1
|
Sorrentino FS, Parmeggiani F, Gardini L, Fontana L, Musa M, Gagliano C, Zeppieri M. Stem cell therapy for retinal pigment epithelium disorders. World J Stem Cells 2025; 17. [DOI: 10.4252/wjsc.v17.i5.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/17/2025] [Accepted: 04/16/2025] [Indexed: 05/26/2025] Open
Abstract
Retinal pigment epithelium (RPE) dysfunction is involved in the advancement of numerous degenerative retinal illnesses, such as age-related macular degeneration and hereditary retinal abnormalities. Transplantation of RPE produced from stem cells has emerged as a promising therapeutic strategy to restore retinal function and prevent vision loss. However, other obstacles impede its clinical application, including immunological rejection, cell viability, functional integration, and the necessity for consistent differentiation techniques. This review offers a thorough examination of the molecular processes regulating RPE integrity, investigates recent progress in stem cell-derived RPE therapeutics, and addresses significant challenges to their broad implementation. Furthermore, we emphasize prospective avenues intended to enhance the safety, efficacy, and enduring success of RPE transplantation in clinical environments.
Collapse
|
2
|
Thomas BB, Rajendran Nair DS, Rahimian M, Hassan AK, Tran TL, Seiler MJ. Animal models for the evaluation of retinal stem cell therapies. Prog Retin Eye Res 2025; 106:101356. [PMID: 40239758 DOI: 10.1016/j.preteyeres.2025.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
Retinal degeneration (RD) diseases leading to severe vision loss can affect photoreceptors (PRs) that are responsible for phototransduction, or retinal pigmented epithelium (RPE) providing support for PRs. Human pluripotent stem cell (hPSC)-based therapies are a potential approach for restoration of retinal structure in patients with currently incurable RD diseases. Currently, there are two targeted hPSC therapeutics: PR rescue and PR replacement. PR rescue involves the transplantation of RPE or other neural progenitors into the subretinal space to slow down or prevent further RD. RPE transplantation plays a critical role in preserving photoreceptors by providing trophic support and maintaining retinal integrity, particularly in diseases like age-related macular degeneration (AMD). Advances in RPE transplantation methods, such as polarized monolayer cultures and scaffold-based approaches, have shown promise in enhancing graft survival and integration. However, limitations include inconsistent integration, variable neurotrophic factor secretion, and immune rejection risks in non-autologous transplants. In PR replacement, stem cell-derived photoreceptor-like cells or photoreceptor progenitors (PRP) obtained are transplanted into the eye. While PRPs are commonly obtained from retinal organoids (ROs), alternative sources, such as early differentiation stages or direct differentiation protocols, are also utilized to enhance the efficiency and scalability of PRP generation. Challenges include achieving proper integration, forming outer segments, rosette formation, and avoiding immune rejection or tumorigenicity. Various animal models that simulate human RD diseases are being used for establishing surgical feasibility, graft survival and visual functional recovery but fail to replicate clinical immune challenges. Rodent models lack macula-like structures and have limited reliability in detecting subtle functional changes, while larger animal models pose ethical, logistical, and financial challenges. Immunocompromised models have been developed for minimizing xenograft issues. Visual functional testing for efficacy includes optokinetic testing (OKN), electroretinography (ERG), and electrophysiological recordings from the retina and brain. These tests often fail to capture the complexity of human visual recovery, highlighting the need for advanced models and improved functional testing techniques. This review aims to aggregate current knowledge about approaches to stem cell transplantation, requirements of animal models chosen for validating vision benefits of transplantation studies, advantages of using specific disease models and their limitations. While promising strides have been made, addressing these limitations remains essential for translating stem cell-based therapies into clinical success.
Collapse
Affiliation(s)
- Biju B Thomas
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, United States
| | - Deepthi S Rajendran Nair
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Mana Rahimian
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, United States
| | - Amr K Hassan
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine CA, United States
| | - Thuy-Linh Tran
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | - Magdalene J Seiler
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine CA, United States; Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States; Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA, United States; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States; Center for Translational Vision Research, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
3
|
Soundararajan L, Surendran H, Patlolla N, Battu R, Stoddard J, Arrizabalaga S, Liu Z, Lingam G, Su X, Ryals RC, Pal R. Allogeneic RPE cell suspension manufactured at scale demonstrating preclinical safety and efficacy led to IND approval. NPJ Regen Med 2025; 10:19. [PMID: 40253438 PMCID: PMC12009284 DOI: 10.1038/s41536-025-00407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/01/2025] [Indexed: 04/21/2025] Open
Abstract
Cell replacement therapy is a promising therapeutic option for dry age-related macular degeneration (AMD). In this study, we outline our design for scalable manufacture with appropriate quality gates and present in vivo data for establishing preclinical safety and efficacy of an induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) product, thus laying the foundation for Phase 1/2a trial approval in India (ClinicalTrials.gov ID: NCT06394232; date of registration: 23rd September 2024). Escalating doses of RPE cell suspension in immunocompromised animals demonstrated absence of tumor formation up to 9 months post-injection. Good Laboratory Practices (GLP) toxicology and tolerability studies in rabbits and non-human primates (NHP) respectively showed no major adverse events. RPE transplanted into immune suppressed RCS rats showed integration, neuroprotection and rescue of visual function. In addition, we provide a detailed description of the modifications in GMP manufacturing protocol to create a final product with a unique composition and Chemistry, Manufacturing and Controls (CMC) studies performed during product development.
Collapse
Affiliation(s)
- Lalitha Soundararajan
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru, India
| | - Harshini Surendran
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru, India
| | - Niharika Patlolla
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru, India
| | - Rajani Battu
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru, India
| | - Jonathan Stoddard
- Casey Eye Institute, Oregon Health and Science University (OHSU), Portland, Oregon, USA
| | | | - Zengping Liu
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Gopal Lingam
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Xinyi Su
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Renee C Ryals
- Casey Eye Institute, Oregon Health and Science University (OHSU), Portland, Oregon, USA
| | - Rajarshi Pal
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru, India.
- The University of Transdisciplinary Health Sciences and Technology (TDU), Bengaluru, India.
| |
Collapse
|
4
|
Li Z, Hu Z, Gao Z. Advances in the Study of Age-Related Macular Degeneration Based on Cell or Cell-Biomaterial Scaffolds. Bioengineering (Basel) 2025; 12:278. [PMID: 40150743 PMCID: PMC11939329 DOI: 10.3390/bioengineering12030278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Age-related macular degeneration (AMD), a progressive neurodegenerative disorder affecting the central retina, is pathologically defined by the irreversible degeneration of photoreceptors and retinal pigment epithelium (RPE), coupled with extracellular drusen deposition and choroidal neovascularization (CNV), and AMD constitutes the predominant etiological factor for irreversible vision impairment in adults aged ≥60 years. Cell-based or cell-biomaterial scaffold-based approaches have been popular in recent years as a major research direction for AMD; monotherapy with cell-based approaches typically involves subretinal injection of progenitor-derived or stem cell-derived RPE cells to restore retinal homeostasis. Meanwhile, cell-biomaterial scaffolds delivered to the lesion site by vector transplantation have been widely developed, and the implanted cell-biomaterial scaffolds can promote the reintegration of cells at the lesion site and solve the problems of translocation and discrete cellular structure produced by cell injection. While these therapeutic strategies demonstrate preliminary efficacy, rigorous preclinical validation and clinical trials remain imperative to validate their long-term safety, functional durability, and therapeutic consistency. This review synthesizes current advancements and translational challenges in cell-based and cell-biomaterial scaffold approaches for AMD, aiming to inform future development of targeted interventions for AMD pathogenesis and management.
Collapse
Affiliation(s)
| | | | - Zhixian Gao
- School of Public Health, Binzhou Medical University, Yantai 264003, China; (Z.L.); (Z.H.)
| |
Collapse
|
5
|
Baez HC, LaPorta JM, Walker AD, Fischer WS, Hollar R, Patterson S, DiLoreto DA, Gullapalli V, McGregor JE. Inner limiting Membrane Peel Extends In vivo Calcium Imaging of Retinal Ganglion Cell Activity Beyond the Fovea in Non-Human Primate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.02.597041. [PMID: 38854047 PMCID: PMC11160754 DOI: 10.1101/2024.06.02.597041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Purpose Adaptive Optics Scanning Light Ophthalmoscopy (AOSLO) paired with intravitreal injection of a viral vector coding for the calcium indicator GCaMP has enabled visualization of neuronal activity in retinal ganglion cells (RGCs) at single cell resolution in the living eye. However, the inner limiting membrane (ILM) restricts viral transduction to the fovea in humans and non-human primates (NHP), hindering both therapeutic intervention and physiological study of the retina. To address this, we explored peeling the ILM before intravitreal injection to expand calcium imaging beyond the fovea in the living primate eye. Methods Five eyes from Macaca fascicularis (age 3-10; n=3; 2 males, 1 female) underwent vitrectomy and ILM peel centered on the fovea prior to intravitreal delivery of 7m8:SNCG:GCaMP8s. RGC responses to visual flicker were evaluated using AOSLO calcium imaging 1-6 months post intravitreal injection. Results Calcium activity was observed in RGCs throughout the ILM peeled area in all eyes, representing a mean 8-fold increase in accessible recording area relative to a representative control eye. RGC responses in the ILM peeled and control eyes were comparable and showed no significant decrease over the 6 months following the procedure. In addition, we demonstrated that activity can be recorded directly from the retinal nerve fiber layer. Conclusions Peeling the ILM is a viable strategy to expand viral access to the GCL for gene therapies in NHP. Overall, this approach has potential to advance visual neuroscience, including pre-clinical evaluation of retinal function, detection of vision loss, and assessment of therapeutic interventions.
Collapse
Affiliation(s)
- Hector C Baez
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
- Center for Visual Science, University of Rochester, Rochester, NY
| | | | - Amber D Walker
- Center for Visual Science, University of Rochester, Rochester, NY
| | | | - Rachel Hollar
- Center for Visual Science, University of Rochester, Rochester, NY
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Sara Patterson
- Center for Visual Science, University of Rochester, Rochester, NY
| | - David A DiLoreto
- Center for Visual Science, University of Rochester, Rochester, NY
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Vamsi Gullapalli
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Juliette E McGregor
- Center for Visual Science, University of Rochester, Rochester, NY
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
6
|
Kirkeby A, Main H, Carpenter M. Pluripotent stem-cell-derived therapies in clinical trial: A 2025 update. Cell Stem Cell 2025; 32:10-37. [PMID: 39753110 DOI: 10.1016/j.stem.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/28/2025]
Abstract
Since the first derivation of human pluripotent stem cells (hPSCs) 27 years ago, technologies to control their differentiation and manufacturing have advanced immensely, enabling increasing numbers of clinical trials with hPSC-derived products. Here, we revew the landscape of interventional hPSC trials worldwide, highlighting available data on clinical safety and efficacy. As of December 2024, we identify 116 clinical trials with regulatory approval, testing 83 hPSC products. The majority of trials are targeting eye, central nervous system, and cancer. To date, more than 1,200 patients have been dosed with hPSC products, accumulating to >1011 clinically administered cells, so far showing no generalizable safety concerns.
Collapse
Affiliation(s)
- Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden.
| | - Heather Main
- HOYA Consulting (ReGenMed Solutions), Stockholm, Sweden
| | | |
Collapse
|
7
|
Babighian S, Zanella MS, Gattazzo I, Galan A, Gagliano C, D'Esposito F, Zeppieri M. Atrophic Macular Degeneration and Stem Cell Therapy: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:105-118. [PMID: 39259423 DOI: 10.1007/5584_2024_819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of visual loss in older patients. No effective drug is available for this pathology, but studies about therapy with stem cells replacing the damaged retinal cells with retinal pigment epithelium (RPE) were described. The documentation of AMD progression and the response to stem cell therapy have been performed by optical coherence tomography, microperimetry, and other diagnostic technologies.This chapter reports a clinical review of the most important clinical trials and protocols regarding the use of stem cells in AMD.
Collapse
Affiliation(s)
- Silvia Babighian
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Maria Sole Zanella
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Irene Gattazzo
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Alessandro Galan
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Caterina Gagliano
- Eye Clinic Catania University San Marco Hospital, Catania, Italy
- Department of Medicine and Surgery, University of Enna "Kore", Piazza dell'Università, Enna, EN, Italy
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London, UK
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine, Italy.
| |
Collapse
|
8
|
Zhang H, Wu LZ, Liu ZY, Jin ZB. Patient-derived induced pluripotent stem cells with a MERTK mutation exhibit cell junction abnormalities and aberrant cellular differentiation potential. World J Stem Cells 2024; 16:512-524. [PMID: 38817331 PMCID: PMC11135251 DOI: 10.4252/wjsc.v16.i5.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 04/01/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Human induced pluripotent stem cell (hiPSC) technology is a valuable tool for generating patient-specific stem cells, facilitating disease modeling, and investigating disease mechanisms. However, iPSCs carrying specific mutations may limit their clinical applications due to certain inherent characteristics. AIM To investigate the impact of MERTK mutations on hiPSCs and determine whether hiPSC-derived extracellular vesicles (EVs) influence anomalous cell junction and differentiation potential. METHODS We employed a non-integrating reprogramming technique to generate peripheral blood-derived hiPSCs with and hiPSCs without a MERTK mutation. Chromosomal karyotype analysis, flow cytometry, and immunofluorescent staining were utilized for hiPSC identification. Transcriptomics and proteomics were employed to elucidate the expression patterns associated with cell junction abnormalities and cellular differentiation potential. Additionally, EVs were isolated from the supernatant, and their RNA and protein cargos were examined to investigate the involvement of hiPSC-derived EVs in stem cell junction and differentiation. RESULTS The generated hiPSCs, both with and without a MERTK mutation, exhibited normal karyotype and expressed pluripotency markers; however, hiPSCs with a MERTK mutation demonstrated anomalous adhesion capability and differentiation potential, as confirmed by transcriptomic and proteomic profiling. Furthermore, hiPSC-derived EVs were involved in various biological processes, including cell junction and differentiation. CONCLUSION HiPSCs with a MERTK mutation displayed altered junction characteristics and aberrant differentiation potential. Furthermore, hiPSC-derived EVs played a regulatory role in various biological processes, including cell junction and differentiation.
Collapse
Affiliation(s)
- Hang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ling-Zi Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Zhen-Yu Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
9
|
Wang W, Yang T, Chen S, Liang L, Wang Y, Ding Y, Xiong W, Ye X, Guo Y, Shen S, Chen H, Chen J. Tissue engineering RPE sheet derived from hiPSC-RPE cell spheroids supplemented with Y-27632 and RepSox. J Biol Eng 2024; 18:7. [PMID: 38229139 DOI: 10.1186/s13036-024-00405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Retinal pigment epithelium (RPE) cell therapy is a promising way to treat many retinal diseases. However, obtaining transplantable RPE cells is time-consuming and less effective. This study aimed to develop novel strategies for generating engineered RPE patches with physiological characteristics. RESULTS Our findings revealed that RPE cells derived from human induced pluripotent stem cells (hiPSCs) successfully self-assembled into spheroids. The RPE spheroids treated with Y27632 and Repsox had increased expression of epithelial markers and RPE-specific genes, along with improved cell viability and barrier function. Transcriptome analysis indicated enhanced cell adhesion and extracellular matrix (ECM) organization in RPE spheroids. These RPE spheroids could be seeded and bioprinted on collagen vitrigel (CV) membranes to construct engineered RPE sheets. Circular RPE patches, obtained by trephining a specific section of the RPE sheet, exhibited abundant microvilli and pigment particles, as well as reduced proliferative capacity and enhanced maturation. CONCLUSIONS Our study suggests that the supplementation of small molecules and 3D spheroid culture, as well as the bioprinting technique, can be effective methods to promote RPE cultivation and construct engineered RPE sheets, which may support future clinical RPE cell therapy and the development of RPE models for research applications.
Collapse
Grants
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Wenxuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Tingting Yang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Sihui Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Liying Liang
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Yingxin Wang
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Yin Ding
- The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Wei Xiong
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Xiuhong Ye
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Yonglong Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuhao Shen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Hang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Jiansu Chen
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.
- Aier Eye Institute, Changsha, Hunan, China.
| |
Collapse
|
10
|
Xuan Y, Petersen B, Liu P. Human and Pig Pluripotent Stem Cells: From Cellular Products to Organogenesis and Beyond. Cells 2023; 12:2075. [PMID: 37626885 PMCID: PMC10453631 DOI: 10.3390/cells12162075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pluripotent stem cells (PSCs) are important for studying development and hold great promise in regenerative medicine due to their ability to differentiate into various cell types. In this review, we comprehensively discuss the potential applications of both human and pig PSCs and provide an overview of the current progress and challenges in this field. In addition to exploring the therapeutic uses of PSC-derived cellular products, we also shed light on their significance in the study of interspecies chimeras, which has led to the creation of transplantable human or humanized pig organs. Moreover, we emphasize the importance of pig PSCs as an ideal cell source for genetic engineering, facilitating the development of genetically modified pigs for pig-to-human xenotransplantation. Despite the achievements that have been made, further investigations and refinement of PSC technologies are necessary to unlock their full potential in regenerative medicine and effectively address critical healthcare challenges.
Collapse
Affiliation(s)
- Yiyi Xuan
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, 31535 Neustadt am Rübenberge, Germany;
| | - Pentao Liu
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
- Center for Translational Stem Cell Biology, Hong Kong, China
| |
Collapse
|
11
|
Gupta S, Lytvynchuk L, Ardan T, Studenovska H, Sharma R, Faura G, Eide L, Shanker Verma R, Znaor L, Erceg S, Stieger K, Motlik J, Petrovski G, Bharti K. Progress in Stem Cells-Based Replacement Therapy for Retinal Pigment Epithelium: In Vitro Differentiation to In Vivo Delivery. Stem Cells Transl Med 2023; 12:536-552. [PMID: 37459045 PMCID: PMC10427969 DOI: 10.1093/stcltm/szad039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/14/2023] [Indexed: 08/17/2023] Open
Abstract
Retinal pigment epithelium (RPE) is a critical cell monolayer forming the blood-retina-barrier (BRB) and a permeable bridge between the choriocapillaris and the retina. RPE is also crucial in maintaining photoreceptor function and for completing the visual cycle. Loss of the RPE is associated with the development of degenerative diseases like age-related macular degeneration (AMD). To treat diseases like AMD, pluripotent stem cell-derived RPE (pRPE) has been recently explored extensively as a regenerative module. pRPE like other ectodermal tissues requires specific lineage differentiation and long-term in vitro culturing for maturation. Therefore, understanding the differentiation process of RPE could be useful for stem cell-based RPE derivation. Developing pRPE-based transplants and delivering them into the subretinal space is another aspect that has garnered interest in the last decade. In this review, we discuss the basic strategies currently employed for stem cell-based RPE derivation, their delivery, and recent clinical studies related to pRPE transplantation in patients. We have also discussed a few limitations with in vitro RPE culture and potential solutions to overcome such problems which can be helpful in developing functional RPE tissue.
Collapse
Affiliation(s)
- Santosh Gupta
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, Giessen, Germany
- Department of Ophthalmology, Karl Landsteiner Institute for Retinal Research and Imaging, Vienna, Austria
| | - Taras Ardan
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Hana Studenovska
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Georgina Faura
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ljubo Znaor
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| | - Slaven Erceg
- Research Center “Principe Felipe,” Stem Cell Therapies in Neurodegenerative Diseases Laboratory, Valencia, Spain
- Department of Neuroregeneration, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Knut Stieger
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Jan Motlik
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell 2023; 30:512-529. [PMID: 37084729 PMCID: PMC10201979 DOI: 10.1016/j.stem.2023.03.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Cell-based therapies are being developed for various neurodegenerative diseases that affect the central nervous system (CNS). Concomitantly, the roles of individual cell types in neurodegenerative pathology are being uncovered by genetic and single-cell studies. With a greater understanding of cellular contributions to health and disease and with the arrival of promising approaches to modulate them, effective therapeutic cell products are now emerging. This review examines how the ability to generate diverse CNS cell types from stem cells, along with a deeper understanding of cell-type-specific functions and pathology, is advancing preclinical development of cell products for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
13
|
Liu Q, Liu J, Higuchi A. hPSC-derived RPE transplantation for the treatment of macular degeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:227-269. [PMID: 37678973 DOI: 10.1016/bs.pmbts.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Macular degeneration (MD) is a group of diseases characterized by irreversible and progressive vision loss. Patients with MD suffer from severely impaired central vision, especially elderly people. Currently, only one type of MD, wet age-related macular degeneration (AMD), can be treated with anti-vascular endothelium growth factor (VEGF) drugs. Other types of MD remain difficult to treat. With the advent of human pluripotent stem cells (hPSCs) and their differentiation into retinal pigmented epithelium (RPE), it is promising to treat patients with MD by transplantation of hPSC-derived RPE into the subretinal space. In this review, the current progress in hPSC-derived RPE transplantation for the treatment of patients with MD is described from bench to bedside, including hPSC differentiation into RPE and the characterization and usage of hPSC-derived RPE for transplantation into patients with MD.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan.
| |
Collapse
|
14
|
Wang T, Liu J, Chen J, Qin B. Generation and Differentiation of Induced Pluripotent Stem Cells from Mononuclear Cells in An Age-Related Macular Degeneration Patient. CELL JOURNAL 2022; 24:764-773. [PMID: 36527349 PMCID: PMC9790072 DOI: 10.22074/cellj.2022.557559.1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE We aimed to generate induced pluripotent stem cells (iPSCs)-derived retinal pigmented epithelium (RPE) cells from peripheral blood mononuclear cells (PBMCs) and age-related macular degeneration (AMD) patient to provide potential cell sources for both basic scientific research and clinical application. MATERIALS AND METHODS In this experimental study, PBMCs were isolated from the whole blood of a 70-year-old female patient with AMD and reprogrammed into iPSCs by transfection of Sendai virus that contained Yamanaka factors (OCT4, SOX2, KLF4, and c-MYC). Flow cytometry, real-time quantitative polymerase chain reaction (qPCR), karyotype analysis, embryoid body (EB) formation, and teratoma detection were performed to confirm that AMD-iPSCs exhibited full pluripotency and maintained a normal karyotype after reprogramming. AMD-iPSCs were induced into RPE cells by stepwise induced differentiation and specific markers of RPE cells examined by immunofluorescence and flow cytometry. RESULTS The iPSC colonies started to form on three weeks post-infection. AMD-iPSCs exhibited typical morphology including roundness, a large nucleus, sparse cytoplasm, and conspicuous nucleoli. QPCR data showed that AMDiPSCs expressed pluripotency markers (endo-OCT4, endo-SOX2, NANOG and REX1). Flow cytometry indicated 99.7% of generated iPSCs was TRA-1-60 positive. Methylation sequencing showed that the regions of OCT4 and NANOG promoter were demethylated in iPSCs. EBs and teratomas formation assay showed that iPSCs had strong differentiation potential and pluripotency. After a series of inductions with differentiation mediums, a monolayer of AMDiPSC- RPE cells was observed on day 50. The AMD-iPSC-RPEs highly expressed specific RPE markers (MITF, ZO-1, Bestrophin, and PMEL17). CONCLUSION A high quality iPSCs could be established from the PBMCs obtained from elderly AMD patient. The AMDiPSC displayed complete pluripotency, enabling for scientific study, disease modeling, pharmacological testing, and therapeutic applications in personalized medicine. Collectively, we successfully differentiated the iPSCs into RPE with native RPE characteristics, which might provide potential regenerative treatments for AMD patients.
Collapse
Affiliation(s)
- Tongmiao Wang
- Shenzhen Aier Eye Hospital, Shenzhen, China,Aier Eye Hospital, Jinan University, Shenzhen, China,Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Jingwen Liu
- Shenzhen Aier Eye Hospital, Shenzhen, China,Aier Eye Hospital, Jinan University, Shenzhen, China,Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Jianhua Chen
- Shenzhen Aier Eye Hospital, Shenzhen, China,Aier Eye Hospital, Jinan University, Shenzhen, China,Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China,Aier Eye Hospital Group, Changsha, China,*Corresponding Address:Shenzhen Aier Eye HospitalShenzhenChina
Emails:,
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Shenzhen, China,Aier Eye Hospital, Jinan University, Shenzhen, China,Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China,Aier Eye Hospital Group, Changsha, China,*Corresponding Address:Shenzhen Aier Eye HospitalShenzhenChina
Emails:,
| |
Collapse
|
15
|
Su BN, Shen RJ, Liu ZL, Li Y, Jin ZB. Global spectrum of USH2A mutation in inherited retinal dystrophies: Prompt message for development of base editing therapy. Front Aging Neurosci 2022; 14:948279. [PMID: 36034145 PMCID: PMC9399374 DOI: 10.3389/fnagi.2022.948279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023] Open
Abstract
Purpose Mutation in the USH2A gene is the most common cause of inherited retinal dystrophy (IRD), including non-syndromic retinitis pigmentosa (RP) and Usher syndrome II (USH2). Gene editing and therapy targeting USH2A, especially the hotspot region, would benefit a large proportion of IRD patients. In this study, we comprehensively analyzed the genetic spectrum of the USH2A gene, aiming to identify global hot spot mutations in USH2A-related IRDs and differences in hot spot regions across continents. Materials and methods A retrospective USH2A-related IRD study was conducted, including our IRD cohort, and reported USH2A studies worldwide. Results A total of 3,972 mutated USH2A alleles of approximately 1,935 patients were collected from 33 cohort studies worldwide, containing 102 alleles of 51 patients in our IRD cohort. Mutations in exon 13 were the most common, reaching 18.4% globally and a higher frequency of 22% in America, 19.2% in Europe, and a lower 12% in East Asia. Pathogenic mutations that affected 10 of the 72 exons of USH2A, exon 2, exon 13, exon 41–43, exon 50, exon 54, exon 57, exon 61, and exon 63 in total were responsible for half of global USH2A mutant alleles. With base editors including adenine base editor (ABE), cytidine base editor (CBE), and glycosylase base editor (GBE), 76.3% of single nucleotide variations (SNVs) and 58% of all mutations in USH2A are correctable. Meantime, four novel pathogenic mutations were revealed in our IRD cohort, p. (Val1130Cysfs*72), p. (Ala2139fs*14), p. (Gly4139Arg), and p. (Val4166Cysfs*7). Conclusion In this study, we revealed four novel mutations, expanding the spectrum of USH2A mutations, and importantly presented global hotspot exons and mutations of USH2A as well as the proportion of SNVs that can be restored by different base editors, providing a perspective for exploring high-efficiency and broader-reaching gene editing and gene therapies.
Collapse
Affiliation(s)
- Bing-Nan Su
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Ren-Juan Shen
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Zhuo-Lin Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Yang Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Zi-Bing Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
- *Correspondence: Zi-Bing Jin,
| |
Collapse
|
16
|
Lechner J, Medina RJ, Lois N, Stitt AW. Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina. Stem Cell Res Ther 2022; 13:388. [PMID: 35907890 PMCID: PMC9338609 DOI: 10.1186/s13287-022-03073-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Diabetic retinopathy, a major complication of diabetes mellitus, is a leading cause of sigh-loss in working age adults. Progressive loss of integrity of the retinal neurovascular unit is a central element in the disease pathogenesis. Retinal ischemia and inflammatory processes drive interrelated pathologies such as blood retinal barrier disruption, fluid accumulation, gliosis, neuronal loss and/or aberrant neovascularisation. Current treatment options are somewhat limited to late-stages of the disease where there is already significant damage to the retinal architecture arising from degenerative, edematous and proliferative pathology. New preventive and interventional treatments to target early vasodegenerative and neurodegenerative stages of the disease are needed to ensure avoidance of sight-loss. MAIN BODY Historically, diabetic retinopathy has been considered a primarily microvascular disease of the retina and clinically it is classified based on the presence and severity of vascular lesions. It is now known that neurodegeneration plays a significant role during the pathogenesis. Loss of neurons has been documented at early stages in pre-clinical models as well as in individuals with diabetes and, in some, even prior to the onset of clinically overt diabetic retinopathy. Recent studies suggest that some patients have a primarily neurodegenerative phenotype. Retinal pigment epithelial cells and the choroid are also affected during the disease pathogenesis and these tissues may also need to be addressed by new regenerative treatments. Most stem cell research for diabetic retinopathy to date has focused on addressing vasculopathy. Pre-clinical and clinical studies aiming to restore damaged vasculature using vasoactive progenitors including mesenchymal stromal/stem cells, adipose stem cells, CD34+ cells, endothelial colony forming cells and induced pluripotent stem cell derived endothelial cells are discussed in this review. Stem cells that could replace dying neurons such as retinal progenitor cells, pluripotent stem cell derived photoreceptors and ganglion cells as well as Müller stem cells are also discussed. Finally, challenges of stem cell therapies relevant to diabetic retinopathy are considered. CONCLUSION Stem cell therapies hold great potential to replace dying cells during early and even late stages of diabetic retinopathy. However, due to the presence of different phenotypes, selecting the most suitable stem cell product for individual patients will be crucial for successful treatment.
Collapse
Affiliation(s)
- Judith Lechner
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK.
| | - Reinhold J Medina
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Noemi Lois
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
17
|
Application of the Pluripotent Stem Cells and Genomics in Cardiovascular Research-What We Have Learnt and Not Learnt until Now. Cells 2021; 10:cells10113112. [PMID: 34831333 PMCID: PMC8623147 DOI: 10.3390/cells10113112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Personalized regenerative medicine and biomedical research have been galvanized and revolutionized by human pluripotent stem cells in combination with recent advances in genomics, artificial intelligence, and genome engineering. More recently, we have witnessed the unprecedented breakthrough life-saving translation of mRNA-based vaccines for COVID-19 to contain the global pandemic and the investment in billions of US dollars in space exploration projects and the blooming space-tourism industry fueled by the latest reusable space vessels. Now, it is time to examine where the translation of pluripotent stem cell research stands currently, which has been touted for more than the last two decades to cure and treat millions of patients with severe debilitating degenerative diseases and tissue injuries. This review attempts to highlight the accomplishments of pluripotent stem cell research together with cutting-edge genomics and genome editing tools and, also, the promises that have still not been transformed into clinical applications, with cardiovascular research as a case example. This review also brings to our attention the scientific and socioeconomic challenges that need to be effectively addressed to see the full potential of pluripotent stem cells at the clinical bedside.
Collapse
|
18
|
Rajendran Nair DS, Zhu D, Sharma R, Martinez Camarillo JC, Bharti K, Hinton DR, Humayun MS, Thomas BB. Long-Term Transplant Effects of iPSC-RPE Monolayer in Immunodeficient RCS Rats. Cells 2021; 10:cells10112951. [PMID: 34831174 PMCID: PMC8616297 DOI: 10.3390/cells10112951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
Retinal pigment epithelium (RPE) replacement therapy is evolving as a feasible approach to treat age-related macular degeneration (AMD). In many preclinical studies, RPE cells are transplanted as a cell suspension into immunosuppressed animal eyes and transplant effects have been monitored only short-term. We investigated the long-term effects of human Induced pluripotent stem-cell-derived RPE (iPSC-RPE) transplants in an immunodeficient Royal College of Surgeons (RCS) rat model, in which RPE dysfunction led to photoreceptor degeneration. iPSC-RPE cultured as a polarized monolayer on a nanoengineered ultrathin parylene C scaffold was transplanted into the subretinal space of 28-day-old immunodeficient RCS rat pups and evaluated after 1, 4, and 11 months. Assessment at early time points showed good iPSC-RPE survival. The transplants remained as a monolayer, expressed RPE-specific markers, performed phagocytic function, and contributed to vision preservation. At 11-months post-implantation, RPE survival was observed in only 50% of the eyes that were concomitant with vision preservation. Loss of RPE monolayer characteristics at the 11-month time point was associated with peri-membrane fibrosis, immune reaction through the activation of macrophages (CD 68 expression), and the transition of cell fate (expression of mesenchymal markers). The overall study outcome supports the therapeutic potential of RPE grafts despite the loss of some transplant benefits during long-term observations.
Collapse
Affiliation(s)
- Deepthi S. Rajendran Nair
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (D.S.R.N.); (J.C.M.C.); (M.S.H.)
| | - Danhong Zhu
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (D.Z.); (D.R.H.)
| | - Ruchi Sharma
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD 20892, USA; (R.S.); (K.B.)
| | - Juan Carlos Martinez Camarillo
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (D.S.R.N.); (J.C.M.C.); (M.S.H.)
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, NIH, Bethesda, MD 20892, USA; (R.S.); (K.B.)
| | - David R. Hinton
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (D.Z.); (D.R.H.)
| | - Mark S. Humayun
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (D.S.R.N.); (J.C.M.C.); (M.S.H.)
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B. Thomas
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (D.S.R.N.); (J.C.M.C.); (M.S.H.)
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
- Correspondence: ; Tel.: +1-323-442-5593
| |
Collapse
|
19
|
Zhu XY, Chen YH, Zhang T, Liu SJ, Bai XY, Huang XY, Jiang M, Sun XD. Improvement of human embryonic stem cell-derived retinal pigment epithelium cell adhesion, maturation, and function through coating with truncated recombinant human vitronectin. Int J Ophthalmol 2021; 14:1160-1167. [PMID: 34414078 DOI: 10.18240/ijo.2021.08.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To explore an xeno-free and defined coating substrate suitable for the culture of H9 human embryonic stem cell-derived retinal pigment epithelial (hES-RPE) cells in vitro, and compare the behaviors and functions of hES-RPE cells on two culture substrates, laminin521 (LN-521) and truncated recombinant human vitronectin (VTN-N). METHODS hES-RPE cells were used in the experiment. The abilities of LN-521 and VTN-N at different concentrations to adhere to hES-RPE cells were compared with a high-content imaging system. Quantitative real-time polymerase chain reaction was used to evaluate RPE-specific gene expression levels midway (day 10) and at the end (day 20) of the time course. Cell polarity was observed by immunofluorescent staining for apical and basal markers of the RPE. The phagocytic ability of hES-RPE cells was identified by flow cytometry and immunofluorescence. RESULTS The cell adhesion assay showed that the ability of LN-521 to adhere to hES-RPE cells was dose-dependent. With increasing coating concentration, an increasing number of cells attached to the surface of LN-521-coated wells. In contrast, VTN-N presented a strong adhesive ability even at a low concentration. The optimal concentration of LN-521 and VTN-N required to coat and adhesion to hES-RPE cells were 2 and 0.25 µg/cm2, respectively. Furthermore, both LN-521 and VTN-N could facilitate adoption of the desired cobblestone cellular morphology with tight junction and showed polarity by the hES-RPE cells. However, hES-RPE cells cultivated in VTN-N had a greater phagocytic ability, and it took less time for these hES-RPE cells to mature. CONCLUSION VTN-N is a more suitable coating substrate for cultivating hES-RPE cells.
Collapse
Affiliation(s)
- Xin-Yue Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Yu-Hong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Ting Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Su-Jun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xin-Yue Bai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xian-Yu Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Mei Jiang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xiao-Dong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| |
Collapse
|
20
|
Limnios IJ, Chau YQ, Skabo SJ, Surrao DC, O'Neill HC. Efficient differentiation of human embryonic stem cells to retinal pigment epithelium under defined conditions. Stem Cell Res Ther 2021; 12:248. [PMID: 33883023 PMCID: PMC8058973 DOI: 10.1186/s13287-021-02316-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/30/2021] [Indexed: 11/11/2022] Open
Abstract
Age-related macular degeneration (AMD) is a highly prevalent form of blindness caused by loss death of cells of the retinal pigment epithelium (RPE). Transplantation of pluripotent stem cell (PSC)-derived RPE cells is considered a promising therapy to regenerate cell function and vision. OBJECTIVE The objective of this study is to develop a rapid directed differentiation method for production of RPE cells from PSC which is rapid, efficient, and fully defined and produces cells suitable for clinical use. DESIGN A protocol for cell growth and differentiation from hESCs was developed to induce differentiation through screening small molecules which regulated a primary stage of differentiation to the eyefield progenitor, and then, a subsequent set of molecules to drive differentiation to RPE cells. Methods for cell plating and maintenance have been optimized to give a homogeneous population of cells in a short 14-day period, followed by a procedure to support maturation of cell function. RESULTS We show here the efficient production of RPE cells from human embryonic stem cells (hESCs) using small molecules in a feeder-free system using xeno-free/defined medium. Flow cytometry at day 14 showed ~ 90% of cells expressed the RPE markers MITF and PMEL17. Temporal gene analysis confirmed differentiation through defined cell intermediates. Mature hESC-RPE cell monolayers exhibited key morphological, molecular, and functional characteristics of the endogenous RPE. CONCLUSION This study identifies a novel cell differentiation process for rapid and efficient production of retinal RPE cells directly from hESCs. The described protocol has utility for clinical-grade cell production for human therapy to treat AMD.
Collapse
Affiliation(s)
- Ioannis J Limnios
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, 4229, Australia.
| | - Yu-Qian Chau
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, 4229, Australia
| | - Stuart J Skabo
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, 4229, Australia
| | - Denver C Surrao
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, 4229, Australia
| | - Helen C O'Neill
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, 4229, Australia.
| |
Collapse
|