun-Chieh Huang
- Department of Oral Biology, University of Illinois Chicago, Chicago, Illinois, United States
| | - Miya Kang
- Department of Oral Biology, University of Illinois Chicago, Chicago, Illinois, United States
| | - Kasey Leung
- Department of Oral Biology, University of Illinois Chicago, Chicago, Illinois, United States
| | - Yu Lu
- Department of Oral Biology, University of Illinois Chicago, Chicago, Illinois, United States
| | - Sajjad Shirazi
- Department of Oral Biology, University of Illinois Chicago, Chicago, Illinois, United States
| | - Praveen Gajendrareddy
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, United States,*Correspondence: Praveen Gajendrareddy, ; Sriram Ravindran,
| | - Sriram Ravindran
- Department of Oral Biology, University of Illinois Chicago, Chicago, Illinois, United States,*Correspondence: Praveen Gajendrareddy, ; Sriram Ravindran,
| |
Collapse
|
20
|
Saadh MJ, Mikhailova MV, Rasoolzadegan S, Falaki M, Akhavanfar R, Gonzáles JLA, Rigi A, Kiasari BA. Therapeutic potential of mesenchymal stem/stromal cells (MSCs)-based cell therapy for inflammatory bowel diseases (IBD) therapy. Eur J Med Res 2023; 28:47. [PMID: 36707899 PMCID: PMC9881387 DOI: 10.1186/s40001-023-01008-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Recently, mesenchymal stem/stromal cells (MSCs) therapy has become an emerging therapeutic modality for the treatment of inflammatory bowel disease (IBD), given their immunoregulatory and pro-survival attributes. MSCs alleviate dysregulated inflammatory responses through the secretion of a myriad of anti-inflammatory mediators, such as interleukin 10 (IL-10), transforming growth factor-β (TGFβ), prostaglandin E2 (PGE2), tumor necrosis factor-stimulated gene-6 (TSG-6), etc. Indeed, MSC treatment of IBD is largely carried out through local microcirculation construction, colonization and repair, and immunomodulation, thus alleviating diseases severity. The clinical therapeutic efficacy relies on to the marked secretion of various secretory molecules from viable MSCs via paracrine mechanisms that are required for gut immuno-microbiota regulation and the proliferation and differentiation of surrounding cells like intestinal epithelial cells (IECs) and intestinal stem cells (ISCs). For example, MSCs can induce IECs proliferation and upregulate the expression of tight junction (TJs)-associated protein, ensuring intestinal barrier integrity. Concerning the encouraging results derived from animal studies, various clinical trials are conducted or ongoing to address the safety and efficacy of MSCs administration in IBD patients. Although the safety and short-term efficacy of MSCs administration have been evinced, the long-term efficacy of MSCs transplantation has not yet been verified. Herein, we have emphasized the illumination of the therapeutic capacity of MSCs therapy, including naïve MSCs, preconditioned MSCs, and also MSCs-derived exosomes, to alleviate IBD severity in experimental models. Also, a brief overview of published clinical trials in IBD patients has been delivered.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Department of Basic Sciences, Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Maria V Mikhailova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Soheil Rasoolzadegan
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Falaki
- Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Rigi
- Department of Nursing, Young Researchers and Elite Club, Zahedan Branch, Azad University, Zahedan, Iran.
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran.
| |
Collapse
|
21
|
Mesples AD, Cox DC, Lundy HD, Antonio-Collie S, Diggis CW, Lakey JR. Monitoring of Autoantibodies Following Autologous Hematopoietic Stem Cell Transplantation in 6 Children with Recently Diagnosed Type 1 Diabetes Mellitus. Med Sci Monit 2023; 29:e938979. [PMID: 36659834 PMCID: PMC9872439 DOI: 10.12659/msm.938979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Bone marrow stem cells have been shown to be a promising therapeutic strategy for autoimmune diseases. This study aimed to assess the safety and efficacy of autologous hematopoietic stem cell (ABMSC) transplantation without immunoablation used to suppress the autoimmune reaction in 6 children with newly diagnosed autoimmune diabetes mellitus. We monitored the levels of islet cell antibodies (ICA), antibodies against islet antigen-related tyrosine phosphatase 2 (IA2), glutamic acid-decarboxylase (GAD) antibodies, and anti-insulin antibodies (AIA). MATERIAL AND METHODS Between 2018 and 2022, 6 children (age 6-10 years, average 8 years) recently diagnosed with type 1 diabetes mellitus with the presence of ICA, IA2, GAD, AIA and ketoacidosis, were treated with an ABMSC stimulated with Filgrastim, granulocyte colony-stimulating factor (G-CSF), 10 ug/kg/day for 4 days. Bone marrow was harvested on day 5, collected by puncture and identified as mononuclear cells >180×10⁶/kg, CD34+ >0.22%, and transplanted by intravenous (i.v.) infusion. Patients were monitored with ICA, IA2, GAD, AIA, C-peptide, blood glucose, and glycosylated hemoglobin A1c (HbA1C) 6 months after the procedure. RESULTS At 6-month follow-up, we observed a negative value of the ICA, which was previously positive (P<0.001). The IA2 (p=0.037) and GAD (P=0.377) antibodies decreased slowly but were significantly lower. AIA remained high. A decrease in blood glucose and HbA1C levels was observed (P<0.001). No complications occurred during follow-up. CONCLUSIONS Autologous hematopoietic stem cell transplantation without immunoablation was safe and effective in significantly decreasing the production and effect of autoantibodies against ICA, GAD, and IA2, as well as decreasing blood sugar levels and HbA1c.
Collapse
Affiliation(s)
| | - Desiree C.T. Cox
- National Stem Cells Ethics Committee (NSCEC), Ministry of Health, Nassau, Bahamas,Biotech, BioPep, Denver, CO, USA
| | - Harriet D. Lundy
- Regenerative Medicine Program, Doctors Hospital Health System, Nassau, Bahamas
| | | | - Charles W. Diggis
- Regenerative Medicine Program, Doctors Hospital Health System, Nassau, Bahamas
| | | |
Collapse
|
22
|
Jafarinia M, Farrokhi MR, Ganjalikhani Hakemi M, Cho WC. The role of miRNAs from mesenchymal stem/stromal cells-derived extracellular vesicles in neurological disorders. Hum Cell 2023; 36:62-75. [PMID: 36261702 DOI: 10.1007/s13577-022-00813-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells with immunomodulatory effects that have been attempted as a possible treatment for neurologic disorders. Since currently available drugs for neurologic disorders are limited, special attention has been paid to MSCs. With the ability to differentiate into neural cells, it has been shown that MSCs exert their effects in a paracrine manner by producing extracellular vesicles (EVs). Extracellular vesicles are small vesicles with a size of 30-1000 nm that are released by cells, such as MSCs, T cells, B cells, etc. EVs contain various molecules, including proteins, lipids, mRNAs, and microRNAs (miRNAs). In recent years, the administration of EVs in models of neurological disorders has been shown to improve neurological dysfunctions. miRNAs from MSC-EVs as one of the important mediators which regulate various genes and reduce neuropathological change have been identified in different neurological disorders. Here, we review the effects of EVs miRNAs from MSCs on different neurological disorders and their potential applications.
Collapse
Affiliation(s)
- Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Reza Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazdak Ganjalikhani Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
23
|
Park SJ, Kim DS, Choi M, Han KH, Han JS, Yoo KH, Moon KS. Preclinical Evaluation of interferon-gamma primed human Wharton's jelly-derived mesenchymal stem cells. Hum Exp Toxicol 2023; 42:9603271231171650. [PMID: 37092667 DOI: 10.1177/09603271231171650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The potential of human mesenchymal stem cells (MSCs) for cell therapy has been investigated in numerous immune-mediated conditions; MSCs are considered one of the most promising cellular therapeutics to treat intractable diseases. Recently, approaches to prime MSCs have been investigated, thereby generating cellular products with enhanced potential for a variety of clinical applications. Interferon-gamma (IFN-γ) priming is a current approach used to increase the therapeutic efficacy of MSCs. In this study, we determined the systemic toxicity, tumorigenicity and biodistribution of IFN-γ-primed Wharton's jelly-derived (WJ)-MSCs in male and female BALB/c-nu/nu mice. There were no deaths or pathologic lesions in the mice treated with 5 × 106 cells/kg IFN-γ-primed MSCs in the repeated dose study. In the tumorigenicity study, one of the subcutaneously treated mice showed bronchioloalveolar adenoma in the lung but tested negative for human-specific anti-mitochondrial antibody, suggesting the spontaneous murine origin of the adenoma. A biodistribution study using real-time quantitative polymerase chain reaction demonstrated the systemic IFN-γ-primed MSC clearance by day 28. Based on the toxicity, biodistribution, and tumorigenicity studies, we concluded that IFN-γ-primed MSCs at 5 × 106 cells/kg do not induce tumor formation and adverse changes.
Collapse
Affiliation(s)
- Sang-Jin Park
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
- Division of Clinical Development, CELLnLIFE Research Center, CELLnLIFE Inc., Seoul, Republic of Korea
| | - Myeongjin Choi
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Kang-Hyun Han
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Ji-Seok Han
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | | |
Collapse
|
24
|
Zhu L, Wang S, Qu J, Hui Z, Kan C, Hou N, Sun X. The Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus. Cell Reprogram 2022; 24:329-342. [PMID: 35877064 DOI: 10.1089/cell.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cells (MSCs) exist in many tissues and can differentiate into cells of multiple lineages, such as adipocytes, osteoblasts, or chondrocytes. MSC administration has demonstrated therapeutic potential in various degenerative and inflammatory diseases (e.g., graft-vs.-host disease, multiple sclerosis, Crohn's disease, organ fibrosis, and diabetes mellitus [DM]). The mechanisms involved in the therapeutic effects of MSCs are multifaceted. Generally, implanted MSCs can migrate to sites of injury, where they establish an anti-inflammatory and regenerative microenvironment in damaged tissues. In addition, MSCs can modulate innate and adaptive immune responses through immunosuppressive mechanisms that involve immune cells, inflammatory cytokines, chemokines, and immunomodulatory factors. DM has a high prevalence worldwide; it also contributes to a high rate of mortality worldwide. MSCs offer a promising therapeutic agent to prevent or repair damage from DM and diabetic complications through properties such as multilineage differentiation, homing, promotion of angiogenesis, and immunomodulation (e.g., prevention of oxidative stress, fibrosis, and cell death). In this study, we review current findings regarding the immunomodulatory and regenerative mechanisms of MSCs, as well as their therapeutic applications in DM and DM-related complications.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Sheng Wang
- Department of Spinal Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - JunSheng Qu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zongguang Hui
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
25
|
Mahapatra C, Kumar P, Paul MK, Kumar A. Angiogenic stimulation strategies in bone tissue regeneration. Tissue Cell 2022; 79:101908. [DOI: 10.1016/j.tice.2022.101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/24/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
|
26
|
Gou W, Hua W, Swaby L, Cui W, Green E, Morgan KA, Strange C, Wang H. Stem Cell Therapy Improves Human Islet Graft Survival in Mice via Regulation of Macrophages. Diabetes 2022; 71:2642-2655. [PMID: 36084289 PMCID: PMC9750955 DOI: 10.2337/db22-0117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/01/2022] [Indexed: 01/23/2023]
Abstract
Islet/β-cell transplantation offers great hope for patients with type 1 diabetes. We assessed the mechanisms of how intrahepatic coinfusion of human α-1 antitrypsin (hAAT)-engineered mesenchymal stromal cells (hAAT-MSCs) improves survival of human islet grafts posttransplantation (PT). Longitudinal in vivo bioluminescence imaging studies identified significantly more islets in the livers bearing islets cotransplanted with hAAT-MSCs compared with islets transplanted alone. In vitro mechanistic studies revealed that hAAT-MSCs inhibit macrophage migration and suppress IFN-γ-induced M1-like macrophages while promoting IL-4-induced M2-like macrophages. In vivo this translated to significantly reduced CD11c+ and F4/80+ cells and increased CD206+ cells around islets cotransplanted with hAAT-MSCs as identified by multiplex immunofluorescence staining. Recipient-derived F4/80+and CD11b+ macrophages were mainly present in the periphery of an islet, while CD11c+ and CD206+ cells appeared inside an islet. hAAT-MSCs inhibited macrophage migration and skewed the M1-like phenotype toward an M2 phenotype both in vitro and in vivo, which may have favored islet survival. These data provide evidence that hAAT-MSCs cotransplanted with islets remain in the liver and shift macrophages to a protective state that favors islet survival. This novel strategy may be used to enhance β-cell survival during islet/β-cell transplantation for the treatment of type 1 diabetes or other diseases.
Collapse
Affiliation(s)
- Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC
| | - Wei Hua
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Lindsay Swaby
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | | | - Erica Green
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | | | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| |
Collapse
|
27
|
Nie J, Liao W, Zhang Z, Zhang M, Wen Y, Capanoglu E, Sarker MMR, Zhu R, Zhao C. A 3D co-culture intestinal organoid system for exploring glucose metabolism. Curr Res Food Sci 2022; 6:100402. [DOI: 10.1016/j.crfs.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/02/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
|
28
|
Rudiansyah M, El-Sehrawy AA, Ahmad I, Terefe EM, Abdelbasset WK, Bokov DO, Salazar A, Rizaev JA, Muthanna FMS, Shalaby MN. Osteoporosis treatment by mesenchymal stromal/stem cells and their exosomes: Emphasis on signaling pathways and mechanisms. Life Sci 2022; 306:120717. [PMID: 35792178 DOI: 10.1016/j.lfs.2022.120717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
Osteoporosis is the loss of bone density, which is one of the main problems in developed and developing countries and is more common in the elderly. Because this disease is often not diagnosed until a bone fracture, it can become a life-threatening disease and cause hospitalization. With the increase of older people in a population, this disease's personal and social costs increase year by year and affect different communities. Most current treatments focus on pain relief and usually do not lead to bone tissue recovery and regeneration. But today, the use of stem cell therapy is recommended to treat and improve this disease recovery, which helps restore bone tissue by improving the imbalance in the osteoblast-osteoclast axis. Due to mesenchymal stromal/stem cells (MSCs) characteristics and their exosomes, these cells and vesicles are excellent sources for treating and preventing the progression and improvement of osteoporosis. Due to the ability of MSCs to differentiate into different cells and migrate to the site of injury, these cells are used in tissue regenerative medicine. Also, due to their contents, the exosomes of these cells help regenerate and treat various tissue injuries by affecting the injury site's cells. In this article, we attempted to review new studies in which MSCs and their exosomes were used to treat osteoporosis.
Collapse
Affiliation(s)
- Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat/Ulin Hospital, Banjarmasin, Indonesia
| | - Amr A El-Sehrawy
- Department of Internal Medicine, Mansoura Specialized Medical Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ermias Mergia Terefe
- School of pharmacy and Health science, United States International University, Nairobi, Kenya
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Aleli Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City, Mexico
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector of Samarkand State Medical Institute, Samarkand, Uzbekistan
| | | | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt
| |
Collapse
|
29
|
Padovano M, Scopetti M, Manetti F, Morena D, Radaelli D, D'Errico S, Di Fazio N, Frati P, Fineschi V. Pancreatic transplant surgery and stem cell therapy: Finding the balance between therapeutic advances and ethical principles. World J Stem Cells 2022; 14:577-586. [PMID: 36157914 PMCID: PMC9453273 DOI: 10.4252/wjsc.v14.i8.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023] Open
Abstract
The latest achievements in the field of pancreas transplantation and stem cell therapy require an effort by the scientific community to clarify the ethical implications of pioneering treatments, often characterized by high complexity from a surgical point of view, due to transplantation of multiple organs at the same time or at different times, and from an immunological point of view for stem cell therapy. The fundamental value in the field of organ transplants is, of course, a solidarity principle, namely that of protecting the health and life of people for whom transplantation is a condition of functional recovery, or even of survival. The nature of this value is that of a concept to which the legal discipline of transplants entrusts its own ethical dignity and for which it has ensured a constitutional recognition in different systems. The general principle of respect for human life, both of the donor and of the recipient, evokes the need not to put oneself and one's neighbor in dangerous conditions. The present ethical reflection aims to find a balance between the latest therapeutic advances and several concepts including the idea of the person, the respect due to the dead, the voluntary nature of the donation and the consent to the same, the gratuitousness of the donation, the scientific progress and the development of surgical techniques, and the policies of health promotion.
Collapse
Affiliation(s)
- Martina Padovano
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Matteo Scopetti
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome 00189, Italy
| | - Federico Manetti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Donato Morena
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Davide Radaelli
- Department of Medicine, Surgery and Health, University of Trieste, Trieste 34149, Italy
| | - Stefano D'Errico
- Department of Medicine, Surgery and Health, University of Trieste, Trieste 34149, Italy
| | - Nicola Di Fazio
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
30
|
Fayzullin A, Vladimirov G, Kuryanova A, Gafarova E, Tkachev S, Kosheleva N, Istranova E, Istranov L, Efremov Y, Novikov I, Bikmulina P, Puzakov K, Petrov P, Vyazankin I, Nedorubov A, Khlebnikova T, Kapustina V, Trubnikov P, Minaev N, Kurkov A, Royuk V, Mikhailov V, Parshin D, Solovieva A, Lipina M, Lychagin A, Timashev P, Svistunov A, Fomin V, Shpichka A. A defined road to tracheal reconstruction: laser structuring and cell support for rapid clinic translation. Stem Cell Res Ther 2022; 13:317. [PMID: 35842689 PMCID: PMC9288261 DOI: 10.1186/s13287-022-02997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/12/2022] [Indexed: 11/10/2022] Open
Abstract
One of the severe complications occurring because of the patient's intubation is tracheal stenosis. Its incidence has significantly risen because of the COVID-19 pandemic and tends only to increase. Here, we propose an alternative to the donor trachea and synthetic prostheses-the tracheal equivalent. To form it, we applied the donor trachea samples, which were decellularized, cross-linked, and treated with laser to make wells on their surface, and inoculated them with human gingiva-derived mesenchymal stromal cells. The fabricated construct was assessed in vivo using nude (immunodeficient), immunosuppressed, and normal mice and rabbits. In comparison with the matrix ones, the tracheal equivalent samples demonstrated the thinning of the capsule, the significant vessel ingrowth into surrounding tissues, and the increase in the submucosa resorption. The developed construct was shown to be highly biocompatible and efficient in trachea restoration. These results can facilitate its clinical translation and be a base to design clinical trials.
Collapse
Affiliation(s)
- Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Georgiy Vladimirov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Anastasia Kuryanova
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Elvira Gafarova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | - Sergei Tkachev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Nastasia Kosheleva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Elena Istranova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Leonid Istranov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Ivan Novikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Polina Bikmulina
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | - Kirill Puzakov
- Department of Diagnostic Radiology and Radiotherapy, Sechenov University, Moscow, Russia
| | - Pavel Petrov
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov University, Moscow, Russia
| | - Ivan Vyazankin
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov University, Moscow, Russia
| | - Andrey Nedorubov
- Center for Preclinical Studies, Sechenov University, Moscow, Russia
| | | | | | - Pavel Trubnikov
- Center for Preclinical Studies, Sechenov University, Moscow, Russia
| | - Nikita Minaev
- Research Center Crystallography and Photonics RAS, Institute of Photonic Technologies, Moscow, Russia
| | - Aleksandr Kurkov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Valery Royuk
- University Hospital No 1, Sechenov University, Moscow, Russia
| | | | - Dmitriy Parshin
- Department of Surgery No 1, Sechenov University, Moscow, Russia
| | - Anna Solovieva
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Marina Lipina
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov University, Moscow, Russia
| | - Alexey Lychagin
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov University, Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia. .,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.
| | | | - Victor Fomin
- Department of Internal Medicine No 1, Sechenov University, Moscow, Russia.,Sechenov University, Moscow, Russia
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| |
Collapse
|
31
|
Kamen DL, Wallace C, Li Z, Wyatt M, Paulos C, Wei C, Wang H, Wolf BJ, Nietert PJ, Gilkeson G. Safety, immunological effects and clinical response in a phase I trial of umbilical cord mesenchymal stromal cells in patients with treatment refractory SLE. Lupus Sci Med 2022; 9:e000704. [PMID: 35820718 PMCID: PMC9277402 DOI: 10.1136/lupus-2022-000704] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Reports of clinical improvement following mesenchymal stromal cell (MSC) infusions in refractory lupus patients at a single centre in China led us to perform an explorative phase I trial of umbilical cord derived MSCs in patients refractory to 6 months of immunosuppressive therapy. METHODS Six women with a SLEDAI >6, having failed standard of care therapy, received one intravenous infusion of 1×106 MSCs/kg of body weight. They maintained their current immunosuppressives, but their physician was allowed to adjust corticosteroids initially for symptom management. The clinical endpoint was an SRI of 4 with no new British Isles Lupus Activity Guide (BILAG) As and no increase in Physician Global Assessment score of >0.3 with tapering of prednisone to 10 mg or less by 20 weeks. RESULTS Of six patients, five (83.3%; 95% CI 35.9% to 99.6%) achieved the clinical endpoint of an SRI of 4. Adverse events were minimal. Mechanistic studies revealed significant reductions in CD27IgD double negative B cells, switched memory B cells and activated naïve B cells, with increased transitional B cells in the five patients who met the endpoint. There was a trend towards decreased autoantibody levels in specific patients. Two patients had increases in their Helios+Treg cells, but no other significant T cell changes were noted. GARP-TGFβ complexes were significantly increased following the MSC infusions. The B cell changes and the GARP-TGFβ increases significantly correlated with changes in SLEDAI scores. CONCLUSION This phase 1 trial suggests that umbilical cord (UC) MSC infusions are very safe and may have efficacy in lupus. The B cell and GARP-TGFβ changes provide novel insight into mechanisms by which MSCs may impact disease. TRIAL REGISTRATION NUMBER NCT03171194.
Collapse
Affiliation(s)
- Diane L Kamen
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Caroline Wallace
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zihai Li
- Department of Medicine, Division of Hematology/Oncology, Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Megan Wyatt
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Crystal Paulos
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chungwen Wei
- University of Rochester Medical Center, Rochester, New York, USA
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bethany J Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gary Gilkeson
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
32
|
Izadi M, Sadr Hashemi Nejad A, Moazenchi M, Masoumi S, Rabbani A, Kompani F, Hedayati Asl AA, Abbasi Kakroodi F, Jaroughi N, Mohseni Meybodi MA, Setoodeh A, Abbasi F, Hosseini SE, Moeini Nia F, Salman Yazdi R, Navabi R, Hajizadeh-Saffar E, Baharvand H. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: a phase I/II randomized placebo-controlled clinical trial. Stem Cell Res Ther 2022; 13:264. [PMID: 35725652 PMCID: PMC9208234 DOI: 10.1186/s13287-022-02941-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 06/04/2022] [Indexed: 01/01/2023] Open
Abstract
Background Type-1 diabetes (T1D) occurs following autoimmune-induced pancreatic beta cells death. Among several treatment modalities, mesenchymal stem cells (MSCs) transplantation is promising for autoimmune disorders due to immunomodulation, regeneration, and migration to damaged tissue upon systemic injection. This study assessed the safety and efficacy of intravenous injection of autologous bone marrow-derived MSCs in newly diagnosed T1D patients. Methods After receiving informed consent, 21 patients who met the study criteria were enrolled and randomly assigned to receive either MSCs or placebo. Each patient in the experimental group received two doses of MSCs and was followed for at least one-year post-transplantation. Results The results have shown that this transplantation is safe and significantly reduces the number of hypoglycemic episodes. MSCs transplantation improved glycated hemoglobin (HbA1c), shifted serum cytokine patterns from pro-inflammatory to anti-inflammatory, increased the number of regulatory T-cells in the peripheral blood, and improved quality of life. Early transplantation of MSCs significantly improved HbA1c and C-peptide levels and shifted pro-inflammatory cytokines to anti-inflammatory cytokines. Also, exercise combined with MSCs transplantation improved glycemic and immunologic indices. Conclusions Taken together, autologous MSC transplantation is safe and effective, and its early transplantation is a promising treatment in newly diagnosed T1D children suffering from hypoglycemic episodes. Trial registration: This clinical trial was registered at the Iranian Registry of Clinical Trials (IRCT) with the identifier IRCT ID: IRCT2016070428786N1 registered on August 20, 2016 (Retrospectively registered) (https://en.irct.ir/trial/23256) and at the U.S. National Institutes of Health (ClinicalTrials.gov) with the related identifier NCT04078308 registered on September 6, 2019 (Retrospectively registered). (https://clinicaltrials.gov/ct2/show/NCT04078308). Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02941-w.
Collapse
Affiliation(s)
- Mahmoud Izadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anavasadat Sadr Hashemi Nejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maedeh Moazenchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Safdar Masoumi
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rabbani
- Growth and Development Research Center, Children's Medical Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Kompani
- Division of Hematology and Oncology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Hedayati Asl
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Hematology-Oncology and Stem Cell Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbasi Kakroodi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Jaroughi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Ali Mohseni Meybodi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Aria Setoodeh
- Division of Pediatrics Endocrinology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Abbasi
- Growth and Development Research Center, Children's Medical Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Esmat Hosseini
- Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moeini Nia
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Salman Yazdi
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Roghayeh Navabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Diabetes, Obesity, and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
33
|
In vivo tracking of unlabelled mesenchymal stromal cells by mannose-weighted chemical exchange saturation transfer MRI. Nat Biomed Eng 2022; 6:658-666. [PMID: 35132228 PMCID: PMC9425291 DOI: 10.1038/s41551-021-00822-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
The tracking of the in vivo biodistribution of transplanted human mesenchymal stromal cells (hMSCs) relies on reporter genes or on the addition of exogenous imaging agents. However, reporter genes and exogenous labels may require bespoke manufacturing and regulatory processes if used in cell therapies, and the labels may alter the cells' properties and are diluted on cellular division. Here we show that high-mannose N-linked glycans, which are abundantly expressed on the surface of hMSCs, can serve as a biomarker for the label-free tracking of transplanted hMSCs by mannose-weighted chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI). For live mice with luciferase-transfected hMSCs transplanted into their brains, post-mortem fluorescence staining with a mannose-specific lectin showed that increases in the CEST MRI signal, which correlated well with the bioluminescence intensity of viable hMSCs for 14 days, corresponded to the presence of mannose. In vitro, osteogenically differentiated hMSCs led to lower CEST MRI signal intensities owing to the concomitantly reduced expression of mannose. The label-free imaging of hMSCs may facilitate the development and testing of cell therapies.
Collapse
|
34
|
Ben Nasr M, Robbins D, Parone P, Usuelli V, Tacke R, Seelam AJ, Driver E, Le T, Sabouri-Ghomi M, Guerrettaz L, Shoemaker D, Fiorina P. Pharmacologically Enhanced Regulatory Hematopoietic Stem Cells Revert Experimental Autoimmune Diabetes and Mitigate Other Autoimmune Disorders. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1554-1565. [PMID: 35321879 DOI: 10.4049/jimmunol.2100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes (T1D) is characterized by the loss of immune self-tolerance, resulting in an aberrant immune responses against self-tissue. A few therapeutics have been partially successful in reverting or slowing down T1D progression in patients, and the infusion of autologous hematopoietic stem cells (HSCs) is emerging as an option to be explored. In this study, we proposed to pharmacologically enhance by ex vivo modulation with small molecules the immunoregulatory and trafficking properties of HSCs to provide a safer and more efficacious treatment option for patients with T1D and other autoimmune disorders. A high-throughput targeted RNA sequencing screening strategy was used to identify a combination of small molecules (16,16-dimethyl PGE2 and dexamethasone), which significantly upregulate key genes involved in trafficking (e.g., CXCR4) and immunoregulation (e.g., programmed death ligand 1). The pharmacologically enhanced, ex vivo-modulated HSCs (regulatory HSCs [HSC.Regs]) have strong trafficking properties to sites of inflammation in a mouse model of T1D, reverted autoimmune diabetes in NOD mice, and delayed experimental multiple sclerosis and rheumatoid arthritis in preclinical models. Mechanistically, HSC.Regs reduced lymphocytic infiltration of pancreatic β cells and inhibited the activity of autoreactive T cells. Moreover, when tested in clinically relevant in vitro autoimmune assays, HSC.Regs abrogated the autoimmune response. Ex vivo pharmacological modulation enhances the immunoregulatory and trafficking properties of HSCs, thus generating HSC.Regs, which mitigated autoimmune diabetes and other autoimmune disorders.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA.,International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy
| | | | | | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy
| | | | - Andy-Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy
| | | | - Thuy Le
- Fate Therapeutics, San Diego, CA; and
| | | | | | | | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA; .,International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, DIBIC L. Sacco, University of Milan, Milan, Italy.,Division of Endocrinology, Fatebenefratelli-Sacco Hospital, Milan, Italy
| |
Collapse
|
35
|
Wang Y, Lv Y, Li Y, Bao H, Yu C, Li X, Xu J, Huang J, Zhang Z. Ferromagnetic Vortex Iron Oxide Nanorings Modified with Integrin β1 Antibody for Targeted MRI Tracking of Human Mesenchymal Stem Cells. J Biomed Nanotechnol 2022; 18:1044-1051. [PMID: 35854460 DOI: 10.1166/jbn.2022.3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mesenchymal stem cells (MSCs) have demonstrated great potential for tissue engineering and regenerative medicine applications. Noninvasive and real-term tracking of transplanted MSCs in vivo is crucial for studying the distribution and migration of MSCs, and their role in tissue injury repair. This study reports on the use of ferrimagnetic vortex iron oxide (FVIO) nanorings modified with anti-human integrin β1 for specific recognition and magnetic resonance imaging (MRI) tracking of human MSCs (hMSCs). Integrin β1 is highly expressed at all stem cell proliferation and differentiation stages. Therefore, the anti-integrin β1 antibody (Ab) introduced in FVIO targets integrin β1, thus enabling FVIO to target stem cells at any stage. This is unlike the traditional MRI-based monitoring of transplanted stem cells, which usually requires pre-labeling the stem cells with tracers before injection. Because of the ability to recognize hMSCs, the Ab-modified FVIO nanotracers (FVIO-Ab) have the advantage of not requiring pre-labeling before stem cell transplantation. Furthermore, the FVIO-Ab nanotracers have high T*₂ contrast resulting from the unique magnetic properties of FVIO which can improve the MRI tracking efficiency of stem cells. This work may provide a new way for stem cell labeling and in vivo MRI tracking, thus reducing the risks associated with stem cell transplantation and promoting clinical translation.
Collapse
Affiliation(s)
- Yujie Wang
- New Energy and Sensing Technology Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Yinjuan Lv
- New Energy and Sensing Technology Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Yuxuan Li
- Chinese Academy of Sciences Key Laboratory of Nano-Bio Interface, Division of Nano Biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Hongying Bao
- Chinese Academy of Sciences Key Laboratory of Nano-Bio Interface, Division of Nano Biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chenggong Yu
- Chinese Academy of Sciences Key Laboratory of Nano-Bio Interface, Division of Nano Biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiaodi Li
- Chinese Academy of Sciences Key Laboratory of Nano-Bio Interface, Division of Nano Biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jiaqiang Xu
- New Energy and Sensing Technology Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Jie Huang
- Chinese Academy of Sciences Key Laboratory of Nano-Bio Interface, Division of Nano Biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhijun Zhang
- Chinese Academy of Sciences Key Laboratory of Nano-Bio Interface, Division of Nano Biomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
36
|
Martinez-Arroyo O, Ortega A, Forner MJ, Cortes R. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Non-Coding RNA Therapeutic Vehicles in Autoimmune Diseases. Pharmaceutics 2022; 14:pharmaceutics14040733. [PMID: 35456567 PMCID: PMC9028692 DOI: 10.3390/pharmaceutics14040733] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases (ADs) are characterized by the activation of the immune system against self-antigens. More common in women than in men and with an early onset, their incidence is increasing worldwide, and this, combined with their chronic nature, is contributing to an enlarged medical and economic burden. Conventional immunosuppressive agents are designed to alleviate symptoms but do not constitute an effective therapy, highlighting a need to develop new alternatives. In this regard, mesenchymal stem cells (MSCs) have demonstrated powerful immunosuppressive and regenerative effects. MSC-derived extracellular vesicles (MSC-EVs) have shown some advantages, such as less immunogenicity, and are proposed as novel therapies for ADs. In this review, we summarize current perspectives on therapeutic options for ADs based on MSCs and MSC-EVs, focusing particularly on their mechanism of action exerted through their non-coding RNA (ncRNA) cargo. A complete state-of-the-art review was performed, centralized on some of the most severe ADs (rheumatoid arthritis, autoimmune type 1 diabetes mellitus, and systemic lupus erythematosus), giving evidence that a promising field is evolving to overcome the current knowledge and provide new therapeutic possibilities centered on MSC-EVs and their role as ncRNA delivery vehicles for AD gene therapy.
Collapse
Affiliation(s)
- Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Correspondence: (A.O.); (R.C.); Tel.: +34-96398-3916 (R.C.); Fax: +34-96398-7860 (R.C.)
| | - Maria J. Forner
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Internal Medicine Unit, Hospital Clinico Universitario, 46010 Valencia, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Correspondence: (A.O.); (R.C.); Tel.: +34-96398-3916 (R.C.); Fax: +34-96398-7860 (R.C.)
| |
Collapse
|
37
|
Wan XX, Zhang DY, Khan MA, Zheng SY, Hu XM, Zhang Q, Yang RH, Xiong K. Stem Cell Transplantation in the Treatment of Type 1 Diabetes Mellitus: From Insulin Replacement to Beta-Cell Replacement. Front Endocrinol (Lausanne) 2022; 13:859638. [PMID: 35370989 PMCID: PMC8972968 DOI: 10.3389/fendo.2022.859638] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that attacks pancreatic β-cells, leading to the destruction of insulitis-related islet β-cells. Islet β-cell transplantation has been proven as a curative measure in T1DM. However, a logarithmic increase in the global population with diabetes, limited donor supply, and the need for lifelong immunosuppression restrict the widespread use of β-cell transplantation. Numerous therapeutic approaches have been taken to search for substitutes of β-cells, among which stem cell transplantation is one of the most promising alternatives. Stem cells have demonstrated the potential efficacy to treat T1DM by reconstitution of immunotolerance and preservation of islet β-cell function in recent research. cGMP-grade stem cell products have been used in human clinical trials, showing that stem cell transplantation has beneficial effects on T1DM, with no obvious adverse reactions. To better achieve remission of T1DM by stem cell transplantation, in this work, we explain the progression of stem cell transplantation such as mesenchymal stem cells (MSCs), human embryonic stem cells (hESCs), and bone marrow hematopoietic stem cells (BM-HSCs) to restore the immunotolerance and preserve the islet β-cell function of T1DM in recent years. This review article provides evidence of the clinical applications of stem cell therapy in the treatment of T1DM.
Collapse
Affiliation(s)
- Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan-Yi Zhang
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Md. Asaduzzaman Khan
- The Research Centre for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Sheng-Yuan Zheng
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Rong-Hua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| |
Collapse
|
38
|
The Inability of Ex Vivo Expanded Mesenchymal Stem/Stromal Cells to Survive in Newborn Mice and to Induce Transplantation Tolerance. Stem Cell Rev Rep 2022; 18:2365-2375. [PMID: 35288846 DOI: 10.1007/s12015-022-10363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/09/2022]
Abstract
An encounter of the developing immune system with an antigen results in the induction of immunological areactivity to this antigen. In the case of transplantation antigens, the application of allogeneic hematopoietic cells induces a state of neonatal transplantation tolerance. This tolerance depends on the establishment of cellular chimerism, when allogeneic cells survive in the neonatally treated recipient. Since mesenchymal stem/stromal cells (MSCs) have been shown to have low immunogenicity and often survive in allogeneic recipients, we attempted to use these cells for induction of transplantation tolerance. Newborn (less than 24 h old) C57BL/6 mice were injected intraperitoneally with 5 × 106 adipose tissue-derived MSCs isolated from allogeneic donors and the fate and survival of these cells were monitored. The impact of MSC application on the proportion of cell populations of the immune system and immunological reactivity was assessed. In addition, the survival of skin allografts in neonatally treated recipients was tested. We found that in vitro expanded MSCs did not survive in neonatal recipients, and the living MSCs were not detected few days after their application. Furthermore, there were no significant changes in the proportion of individual immune cell populations including CD4+ cell lineages, but we detected an apparent shift to the production of Th1 cytokines IL-2 and IFN-γ in neonatally treated mice. However, skin allografts in the MSC-treated recipients were promptly rejected. These results therefore show that in vitro expanded MSCs do not survive in neonatal recipients, but induce a cytokine imbalance without induction of transplantation tolerance.
Collapse
|
39
|
Velarde F, Ezquerra S, Delbruyere X, Caicedo A, Hidalgo Y, Khoury M. Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact. Cell Mol Life Sci 2022; 79:177. [PMID: 35247083 PMCID: PMC11073024 DOI: 10.1007/s00018-022-04207-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
There is a steadily growing interest in the use of mitochondria as therapeutic agents. The use of mitochondria derived from mesenchymal stem/stromal cells (MSCs) for therapeutic purposes represents an innovative approach to treat many diseases (immune deregulation, inflammation-related disorders, wound healing, ischemic events, and aging) with an increasing amount of promising evidence, ranging from preclinical to clinical research. Furthermore, the eventual reversal, induced by the intercellular mitochondrial transfer, of the metabolic and pro-inflammatory profile, opens new avenues to the understanding of diseases' etiology, their relation to both systemic and local risk factors, and also leads to new therapeutic tools for the control of inflammatory and degenerative diseases. To this end, we illustrate in this review, the triggers and mechanisms behind the transfer of mitochondria employed by MSCs and the underlying benefits as well as the possible adverse effects of MSCs mitochondrial exchange. We relay the rationale and opportunities for the use of these organelles in the clinic as cell-based product.
Collapse
Affiliation(s)
- Francesca Velarde
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Sarah Ezquerra
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Xavier Delbruyere
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Andres Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Yessia Hidalgo
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
| | - Maroun Khoury
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
| |
Collapse
|
40
|
Gaudreau MC, Gudi RR, Li G, Johnson BM, Vasu C. Gastrin producing syngeneic mesenchymal stem cells protect non-obese diabetic mice from type 1 diabetes. Autoimmunity 2022; 55:95-108. [PMID: 34882054 PMCID: PMC9875811 DOI: 10.1080/08916934.2021.2012165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Progressive destruction of pancreatic islet β-cells by immune cells is a primary feature of type 1 diabetes (T1D) and therapies that can restore the functional β-cell mass are needed to alleviate disease progression. Here, we report the use of mesenchymal stromal/stem cells (MSCs) for the production and delivery of Gastrin, a peptide hormone that is produced by intestinal cells and foetal islets and can increase β-Cell mass, to promote protection from T1D. A single injection of syngeneic MSCs that were engineered to express Gastrin (Gastrin-MSCs) caused a significant delay in hyperglycaemia in non-obese diabetic (NOD) mice compared to engineered control-MSCs. Similar treatment of early-hyperglycaemic mice caused the restoration of euglycemia for a considerable duration, and these therapeutic effects were associated with the protection of, and/or higher frequencies of, insulin-producing islets and less severe insulitis. While the overall immune cell phenotype was not affected profoundly upon treatment using Gastrin-MSCs or upon in vitro culture, pancreatic lymph node cells from Gastrin-MSC treated mice, upon ex vivo challenge with self-antigen, showed a Th2 and Th17 bias, and diminished the diabetogenic property in NOD-Rag1 deficient mice suggesting a disease protective immune modulation under Gastrin-MSC treatment associated protection from hyperglycaemia. Overall, this study shows the potential of production and delivery of Gastrin in vivo, by MSCs, in protecting insulin-producing β-cells and ameliorating the disease progression in T1D.
Collapse
Affiliation(s)
- Marie-Claude Gaudreau
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Radhika R. Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Gongbo Li
- Department of Surgery, University of Illinois at Chicago, Chicago, IL-60612
| | - Benjamin M. Johnson
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425,Department of Surgery, University of Illinois at Chicago, Chicago, IL-60612,Address Correspondence: Chenthamarakshan Vasu, Medical University of South Carolina, Microbiology and Immunology, 173 Ashley Avenue, MSC 509, BSB214B, Charleston, SC-29425, Phone: 843-792-1032, Fax: 843-792-9588,
| |
Collapse
|
41
|
Khalil F, Alwan A, Ralph P, Soliman S, Abdelrahim EA, Abdelhafez EA, Opara EC. Effect of Alginate Microbead Encapsulation of Placental Mesenchymal Stem Cells on Their Immunomodulatory Function. Ann Biomed Eng 2022; 50:291-302. [DOI: 10.1007/s10439-022-02920-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
|
42
|
Yu Y, Li L, Lin S, Hu J. Update of application of olfactory ensheathing cells and stem cells/exosomes in the treatment of retinal disorders. Stem Cell Res Ther 2022; 13:11. [PMID: 35012635 PMCID: PMC8751324 DOI: 10.1186/s13287-021-02685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Age-related macular degeneration, diabetic retinopathy, retinitis pigmentosa and other retinal disorders are the main causes of visual impairment worldwide. In the past, these retinal diseases, especially dry age-related macular degeneration, proliferative diabetic retinopathy and retinitis pigmentosa, were treated with traditional surgery and drugs. However, the effect was moderate. In recent years, researchers have used embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, olfactory ensheathing cells and other stem cells to conduct experiments and found that stem cells can inhibit inflammation, regulate immune response, secrete neurotrophic factors, and differentiate into retinal cells to replace and promote restoration of the damaged parts. These stem cells have the potential to treat retinal diseases. Whether it is in animal experiments or clinical trials, the increase in the number of retinal cells, maintenance of function and improvement of visual function all reflect the advanced of stem cells to treat retinal diseases, but its risk preserves the donor's hidden pathogenic genes, immune rejection and tumorigenicity. With the development of exosomes study, researchers have discovered that exosomes come from a wide range of sources and can be secreted by almost all types of cells. Using exosomes with stem cell to treat retinal diseases is more effective than using stem cells alone. This review article summarizes the recent advances in the application of olfactory ensheathing cells and stem cells/exosomes in the treatment of retinal disorders.
Collapse
Affiliation(s)
- Yang Yu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Center of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, 362000, Fujian Province, China
| | - Licheng Li
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Center of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Jianmin Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Center of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, 362000, Fujian Province, China. .,The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350004, Fujian Province, China.
| |
Collapse
|
43
|
Sharma S, Jeyaraman M, Muthu S. Role of stem cell therapy in neurosciences. ESSENTIALS OF EVIDENCE-BASED PRACTICE OF NEUROANESTHESIA AND NEUROCRITICAL CARE 2022:163-179. [DOI: 10.1016/b978-0-12-821776-4.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
44
|
Sahebnasagh A, Saghafi F, Negintaji S, Hu T, Shabani-Borujeni M, Safdari M, Ghaleno HR, Miao L, Qi Y, Wang M, Liao P, Sureda A, Simal-Gándara J, Nabavi SM, Xiao J. Nitric Oxide and Immune Responses in Cancer: Searching for New Therapeutic Strategies. Curr Med Chem 2022; 29:1561-1595. [PMID: 34238142 DOI: 10.2174/0929867328666210707194543] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
In recent years, there has been an increasing interest in understanding the mysterious functions of nitric oxide (NO) and how this pleiotropic signaling molecule contributes to tumorigenesis. This review attempts to expose and discuss the information available on the immunomodulatory role of NO in cancer and recent approaches to the role of NO donors in the area of immunotherapy. To address the goal, the following databases were searched to identify relevant literature concerning empirical evidence: The Cochrane Library, Pubmed, Medline, and EMBASE from 1980 through March 2020. Valuable attempts have been made to develop distinctive NO-based cancer therapy. Although the data do not allow generalization, the evidence seems to indicate that low/moderate levels may favor tumorigenesis, while higher levels would exert antitumor effects. In this sense, the use of NO donors could have an important therapeutic potential within immunotherapy, although there are still no clinical trials. The emerging understanding of NO-regulated immune responses in cancer may help unravel the recent features of this "doubleedged sword" in cancer physiological and pathologic processes and its potential use as a therapeutic agent for cancer treatment. In short, in this review, we discuss the complex cellular mechanism in which NO, as a pleiotropic signaling molecule, participates in cancer pathophysiology. We also debate the dual role of NO in cancer and tumor progression and clinical approaches for inducible nitric oxide synthase (iNOS) based therapy against cancer.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sina Negintaji
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tingyan Hu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Mojtaba Shabani-Borujeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Lingchao Miao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands, Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesus Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
- International Research Centre for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
45
|
Parveen A, Mishra S, Srivastava M, Chaudhary DK, Kapoor D, Gupta A, Tiwari S. Circulating Placental Alkaline Phosphatase Expressing Exosomes in Maternal Blood Showed Temporal Regulation of Placental Genes. Front Med (Lausanne) 2021; 8:758971. [PMID: 35004728 PMCID: PMC8739800 DOI: 10.3389/fmed.2021.758971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Analysis of placental genes could unravel maternal-fetal complications. However, inaccessibility to placental tissue during early pregnancy has limited this effort. We tested if exosomes (Exo) released by human placenta in the maternal circulation harbor crucial placental genes. Methods: Placental alkaline phosphate positive exosomes (ExoPLAP) were enriched from maternal blood collected at the following gestational weeks; 6-8th (T1), 12-14th (T2), 20-24th (T3), and 28th-32nd (T4). Nanotracking analysis, electron microscopy, dynamic light scattering, and immunoblotting were used for characterization. We used microarray for transcriptome and quantitative PCR (qPCR) for gene analysis in ExoPLAP. Results: Physical characterization and presence of CD63 and CD9 proteins confirmed the successful ExoPLAP enrichment. Four of the selected 36 placental genes did not amplify in ExoPLAP, while 32 showed regulations (n = 3-8/time point). Most genes in ExoPLAP showed significantly lower expression at T2-T4, relative to T1 (p < 0.05), such as NOS3, TNFSF10, OR5H6, APOL3, and NEDD4L. In contrast, genes, such as ATF6, NEDD1, and IGF2, had significantly higher expression at T2-T4 relative to T1. Unbiased gene profiling by microarray also confirmed expression of above genes in ExoPLAP-transcriptome. In addition, repeated measure ANOVA showed a significant change in the ExoPLAP transcriptome from T2 to T4 (n = 5/time point). Conclusion: Placental alkaline phosphate positive exosomes transcriptome changed with gestational age advancement in healthy women. The transcriptome expressed crucial placental genes involved in early embryonic development, such as actin cytoskeleton organization, appropriate cell positioning, DNA replication, and B-cell regulation for protecting mammalian fetuses from rejection. Thus, ExoPLAP in maternal blood could be a promising source to study the placental genes regulation for non-invasive monitoring of placental health.
Collapse
Affiliation(s)
- Arshiya Parveen
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Suman Mishra
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Medha Srivastava
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Dharmendra K. Chaudhary
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Deepa Kapoor
- General Hospital, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Amrit Gupta
- Department of Maternal & Reproductive Health, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
46
|
Franco ML, Beyerstedt S, Rangel ÉB. Klotho and Mesenchymal Stem Cells: A Review on Cell and Gene Therapy for Chronic Kidney Disease and Acute Kidney Disease. Pharmaceutics 2021; 14:11. [PMID: 35056905 PMCID: PMC8778857 DOI: 10.3390/pharmaceutics14010011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) and acute kidney injury (AKI) are public health problems, and their prevalence rates have increased with the aging of the population. They are associated with the presence of comorbidities, in particular diabetes mellitus and hypertension, resulting in a high financial burden for the health system. Studies have indicated Klotho as a promising therapeutic approach for these conditions. Klotho reduces inflammation, oxidative stress and fibrosis and counter-regulates the renin-angiotensin-aldosterone system. In CKD and AKI, Klotho expression is downregulated from early stages and correlates with disease progression. Therefore, the restoration of its levels, through exogenous or endogenous pathways, has renoprotective effects. An important strategy for administering Klotho is through mesenchymal stem cells (MSCs). In summary, this review comprises in vitro and in vivo studies on the therapeutic potential of Klotho for the treatment of CKD and AKI through the administration of MSCs.
Collapse
Affiliation(s)
- Marcella Liciani Franco
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
| | - Stephany Beyerstedt
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
| | - Érika Bevilaqua Rangel
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (M.L.F.); (S.B.)
- Nephrology Division, Federal University of São Paulo, Sao Paulo 04038-901, Brazil
| |
Collapse
|
47
|
Sharma R, Kumari M, Mishra S, Chaudhary DK, Kumar A, Avni B, Tiwari S. Exosomes Secreted by Umbilical Cord Blood-Derived Mesenchymal Stem Cell Attenuate Diabetes in Mice. J Diabetes Res 2021; 2021:9534574. [PMID: 34926699 PMCID: PMC8683199 DOI: 10.1155/2021/9534574] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy is an innovative approach in diabetes due to its capacity to modulate tissue microenvironment and regeneration of glucose-responsive insulin-producing cells. In this study, we investigated the role of MSC-derived exosomes in pancreatic regeneration and insulin secretion in mice with streptozotocin-induced diabetes. Mesenchymal stem cells (MSCs) were isolated and characterized from umbilical cord blood (UCB). Exosomes were isolated and characterized from these MSCs. Diabetes was induced in male C57Bl/6 mice by streptozotocin (STZ; 40 mg/kg body weight, i.p.) for five consecutive days. The diabetic mice were administered (i.v.) with MSC (1 × 105 umbilical cord blood MSC cells/mice/day), their derived exosomes (the MSC-Exo group that received exosomes derived from 1 × 105 MSC cells/mice/day), or the same volume of PBS. Before administration, the potency of MSCs and their exosomes was evaluated in vitro by T cell activation experiments. After day 7 of the treatments, blood samples and pancreatic tissues were collected. Histochemistry was performed to check cellular architecture and β cell regeneration. In body weight, blood glucose level, and insulin level, cell proliferation assay was done to confirm regeneration of cells after MSC and MSC-Exo treatments. Hyperglycemia was also attenuated in these mice with a concomitant increase in insulin production and an improved histological structure compared to mice in the PBS-treated group. We found increased expression of genes associated with tissue regeneration pathways, including Reg2, Reg3, and Amy2b in the pancreatic tissue of mice treated with MSC or MSC-Exo relative to PBS-treated mice. MicroRNA profiling of MSC-derived exosomes showed the presence of miRs that may facilitate pancreatic regeneration by regulating the Extl3-Reg-cyclinD1 pathway. These results demonstrate a potential therapeutic role of umbilical cord blood MSC-derived exosomes in attenuating insulin deficiency by activating pancreatic islets' regenerative abilities.
Collapse
Affiliation(s)
- Rajni Sharma
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Manju Kumari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Suman Mishra
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Dharmendra K. Chaudhary
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Alok Kumar
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Batia Avni
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
48
|
Vallianou NG, Stratigou T, Geladari E, Tessier CM, Mantzoros CS, Dalamaga M. Diabetes type 1: Can it be treated as an autoimmune disorder? Rev Endocr Metab Disord 2021; 22:859-876. [PMID: 33730229 DOI: 10.1007/s11154-021-09642-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Type 1 Diabetes Mellitus (T1DM) is characterized by progressive autoimmune-mediated destruction of the pancreatic beta-cells leading to insulin deficiency and hyperglycemia. It is associated with significant treatment burden and necessitates life-long insulin therapy. The role of immunotherapy in the prevention and management of T1DM is an evolving area of interest which has the potential to alter the natural history of this disease.In this review, we give insight into recent clinical trials related to the use of immunotherapeutic approaches for T1DM, such as proinflammatory cytokine inhibition, cell-depletion and cell-therapy approaches, autoantigen-specific treatments and stem cell therapies. We highlight the timing of intervention, aspects of therapy including adverse effects and the emergence of a novel lymphocyte crucial in T1DM autoimmunity. We also discuss the role of cardiac autoimmunity and its link to excess CVD risk in T1DM.We conclude that significant advances have been made in development of immunotherapeutic targets and agents for the treatment and prevention of T1DM. These immune-based therapies promise preservation of beta-cells and decreasing insulin dependency. In their current state, immunotherapeutic approaches cannot yet halt the progression from a preclinical state to overt T1DM nor can they replace standard insulin therapy in existing T1DM. It remains to be seen whether immunotherapy will ultimately play a key role in the prevention of progression to overt T1DM and whether it may find a place in our therapeutic armamentarium to improve clinical outcomes and quality of life in established T1DM.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology, Diabetes and Metabolic Diseases, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527, Athens, Goudi, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Christopher M Tessier
- Endocrinology Section, VA Boston Healthcare System, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA.
| | - Christos S Mantzoros
- Endocrinology Section, VA Boston Healthcare System, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527, Athens, Goudi, Greece
| |
Collapse
|
49
|
Lee C, Kim M, Han J, Yoon M, Jung Y. Mesenchymal Stem Cells Influence Activation of Hepatic Stellate Cells, and Constitute a Promising Therapy for Liver Fibrosis. Biomedicines 2021; 9:1598. [PMID: 34829827 PMCID: PMC8615475 DOI: 10.3390/biomedicines9111598] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a common feature of chronic liver disease. Activated hepatic stellate cells (HSCs) are the main drivers of extracellular matrix accumulation in liver fibrosis. Hence, a strategy for regulating HSC activation is crucial in treating liver fibrosis. Mesenchymal stem cells (MSCs) are multipotent stem cells derived from various post-natal organs. Therapeutic approaches involving MSCs have been studied extensively in various diseases, including liver disease. MSCs modulate hepatic inflammation and fibrosis and/or differentiate into hepatocytes by interacting directly with immune cells, HSCs, and hepatocytes and secreting modulators, thereby contributing to reduced liver fibrosis. Cell-free therapy including MSC-released secretomes and extracellular vesicles has elicited extensive attention because they could overcome MSC transplantation limitations. Herein, we provide basic information on hepatic fibrogenesis and the therapeutic potential of MSCs. We also review findings presenting the effects of MSC itself and MSC-based cell-free treatments in liver fibrosis, focusing on HSC activation. Growing evidence supports the anti-fibrotic function of either MSC itself or MSC modulators, although the mechanism underpinning their effects on liver fibrosis has not been established. Further studies are required to investigate the detailed mechanism explaining their functions to expand MSC therapies using the cell itself and cell-free treatments for liver fibrosis.
Collapse
Affiliation(s)
- Chanbin Lee
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (C.L.); (M.K.); (J.H.)
| | - Minju Kim
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (C.L.); (M.K.); (J.H.)
| | - Jinsol Han
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (C.L.); (M.K.); (J.H.)
| | - Myunghee Yoon
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Biomedical Research Institute, Pusan National University, Pusan 46241, Korea;
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (C.L.); (M.K.); (J.H.)
- Departments of Biological Sciences, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
50
|
Qamar AY, Hussain T, Rafique MK, Bang S, Tanga BM, Seong G, Fang X, Saadeldin IM, Cho J. The Role of Stem Cells and Their Derived Extracellular Vesicles in Restoring Female and Male Fertility. Cells 2021; 10:2460. [PMID: 34572109 PMCID: PMC8468931 DOI: 10.3390/cells10092460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Infertility is a globally recognized issue caused by different reproductive disorders. To date, various therapeutic approaches to restore fertility have been attempted including etiology-specific medication, hormonal therapies, surgical excisions, and assisted reproductive technologies. Although these approaches produce results, however, fertility restoration is not achieved in all cases. Advances in using stem cell (SC) therapy hold a great promise for treating infertile patients due to their abilities to self-renew, differentiate, and produce different paracrine factors to regenerate the damaged or injured cells and replenish the affected germ cells. Furthermore, SCs secrete extracellular vesicles (EVs) containing biologically active molecules including nucleic acids, lipids, and proteins. EVs are involved in various physiological and pathological processes and show promising non-cellular therapeutic uses to combat infertility. Several studies have indicated that SCs and/or their derived EVs transplantation plays a crucial role in the regeneration of different segments of the reproductive system, oocyte production, and initiation of sperm production. However, available evidence triggers the need to testify the efficacy of SC transplantation or EVs injection in resolving the infertility issues of the human population. In this review, we highlight the recent literature covering the issues of infertility in females and males, with a special focus on the possible treatments by stem cells or their derived EVs.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tariq Hussain
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Kamran Rafique
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Bereket Molla Tanga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Faculty of Veterinary Medicine, Hawassa University, Hawassa 05, Ethiopia
| | - Gyeonghwan Seong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Islam M Saadeldin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|