1
|
Gu Z, He Y, Xiang H, Qin Q, Cao X, Jiang K, Zhang H, Li Y. Self-healing injectable multifunctional hydrogels for intervertebral disc disease. Mater Today Bio 2025; 32:101655. [PMID: 40166378 PMCID: PMC11957681 DOI: 10.1016/j.mtbio.2025.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is increasingly prevalent in aging societies and poses a significant health challenge. Due to the limited blood supply to the disc, oral medications and systemic treatments are often ineffective. Consequently, localized injection therapies, which deliver therapeutic agents directly to the degenerated disc, have emerged as more efficient. Self-healing injectable hydrogels are particularly promising due to their potential for minimally invasive delivery, precise implantation, and targeted drug release into hard-to-reach tissue sites, including those requiring prolonged healing. Their dynamic viscoelastic properties accurately replicate the mechanical environment of the natural nucleus pulposus, providing cells with an adaptive biomimetic microenvironment. This review will initially discuss the anatomy and pathophysiology of intervertebral discs, current treatments, and their limitations. Subsequently, we conduct bibliometric analysis to explore the research hotspots and trends in applying injectable hydrogel technology to treat IVDD. It will then explore the promising features of injectable hydrogels in biomedical applications such as drug, protein, cells and gene delivery, tissue engineering and regenerative medicine. We discuss the construction mechanisms of injectable hydrogels via physical interactions, chemical and biological crosslinkers, and discuss the selection of biomaterials and fabrication methods for developing novel hydrogels for IVD tissue engineering. The article concludes with future perspectives on the application of injectable hydrogels in this field.
Collapse
Affiliation(s)
- Zhengrong Gu
- Department of Orthopedics, Affiliated Guang'an District People's Hospital of North Sichuan Medical College, Guang'an County, 638000, PR China
| | - Yi He
- Department of Orthopedics, Affiliated Nanbu People's Hospital of North Sichuan Medical College, Nanbu County, Nanchong, 637000, PR China
| | - Honglin Xiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Qiwei Qin
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xinna Cao
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Ke Jiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Haoshaqiang Zhang
- Department of Orthopedics Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, PR China
| | - Yuling Li
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
2
|
Zhang Y, Nüesch C, Mündermann A, Halbeisen F, Schären S, Netzer C. Is Age a Risk Factor for Early Postoperative Cage Subsidence After Transforaminal Lumbar Interbody Fusion? A Retrospective Study in 170 Patients. Global Spine J 2025; 15:940-948. [PMID: 38124312 PMCID: PMC11877678 DOI: 10.1177/21925682231217692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
STUDY DESIGN Retrospective observational study. OBJECTIVES We aim to evaluate whether age is a risk factor for cage subsidence, and whether other patient characteristics, preoperative radiological or imaging parameters are associated with cage subsidence and the need for revision surgery in patients undergoing transforaminal lumbar interbody fusion (TLIF). METHODS Patient demographics and surgery-related information were extracted. Cage subsidence was evaluated using upright standing sagittal plane X-rays and defined as more than 2 mm migration of the cage into the adjacent vertebral body. Patients who received revision surgery within 1 year for any reason were recorded. Radiographic parameters were measured. Univariable logistic regression models were used to evaluate the risk factors for cage subsidence and need for revision surgery. RESULTS At 3-month and 1-year follow-up, cage subsidence was observed in 28 patients (16.5%) and 58 patients (34.1%), respectively. Twenty-seven patients received revision surgery within the first year after TLIF. Age (odds ratio (OR): 1.07 per year) and male sex (OR: 2.76) had a significantly increased odds ratio for cage subsidence 3 months after TLIF. Male sex (OR: 2.55) but not age was a significant risk factor for cage subsidence 1 year after TLIF. Of all assessed risk factors, only BMI (OR: 1.11 per kg/m2) had a significantly increased risk for the need of revision surgery. CONCLUSIONS Age was associated with cage subsidence 3 months but not 1 year after TLIF suggesting that age is only a risk factor for early cage subsidence and not in a longer follow-up.
Collapse
Affiliation(s)
- Yuancheng Zhang
- Department of Spine Surgery, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Corina Nüesch
- Department of Spine Surgery, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
| | - Annegret Mündermann
- Department of Spine Surgery, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
| | - Florian Halbeisen
- Institute for Clinical Epidemiology and Biostatistics, University Hospital Basel, Basel, Switzerland
| | - Stefan Schären
- Department of Spine Surgery, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Cordula Netzer
- Department of Spine Surgery, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Li F, Chen M, Zhang M, Chen S, Qu M, He S, Wang L, Wu X, Xiao G. Targeting Piezo1 channel to alleviate intervertebral disc degeneration. J Orthop Translat 2025; 51:145-158. [PMID: 40129609 PMCID: PMC11930658 DOI: 10.1016/j.jot.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 03/26/2025] Open
Abstract
Background Low back pain impacts over 600 million people worldwide, predominantly due to intervertebral disc degeneration. This study focuses on the role of Piezo1, a crucial mechanosensitive ion channel protein, in the pathology and potential treatment of disc degeneration. Materials and methods To investigate the effects of disc-specific Piezo1 deletion, we generated Aggrecan CreERT2 ; Piezo1 fl/fl mice and examined both lumbar spine instability (LSI)- and aging-induced disc degeneration. Additionally, the effect of pharmacological inhibition of Piezo1 was evaluated using GsMTx4, a potent Piezo1 antagonist, in an ex vivo model stimulated with IL-1β to induce disc degeneration. Assessments included histological examinations, immunofluorescence, and western blot analyses to thoroughly characterize the alterations in the intervertebral discs. Results Elevated expression of Piezo1 was detected in the nucleus pulposus (NP) of intervertebral discs with advanced disc degeneration in both aged mice and human patients. Inducible deletion of Piezo1 expression in aggrecan-expressing disc cells significantly reduced lumbar disc degeneration, decreased extracellular matrix (ECM) degradation, and lowered apoptosis in NP cells, observed in both aged mice and those undergoing LSI surgery. Excessive compression loading (CL) upregulated Piezo1 expression, induced ECM disruption, and increased apoptosis in NP cells, whereas inhibition of Piezo1 with GsMTx4 effectively mitigated these pathological changes. Furthermore, in ex vivo cultured mouse discs, GsMTx4 treatment significantly alleviated IL-1β-induced degenerative damages, restored ECM anabolism, and reduced apoptosis. Conclusions The findings suggest that Piezo1 plays a critical role in the development of disc degeneration and highlight its potential as a therapeutic target. Inhibiting Piezo1 could offer a novel strategy for treating or preventing this critical disease. Translational potential of this article This research highlights the involvement of Piezo1 in the development of intervertebral disc degeneration and emphasizes the potential for targeting Piezo1 as a therapeutic strategy to delay or reverse this condition.
Collapse
Affiliation(s)
- Feiyun Li
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mengrui Zhang
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghao Qu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Southern University of Science and Technology Hospital, Shenzhen, China
| | - Shuangshuang He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Southern University of Science and Technology Hospital, Shenzhen, China
| | - Xiaohao Wu
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Falcoz C, Chaaban M, Paniagua C, Fusellier M, Guicheux J, Le Visage C, Nottelet B, Garric X, Pinese C. Design and Ex Vivo Evaluation of a PCLA Degradable Device To Improve Annulus Fibrosus Repair. ACS APPLIED BIO MATERIALS 2025; 8:1097-1107. [PMID: 39805260 DOI: 10.1021/acsabm.4c01415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
With a prevalence of over 90% in people over 50, intervertebral disc degeneration (IVDD) is a major health concern. This weakening of the intervertebral discs can lead to herniation, where the nucleus pulpus (NP) leaks through the surrounding Annulus Fibrosus (AF). Considering the limited self-healing capacity of AF tissue, an implant is needed to restore its architecture and function. Here, we developed a biomimetic electrospun nanofibrous biodegradable scaffold that could be potentially used to repair AF defects. To that aim, we synthesized copolymers and blends of ε-caprolactone and lactide to create poly(ε-caprolactone-co-lactide) (PCLA) and PCL/PLA scaffolds with 10, 20, or 30% PLA. Properties of the initial nanofibrous scaffolds and the impact of gamma irradiation sterilization on the mechanical, thermal, and in vitro degradation properties are assessed and discussed with respect to the AF application. It was shown that ovine AF cells colonize the nanofibrous layers with increased metabolic activity over time. As an outcome of these studies, two copolymers were chosen to design a device composed of a 3D nanofibrous stacked scaffold associated with a degradable anchoring system to maintain the scaffold in an AF defect. The implantability of this device was tested in a cadaveric sheep lumbar IVD.
Collapse
Affiliation(s)
- Chloé Falcoz
- Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
| | - Mansoor Chaaban
- Regenerative Medicine and Skeleton, RMeS, Oniris, CHU Nantes, INSERM, UMR 1229, University of Nantes, Nantes F-44000, France
| | - Cédric Paniagua
- Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
| | - Marion Fusellier
- Regenerative Medicine and Skeleton, RMeS, Oniris, CHU Nantes, INSERM, UMR 1229, University of Nantes, Nantes F-44000, France
| | - Jérôme Guicheux
- Regenerative Medicine and Skeleton, RMeS, Oniris, CHU Nantes, INSERM, UMR 1229, University of Nantes, Nantes F-44000, France
| | - Catherine Le Visage
- Regenerative Medicine and Skeleton, RMeS, Oniris, CHU Nantes, INSERM, UMR 1229, University of Nantes, Nantes F-44000, France
| | - Benjamin Nottelet
- Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| | - Coline Pinese
- Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| |
Collapse
|
5
|
Rajasekaran S, Thippeswamy PB, Gurusamy G, Ramachandran K, Yirdaw TA, Basu S, Kamodia JS, Abdelwahed AM, K S SVA, Shetty AP, Kanna RM. ISSLS Prize in Clinical Science 2025: Cartilage End Plate Defects Precede and Initiate Bony End Plate Defects and Disc Degeneration- An 'Integrated Total End Plate Score' Identify Preclinical Discs at Risk for Degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2025:10.1007/s00586-025-08712-4. [PMID: 39909891 DOI: 10.1007/s00586-025-08712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
PURPOSE We utilized the Fast Low Angle Shot (FLASH) sequence to document the sequential changes in cartilaginous (CEP) and bony end plate (BEP) to study the influence on disc degeneration (DD). METHODS Routine MRI and FLASH sequences were used in 500 lumbar discs in 100 each of healthy volunteers (HV), low back pain patients treated conservatively (CG) and surgically (SG) to document CEP and BEP status, Pfirrmann Grade (PG) and various MRI parameters. RESULTS The three groups were identical demographically but had a significantly different number of healthy discs (p < 0.01) and changes in CEP and BEP (p < 0.01), with patients having a higher severity of end plate changes and DD, even in asymptomatic discs. CEP abnormalities always appeared first, followed by a sequence of BEP defects of different severity, allowing the development of an 'Integrated Total End Plate Score' (I-TEPS). There was a good correlation between I-TEPS and PG, with a steep escalation of DD after a score of 7. A score of ≥ 7 was also associated with higher surgical incidence in patients with both degenerated and herniated discs. The most significant influencing factors for surgery was a combination of I-TEPS ≥ 7 with herniation (OR7.7;p-0.00), smoking (OR4.63;p-0.02), and an I-TEPS ≥ 7 (OR3.37;p-0.04). CONCLUSION CEP changes identified by FLASH preceded BEP defects and DD. I-TEPS was superior to TEPS in identifying a subgroup of discs that had CEP abnormalities without BEP. An I-TEPS ≥ 7 had a significant correlation to the severity of DD, influenced variations in herniation and also surgical incidence.
Collapse
Affiliation(s)
| | | | | | - Karthik Ramachandran
- Ganga Hospital, Coimbatore, Tamil Nadu, India
- Ganga Research Centre, Coimbatore, Tamil Nadu, India
| | | | - Suprotik Basu
- Ganga Research Centre, Coimbatore, Tamil Nadu, India
| | | | | | - Sri Vijay Anand K S
- Ganga Hospital, Coimbatore, Tamil Nadu, India
- Ganga Research Centre, Coimbatore, Tamil Nadu, India
| | | | | |
Collapse
|
6
|
Paliaroutas OV, Evangelopoulos DS, Vasiliadis E, Stanitsa N, Zouris G, Vlamis J. Role of Platelet-Rich Plasma (PRP) in the Management of Stage III and IV Degenerative Disc Disease. Cureus 2025; 17:e79504. [PMID: 40144405 PMCID: PMC11937859 DOI: 10.7759/cureus.79504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 03/28/2025] Open
Abstract
Degenerative disc disease is a common disorder that can significantly impact patients' quality of life, leading to chronic pain and disability. Platelet-rich plasma (PRP) therapy is emerging as a potential treatment for degenerative disc disease. The purpose of this review is to summarize the role of PRP in the management of degenerative disc disease types III and IV. This is a scoping literature review. The online database PUBMED was used, and papers were searched using the keywords: ("PRP" OR "platelet-rich plasma") AND ("degenerative disk disease" OR "disk degeneration" OR "intradiscal injection" OR "discogenic pain" OR "intervertebral disc degeneration" OR "degenerative disk disease" OR "intervertebral disc disease"). Clinical studies evaluating the role of PRP in the management of stage III and IV degenerative disc disease were included in the study. Systematic reviews, animal studies, in vitro studies, case reports, study designs, case reports, and studies in languages other than English were excluded. The present study includes 14 studies. PRP has been found to promote tissue regeneration and modulate inflammatory response in degenerated discs. PRP can be administered mostly intradiscally but also epidurally. The benefits of PRP use include pain reduction, improvement of functionality, and low risk of adverse events. The effect of intradiscal PRP injections is similar to steroid injections. A higher concentration of platelets is associated with enhanced clinical outcomes. PRP therapy represents a promising avenue for tissue healing and regeneration across degenerative disc disease. While the evidence supporting its efficacy is encouraging, further research is needed to elucidate its mechanisms of action, optimize treatment protocols, and expand its clinical applications.
Collapse
Affiliation(s)
- Orestis V Paliaroutas
- First Orthopedic Department, National and Kapodistrian University of Athens School of Medicine, KAT Hospital, Athens, GRC
| | | | - Elias Vasiliadis
- Third Orthopedic Department, National and Kapodistrian University of Athens School of Medicine, KAT Hospital, Athens, GRC
| | - Nikoleta Stanitsa
- Cardiothoracic Surgery Department, Evangelismos Hospital, Athens, GRC
| | - Georgios Zouris
- Fifth Orthopedic Department, Asklepieion Voulas General Hospital, Athens, GRC
| | - John Vlamis
- Third Orthopedic Department, National and Kapodistrian University of Athens School of Medicine, KAT Hospital, Athens, GRC
| |
Collapse
|
7
|
Yu Z, Fan C, Mao Y, Wu X, Mao H. Autophagy activation alleviates annulus fibrosus degeneration via the miR-2355-5p/mTOR pathway. J Orthop Surg Res 2025; 20:86. [PMID: 39849546 PMCID: PMC11755947 DOI: 10.1186/s13018-025-05492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Intervertebral disc degeneration disease (IVDD) is a major cause of disability and reduced work productivity worldwide. Annulus fibrosus degeneration is a key contributor to IVDD, yet its mechanisms remain poorly understood. Autophagy, a vital process for cellular homeostasis, involves the lysosomal degradation of cytoplasmic proteins and organelles. This study aimed to investigate the role of autophagy in IVDD using a hydrogen peroxide (H2O2)-induced model of rat annulus fibrosus cells (AFCs). METHODS AFCs were exposed to H2O2 to model oxidative stress-induced degeneration. Protein expression levels of collagen I, collagen II, MMP3, and MMP13 were quantified. GEO database analysis identified alterations in miR-2355-5p expression, and its regulatory role on the mTOR pathway and autophagy was assessed. Statistical tests were used to evaluate changes in protein expression and pathway activation. RESULTS H2O2 exposure reduced collagen I and collagen II expression to approximately 50% of baseline levels, while MMP3 and MMP13 expression increased twofold. Activation of autophagy restored collagen I and II expression and decreased MMP3 and MMP13 levels. GEO analysis revealed significant alterations in miR-2355-5p expression, confirming its role in regulating the mTOR pathway and autophagy. CONCLUSIONS Autophagy, mediated by the miR-2355-5p/mTOR pathway, plays a protective role in AFCs degeneration. These findings suggest a potential therapeutic target for mitigating IVDD progression.
Collapse
Affiliation(s)
- Zilin Yu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214026, Jiangsu, China
| | - Chunyang Fan
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yubo Mao
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214026, Jiangsu, China.
| | - Xiexing Wu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Haiqing Mao
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
8
|
Zhang H, Zhang C, Li L, Hu ML, Zhao JN, Zheng Z, Ding WF. Developments and clinical experiences in collagenase chemonucleolysis for lumbar disc herniation: a narrative review. Front Med (Lausanne) 2025; 11:1522568. [PMID: 39845813 PMCID: PMC11750870 DOI: 10.3389/fmed.2024.1522568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Lumbar disc herniation (LDH) affects millions globally, with annual healthcare costs exceeding $100 billion in the United States alone, driving increasing interest in minimally invasive radiological interventions as treatment alternatives. This narrative review examines developments in collagenase chemonucleolysis for LDH, integrating a literature analysis with clinical experience. Key advancements include the transition from single-agent to combination therapies, exploration of diverse injection routes, and the progression from C-arm fluoroscopy to multi-slice CT guidance. The synergistic use of collagenase, oxygen-ozone, and anti-inflammatory analgesics has enhanced efficacy. Safety measures such as aspiration tests, contrast agent tests, and lidocaine tests implemented to mitigate procedural risks. However, challenges persist, including non-standardized dosages and potential complications arising from intradiscal injections. Future research should focus on establishing accreditation systems, refining patient selection criteria, optimizing drug dosages, and exploring advanced image-guided technologies. While chemonucleolysis offers advantages such as minimal invasiveness and cost-effectiveness, its complexity necessitates a multidisciplinary approach. Key findings demonstrate that combination therapy achieves superior outcomes compared to monotherapy, with long-term efficacy rates reaching 90% and 6-month success rates of 95%. Additionally, CT guidance has significantly improved procedural precision and safety compared to traditional fluoroscopy. This review provides insights for clinicians and researchers, highlighting the potential of chemonucleolysis in LDH management to ensure its safe and effective integration into mainstream treatment protocols.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiology, Dianjiang People’s Hospital of Chongqing, Chongqing, China
| | - Chi Zhang
- Chongqing Yangjiaping Middle School, Chongqing, China
| | - Lin Li
- Department of Pharmacy, Dianjiang People’s Hospital of Chongqing, Chongqing, China
| | - Ming-liang Hu
- Department of Neurosurgery, Dianjiang People’s Hospital of Chongqing, Chongqing, China
| | - Jian-ning Zhao
- Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Zhang Zheng
- Department of Orthopedic, Chongqing Kaizhou Guangming Orthopedic Hospital, Chongqing, China
| | - Wen-feng Ding
- Department of Orthopedic, Dianjiang People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
9
|
Tao C, Lin S, Shi Y, Gong W, Chen M, Li J, Zhang P, Yao Q, Qian D, Ling Z, Xiao G. Inactivation of Tnf-α/Tnfr signaling attenuates progression of intervertebral disc degeneration in mice. JOR Spine 2024; 7:e70006. [PMID: 39391171 PMCID: PMC11461905 DOI: 10.1002/jsp2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a major cause of low back pain (LBP), worsened by chronic inflammatory processes associated with aging. Tumor necrosis factor alpha (Tnf-α) and its receptors, Tnf receptor type 1 (Tnfr1) and Tnf receptor type 2 (Tnfr2), are upregulated in IVDD. However, its pathologic mechanisms remain poorly defined. Methods To investigate the role of Tnfr in IVDD, we generated global Tnfr1/2 double knockout (KO) mice and age-matched control C57BL/6 male mice, and analyzed intervertebral disc (IVD)-related phenotypes of both genotypes under physiological conditions, aging, and lumbar spine instability (LSI) model through histological and immunofluorescence analyses and μCT imaging. Expression levels of key extracellular matrix (ECM) proteins in aged and LSI mice, especially markers of cell proliferation and apoptosis, were evaluated in aged (21-month-old) mice. Results At 4 months, KO and control mice showed no marked differences of IVDD-related parameters. However, at 21 months of age, the loss of Tnfr expression significantly alleviated IVDD-like phenotypes, including a significant increase in height of the nucleus pulposus (NPs) and reductions of endplates (EPs) porosity and histopathological scores, when compared to controls. Tnfr deficiency promoted anabolic metabolism of the ECM proteins and suppressed ECM catabolism. Tnfr loss largely inhibited hypertrophic differentiation, and, in the meantime, suppressed cell apoptosis and cellular senescence in the annulus fibrosis, NP, and EP tissues without affecting cell proliferation. Similar results were observed in the LSI model, where Tnfr deficiency significantly alleviated IVDD and enhanced ECM anabolic metabolism while suppressing catabolism. Conclusion The deletion of Tnfr mitigates age-related and LSI-induced IVDD, as evidenced by preserved IVD structure, and improved ECM integrity. These findings suggest a crucial role of Tnf-α/Tnfr signaling in IVDD pathogenesis in mice. Targeting this pathway may be a novel strategy for IVDD prevention and treatment.
Collapse
Affiliation(s)
- Chu Tao
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Sixiong Lin
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Department of OrthopaedicsThe First Affiliated Hospital of Guangzhou Medical University, Guangdong key Laboratory of Orthopaedic Technology and Implant MaterialsGuangzhouChina
| | - Yujia Shi
- School of Biomedical SciencesThe Chinese University of Hong KongShatinHong Kong
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Jianglong Li
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
- Department of Orthopaedics, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Peijun Zhang
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Dongyang Qian
- Department of OrthopaedicsThe First Affiliated Hospital of Guangzhou Medical University, Guangdong key Laboratory of Orthopaedic Technology and Implant MaterialsGuangzhouChina
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
10
|
Wang X, Song C, Zhou D, Mei Y, Cai W, Chen R, Lv J, Shi H, Liu Z. Exploring the therapeutic potential of puerarin on intervertebral disc degeneration by regulating apoptosis of nucleus pulposus cells. JOR Spine 2024; 7:e70020. [PMID: 39664589 PMCID: PMC11632247 DOI: 10.1002/jsp2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) stands as a prevalent chronic orthopedic ailment, profoundly impacting patients' well-being due to incapacitating low back pain. Studies have highlighted a close correlation between IVDD and the programmed cell death of nucleus pulposus (NP) cells orchestrated by interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and caspase-3 (CASP3). Puerarin, renowned for its anti-inflammatory attributes and its influence on IL-1β and TNF-α, emerges as a promising candidate for IVDD treatment. However, the precise mechanism by which it regulates apoptosis via these pathways remains ambiguous. This investigation utilizes bioinformatics to unveil the molecular intricacies of puerarin-mediated apoptosis regulation in IVDD, substantiated by preliminary in vitro experiments. Analysis exposes aberrant expression of pivotal apoptosis-associated proteins (IL-1β, TNF-α, CASP3, CASP8, and BCL2) in IVDD patients, with network pharmacology indicating puerarin's potential efficacy in IVDD treatment by modulating apoptosis and cellular senescence pathways. Further experiments elucidate puerarin's capacity to stimulate NP cell proliferation while inhibiting apoptosis, potentially contributing to IVDD mitigation. Western blot and PCR outcomes reveal escalated expression of apoptosis-related proteins (IL-1β, TNF-α, and CASP3) in lipopolysaccharide-treated NPCs, ameliorated by puerarin intervention. Molecular docking simulations demonstrate favorable binding properties of puerarin with apoptotic proteins, while flow cytometry analysis indicates its ability to diminish NPC apoptosis. These discoveries imply that puerarin might alleviate NPC apoptosis by modulating key targets, thereby potentially ameliorating IVDD. In summary, this study unveils the intrinsic mechanism of puerarin in regulating NPC apoptosis to alleviate IVDD, underscoring its therapeutic promise.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Chao Song
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Daqian Zhou
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Yongliang Mei
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Weiye Cai
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Rui Chen
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Jiale Lv
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Houyin Shi
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Zongchao Liu
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
- Department of OrthopedicsLuzhouChina
| |
Collapse
|
11
|
Ma Y, Yu X, Li W, Guan J, Qiu Z, Xu L, Feng N, Jiang G, Yue X. Animal Models of Internal Endplate Injury-Induced Intervertebral Disc Degeneration: A Systematic Review. J INVEST SURG 2024; 37:2400478. [PMID: 39255967 DOI: 10.1080/08941939.2024.2400478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE To systematically review relevant animal models of disk degeneration induced through the endplate injury pathway and to provide suitable animal models for exploring the intrinsic mechanisms and treatment of disk degeneration. DESIGN PubMed, Web of Science, Cochrane and other databases were searched for literature related to animal models of disk degeneration induced by the endplate injury pathway from establishment to August 2024, and key contents in the literature were screened and extracted to analyze and evaluate each type of animal model using the literature induction method. RESULTS Fifteen animal experimental studies were finally included in the literature, which can be categorized into direct injury models and indirect injury models, of which direct injury models include transvertebral injury models and transpedicular approach injury models, and indirect injury models include endplate ischemia models and vertebral fracture-induced endplate injury models. The direct injury models have a minimum observation period of 2 months and a maximum of 32 wk. All direct injury models were successful in causing disk degeneration, and the greater the number of interventions, the greater the degree of disk degeneration caused. The observation period for the indirect injury models varied from 4 wk to 70 wk. Of the 9 studies, only one study was unsuccessful in inducing disk degeneration, and this was the first animal study in this research to attempt to intervene on the endplate to cause disk degeneration. CONCLUSION The damage to the direct injury model is more immediate and controllable in extent and can effectively lead to disk degeneration. The indirect injury models do not directly damage the endplate structure, making it easier to observe the physiological and pathological condition of the endplate and associated structures of the disk. None of them can completely simulate the corresponding process of endplate injury-induced disk degeneration in humans, and there is no uniform clinical judgment standard for this type of model. The most appropriate animal model still needs further exploration and discovery.
Collapse
Affiliation(s)
- Yukun Ma
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xing Yu
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wenhao Li
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jianbin Guan
- Department of Orthopaedic, Xi'an Honghui Hospital, Xi'an, China
| | - Ziye Qiu
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Luchun Xu
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ningning Feng
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Guozheng Jiang
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xinliang Yue
- Department of Orthopaedic, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Zheng B, Zhang X, Kong X, Li J, Huang B, Li H, Ji Z, Wei X, Tao S, Shan Z, Ling Z, Liu J, Chen J, Zhao F. S1P regulates intervertebral disc aging by mediating endoplasmic reticulum-mitochondrial calcium ion homeostasis. JCI Insight 2024; 9:e177789. [PMID: 39316443 PMCID: PMC11601718 DOI: 10.1172/jci.insight.177789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
As the aging process progresses, age-related intervertebral disc degeneration (IVDD) is becoming an emerging public health issue. Site-1 protease (S1P) has recently been found to be associated with abnormal spinal development in patients with mutations and has multiple biological functions. Here, we discovered a reduction of S1P in degenerated and aging intervertebral discs, primarily regulated by DNA methylation. Furthermore, through drug treatment and siRNA-mediated S1P knockdown, nucleus pulposus cells were more prone to exhibit degenerative and aging phenotypes. Conditional KO of S1P in mice resulted in spinal developmental abnormalities and premature aging. Mechanistically, S1P deficiency impeded COP II-mediated transport vesicle formation, which leads to protein retention in the endoplasmic reticulum (ER) and subsequently ER distension. ER distension increased the contact between the ER and mitochondria, disrupting ER-to-mitochondria calcium flow and resulting in mitochondrial dysfunction and energy metabolism disturbance. Finally, using 2-APB to inhibit calcium ion channels and the senolytic drug dasatinib and quercetin (D + Q) partially rescued the aging and degenerative phenotypes caused by S1P deficiency. In conclusion, our findings suggest that S1P is a critical factor in causing IVDD in the process of aging and highlight the potential of targeting S1P as a therapeutic approach for age-related IVDD.
Collapse
Affiliation(s)
- Bingjie Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuyang Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiangxi Kong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jie Li
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hui Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhongyin Ji
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoan Wei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Siyue Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Jiang B, Bai C, Pan J, Shen B, Li L. Screening and identification of microRNAs mediating cartilage endplate degeneration in human intervertebral disks. Front Med (Lausanne) 2024; 11:1446294. [PMID: 39440032 PMCID: PMC11493738 DOI: 10.3389/fmed.2024.1446294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Objective This study aimed to discover micro-ribonucleic acids (microRNAs) involved in the degeneration of cartilage endplates through next-generation sequencing and lay the foundation for further research. Methods The cartilage endplate was obtained from patients who underwent interbody fusion surgery at the Department of Spine Surgery, Shanghai East Hospital Affiliated to Tongji University, from 1 January 2020 to 1 January 2023. Total RNA was extracted from the cartilage endplate tissue. Discover differential genes through NGS. To annotate gene functions, all target genes were aligned against the Kyoto Encyclopedia of Genes (KEGG) and Gene Ontology (GO) databases. The GO enrichment and KEGG enrichment analyses of target genes were performed using phyper, a function of R. The p-value was corrected using the Bonferroni method, and a corrected p-value of ≤0.05 was taken as the threshold. GO terms or KEGG terms fulfilling this condition were defined as significantly enriched terms. The screened miRNAs and their target protein were verified in vitro using quantitative polymerase chain reaction (qPCR) and Western blotting (WB). Results RNA was extracted from normal and degenerated cartilage endplate tissues for NGS. Eight downregulated differentially expressed genes (DEGs) and 22 upregulated DEGs were found. The KEGG pathway analysis of these target genes revealed that differential microRNAs and target genes were enriched in different signaling pathways, and the regulated signaling pathways were mainly mitochondrial autophagy and autophagy. The qPCR results demonstrated a significant upregulation of miR-25-3p and miR-345-5p in degenerative cartilage endplate tissues (p ≤ 0.001). Western blot analysis revealed that BRD4 exhibited a marked increase in protein expression levels in degenerative cartilage endplate tissues (p ≤ 0.0001), while BECN1 showed a significant decrease in protein expression levels within these samples (p ≤ 0.0001). Conclusion We found that DEG hsa-miR-25-3p and hsa-miR-345-5p can be used as diagnostic and therapeutic targets for IDD. The significant target proteins of miR-25-3p and miR-345-5p were BRD4 and BECN1, respectively.
Collapse
Affiliation(s)
- Bei Jiang
- Department of Spine Surgery, Zhejiang Rongjun Hospital, School of Medicine, Jiaxing University, Jiaxing, China
| | - Chong Bai
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Pan
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Shen
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lijun Li
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Liu G, Gao L, Wang Y, Xie X, Gao X, Wu X. The JNK signaling pathway in intervertebral disc degeneration. Front Cell Dev Biol 2024; 12:1423665. [PMID: 39364138 PMCID: PMC11447294 DOI: 10.3389/fcell.2024.1423665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) serves as the underlying pathology for various spinal degenerative conditions and is a primary contributor to low back pain (LBP). Recent studies have revealed a strong correlation between IDD and biological processes such as Programmed Cell Death (PCD), cellular senescence, inflammation, cell proliferation, extracellular matrix (ECM) degradation, and oxidative stress (OS). Of particular interest is the emerging evidence highlighting the significant involvement of the JNK signaling pathway in these fundamental biological processes of IDD. This paper explores the potential mechanisms through the JNK signaling pathway influences IDD in diverse ways. The objective of this article is to offer a fresh perspective and methodology for in-depth investigation into the pathogenesis of IDD by thoroughly examining the interplay between the JNK signaling pathway and IDD. Moreover, this paper summarizes the drugs and natural compounds that alleviate the progression of IDD by regulating the JNK signaling pathway. This paper aims to identify potential therapeutic targets and strategies for IDD treatment, providing valuable insights for clinical application.
Collapse
Affiliation(s)
- Ganggang Liu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Gao
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuncai Wang
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinsheng Xie
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuejiao Gao
- Otolaryngology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingjie Wu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
15
|
Mern DS, Thomé C. Collagen II enrichment through scAAV6-RNAi-mediated inhibition of matrix-metalloproteinases 3 and 13 in degenerative nucleus-pulposus cells degenerative disc disease and biological treatment strategies. Exp Biol Med (Maywood) 2024; 249:10048. [PMID: 39286594 PMCID: PMC11402661 DOI: 10.3389/ebm.2024.10048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Intervertebral disc (IVD) degeneration damaging the extracellular matrix (ECM) of IVDs is the main cause of spine-associated disorders. Degenerative disc disease (DDD) is a multifaceted disorder, where environmental factors, inflammatory cytokines and catabolic enzymes act together. DDD starts typically due to imbalance between ECM biosynthesis and degradation within IVDs, especially through unbalanced degradation of aggrecan and collagen II in nucleus pulposus (NP). Current treatment approaches are primarily based on conservative or surgical therapies, which are insufficient for biological regeneration. The disintegrins and metalloproteinases with thrombospondin motifs (ADAMTSs) and matrix metalloproteinases (MMPs) are the key proteolytic enzymes for degradation of aggrecan and collagens. Previously, high expression levels of ADAMTS4, ADAMTS5, MMP3 and MMP13, which are accompanied with low levels of aggrecan and collagen II, were demonstrated in degenerative human NP cells. Moreover, self-complementary adeno-associated virus type 6 (scAAV6) mediated inhibitions of ADAMTS4 and ADAMTS5 by RNA-interference (RNAi) could specifically enhance aggrecan level. Thus, MMPs are apparently the main degrading enzymes of collagen II in NP. Furthermore, scAAV6-mediated inhibitions of MMP3 and MMP13 have not yet been investigated. Therefore, we attempted to enhance the level of collagen II in degenerative NP cells by scAAV6-RNAi-mediated inhibitions of MMP3 and MMP13. MRI was used to determine preoperative grading of IVD degeneration in patients. After isolation and culturing of NP cells, cells were transduced with scAAV6-shRNAs targeting MMP3 or MMP13; and analysed by fluorescence microscopy, FACS, MTT assay, RT-qPCR, ELISA and western blotting. scAAV6-shRNRs have no impact on cell viability and proliferation, despite high transduction efficiencies (98.6%) and transduction units (1383 TU/Cell). Combined knockdown of MMP3 (92.8%) and MMP13 (90.9%) resulted in highest enhancement of collagen II (143.2%), whereby treatment effects were significant over 56 days (p < 0.001). Conclusively, scAAV6-RNAi-mediated inhibitions of MMP3 and MMP13 help to progress less immunogenic and enduring biological treatments in DDD.
Collapse
|
16
|
Dhiman MS, Bader TJ, Ponjevic D, Salo PT, Hart DA, Swamy G, Matyas JR, Duncan NA. Collagen integrity of the annulus fibrosus in degenerative disc disease individuals quantified with collagen hybridizing peptide. JOR Spine 2024; 7:e1359. [PMID: 39092166 PMCID: PMC11291301 DOI: 10.1002/jsp2.1359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/27/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Degenerative disc disease (DDD) is accompanied by structural changes in the intervertebral discs (IVD). Extra-cellular matrix degradation of the annulus fibrosus (AF) has been linked with degeneration of the IVD. Collagen is a vital component of the IVD. Collagen hybridizing peptide (CHP) is an engineered protein that binds to degraded collagen, which we used to quantify collagen damage in AF. This method was used to compare AF samples obtained from donors with no DDD to AF samples from patients undergoing surgery for symptomatic DDD. Methods Fresh AF tissue was embedded in an optimal cutting temperature compound and cryosectioned at a thickness of 8 μm. Hematoxylin and Eosin staining was performed on sections for general histomorphological assessment. Serial sections were stained with Cy3-conjugated CHP and the mean fluorescence intensity and areal fraction of Cy3-positive staining were averaged for three regions of interest (ROI) on each CHP-stained section. Results Increases in mean fluorescence intensity (p = 0.0004) and percentage of positively stained area (p = 0.00008) with CHP were detected in DDD samples compared to the non-DDD samples. Significant correlations were observed between mean fluorescence intensity and percentage of positively stained area for both non-DDD (R = 0.98, p = 5E-8) and DDD (R = 0.79, p = 0.0012) samples. No significant differences were detected between sex and the lumbar disc level subgroups of the non-DDD and DDD groups. Only tissue pathology (non-DDD versus DDD) influenced the measured parameters. No three-way interactions between tissue pathology, sex, and lumbar disc level were observed. Discussion and Conclusions These findings suggest that AF collagen degradation is greater in DDD samples compared to non-DDD samples, as evidenced by the increased CHP staining. Strong positive correlations between the two measured parameters suggest that when collagen degradation occurs, it is detected by this technique and is widespread throughout the tissue. This study provides new insights into the structural alterations associated with collagen degradation in the AF that occur during DDD.
Collapse
Affiliation(s)
- Manmeet S. Dhiman
- Department of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
| | - Taylor J. Bader
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Dragana Ponjevic
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Paul T. Salo
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Surgery, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - David A. Hart
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Surgery, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Ganesh Swamy
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Surgery, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - John R. Matyas
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Neil A. Duncan
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Civil EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
17
|
Bernatz S, Hoppe AT, Gruenewald LD, Koch V, Martin SS, Engelskirchen L, Radic I, Bucolo G, Gotta J, Reschke P, Hammerstingl RM, Scholtz JE, Gruber-Rouh T, Eichler K, Vogl TJ, Booz C, Yel I, Mahmoudi S. Assessment of thoracic disc degeneration using dual-energy CT-based collagen maps. Eur Radiol Exp 2024; 8:95. [PMID: 39186171 PMCID: PMC11347509 DOI: 10.1186/s41747-024-00500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND We evaluated the role of dual-energy computed tomography (DECT)-based collagen maps in assessing thoracic disc degeneration. METHODS We performed a retrospective analysis of patients who underwent DECT and magnetic resonance imaging (MRI) of the thoracic spine within a 2-week period from July 2019 to October 2022. Thoracic disc degeneration was classified by three blinded radiologists into three Pfirrmann categories: no/mild (grade 1-2), moderate (grade 3-4), and severe (grade 5). The DECT performance was determined using MRI as a reference standard. Interreader reliability was assessed using intraclass correlation coefficient (ICC). Five-point Likert scales were used to assess diagnostic confidence and image quality. RESULTS In total, 612 intervertebral discs across 51 patients aged 68 ± 16 years (mean ± standard deviation), 28 males and 23 females, were assessed. MRI revealed 135 no/mildly degenerated discs (22.1%), 470 moderately degenerated discs (76.8%), and 7 severely degenerated discs (1.1%). DECT collagen maps achieved an overall accuracy of 1,483/1,838 (80.8%) for thoracic disc degeneration. Overall recall (sensitivity) was 331/405 (81.7%) for detecting no/mild degeneration, 1,134/1,410 (80.4%) for moderate degeneration, and 18/21 (85.7%) for severe degeneration. Interrater agreement was good (ICC = 0.89). Assessment of DECT-based collagen maps demonstrated high diagnostic confidence (median 4; interquartile range 3-4) and good image quality (median 4; interquartile range 4-4). CONCLUSION DECT showed an overall 81% accuracy for disc degeneration by visualizing differences in the collagen content of thoracic discs. RELEVANCE STATEMENT Utilizing DECT-based collagen maps to distinguish various stages of thoracic disc degeneration could be clinically relevant for early detection of disc-related conditions. This approach may be particularly beneficial when MRI is contraindicated. KEY POINTS A total of 612 intervertebral discs across 51 patients were retrospectively assessed with DECT, using MRI as a reference standard. DECT-based collagen maps allowed thoracic disc degeneration assessment achieving an overall 81% accuracy with good interrater agreement (ICC = 0.89). DECT-based collagen maps could be a good alternative in the case of contraindications to MRI.
Collapse
Affiliation(s)
- Simon Bernatz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- Dr. Senckenberg Institute for Pathology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Tom Hoppe
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Leon David Gruenewald
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Lara Engelskirchen
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Ivana Radic
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Giuseppe Bucolo
- Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Jennifer Gotta
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Philipp Reschke
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Renate M Hammerstingl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jan-Erik Scholtz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Tatjana Gruber-Rouh
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Katrin Eichler
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Ibrahim Yel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Scherwin Mahmoudi
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Ottone OK, Mundo JJ, Kwakye BN, Slaweski A, Collins JA, Wu Q, Connelly MA, Niaziorimi F, van de Wetering K, Risbud MV. Oral citrate supplementation mitigates age-associated pathological intervertebral disc calcification in LG/J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.604008. [PMID: 39071393 PMCID: PMC11275755 DOI: 10.1101/2024.07.17.604008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Despite the high prevalence of age-dependent intervertebral disc calcification, there is a glaring lack of treatment options for this debilitating pathology. Here, we investigate the efficacy of long-term oral K3Citrate supplementation in ameliorating disc calcification in LG/J mice, a model of spontaneous age-associated disc calcification. K3Citrate successfully reduced the incidence of disc calcification in LG/J mice without deleterious effects on vertebral bone structure, plasma chemistry, and locomotion. Notably, a positive effect on grip strength was evident in treated mice. Spectroscopic investigation of the persisting calcified nodules indicated K3Citrate did not alter the mineral composition and revealed that reactivation of an endochondral differentiation program in endplates may drive LG/J disc calcification. Importantly, K3Citrate reduced calcification incidence without altering the pathological endplate chondrocyte hypertrophy, suggesting mitigation of disc calcification primarily occurred through Ca2+ chelation, a conclusion supported by chondrogenic differentiation and Seahorse metabolic assays. Overall, this study underscores the therapeutic potential of K3Citrate as a systemic intervention strategy for disc calcification.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jorge J. Mundo
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Boahen N. Kwakye
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amber Slaweski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Fatemeh Niaziorimi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
19
|
Yafeng F, Xinpeng S, Rong W, Guofeng C. Omilancor mitigates the senescence of nucleus pulposus cells induced by DDP through targeting MAP2K6. Aging (Albany NY) 2024; 16:5050-5064. [PMID: 38517363 PMCID: PMC11006466 DOI: 10.18632/aging.205588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/17/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE This study explores the potential of Omilancor in treating Intervertebral Disc Degeneration (IDD) through MAP2K6 targeting. METHODS We analyzed mRNA microarray datasets to pinpoint MAP2K6 as a key regulator implicated in IDD progression. Follow-up studies demonstrated that cisplatin (DDP) could prompt cellular senescence in vitro by upregulating MAP2K6 expression. Through molecular docking and other analyses, we identified Omilancor as a compound capable of binding to MAP2K6. This interaction effectively impeded the cellular senescence induced by DDP. RESULTS We further showed that administration of Omilancor could significantly alleviate the degeneration of IVDs in annulus fibrosus puncture-induced rat model. CONCLUSIONS Omilancor shows promise as a treatment for IDD by targeting MAP2K6-mediated cellular senescence.
Collapse
Affiliation(s)
- Fang Yafeng
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Shi Xinpeng
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Wei Rong
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Cui Guofeng
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| |
Collapse
|
20
|
Zhang X, Zhang A, Guan H, Zhou L, Zhang J, Yin W. The Clinical Efficacy of Platelet-Rich Plasma Injection Therapy versus Different Control Groups for Chronic Low Back Pain: A Network Meta-Analysis of Randomized Controlled Trials. J Pain Res 2024; 17:1077-1089. [PMID: 38505505 PMCID: PMC10948334 DOI: 10.2147/jpr.s444189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Objective Low back pain is one of the main causes of disability in the world. Although regenerative medicine may represent breakthroughs in the management of low back pain, its use remains controversial. Therefore, we conducted a meta-analysis to evaluate the clinical efficacy of platelet-rich plasma (PRP) injection therapy versus different control groups for chronic low back pain during 4 weeks, 3 months, and 6 months. Methods Different electronic databases were searched for randomized controlled trials up to August 2023. Mean changes from baseline in pain and Oswestry Disability Index (ODI) scores at 4 weeks, 3 months, and 6 months and standard deviations of outcome were recorded. Results Four articles with 154 cases were finally included in this meta-analysis. After 4 weeks, corticosteroid (CS) was the optimal treatment option for chronic low back pain in terms of improvement in pain and disability index (surface under the cumulative ranking curve [SUCRA]=71.3%, SUCRA=57.8%, respectively). After 3 months, radiofrequency (RF) emerged as the best therapy in pain (SUCRA=100%) and disability index (SUCRA=98.5%), followed by PRP (SUCRA=62.3%, SUCRA=64.3%, respectively), CS (SUCRA=24.6%, SUCRA=25.9%, respectively) and lidocaine (SUCRA=13.1%, SUCRA=11.3%, respectively). At 6 months, RF was most likely to be the best treatment in pain (SUCRA=94.9%) and disability index (SUCRA=77.3%), followed by PRP (SUCRA=71.2%, SUCRA=79.6%, respectively). However, compared with the last follow-up, there was a slight downward trend in improvement pain and disability index with RF, while PRP was still an upward trend. Conclusion This study demonstrated better short-term improvement of chronic low back pain with CS after 4 weeks. PRP and RF improvement effects matched, but follow-up of at least 6 months showed that PRP seemed to be more advantageous in improvement in disability indices. Considering the limitations of this study, these conclusions still need to be verified by more comparative RCTs and a longer follow-up period.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Pharmacy, Kunming Yan’an Hospital, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650051, People’s Republic of China
| | - Aili Zhang
- Department of Scientific Research, Kunming Yan’an Hospital, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650051, People’s Republic of China
| | - Hao Guan
- Department of Pharmacy, Kunming Yan’an Hospital, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650051, People’s Republic of China
| | - Li Zhou
- Department of Pharmacy, Kunming Yan’an Hospital, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650051, People’s Republic of China
| | - Jiao Zhang
- Department of Basic Medicine, Zhaotong Health Vocational College, Zhaotong, Yunnan, 657000, People’s Republic of China
| | - Wenjie Yin
- Department of Pharmacy, Kunming Yan’an Hospital, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650051, People’s Republic of China
| |
Collapse
|
21
|
Xiang H, Zhao W, Jiang K, He J, Chen L, Cui W, Li Y. Progress in regulating inflammatory biomaterials for intervertebral disc regeneration. Bioact Mater 2024; 33:506-531. [PMID: 38162512 PMCID: PMC10755503 DOI: 10.1016/j.bioactmat.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/04/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is rising worldwide and leading to significant health issues and financial strain for patients. Traditional treatments for IVDD can alleviate pain but do not reverse disease progression, and surgical removal of the damaged disc may be required for advanced disease. The inflammatory microenvironment is a key driver in the development of disc degeneration. Suitable anti-inflammatory substances are critical for controlling inflammation in IVDD. Several treatment options, including glucocorticoids, non-steroidal anti-inflammatory drugs, and biotherapy, are being studied for their potential to reduce inflammation. However, anti-inflammatories often have a short half-life when applied directly and are quickly excreted, thus limiting their therapeutic effects. Biomaterial-based platforms are being explored as anti-inflammation therapeutic strategies for IVDD treatment. This review introduces the pathophysiology of IVDD and discusses anti-inflammatory therapeutics and the components of these unique biomaterial platforms as comprehensive treatment systems. We discuss the strengths, shortcomings, and development prospects for various biomaterials platforms used to modulate the inflammatory microenvironment, thus providing guidance for future breakthroughs in IVDD treatment.
Collapse
Affiliation(s)
- Honglin Xiang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Weikang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China
| | - Ke Jiang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Jiangtao He
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Lu Chen
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yuling Li
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| |
Collapse
|
22
|
Li X, Zhao W, Zhou D, Li P, Zhao C, Zhou Q, Wang Y. Construction of Integral Decellularized Cartilage Using a Novel Hydrostatic Pressure Bioreactor. Tissue Eng Part C Methods 2024; 30:113-129. [PMID: 38183634 DOI: 10.1089/ten.tec.2023.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024] Open
Abstract
The decellularized extracellular matrix (ECM) of cartilage is a widely used natural bioscaffold for constructing tissue-engineered cartilage due to its good biocompatibility and regeneration properties. However, current decellularization methods for accessing decellularized cartilaginous tissues require multiple steps and a relatively long duration to produce decellularized cartilage. In addition, most decellularization strategies lead to damage of the microstructure and loss of functional components of the cartilaginous matrix. In this study, a novel decellularization strategy based on a hydrostatic pressure (HP) bioreactor was introduced, which aimed to improve the efficiency of producing integral decellularized cartilage pieces by combining physical and chemical decellularization methods in a perfusing manner. Two types of cartilaginous tissues, auricular cartilage (AC) and nucleus pulposus (NP) fibrocartilage, were selected for comparison of the effects of ordinary, positive, and negative HP-based decellularization according to the cell clearance ratio, microstructural changes, ECM components, and mechanical properties. The results indicated that applying positive HP improved the efficiency of producing decellularized AC, but no significant differences in decellularization efficiency were found between the ordinary and negative HP-treated groups. However, compared with the ordinary HP treatment, the application of the positive or negative HP did not affect the efficiency of decellularized NP productions. Moreover, neither positive nor negative HP influenced the preservation of the microstructure and components of the AC matrix. However, applying negative HP disarranged the fibril distribution of the NP matrix and reduced glycosaminoglycans and collagen type II contents, two essential ECM components. In addition, the positive HP was beneficial for maintaining the mechanical properties of decellularized cartilage. The recellularization experiments also verified the good biocompatibility of the decellularized cartilage produced by the present bioreactor-based decellularization method under positive HP. Overall, applying positive HP-based decellularization resulted in a superior effect on the production of close-to-natural scaffolds for cartilage tissue engineering. Impact statement In this study, we successfully constructed a novel hydrostatic pressure (HP) bioreactor and used this equipment to produce decellularized cartilage by combining physical and chemical decellularization methods in a perfusing manner. We found that positive HP-based decellularization could improve the production efficiency of integral decellularized cartilage pieces and promote the maintenance of matrix components and mechanical properties. This new decellularization strategy exhibited a superior effect in the production of close-to-natural scaffolds and positively impacts cartilage tissue engineering.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weikang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dandan Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Gastroenterology, Jiulongpo People's Hospital of Chongqing, Chongqing, China
| | - Pei Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Zhao
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyang Wang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Wu D, Huang W, Zhang J, He L, Chen S, Zhu S, Sang Y, Liu K, Hou G, Chen B, Xu Y, Liu B, Yao H. Downregulation of VEGFA accelerates AGEs-mediated nucleus pulposus degeneration through inhibiting protective mitophagy in high glucose environments. Int J Biol Macromol 2024; 262:129950. [PMID: 38320636 DOI: 10.1016/j.ijbiomac.2024.129950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Intervertebral disc degeneration (IVDD) contributes largely to low back pain. Recent studies have highlighted the exacerbating role of diabetes mellitus (DM) in IVDD, mainly due to the influence of hyperglycemia (HG) or the accumulation of advanced glycation end products (AGEs). Vascular endothelial growth factor A (VEGFA) newly assumed a distinct impact in nonvascular tissues through mitophagy regulation. However, the combined actions of HG and AGEs on IVDD and the involved role of VEGFA remain unclear. We confirmed the potential relation between VEGFA and DM through bioinformatics and biological specimen detection. Then we observed that AGEs induced nucleus pulposus (NP) cell degeneration by upregulating cellular reactive oxygen species (ROS), and HG further aggravated ROS level through breaking AGEs-induced protective mitophagy. Furthermore, this adverse effect could be strengthened by VEGFA knockdown. Importantly, we identified that the regulation of VEGFA and mitophagy were vital mechanisms in AGEs-HG-induced NP cell degeneration through Parkin/Akt/mTOR and AMPK/mTOR pathway. Additionally, VEGFA overexpression through local injection with lentivirus carrying VEGFA plasmids significantly alleviated NP degeneration and IVDD in STZ-induced diabetes and puncture rat models. In conclusion, the findings first confirmed that VEGFA protects against AGEs-HG-induced IVDD, which may represent a therapeutic strategy for DM-related IVDD.
Collapse
Affiliation(s)
- Depeng Wu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Weijun Huang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Junbin Zhang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Lei He
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Siyu Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Sihan Zhu
- University Hospital, LMU Munich, 81377 Munich, Germany
| | - Yuan Sang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Kaihua Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Gang Hou
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Biying Chen
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yichun Xu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Bin Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China.
| | - Hui Yao
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
24
|
Sao K, Risbud MV. Proteoglycan Dysfunction: A Common Link Between Intervertebral Disc Degeneration and Skeletal Dysplasia. Neurospine 2024; 21:162-178. [PMID: 38569642 PMCID: PMC10992626 DOI: 10.14245/ns.2347342.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 04/05/2024] Open
Abstract
Proteoglycans through their sulfated glycosaminoglycans regulate cell-matrix signaling during tissue development, regeneration, and degeneration processes. Large extracellular proteoglycans such as aggrecan, versican, and perlecan are especially important for the structural integrity of the intervertebral disc and cartilage during development. In these tissues, proteoglycans are responsible for hydration, joint flexibility, and the absorption of mechanical loads. Loss or reduction of these molecules can lead to disc degeneration and skeletal dysplasia, evident from loss of disc height or defects in skeletal development respectively. In this review, we discuss the common proteoglycans found in the disc and cartilage and elaborate on various murine models and skeletal dysplasias in humans to highlight how their absence and/or aberrant expression causes accelerated disc degeneration and developmental defects.
Collapse
Affiliation(s)
- Kimheak Sao
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V. Risbud
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
25
|
Leão Monteiro R. Future of low back pain: unravelling IVD components and MSCs' potential. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:1. [PMID: 38227139 PMCID: PMC10792145 DOI: 10.1186/s13619-023-00184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Low back pain (LBP) mainly emerges from intervertebral disc (IVD) degeneration. However, the failing mechanism of IVD ́s components, like the annulus fibrosus (AF) and nucleus pulposus (NP), leading to IVD degeneration/herniation is still poorly understood. Moreover, the specific role of cellular populations and molecular pathways involved in the inflammatory process associated with IVD herniation remains to be highlighted. The limited knowledge of inflammation associated with the initial steps of herniation and the lack of suitable models to mimic human IVD ́s complexity are some of the reasons for that. It has become essential to enhance the knowledge of cellular and molecular key players for AF and NP cells during inflammatory-driven degeneration. Due to unique properties of immunomodulation and pluripotency, mesenchymal stem cells (MSCs) have attained diverse recognition in this field of bone and cartilage regeneration. MSCs therapy has been particularly valuable in facilitating repair of damaged tissues and may benefit in mitigating inflammation' degenerative events. Therefore, this review article conducts comprehensive research to further understand the intertwine between the mechanisms of action of IVD components and therapeutic potential of MSCs, exploring their characteristics, how to optimize their use and establish them safely in distinct settings for LPB treatment.
Collapse
|
26
|
Geng Z, Wang J, Liu J, Miao J. Bibliometric Analysis of the Development, Current Status, and Trends in Adult Degenerative Scoliosis Research: A Systematic Review from 1998 to 2023. J Pain Res 2024; 17:153-169. [PMID: 38204581 PMCID: PMC10778169 DOI: 10.2147/jpr.s437575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Purpose Adult degenerative scoliosis (ADS) research lacks bibliometric analysis, despite numerous studies. This study aimed to systematically analyze the development, current status, hot topics, frontier areas, and trends in ADS research. Patients and Methods A systematic literature review was conducted in the Web of Science Core Collection database from January 1998 to June 2023. Information regarding the country, institution, author, journal, and keywords was collected for each article. Bibliometric analysis was performed using VOSviewer and Citespace software. Results The final analysis covered 1695 publications, demonstrating a steady increase in ADS research. The United States was the most prolific and influential country with 684 publications, followed by China and Japan. The University of California System was the most productive institution with 113 publications. Shaffrey, CI (47 publications) and Lenke, LG (41 publications) were top authors. The analysis revealed seven main research clusters: "intervertebral disc", "adult spinal deformity", "lumbar fusion", "minimally invasive surgery", "navigation", "postoperative complications", and "mental retardation". Keywords with strong bursts of activity included degeneration, prevalence, imbalance, classification, lumbar spinal stenosis, and kyphosis. Conclusion In conclusion, in recent years, ADS research has undergone rapid development. This study analyzed its hot topics, advancements, and research directions, making it the latest bibliometric analysis in this field. The findings aim to provide a new perspective and guidance for clinical practitioners and researchers.
Collapse
Affiliation(s)
- Ziming Geng
- Department of Spine Surgery, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Jian Wang
- Department of Spine Surgery, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Jianchao Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Jun Miao
- Department of Spine Surgery, Tianjin Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
27
|
Öztürk A, Karakaşlı A, Erbil G, Gökgöz MB, Yapici F. The Impact of Complex Loadings on the Structure of the L2-L3 Intervertebral Disc in a Sheep Spine Cadaver Model: A Biomechanical and Histological Evaluation. Cureus 2024; 16:e51941. [PMID: 38196992 PMCID: PMC10775825 DOI: 10.7759/cureus.51941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 01/11/2024] Open
Abstract
Background The human vertebral column generates movements under versatile, dynamic loads. Understanding how the spine reacts to these movements and loads is crucial for developing new spine implants and surgical treatments for intervertebral disc injuries. Mechanically uni-axial compression models have been extensively studied. However, the spine's daily loading is not limited to compression, so it is crucial to measure its behavior in all movements (flexion-extension, rotation, and axial compression). Methods This study utilized L1-L5 segments from 19 healthy adult sheep spines. The L2-L3 disc of the first spine underwent only histological evaluation without biomechanical testing to define basic histological parameters. The remaining 18 were divided into three groups of six and subjected to biomechanical tests. Different mechanisms for three groups of spinal segments were prepared, and tests were performed on Shimadzu AG-IS 10 KN (Universal Drawing Press, Kyoto, Japan). An axial load (800 N) was applied to the first group, an axial load with 15 degrees of flexion to the second group, and an axial load with 10 degrees of rotation plus 15 degrees of flexion to the third group. A biomechanical evaluation of the maximum elongation amounts (MEAs) was performed and compared between the groups. Then, the L2-L3 discs were removed from the sheep spines, and a histological examination of the discs was conducted using Hematoxylin-Eosin (HE), Alcian Blue (AB), and Masson's Trichrome (MT) staining. Results The mean MEA ± Standard Deviation (Range) was 1.39 ± 0.38 (0.91-1.94) for Group 1, 2.02 ± 0.75 (0.91-3.01) for Group 2, and 2.47 ± 1.09 (0.64-3.9) for Group 3. Biomechanically, although MEAs increased from Group 1 to Group 3 (meaning that the mean MEAs increased as the number of types of applied force increased), there was no statistically significant difference between the groups regarding the MEAs (P = 0.092). Histologically, no significant differences were observed between all groups after HE staining. In all groups, hypercellularity, edema in the connective tissue, separation between tissue layers, delamination, and signs of swelling and necrosis in the cells were observed similarly. For the AB staining, there was a decrease in the glycosaminoglycan (GAG) structure in the tissue samples compared to the control tissue, but no significant differences were observed between the groups. However, it was observed that the stratification in Group 3 was slightly more deteriorated than in the other groups. For the MT staining, collagen structure deterioration was observed in all groups. It was observed that the amount of collagen was significantly reduced compared to the control tissue. Conclusion As a result, when the axial load is applied biomechanically, there is more displacement of the vertebral discs in Group 3 with multidimensional movements. Furthermore, histological studies revealed deterioration between tissue layers when exposed to complex movements, and the degradation of stratification in group 3 compared to other loading combinations in groups 2 and 3 may indicate the role of complex loads in the formation of disc herniation.
Collapse
Affiliation(s)
- Akın Öztürk
- Orthopaedics and Traumatology, Mengücek Gazi Hospital, Erzincan, TUR
| | - Ahmet Karakaşlı
- Orthopaedics and Traumatology, Dokuz Eylül University Faculty of Medicine, İzmir, TUR
| | - Güven Erbil
- Histology and Embryology, Kyrenia University Faculty of Medicine, Girne, CYP
| | - Mehmet Burak Gökgöz
- Orthopaedics and Traumatology, Erzincan University Faculty of Medicine, Erzincan, TUR
| | - Furkan Yapici
- Orthopaedics and Traumatology, Erzincan University Faculty of Medicine, Erzincan, TUR
| |
Collapse
|
28
|
Koshkarev MA. [Sanogenetic mechanisms of cyclic local traction therapy in the treatment of neurological manifestations of degenerative diseases in the spine. (Literature review)]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2024; 101:74-83. [PMID: 39487622 DOI: 10.17116/kurort202410105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
New information on the results of scientific research may change the understanding of the etiology and pathogenesis of diseases, which makes adjustments in treatment approaches. Cyclic local traction therapywas created in USA by the group of scientists for NASA (Axiom Worldwide, Tampa, FL) and approved by FDA in 2003. The year 2023 is the 20th anniversary of its successful application in practical medicine. Evaluating the effectiveness of the method, it has been shown that after undergoing treatment in patients with chronic back pain, the height of the intervertebral discs increases, pain syndrome and frequency of taking pain medications decreases, daily activity and duration of walking without pain increases. It is assumed that the treatment effect was achieved due to the «vacuum» effect, which could contribute to the regeneration of the intervertebral disc. It is also known about the possibility of intervertebral disc herniation reduction after a course of traction therapy and it was believed that this was ensured by «retraction» of the hernia back into the intervertebral space under the influence of the longitudinal ligament. However, fundamental studies of the past century and the present indicate the presence of other mechanisms affecting the structures of the vertebral motor segment, especially the processes occurring inside the intervertebral disc and contributing to the regression of the intervertebral disc herniation.
Collapse
|
29
|
Gao Y, Chen X, Zheng G, Lin M, Zhou H, Zhang X. Current status and development direction of immunomodulatory therapy for intervertebral disk degeneration. Front Med (Lausanne) 2023; 10:1289642. [PMID: 38179277 PMCID: PMC10764593 DOI: 10.3389/fmed.2023.1289642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Intervertebral disk (IVD) degeneration (IVDD) is a main factor in lower back pain, and immunomodulation plays a vital role in disease progression. The IVD is an immune privileged organ, and immunosuppressive molecules in tissues reduce immune cell (mainly monocytes/macrophages and mast cells) infiltration, and these cells can release proinflammatory cytokines and chemokines, disrupting the IVD microenvironment and leading to disease progression. Improving the inflammatory microenvironment in the IVD through immunomodulation during IVDD may be a promising therapeutic strategy. This article reviews the normal physiology of the IVD and its degenerative mechanisms, focusing on IVDD-related immunomodulation, including innate immune responses involving Toll-like receptors, NOD-like receptors and the complement system and adaptive immune responses that regulate cellular and humoral immunity, as well as IVDD-associated immunomodulatory therapies, which mainly include mesenchymal stem cell therapies, small molecule therapies, growth factor therapies, scaffolds, and gene therapy, to provide new strategies for the treatment of IVDD.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiyue Chen
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| | - Guan Zheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopaedics, Sanya People’s Hospital, Sanya, Hainan, China
| |
Collapse
|
30
|
Xie G, Wu T, Ji G, Wu H, Lai Y, Wei B, Huang W. Circular RNA and intervertebral disc degeneration: unravelling mechanisms and implications. Front Mol Biosci 2023; 10:1302017. [PMID: 38192334 PMCID: PMC10773835 DOI: 10.3389/fmolb.2023.1302017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Low back pain (LBP) is a major public health problem worldwide and a significant health and economic burden. Intervertebral disc degeneration (IDD) is the reason for LBP. However, we have not identified effective therapeutic strategies to address this challenge. With accumulating knowledge on the role of circular RNAs in the pathogenesis of IDD, we realised that circular RNAs (circRNAs) may have tremendous therapeutic potential and clinical application prospects in this field. This review presents an overview of the current understanding of characteristics, classification, biogenesis, and function of circRNAs and summarises the protective and detrimental circRNAs involved in the intervertebral disc that have been studied thus far. This review is aimed to help researchers better understand the regulatory role of circRNAs in the progression of IDD, reveal their clinical therapeutic potential, and provide a theoretical basis for the prevention and targeted treatment of IDD.
Collapse
Affiliation(s)
- Guohao Xie
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingrui Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guangju Ji
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hang Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yue Lai
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenhua Huang
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Karadag MK, Akgun MY, Basak AT, Ates O, Tepebasili MA, Gunerbuyuk C, Oktenoglu T, Sasani M, Ozer AF. Clinical and radiological analysis of the effects of three different lumbar transpedicular dynamic stabilization system on disc degeneration and regeneration. Front Surg 2023; 10:1297790. [PMID: 38162089 PMCID: PMC10757836 DOI: 10.3389/fsurg.2023.1297790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Objective This study aims to assess the clinical outcomes of three transpedicular dynamic systems in treating degenerative disc disease and evaluate their impact on both clinical and radiological aspects of the operated and adjacent segments. Materials and methods A total of 111 patients who underwent posterior transpedicular short-segment dynamic system procedures for treatment of degenerative disc disease were included. The patients were categorized into three groups, namely, Group 1 (Dynesys system, n = 38), Group 2 (Safinaz screw + PEEK rod, n = 37), and Group 3 (Safinaz screw + titanium rod, n = 36). Disc regeneration in the operated segment and disc degeneration in the operated, upper, and lower adjacent segments were assessed using the Pfirrmann Classification. Results Postoperatively, a statistically significant difference was observed in visual analog scale and Oswestry Disability Index scores (p < 0.001). However, no statistically significant difference was seen in disc degeneration/regeneration and degeneration scores of the upper and lower adjacent segments between the preoperative and postoperative groups (p = 0.763, p = 0.518, p = 0.201). Notably, a positive effect on disc regeneration at the operated level (32.4%) was observed. No significant differences were found between the groups in terms of operation rates, screw loosening, and screw breakage after adjacent segment disease (p > 0.05). Conclusion In patients without advanced degeneration, all three dynamic systems demonstrated the ability to prevent degeneration in the adjacent and operated segments while promoting regeneration in the operated segment. Beyond inhibiting abnormal movement in painful segments, maintaining physiological motion and providing axial distraction in the operated segment emerged as key mechanisms supporting regeneration.
Collapse
Affiliation(s)
| | - Mehmet Yigit Akgun
- Department of Neurosurgery, Koc University Hospital, Istanbul, Türkiye
- Spine Center, Koc University Hospital, Istanbul, Türkiye
| | | | - Ozkan Ates
- Department of Neurosurgery, Koc University Hospital, Istanbul, Türkiye
- Spine Center, Koc University Hospital, Istanbul, Türkiye
| | | | | | - Tunc Oktenoglu
- Department of Neurosurgery, Koc University Hospital, Istanbul, Türkiye
- Spine Center, Koc University Hospital, Istanbul, Türkiye
| | - Mehdi Sasani
- Department of Neurosurgery, Koc University Hospital, Istanbul, Türkiye
- Spine Center, Koc University Hospital, Istanbul, Türkiye
| | - Ali Fahir Ozer
- Department of Neurosurgery, Koc University Hospital, Istanbul, Türkiye
- Spine Center, Koc University Hospital, Istanbul, Türkiye
| |
Collapse
|
32
|
Liu Y, Zhao Z, Guo C, Huang Z, Zhang W, Ma F, Wang Z, Kong Q, Wang Y. Application and development of hydrogel biomaterials for the treatment of intervertebral disc degeneration: a literature review. Front Cell Dev Biol 2023; 11:1286223. [PMID: 38130952 PMCID: PMC10733535 DOI: 10.3389/fcell.2023.1286223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Low back pain caused by disc herniation and spinal stenosis imposes an enormous medical burden on society due to its high prevalence and refractory nature. This is mainly due to the long-term inflammation and degradation of the extracellular matrix in the process of intervertebral disc degeneration (IVDD), which manifests as loss of water in the nucleus pulposus (NP) and the formation of fibrous disc fissures. Biomaterial repair strategies involving hydrogels play an important role in the treatment of intervertebral disc degeneration. Excellent biocompatibility, tunable mechanical properties, easy modification, injectability, and the ability to encapsulate drugs, cells, genes, etc. make hydrogels good candidates as scaffolds and cell/drug carriers for treating NP degeneration and other aspects of IVDD. This review first briefly describes the anatomy, pathology, and current treatments of IVDD, and then introduces different types of hydrogels and addresses "smart hydrogels". Finally, we discuss the feasibility and prospects of using hydrogels to treat IVDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Crump KB, Alminnawi A, Bermudez‐Lekerika P, Compte R, Gualdi F, McSweeney T, Muñoz‐Moya E, Nüesch A, Geris L, Dudli S, Karppinen J, Noailly J, Le Maitre C, Gantenbein B. Cartilaginous endplates: A comprehensive review on a neglected structure in intervertebral disc research. JOR Spine 2023; 6:e1294. [PMID: 38156054 PMCID: PMC10751983 DOI: 10.1002/jsp2.1294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 12/30/2023] Open
Abstract
The cartilaginous endplates (CEP) are key components of the intervertebral disc (IVD) necessary for sustaining the nutrition of the disc while distributing mechanical loads and preventing the disc from bulging into the adjacent vertebral body. The size, shape, and composition of the CEP are essential in maintaining its function, and degeneration of the CEP is considered a contributor to early IVD degeneration. In addition, the CEP is implicated in Modic changes, which are often associated with low back pain. This review aims to tackle the current knowledge of the CEP regarding its structure, composition, permeability, and mechanical role in a healthy disc, how they change with degeneration, and how they connect to IVD degeneration and low back pain. Additionally, the authors suggest a standardized naming convention regarding the CEP and bony endplate and suggest avoiding the term vertebral endplate. Currently, there is limited data on the CEP itself as reported data is often a combination of CEP and bony endplate, or the CEP is considered as articular cartilage. However, it is clear the CEP is a unique tissue type that differs from articular cartilage, bony endplate, and other IVD tissues. Thus, future research should investigate the CEP separately to fully understand its role in healthy and degenerated IVDs. Further, most IVD regeneration therapies in development failed to address, or even considered the CEP, despite its key role in nutrition and mechanical stability within the IVD. Thus, the CEP should be considered and potentially targeted for future sustainable treatments.
Collapse
Affiliation(s)
- Katherine B. Crump
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery and Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | - Ahmad Alminnawi
- GIGA In Silico MedicineUniversity of LiègeLiègeBelgium
- Skeletal Biology and Engineering Research Center, KU LeuvenLeuvenBelgium
- Biomechanics Research Unit, KU LeuvenLeuvenBelgium
| | - Paola Bermudez‐Lekerika
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery and Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | - Roger Compte
- Twin Research & Genetic EpidemiologySt. Thomas' Hospital, King's College LondonLondonUK
| | - Francesco Gualdi
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM)BarcelonaSpain
| | - Terence McSweeney
- Research Unit of Health Sciences and TechnologyUniversity of OuluOuluFinland
| | - Estefano Muñoz‐Moya
- BCN MedTech, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | - Andrea Nüesch
- Division of Clinical Medicine, School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Liesbet Geris
- GIGA In Silico MedicineUniversity of LiègeLiègeBelgium
- Skeletal Biology and Engineering Research Center, KU LeuvenLeuvenBelgium
- Biomechanics Research Unit, KU LeuvenLeuvenBelgium
| | - Stefan Dudli
- Center of Experimental RheumatologyDepartment of Rheumatology, University Hospital Zurich, University of ZurichZurichSwitzerland
- Department of Physical Medicine and RheumatologyBalgrist University Hospital, Balgrist Campus, University of ZurichZurichSwitzerland
| | - Jaro Karppinen
- Research Unit of Health Sciences and TechnologyUniversity of OuluOuluFinland
- Finnish Institute of Occupational HealthOuluFinland
- Rehabilitation Services of South Karelia Social and Health Care DistrictLappeenrantaFinland
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | - Christine Le Maitre
- Division of Clinical Medicine, School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery and Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
| |
Collapse
|
34
|
Tan J, Shi M, Li B, Liu Y, Luo S, Cheng X. Role of arachidonic acid metabolism in intervertebral disc degeneration: identification of potential biomarkers and therapeutic targets via multi-omics analysis and artificial intelligence strategies. Lipids Health Dis 2023; 22:204. [PMID: 38007425 PMCID: PMC10675942 DOI: 10.1186/s12944-023-01962-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/05/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is widely recognized as the primary etiological factor underlying low back pain, often necessitating surgical intervention as the sole recourse in severe cases. The metabolic pathway of arachidonic acid (AA), a pivotal regulator of inflammatory responses, influences the development and progression of IVDD. METHODS Initially, a comparative analysis was conducted to investigate the relationship between AA expression patterns and different stages of IVDD using single-cell sequencing (scRNA-seq) data. Additionally, three machine learning methods (LASSO, random forest, and support vector machine recursive feature elimination) were employed to identify hub genes associated with IVDD. Subsequently, a novel artificial intelligence prediction model was developed for IVDD based on an artificial neural network algorithm and validated using an independent dataset. The identified hub genes were further subjected to functional enrichment, immune infiltration, and Connectivity Map analysis. Moreover, external validation was performed using flow cytometry and real-time reverse transcription polymerase chain reaction analysis. RESULTS Both scRNA-seq and bulk RNA-seq data revealed a positive correlation between the severity of IVDD and the AA metabolic pathway. They also revealed increased AA metabolic activity in macrophages and neutrophils, as well as enhanced intercellular communication with nucleus pulposus cells. Utilizing advanced machine learning algorithms, five hub genes (AKR1C3, ALOX5, CYP2B6, EPHX2, and PLB1) were identified, and an incipient diagnostic model was developed with an AUC of 0.961 in the training cohort and 0.72 in the validation cohort. An in-depth exploration of the functionality of these hub genes revealed their notable association with inflammatory responses and immune cell infiltration. Lastly, AH6809 was found to delay IVDD by inhibiting AKR1C3. CONCLUSIONS This study offers comprehensive insights into potential biomarkers and small molecules associated with the early pathogenesis of IVDD. The identified biomarkers and the developed integrated diagnostic model hold great promise in predicting the onset of early IVDD. AH6809 was established as a therapeutic target for AKR1C3 in the treatment of IVDD, as evidenced by computer simulations and biological experiments.
Collapse
Affiliation(s)
- Jianye Tan
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China
| | - Meiling Shi
- Medical College of Nanchang University, Nanchang, 330006, China
| | - Bin Li
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yuan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China
| | - Shengzhong Luo
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China
| | - Xigao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China.
| |
Collapse
|
35
|
Atsu PM, Mowen C, Thompson GL. Enhanced Cell Viability and Migration of Primary Bovine Annular Fibrosus Fibroblast-like Cells Induced by Microsecond Pulsed Electric Field Exposure. ACS OMEGA 2023; 8:36815-36822. [PMID: 37841191 PMCID: PMC10568721 DOI: 10.1021/acsomega.3c03518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023]
Abstract
This study is the first to report the enhancement of cell migration and proliferation induced by in vitro microsecond pulsed electric field (μsPEF) exposure of primary bovine annulus fibrosus (AF) fibroblast-like cells. AF primary cells isolated from fresh bovine intervertebral disks (IVDs) are exposed to 10 and 100 μsPEFs with different numbers of pulses and applied electric field strengths. The results indicate that 10 μs-duration pulses induce reversible electroporation, while 100 μs pulses induce irreversible electroporation of the cells. Additionally, μsPEF exposure increased AF cell proliferation up to 150% while increasing the average migration speed by 0.08 μm/min over 24 h. The findings suggest that the effects of PEF exposure on cells are multifactorial-depending on the duration, intensity, and number of pulses used in the stimulation. This highlights the importance of optimizing the μsPEF parameters for specific cell types and applications. For instance, if the goal is to induce cell death for cancer treatment, then high numbers of pulses can be used to maximize the lethal effects. On the other hand, if the goal is to enhance cell proliferation, a combination of the number of pulses and the applied electric field strength can be tuned to achieve the desired outcome. The information gleaned from this study can be applied in the future to in vitro cell culture expansion and tissue regeneration.
Collapse
Affiliation(s)
- Prince M. Atsu
- Department
of Chemical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Connor Mowen
- Department
of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Gary L. Thompson
- Department
of Chemical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
36
|
Ying Y, Cai K, Cai X, Zhang K, Qiu R, Jiang G, Luo K. Recent advances in the repair of degenerative intervertebral disc for preclinical applications. Front Bioeng Biotechnol 2023; 11:1259731. [PMID: 37811372 PMCID: PMC10557490 DOI: 10.3389/fbioe.2023.1259731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
The intervertebral disc (IVD) is a load-bearing, avascular tissue that cushions pressure and increases flexibility in the spine. Under the influence of obesity, injury, and reduced nutrient supply, it develops pathological changes such as fibular annulus (AF) injury, disc herniation, and inflammation, eventually leading to intervertebral disc degeneration (IDD). Lower back pain (LBP) caused by IDD is a severe chronic disorder that severely affects patients' quality of life and has a substantial socioeconomic impact. Patients may consider surgical treatment after conservative treatment has failed. However, the broken AF cannot be repaired after surgery, and the incidence of re-protrusion and reoccurring pain is high, possibly leading to a degeneration of the adjacent vertebrae. Therefore, effective treatment strategies must be explored to repair and prevent IDD. This paper systematically reviews recent advances in repairing IVD, describes its advantages and shortcomings, and explores the future direction of repair technology.
Collapse
Affiliation(s)
- Yijian Ying
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Kaiwen Cai
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiongxiong Cai
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Kai Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Rongzhang Qiu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Guoqiang Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kefeng Luo
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
37
|
Sood A, Mishra GV, Suryadevara M, Parihar P, Khandelwal S, Manuja N, Saboo K, Shelar SS, Ahuja A, Batra N. Role of Apparent Diffusion Coefficient in Evaluating Degeneration of the Intervertebral Disc: A Narrative Review. Cureus 2023; 15:e43340. [PMID: 37700953 PMCID: PMC10493165 DOI: 10.7759/cureus.43340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
Degeneration of the lumbar intervertebral disc is the most common cause of lower back pain. It is directly related to daily activities, mechanical stress, and other biological factors. We use imaging modalities to assess the degree of disc degeneration, out of which magnetic resonance imaging (MRI) is the most popular non-invasive modality. It is believed that early changes in disc degeneration are due to the biochemical events in the disc and can be evaluated by sequences in MRI involving the diffusion of water molecules. The apparent diffusion coefficient (ADC) is one such sequence that captures the signals based on the diffusion of water molecules. Ten articles were chosen from PubMed and Google Scholar using the MeSH terms 'lumbar spine degeneration' and 'apparent diffusion coefficient'. This review article has summarized various studies intending to gain a better understanding of the biochemical events leading to the development of disc degeneration. This study has also gathered the role of various sequences in MRI that can quantitatively assess disc degeneration.
Collapse
Affiliation(s)
- Anshul Sood
- Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, IND
| | - Gaurav V Mishra
- Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, IND
| | - Manasa Suryadevara
- Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, IND
| | - Pratap Parihar
- Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, IND
| | - Shreya Khandelwal
- Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, IND
| | - Nishtha Manuja
- Internal Medicine, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, IND
| | - Keyur Saboo
- Internal Medicine, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, IND
| | - Sheetal S Shelar
- Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, IND
| | - Abhinav Ahuja
- Internal Medicine, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, IND
| | - Nitish Batra
- Internal Medicine, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, IND
| |
Collapse
|
38
|
Zhou H, Liu C, Hu F, Shen C, Shen B, He W, Du J. Increased levels of circulating granulocytic myeloid‑derived suppressor cells in lumbar disc herniation. Exp Ther Med 2023; 26:367. [PMID: 37408862 PMCID: PMC10318602 DOI: 10.3892/etm.2023.12066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/10/2023] [Indexed: 07/07/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expand when the body undergoes inflammatory diseases and chronic diseases. However, its role in intervertebral disc degeneration remains unclear. The present study aimed to characterize specific subsets of MDSCs as potential indicators of disease progression in patients with lumbar disc herniation (LDH). The Gene Expression Omnibus (GEO) database was used to analyze the changes in granulocyte MDSCs (G-MDSCs). Peripheral blood samples were collected from 40 patients with LDH and 15 healthy controls, and flow cytometry was used to characterize different subsets of MDSCs. All subjects underwent lumbar spine magnetic resonance imaging. Then, t-distributed stochastic neighborhood embedding and FlowSOM were used to analyze the data obtained by CytoFlex. The correlation between circulating MDSCs and the clinicopathological stage of LDH was then further analyzed. The GEO database predicted that G-MDSCs were highly expressed in patients with LDH. The frequency of circulating G-MDSCs increased with Pfirrmann stage III and IV, while the percentage of mononuclear MDSCs (M-MDSCs) only increased. Patient age and sex did not correlate with the frequency of circulating G-MDSCs and M-MDSCs. The results of the computer algorithm analysis were consistent with those of our manual gating. The present study showed that the occurrence of LDH led to changes in the MDSC subpopulation in the circulating peripheral blood of patients, and the frequency of circulating G-MDSCs in patients with clinical stage III and IV LDH increased with the degree of degeneration. The determination of G-MDSCs can be used as an auxiliary examination item for LDH.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chang Liu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Fangfang Hu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chunlin Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bing Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei He
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Juan Du
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Comprehensive Central Laboratory, School of Medicine, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
39
|
Bao J, Gao W, Zhang W, Wang D, Pan H. Fibrin glue delivery system containing rhein ameliorates intervertebral disc degeneration by anti-inflammatory efficacy. J Orthop Surg Res 2023; 18:485. [PMID: 37415165 DOI: 10.1186/s13018-023-03961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
PURPOSE To construct an injectable, sustained-release fibrin gel containing rhein to solve the problem of low bioavailability of rhein, and observe its efficacy in the treatment of intervertebral disc degeneration. METHODS The fibrin gel containing rhein was first synthesized in advance. Subsequently, the materials were characterized by various experimental methods. Secondly, the degenerative cell model was constructed by stimulating nucleus pulposus cells with lipopolysaccharide (LPS), and the corresponding intervention treatment was carried out to observe the effect in vitro. Finally, the rat tail intervertebral disc was acupunctured by needles to establish the intervertebral disc degeneration model, and the effect of the material was observed through intradiscal injection. RESULTS The fibrin glue containing rhein (rhein@FG) showed good injectability, sustained release and biocompatibility. Rhein@FG can improve the LPS-induced inflammatory microenvironment, regulate ECM metabolic disorders of nucleus pulposus cells and aggregation of the NLRP3 inflammasome in vitro, and inhibit cell pyroptosis. Furthermore, in vivo experiments, rhein@FG effectively prevented needle puncture-induced intervertebral disc degeneration in rats. CONCLUSIONS Rhein@FG has better efficacy than rhein or FG alone due to its slow release and mechanical properties, which can be used as a potential replacement therapy for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Jianhang Bao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), No. 453 Tiyuchang Road, Xihu District, Hangzhou, 310007, Zhejiang Province, People's Republic of China
| | - Wenshuo Gao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), No. 453 Tiyuchang Road, Xihu District, Hangzhou, 310007, Zhejiang Province, People's Republic of China
| | - Wei Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), No. 453 Tiyuchang Road, Xihu District, Hangzhou, 310007, Zhejiang Province, People's Republic of China
| | - Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), No. 453 Tiyuchang Road, Xihu District, Hangzhou, 310007, Zhejiang Province, People's Republic of China.
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, No. 1630 Huanding Road, Shangcheng District, Hangzhou, 310021, Zhejiang Province, People's Republic of China.
- Institute of Orthopaedics and Traumatology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Xihu District, Hangzhou, 310007, People's Republic of China.
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), No. 453 Tiyuchang Road, Xihu District, Hangzhou, 310007, Zhejiang Province, People's Republic of China.
- Institute of Orthopaedics and Traumatology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Xihu District, Hangzhou, 310007, People's Republic of China.
| |
Collapse
|
40
|
Stover JD, Trone MA, Lawrence B, Bowles RD. Multiplex epigenome editing of ion channel expression in nociceptive neurons abolished degenerative IVD-conditioned media-induced mechanical sensitivity. JOR Spine 2023; 6:e1253. [PMID: 37361323 PMCID: PMC10285767 DOI: 10.1002/jsp2.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/15/2023] [Accepted: 02/27/2023] [Indexed: 06/28/2023] Open
Abstract
Background Low back pain is a major contributor to disability worldwide and generates a tremendous socioeconomic impact. The degenerative intervertebral disc (IVD) has been hypothesized to contribute to discogenic pain by sensitizing nociceptive neurons innervating the disc to stimuli that is nonpainful in healthy patients. Previously, we demonstrated the ability of degenerative IVDs to sensitize neurons to mechanical stimuli; however, elucidation of degenerative IVDs discogenic pain mechanisms is required to develop therapeutic strategies that directly target these mechanisms. Aims In this study, we utilized CRISPR epigenome editing of nociceptive neurons to identify mechanisms of degenerative IVD-induced changes to mechanical nociception and demonstrated the ability of multiplex CRISPR epigenome editing of nociceptive neurons to modulate inflammation-induced mechanical nociception. Methods and Results Utilizing an in vitro model, we demonstrated degenerative IVD-produced IL-6-induced increases in nociceptive neuron activity in response to mechanical stimuli, mediated by TRPA1, ASIC3, and Piezo2 ion channel activity. Once these ion channels were identified as mediators of degenerative IVD-induced mechanical nociception, we developed singleplex and multiplex CRISPR epigenome editing vectors that modulate endogenous expression of TRPA1, ASIC3, and Piezo2 via targeted gene promoter histone methylation. When delivered to nociceptive neurons, the multiplex CRISPR epigenome editing vectors abolished degenerative IVD-induced mechanical nociception while preserving nonpathologic neuron activity. Conclusion This work demonstrates the potential of multiplex CRISPR epigenome editing as a highly targeted gene-based neuromodulation strategy for the treatment of discogenic pain, specifically; and, for the treatment of inflammatory chronic pain conditions, more broadly.
Collapse
Affiliation(s)
- Joshua D. Stover
- Department of BioengineeringUniversity of UtahSalt Lake CityUtahUSA
| | - Matthew A. Trone
- Department of BioengineeringUniversity of UtahSalt Lake CityUtahUSA
| | - Brandon Lawrence
- Department of OrthopaedicsUniversity of UtahSalt Lake CityUtahUSA
| | - Robby D. Bowles
- Department of BioengineeringUniversity of UtahSalt Lake CityUtahUSA
- Department of OrthopaedicsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
41
|
Alkosha HM. Interventional non-operative management of low back and neck pain. EGYPTIAN JOURNAL OF NEUROSURGERY 2023. [DOI: 10.1186/s41984-023-00189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Abstract
Background
Chronic neck and back pain are among the most commonly encountered health problems in neurosurgical practice. Many cases fail prolonged pharmacological and physical therapy and are not proper candidates for surgical interventions, or had refused proposed surgical treatment.
Objective
To provide an informative critical summary of the literature about the topic of interventional management of axial neck and low back pain and highlighting the new trends and pieces of evidence.
Methods
The English literature published over the last two decades was reviewed by the author for recent and relevant data about the principles of interventional management of chronic neck and low back pain. A PubMed search was performed through phrase searching and combined searching using Boolean operators. The articles thought to be most relevant to the study aim and the neurosurgeons’ practice were extracted.
Results
Neck and low back pain continue to be among the most common musculoskeletal health problems and the most common cause of disability worldwide. A detailed understanding of relevant spine anatomy is crucial for interventionists who should deal with the concept of “functional spine unit” with multiple potential pain generators. Chronic spinal pain is best managed through a dedicated multidisciplinary team in well-equipped healthcare facilities. An algorithmic approach for the diagnosis and management of spinal pain is the mainstay of providing the best patient care and should be based on the commonality and treatability of pain generators, values of patients and available resources.
Conclusion
Management of chronic neck and back pain can represent a clinical dilemma due to the multiplicity of pain generators that may coexist in the same individual resulting in a complex type and pattern of pain. Approach to these patients requires contributions from the members of a multidisciplinary team, implementing a standardized approach in a well-equipped healthcare facility.
Collapse
|
42
|
Shi ZW, Zhu L, Song ZR, Liu TJ, Hao DJ. Roles of p38 MAPK signalling in intervertebral disc degeneration. Cell Prolif 2023:e13438. [PMID: 36872558 PMCID: PMC10392072 DOI: 10.1111/cpr.13438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 03/07/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common degenerative disease mediated by multiple factors. Because of its complex aetiology and pathology, no specific molecular mechanisms have yet been identified and no definitive treatments are currently available for IVDD. p38 mitogen-activated protein kinase (MAPK) signalling, part of the serine and threonine (Ser/Thr) protein kinases family, is associated with the progression of IVDD, by mediating the inflammatory response, increasing extracellular matrix (ECM) degradation, promoting cell apoptosis and senescence and suppressing cell proliferation and autophagy. Meanwhile, the inhibition of p38 MAPK signalling has a significant effect on IVDD treatment. In this review, we first summarize the regulation of p38 MAPK signalling and then highlight the changes in the expression of p38 MAPK signalling and their impact on pathological process of IVDD. Moreover, we discuss the current applications and future prospects of p38 MAPK as a therapeutic target for IVDD treatment.
Collapse
Affiliation(s)
- Zheng-Wei Shi
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Lei Zhu
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Zong-Rang Song
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Tuan-Jiang Liu
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Ding-Jun Hao
- Department of Spine Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
43
|
Yao B, Cai Y, Wang W, Deng J, Zhao L, Han Z, Wan L. The Effect of Gut Microbiota on the Progression of Intervertebral Disc Degeneration. Orthop Surg 2023; 15:858-867. [PMID: 36600636 PMCID: PMC9977585 DOI: 10.1111/os.13626] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Intervertebral disc degeneration (IDD) is the main cause of back pain, and its treatment is a serious socio-economic burden. The safety and treatment of fecal microbiota transplantation (FMT) has been established. However, the relationship between FMT and IDD still unclear. We aimed to explore whether FMT plays a role in IDD to provide a reference for the treatment of IDD. METHODS An experimental model of IDD was established using 2-month-old male Sprague-Dawley rats. FMT was performed by intragastric gavage of IDD rats with a fecal bacterial solution. Rat serum, feces, and vertebral disc tissue were collected after surgery for 2 months. The levels of TNF-α, IL-1β, IL-6, matrix metalloproteinase (MMP)-3, MMP-13, Collagen II, and aggrecan in the serum or vertebral disc tissue were measured by an enzyme-linked immunosorbent assay, immunohistochemistry, quantitative real-time polymerase chain reaction, or western blotting. We also examined the pathology of the vertebral disc tissue using hematoxylin and eosin (HE) and safranin O-fast green staining. Finally, we examined the gut microbiota in rat feces using 16 S rRNA gene sequencing. RESULTS We found that the expression of TNF-α, IL-1β, IL-6, MMP-3, MMP-13, NLRP3 and Caspase-1 increased in the IDD group rats. In contrast, Collagen II and aggrecan levels were downregulated. Additionally, vertebral disc tissue was severely damaged in the IDD group, with disordered cell arrangement and uneven safranin coloration. FMT reversed the effects of IDD modeling on these factors and alleviated cartilage tissue damage. In addition, FMT increased the gut microbiota diversity and microbial abundance in rats treated with IDD. CONCLUSION Our findings suggest that FMT has a positive effect in maintaining cellular stability in the vertebral disc and alleviating histopathological damage. It affects the diversity and abundance of gut microbiota in rats with IDD. Therefore, FMT may serve as a promising target for amelioration of IDD.
Collapse
Affiliation(s)
- Bo Yao
- Department of Spine SurgeryWant want hospitalChangshaHunanChina
| | - Youquan Cai
- Department of Spine SurgeryWant want hospitalChangshaHunanChina
| | - Weiguo Wang
- Department of Spine Surgery, the Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jia Deng
- Department of Spine SurgeryWant want hospitalChangshaHunanChina
| | - Lei Zhao
- Department of Spine SurgeryWant want hospitalChangshaHunanChina
| | - Ziwei Han
- Department of Spine SurgeryWant want hospitalChangshaHunanChina
| | - Li Wan
- Department of Spine SurgeryWant want hospitalChangshaHunanChina
| |
Collapse
|
44
|
Chen Q, Yang Q, Pan C, Ding R, Wu T, Cao J, Wu H, Zhao X, Li B, Cheng X. Quiescence preconditioned nucleus pulposus stem cells alleviate intervertebral disc degeneration by enhancing cell survival via adaptive metabolism pattern in rats. Front Bioeng Biotechnol 2023; 11:1073238. [PMID: 36845177 PMCID: PMC9950514 DOI: 10.3389/fbioe.2023.1073238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Quiescence is a cellular state of reversible growth arrest required to maintain homeostasis and self-renewal. Entering quiescence allows the cells to remain in the non-dividing stage for an extended period of time and enact mechanisms to protect themselves from damage. Due to the extreme nutrient-deficient microenvironment in the intervertebral disc (IVD), the therapeutic effect of cell transplantation is limited. In this study, nucleus pulposus stem cells (NPSCs) were preconditioned into quiescence through serum starvation in vitro and transplanted to repair intervertebral disc degeneration (IDD). In vitro, we investigated apoptosis and survival of quiescent NPSCs in a glucose-free medium without fetal bovine serum. Non-preconditioned proliferating NPSCs served as controls. In vivo, the cells were transplanted into a rat model of IDD induced by acupuncture, and the intervertebral disc height, histological changes, and extracellular matrix synthesis were observed. Finally, to elucidate the mechanisms underlying the quiescent state of NPSCs, the metabolic patterns of the cells were investigated through metabolomics. The results revealed that quiescent NPSCs decreased apoptosis and increased cell survival when compared to proliferating NPSCs both in vitro and in vivo, as well as maintained the disc height and histological structure significantly better than that by proliferating NPSCs. Furthermore, quiescent NPSCs have generally downregulated metabolism and reduced energy requirements in response to a switch to a nutrient-deficient environment. These findings support that quiescence preconditioning maintains the proliferation and biological function potential of NPSCs, increases cell survival under the extreme environment of IVD, and further alleviates IDD via adaptive metabolic patterns.
Collapse
Affiliation(s)
- Qi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
| | - Qu Yang
- Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chongzhi Pan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Jian Cao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Hui Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China
| | - Xiaokun Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
| | - Bin Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China,*Correspondence: Bin Li, ; Xigao Cheng,
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China,Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, China,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Bin Li, ; Xigao Cheng,
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Intervertebral disc degeneration is a contributor to chronic back pain. While a part of the natural aging process, early or rapid intervertebral disc degeneration is highly heritable. In this review, we summarize recent progress towards unraveling the genetics associated with this degenerative process. RECENT FINDINGS Use of large cohorts of patient data to conduct genome-wide association studies (GWAS) for intervertebral disc disease, and to lesser extent for aspects of this process, such as disc height, has resulted in a large increase in our understanding of the genetic etiology. Genetic correlation suggests that intervertebral disc disease is pleiotropic with risk factors for other diseases such as osteoporosis. The use of Mendelian Randomization is slowly establishing what are the causal relationships between intervertebral disc disease and factors previously correlated with this disease. The results from these human genetic studies highlight the complex nature of this disease and have the potential to lead to improved clinical management of intervertebral disc disease. Much additional work should now be focused on characterizing the causative relationship various co-morbid conditions have with intervertebral disc degeneration and on finding interventions to slow or halt this disease.
Collapse
Affiliation(s)
- David C Ou-Yang
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Anschutz Medical Campus, 12800 E 19th Ave, MS8343, Aurora, CO, 80045, USA
| | - Christopher J Kleck
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Anschutz Medical Campus, 12800 E 19th Ave, MS8343, Aurora, CO, 80045, USA
| | - Cheryl L Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Anschutz Medical Campus, 12800 E 19th Ave, MS8343, Aurora, CO, 80045, USA.
| |
Collapse
|
46
|
Li Z, Yang H, Hai Y, Cheng Y. Regulatory Effect of Inflammatory Mediators in Intervertebral Disc Degeneration. Mediators Inflamm 2023; 2023:6210885. [PMID: 37101594 PMCID: PMC10125773 DOI: 10.1155/2023/6210885] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 03/18/2023] [Indexed: 04/28/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a major contributor to back, neck, and radicular pain. It is related to changes in tissue structure and function, including the breakdown of the extracellular matrix (ECM), aging, apoptosis of the nucleus pulposus, and biomechanical tissue impairment. Recently, an increasing number of studies have demonstrated that inflammatory mediators play a crucial role in IDD, and they are being explored as potential treatment targets for IDD and associated disorders. For example, interleukins (IL), tumour necrosis factor-α (TNF-α), chemokines, and inflammasomes have all been linked to the pathophysiology of IDD. These inflammatory mediators are found in high concentrations in intervertebral disc (IVD) tissues and cells and are associated with the severity of LBP and IDD. It is feasible to reduce the production of these proinflammatory mediators and develop a novel therapy for IDD, which will be a hotspot of future research. In this review, the effects of inflammatory mediators in IDD were described.
Collapse
Affiliation(s)
- Zhangfu Li
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Honghao Yang
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yunzhong Cheng
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
47
|
Höflsauer S, Bonnaire FC, Bamberger CE, Danalache M, Feierabend M, Hofmann UK. Changes in stiffness of the extracellular and pericellular matrix in the anulus fibrosus of lumbar intervertebral discs over the course of degeneration. Front Bioeng Biotechnol 2022; 10:1006615. [PMID: 36619385 PMCID: PMC9816436 DOI: 10.3389/fbioe.2022.1006615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
Analogous to articular cartilage, changes in spatial chondrocyte organisation have been proposed to be a strong indicator for local tissue degeneration in the intervertebral disc (IVD). While a progressive structural and functional degradation of the extracellular (ECM) and pericellular (PCM) matrix occurs in osteoarthritic cartilage, these processes have not yet been biomechanically elucidated in the IVD. We aimed to evaluate the local stiffness of the ECM and PCM in the anulus fibrosus of the IVD on the basis of local chondrocyte spatial organisation. Using atomic force microscopy, we measured the Young's modulus of the local ECM and PCM in human and bovine disc samples using the spatial chondrocyte patterns as an image-based biomarker. By measuring tissue from 31 patients and six bovine samples, we found a significant difference in the elastic moduli (E) of the PCM in clusters when compared to the healthy patterns single cells (p = 0.029), pairs (p = 0.016), and string-formations (p = 0.010). The ECM/PCM ratio ranged from 0.62-0.89. Interestingly, in the bovine IVD, the ECM/PCM ratio of the E significantly varied (p = 0.002) depending on the tissue origin. Overall the reduced E in clusters demonstrates that cluster formation is not only a morphological phenomenon describing disc degeneration, but it marks a compromised biomechanical functioning. Immunohistochemical analyses indicate that collagen type III degradation might be involved. This study is the first to describe and quantify the differences in the E of the ECM in relation to the PCM in the anulus fibrosus of the IVD by means of atomic force microscopy on the basis of spatial chondrocyte organisation.
Collapse
Affiliation(s)
- Sebastian Höflsauer
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany,Medical Faculty of the University of Tübingen, Tübingen, Germany
| | - Florian Christof Bonnaire
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany,Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany
| | - Charlotte Emma Bamberger
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany,Medical Faculty of the University of Tübingen, Tübingen, Germany
| | - Marina Danalache
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany,Medical Faculty of the University of Tübingen, Tübingen, Germany
| | - Martina Feierabend
- Institute for Bioinformatics and Medical Informatics, Faculty of Science of the University of Tübingen, Tübingen, Germany,*Correspondence: Martina Feierabend,
| | - Ulf Krister Hofmann
- Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany,Department of Orthopaedic Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
48
|
Role of Advanced Glycation End Products in Intervertebral Disc Degeneration: Mechanism and Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7299005. [PMID: 36573114 PMCID: PMC9789911 DOI: 10.1155/2022/7299005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The incidence of low back pain caused by lumbar disc degeneration is high, and it can lead to loss of work ability and impose heavy social and economic burdens. The pathogenesis of low back pain is unclear, and there are no effective treatments. With age, the deposition of advanced glycation end products (AGEs) in intervertebral disc (IVD) gradually increases and is accelerated by diabetes and a high-AGEs diet, leading to destruction of the annulus fibrosus (AF), nucleus pulposus (NP), and cartilage endplate (CEP) and finally intervertebral disc degeneration (IDD). Reducing the accumulation of AGEs in IVD and blocking the transmission of downstream signals caused by AGEs have a significant effect on alleviating IDD. In this review, we summarize the mechanism by which AGEs induce IDD and potential treatment strategies.
Collapse
|
49
|
Liu Z, Bian Y, Wu G, Fu C. Application of stem cells combined with biomaterial in the treatment of intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1077028. [PMID: 36507272 PMCID: PMC9732431 DOI: 10.3389/fbioe.2022.1077028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
As the world population is aging, intervertebral disc degeneration (IDD) is becoming a global health issue of increasing concern. A variety of disc degeneration diseases (DDDs) have been proven to be associated with IDD, and these illnesses have significant adverse effects on both individuals and society. The application of stem cells in regenerative medicine, such as blood and circulation, has been demonstrated by numerous studies. Similarly, stem cells have made exciting progress in the treatment of IDD. However, due to complex anatomical structures and functional requirements, traditional stem cell injection makes it difficult to meet people's expectations. With the continuous development of tissue engineering and biomaterials, stem cell combined with biomaterials has far more prospects than before. This review aims to objectively and comprehensively summarize the development of stem cells combined with contemporary biomaterials and the difficulties that need to be overcome.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China,Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Yuya Bian
- Jilin Institute of Scientific and Technical Information, Changchun, China
| | - Guangzhi Wu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Guangzhi Wu, ; Changfeng Fu,
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China,*Correspondence: Guangzhi Wu, ; Changfeng Fu,
| |
Collapse
|
50
|
Li Q, Chen Z, Yang C, Wang L, Ma J, He T, Li H, Quan Z. Role of ferroptosis-associated genes in ankylosing spondylitis and immune cell infiltration. Front Genet 2022; 13:948290. [PMID: 36437923 PMCID: PMC9691995 DOI: 10.3389/fgene.2022.948290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/28/2022] [Indexed: 10/17/2023] Open
Abstract
Ankylosing spondylitis (AS) is a chronic progressive autoimmune disease with insidious onset, high rates of disability among patients, unknown pathogenesis, and no effective treatment. Ferroptosis is a novel type of regulated cell death that is associated with various cancers and diseases. However, its relation to AS is not clear. In the present study, we identified two potential therapeutic targets for AS based on genes associated with ferroptosis and explored their association with immune cells and immune cell infiltration (ICI). We studied gene expression profiles of two cohorts of patients with AS (GSE25101 and GSE41038) derived from the gene expression omnibus database, and ferroptosis-associated genes (FRGs) were obtained from the FerrDb database. LASSO regression analysis was performed to build predictive models for AS based on FRGs, and the ferroptosis level in each sample was assessed via single-sample gene set enrichment analysis. Weighted gene co-expression network and protein-protein interaction network analyses were performed for screening; two key genes, DDIT3 and HSPB1, were identified in patients with AS. The relationship between key genes and ICI levels was assessed using the CIBERSORT algorithm, followed by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Finally, DDIT3 and HSPB1 were identified as diagnostic markers and potential therapeutic targets for AS. DDIT3 was highly positively correlated with the infiltration levels of various immune cells, while HSPB1 was negatively correlated with the infiltration levels of several different types of immune cells. In conclusion, DDIT3 and HSPB1 may induce ferroptosis in the cells of patients with AS via changes in the inflammatory response in the immune microenvironment, and these genes could serve as molecular targets for AS therapy.
Collapse
Affiliation(s)
- Qiaochu Li
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Zhiyu Chen
- The First Clinical College, Chongqing Medical University, Chongqing, China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaohua Yang
- The First Clinical College, Chongqing Medical University, Chongqing, China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linbang Wang
- The First Clinical College, Chongqing Medical University, Chongqing, China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingjin Ma
- The First Clinical College, Chongqing Medical University, Chongqing, China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao He
- The First Clinical College, Chongqing Medical University, Chongqing, China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Orthopaedic Trauma, Chongqing General Hospital, Chongqing, China
| | - Huanhuan Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengxue Quan
- The First Clinical College, Chongqing Medical University, Chongqing, China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|