1
|
Karic V, Chandran R, Abrahamse H. 940 nm diode laser induced differentiation of human adipose derived stem cells to temporomandibular joint disc cells. BMC Biotechnol 2022; 22:23. [PMID: 36038860 PMCID: PMC9422155 DOI: 10.1186/s12896-022-00754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Background Temporomandibular disorder (TMD) refers to a group of disorders that affect temporomandibular joint (TMJ) and its associated muscles with very limited treatment options. Stem cell research is emerging as one of the promising fields in the treatment of degenerative diseases. The ability of human adipose derived stem cells to differentiate into many cell types is driving special interest in several disease management strategies. Photobiomodulation has enhanced the role of these stem cells through their ability to promote cell proliferation and differentiation. Hence, this study examined the differentiation potential of human adipose derived stem cells (ADSCs) into fibroblasts and chondrocytes using a 940 nm diode laser for possible TMD therapy. Materials and methods ADSCs were cultured at different seeding densities and for different time intervals. After irradiation at 24, 48, 72 h, 1, 2 and 3 weeks, ADSC viability and morphological changes were assessed in groups with and without basic fibroblast growth factor. Additionally, the level of adenosine triphosphate (ATP) in the cells was also recorded. The differentiated fibroblasts and chondrocytes were characterized with flow cytometry and immunofluorescence techniques, at 1- and 2-weeks post-irradiation. Results Increased ATP proliferation and cell viability above 90% were observed in all post-irradiation experimental groups. Post irradiation results from flow cytometry and immunofluorescence at 1- and 2‐weeks confirmed the expression of chondrogenic and fibroblastic cell surface markers. Conclusion This study describes stimulatory techniques utilized to differentiate ADSCs into fibroblastic and chondrogenic phenotypes using diode lasers at 940 nm. The study proposes a new treatment model for patients with degenerative disc diseases of the TMJ. The study will offer new possibilities in tissue engineering and TMJ disc management through photobiomodulation of ADSCs using a 940 nm diode laser.
Collapse
Affiliation(s)
- Vesna Karic
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, 2028, Doornfontein, Johannesburg, South Africa.,Laser Therapy in Dentistry Division, Department of Prosthodontic and Oral Rehabilitation, Health Sciences Faculty, School of Oral Health Sciences, WITS University, 7 York Street, PO Box 2010, Johannesburg, 2193, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, 2028, Doornfontein, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, 2028, Doornfontein, Johannesburg, South Africa.
| |
Collapse
|
2
|
Bai B, Hou M, Hao J, Liu Y, Ji G, Zhou G. Research progress in seed cells for cartilage tissue engineering. Regen Med 2022; 17:659-675. [PMID: 35703020 DOI: 10.2217/rme-2022-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cartilage defects trouble millions of patients worldwide and their repair via conventional treatment is difficult. Excitingly, tissue engineering technology provides a promising strategy for efficient cartilage regeneration with structural regeneration and functional reconstruction. Seed cells, as biological prerequisites for cartilage regeneration, determine the quality of regenerated cartilage. The proliferation, differentiation and chondrogenesis of seed cells are greatly affected by their type, origin and generation. Thus, a systematic description of the characteristics of seed cells is necessary. This article reviews in detail the cellular characteristics, research progress, clinical translation challenges and future research directions of seed cells while providing guidelines for selecting appropriate seed cells for cartilage regeneration.
Collapse
Affiliation(s)
- Baoshuai Bai
- Research Institute of Plastic Surgery, Wei Fang Medical University, Wei Fang, Shandong, 261053, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| | - Mengjie Hou
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| | - Junxiang Hao
- Research Institute of Plastic Surgery, Wei Fang Medical University, Wei Fang, Shandong, 261053, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| | - Yanhan Liu
- Shanghai JiaoTong University School of Medicine, Shanghai, 200240, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200240, China
| | - Guangdong Zhou
- Research Institute of Plastic Surgery, Wei Fang Medical University, Wei Fang, Shandong, 261053, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| |
Collapse
|
3
|
Williams RJ, Tryfonidou MA, Snuggs JW, Le Maitre CL. Cell sources proposed for nucleus pulposus regeneration. JOR Spine 2021; 4:e1175. [PMID: 35005441 PMCID: PMC8717099 DOI: 10.1002/jsp2.1175] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Lower back pain (LBP) occurs in 80% of adults in their lifetime; resulting in LBP being one of the biggest causes of disability worldwide. Chronic LBP has been linked to the degeneration of the intervertebral disc (IVD). The current treatments for chronic back pain only provide alleviation of symptoms through pain relief, tissue removal, or spinal fusion; none of which target regenerating the degenerate IVD. As nucleus pulposus (NP) degeneration is thought to represent a key initiation site of IVD degeneration, cell therapy that specifically targets the restoration of the NP has been reviewed here. A literature search to quantitatively assess all cell types used in NP regeneration was undertaken. With key cell sources: NP cells; annulus fibrosus cells; notochordal cells; chondrocytes; bone marrow mesenchymal stromal cells; adipose-derived stromal cells; and induced pluripotent stem cells extensively analyzed for their regenerative potential of the NP. This review highlights: accessibility; expansion capability in vitro; cell survival in an IVD environment; regenerative potential; and safety for these key potential cell sources. In conclusion, while several potential cell sources have been proposed, iPSC may provide the most promising regenerative potential.
Collapse
Affiliation(s)
- Rebecca J. Williams
- Biomedical Research Centre, BiosciencesSheffield Hallam UniversitySheffieldUK
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | |
Collapse
|
4
|
Fernández Muñoz B, Lopez-Navas L, Gonzalez Bermejo M, Lomas Romero IM, Montiel Aguilera MÁ, Campos Cuerva R, Arribas Arribas B, Nogueras S, Carmona Sánchez G, Santos González M. A PROPRIETARY GMP HUMAN PLATELET LYSATE FOR THE EXPANSION OF DERMAL FIBROBLASTS FOR CLINICAL APPLICATIONS. Platelets 2021; 33:98-109. [PMID: 33393414 DOI: 10.1080/09537104.2020.1856356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent years have witnessed the introduction of ex vivo expanded dermal fibroblasts for several cell therapy and tissue-engineering applications, including the treatment of facial scars and burns, representing a promising cell type for regenerative medicine. We tested different in-house produced human platelet lysate (HPL) solutions against fetal bovine serum as supplements for in vitro fibroblast expansion by comparing cell yield, molecular marker expression, extracellular matrix (ECM) generation, genomic stability and global gene expression. Our in-house produced HPL supported fibroblast growth at levels similar to those for FBS and commercial HPL products and was superior to AB human serum. Cells grown in HPL maintained a fibroblast phenotype (VIM+, CD44+, CD13+, CD90+), ECM generation capacity (FN+, COL1+) and a normal karyotype, although gene expression profiling revealed changes related to cell metabolism, adhesion and cellular senescence. The HPL manufacturing process was validated within a GMP compliant system and the solution was stable at -80ºC and -20ºC for 2 years. Dermal fibroblasts expanded in vitro with HPL maintain a normal karyotype and expression of fibroblast markers, with only minor changes in their global gene expression profile. Our in-house produced GMP-HPL is an efficient, safe and economical cell culture supplement that can help increase the healthcare activity of blood transfusion centers through the re-use of transfusional plasma and platelets approaching their expiration date. Currently, our HPL solution is approved by the Spanish Agency of Medicines and Medical Devices and is being used in the manufacture of cell therapy products.
Collapse
Affiliation(s)
- Beatriz Fernández Muñoz
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Departamento de Neurociencia Aplicada, Instituto de Investigaciones Biomédicas de Sevilla (IBIS), Seville, Spain
| | - Luis Lopez-Navas
- Unidad de Coordinación, Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - María Gonzalez Bermejo
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Program in Biología Molecular, Biomedicina e Investigación Clínica, University of Seville, Seville, Spain
| | - Isabel María Lomas Romero
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - Miguel Ángel Montiel Aguilera
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - Rafael Campos Cuerva
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Program in Biología Molecular, Biomedicina e Investigación Clínica, University of Seville, Seville, Spain.,Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| | - Blanca Arribas Arribas
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Program in Pharmaceutical Technology and Medicine Sciences (Pharmacy), University of Seville, Seville, Spain
| | - Sonia Nogueras
- Departamento de Terapia Celular, Instituto Maimónides de Investigación Biomédica of Córdoba (IMIBIC), Córdoba, Spain.,Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Gloria Carmona Sánchez
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Unidad de Coordinación, Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Program in Biomedicine, University of Granada, Granada, Spain
| | - Mónica Santos González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| |
Collapse
|
5
|
Karic V, Chandran R, Abrahamse H. Laser-Induced Differentiation of Human Adipose-Derived Stem Cells to Temporomandibular Joint Disc Cells. Lasers Surg Med 2020; 53:567-577. [PMID: 33030751 DOI: 10.1002/lsm.23332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/16/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Temporomandibular disorder (TMD) is an incapacitating disease with temporomandibular joint (TMJ) disc degenerative changes in patients. Despite several research attempts to find a definitive treatment, there is no evidence of a permanent solution. The objective of the current study was to observe the role of 660 nm diode laser in the differentiation of human adipose-derived stem cells (ADSCs) to fibroblasts and chondrocytes. STUDY DESIGN/MATERIALS AND METHODS After irradiation, the morphology, viability, and adenosine triphosphate (ATP) proliferation of the ADSCs were analyzed at different time intervals. The differentiation of ADSCs toward fibroblastic and chondrogenic phenotypes was supported using flow cytometry and immunofluorescence at 1- and 2-week post-irradiation. RESULTS More than 90% of viable cells were observed in all experimental groups, with an increase in ATP proliferation. Flow cytometry analyses and immunofluorescence demonstrated the presence of chondrogenic and fibroblastic cell surface markers at 1- and 2-week post-irradiation. CONCLUSION This study has demonstrated methods to induce the differentiation of ADSCs toward fibroblastic and chondrogenic phenotypes with a 660 nm diode laser. The study also proposes a future alternative method of treatment for patients with degenerative TMJ disc disorders and presents a positive prospect in the application of photobiomodulation and ADSCs in the treatment of degenerative TMJ disc. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Vesna Karic
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO, Box 17011, Doornfontein, Johannesburg, 2028, South Africa.,Department of Prosthodontic and Oral Rehabilitation, and Laser Therapy in Dentistry, Division, School of Oral Sciences, Health Sciences Faculty, WITS University, PO Box, 2010, 7 York Street, Johannesburg, 2193, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO, Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO, Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
6
|
Hu ZL, Li HY, Chang X, Li YY, Liu CH, Gao XX, Zhai Y, Chen YX, Li CQ. Exosomes derived from stem cells as an emerging therapeutic strategy for intervertebral disc degeneration. World J Stem Cells 2020; 12:803-813. [PMID: 32952860 PMCID: PMC7477652 DOI: 10.4252/wjsc.v12.i8.803] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/09/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degenerative diseases are a common problem in the world, and they cause substantial social and economic burdens for people. The current methods for treating IVD degenerative diseases mainly include surgery and conservative treatment, which cannot fundamentally restore the normal structure of the disc. With continuous research on the mechanism of degeneration and the development of regenerative medicine, rapid progress has been made in the field of regenerative medicine regarding the use of stem cell-derived exosomes, which are active biological substances used in intercellular communication, because they show a strong effect in promoting tissue regeneration. The study of exosomes in the field of IVD degeneration has just begun, and many surprising achievements have been made. This paper mainly reviews the biological characteristics of exosomes and highlights the current status of exosomes in the field of IVD degeneration, as well as future developments regarding exosomes.
Collapse
Affiliation(s)
- Zhi-Lei Hu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China
| | - Hai-Yin Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China
| | - Yue-Yang Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China
| | - Chen-Hao Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China
| | - Xiao-Xin Gao
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China
| | - Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China
| | - Yu-Xuan Chen
- Center of Traumatic Orthopedics, People's Liberation Army 990 Hospital, Xinyang 46400, Henan Province, China
| | - Chang-Qing Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China
| |
Collapse
|
7
|
Huang H, Zhong L, Zhou J, Hou Y, Zhang Z, Xing X, Sun J. Leydig-like cells derived from reprogrammed human foreskin fibroblasts by CRISPR/dCas9 increase the level of serum testosterone in castrated male rats. J Cell Mol Med 2020; 24:3971-3981. [PMID: 32160419 PMCID: PMC7171312 DOI: 10.1111/jcmm.15018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
In the past few years, Leydig cell (LC) transplantation has been regarded as an effective strategy for providing physiological patterns of testosterone in vivo. Recently, we have successfully converted human foreskin fibroblasts (HFFs) into functional Leydig‐like cells (iLCs) in vitro by using the CRISPR/dCas9 system, which shows promising potential for seed cells. However, it is not known whether the reprogrammed iLCs can survive or restore serum testosterone levels in vivo. Therefore, in this study, we evaluate whether reprogrammed iLCs can restore the serum testosterone levels of castrated rats when they are transplanted into the fibrous capsule. We first developed the castrated Sprague Dawley rat model through bilateral orchiectomy and subsequently injected extracellular matrix gel containing transplanted cells into the fibrous capsule of castrated rats. Finally, we evaluated dynamic serum levels of testosterone and luteinizing hormone (LH) in castrated rats, the survival of implanted iLCs, and the expression levels of Leydig steroidogenic enzymes by immunofluorescence staining and Western blotting. Our results demonstrated that implanted iLCs could partially restore the serum testosterone level of castrated rats, weakly mimic the role of adult Leydig cells in the hypothalamic‐pituitary‐gonadal axis for a short period, and survive and secrete testosterone, through 6 weeks after transplantation. Therefore, this study may be valuable for treating male hypogonadism in the future.
Collapse
Affiliation(s)
- Hua Huang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhong
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Zhou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Hou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyuan Zhang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Xing
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Sun
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Ichim TE, O'Heeron P, Kesari S. Fibroblasts as a practical alternative to mesenchymal stem cells. J Transl Med 2018; 16:212. [PMID: 30053821 PMCID: PMC6064181 DOI: 10.1186/s12967-018-1536-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/01/2018] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy offers great potential for treatment of disease through the multifunctional and responsive ability of these cells. In numerous contexts, MSC have been shown to reduce inflammation, modulate immune responses, and provide trophic factor support for regeneration. While the most commonly used MSC source, the bone marrow provides relatively little starting material for cellular expansion, and requires invasive extraction means, fibroblasts are easily harvested in large numbers from various biological wastes. Additionally, in vitro expansion of fibroblasts is significantly easier given the robustness of these cells in tissue culture and shorter doubling time compared to typical MSC. In this paper we put forward the concept that in some cases, fibroblasts may be utilized as a more practical, and potentially more effective cell therapy than mesenchymal stem cells. Anti-inflammatory, immune modulatory, and regenerative properties of fibroblasts will be discussed in the context of regenerative medicine.
Collapse
Affiliation(s)
| | | | - Santosh Kesari
- Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA
| |
Collapse
|