1
|
Cammarata A, Marino J, Atia MN, Durán H, Glisoni RJ. Novel doxycycline gold nanoparticles via green synthesis using PEO-PPO block copolymers for enhanced radiosensitization of melanoma. Biomater Sci 2025. [PMID: 40261332 DOI: 10.1039/d5bm00253b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
This study focuses on a green and sustainable nanoplatform for the delivery of therapeutic agents, based on gold nanoparticles (AuNPs) synthesized using PEO-PPO block copolymers (F127, F68, P85, and their F127:P85 combination) as dual-function reducing and stabilizing agents. This eco-friendly approach eliminates the need for toxic chemical reductants, adheres to green chemistry principles, and yields highly stable, biocompatible nanosystems. The resulting polymer-stabilized AuNPs were associated with doxycycline (DOXY), a mitochondrial biogenesis inhibitor with radiosensitizing properties, and characterized using UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), and X-ray fluorescence (XRF). The nanoparticles exhibited high colloidal stability, with tunable hydrodynamic diameters modulated by the copolymer composition. In vitro studies on A-375 and IIB-MEL-J melanoma cell lines revealed that DOXY-associated AuNPs, combined with gamma radiation (2 Gy, 137Cs), significantly enhanced radiosensitivity, reducing both cell viability and clonogenic survival. The physicochemical features of the nanosystems, particularly particle size and surface composition, influenced cellular uptake and therapeutic response. Notably, AuNPs stabilized with F127:P85 copolymer combination (∼19 nm) outperformed those with F127 (∼30 nm), despite displaying slightly higher polydispersity. Compared to Turkevich AuNPs, our copolymer-coated nanosystems demonstrated superior colloidal stability and cellular internalization. These findings highlight the potential of green-synthesized AuNPs as multifunctional, biocompatible platforms for therapeutic delivery, supporting the development of effective and environmentally responsible multimodal cancer therapies. Moreover, the simplicity, scalability, and cost-effectiveness of the synthesis process support its potential for future translational applications.
Collapse
Affiliation(s)
- Agostina Cammarata
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Biotecnología, Junín 956, C1113AAD Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina.
| | - Julieta Marino
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Mariel N Atia
- Comisión Nacional de Energía Atómica (CNEA), Gerencia de Investigación y Aplicaciones, Subgerencia de Tecnología y Aplicaciones de Aceleradores, San Martín, Buenos Aires, Argentina
- Instituto de Nanociencia y Nanotecnología (INN-CNEA-CONICET), San Martín, Buenos Aires, Argentina
| | - Hebe Durán
- Comisión Nacional de Energía Atómica (CNEA), Gerencia de Investigación y Aplicaciones, Subgerencia de Tecnología y Aplicaciones de Aceleradores, San Martín, Buenos Aires, Argentina
- Instituto de Nanociencia y Nanotecnología (INN-CNEA-CONICET), San Martín, Buenos Aires, Argentina
- Universidad Nacional de San Martín, Escuela de Ciencia y Tecnología, San Martín, Buenos Aires, Argentina
| | - Romina J Glisoni
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Biotecnología, Junín 956, C1113AAD Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Kandasamy T, Sarkar S, Ghosh SS. Harnessing Drug Repurposing to Combat Breast Cancer by Targeting Altered Metabolism and Epithelial-to-Mesenchymal Transition Pathways. ACS Pharmacol Transl Sci 2024; 7:3780-3794. [PMID: 39698277 PMCID: PMC11650739 DOI: 10.1021/acsptsci.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
Breast cancer remains one of the most prevalent and challenging cancers to treat due to its complexity and heterogenicity. Cellular processes such as metabolic reprogramming and epithelial-to-mesenchymal transition (EMT) contribute to the complexity of breast cancer by driving uncontrolled cell division, metastasis, and resistance to therapies. Strategically targeting these intricate pathways can effectively impede breast cancer progression, thereby revealing significant potential for therapeutic interventions. Among various emerging therapeutic approaches, drug repurposing offers a promising avenue for enhancing clinical outcomes. In recent years, high-throughput screening, QSAR, and network pharmacology have been widely employed to identify promising repurposed drugs. As an outcome, several drugs, such as Metformin, Itraconazole, Pimozide, and Disulfiram, were repurposed to regulate metabolic and EMT pathways. Moreover, strategies such as combination therapy, targeted delivery, and personalized medicine were utilized to enhance the efficacy and specificity of the repurposed drugs. This review focuses on the potential of targeting altered metabolism and EMT in breast cancer through drug repurposing. It also highlights recent advancements in drug screening techniques, associated limitations, and strategies to overcome these challenges.
Collapse
Affiliation(s)
- Thirukumaran Kandasamy
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati-39, Assam India
| | - Shilpi Sarkar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati-39, Assam India
| | - Siddhartha Sankar Ghosh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati-39, Assam India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati-39, Assam India
| |
Collapse
|
3
|
Zhao X, Ma Y, Luo J, Xu K, Tian P, Lu C, Song J. Blocking the WNT/β-catenin pathway in cancer treatment:pharmacological targets and drug therapeutic potential. Heliyon 2024; 10:e35989. [PMID: 39253139 PMCID: PMC11381626 DOI: 10.1016/j.heliyon.2024.e35989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The WNT/β-catenin signaling pathway plays crucial roles in tumorigenesis and relapse, metastasis, drug resistance, and tumor stemness maintenance. In most tumors, the WNT/β-catenin signaling pathway is often aberrantly activated. The therapeutic usefulness of inhibition of WNT/β-catenin signaling has been reported to improve the efficiency of different cancer treatments and this inhibition of signaling has been carried out using different methods including pharmacological agents, short interfering RNA (siRNA), and antibodies. Here, we review the WNT-inhibitory effects of some FDA-approved drugs and natural products in cancer treatment and focus on recent progress of the WNT signaling inhibitors in improving the efficiency of chemotherapy, immunotherapy, gene therapy, and physical therapy. We also classified these FDA-approved drugs and natural products according to their structure and physicochemical properties, and introduced briefly their potential mechanisms of inhibiting the WNT signaling pathway. The review provides a comprehensive understanding of inhibitors of WNT/β-catenin pathway in various cancer therapeutics. This will benefit novel WNT inhibitor development and optimal clinical use of WNT signaling-related drugs in synergistic cancer therapy.
Collapse
Affiliation(s)
- Xi Zhao
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| | - Yunong Ma
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| | - Jiayang Luo
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Kexin Xu
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Peilin Tian
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Cuixia Lu
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxing Song
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| |
Collapse
|
4
|
Bonuccelli G, Brooks DR, Shepherd S, Sotgia F, Lisanti MP. Antibiotics that target mitochondria extend lifespan in C. elegans. Aging (Albany NY) 2023; 15:11764-11781. [PMID: 37950722 PMCID: PMC10683609 DOI: 10.18632/aging.205229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 11/13/2023]
Abstract
Aging is a continuous degenerative process caused by a progressive decline of cell and tissue functions in an organism. It is induced by the accumulation of damage that affects normal cellular processes, ultimately leading to cell death. It has been speculated for many years that mitochondria play a key role in the aging process. In the aim of characterizing the implications of mitochondria in aging, here we used Caenorhabditis elegans (C. elegans) as an organismal model treated a panel of mitochondrial inhibitors and assessed for survival. In our study, we assessed survival by evaluating worm lifespan, and we assessed aging markers by evaluating the pharyngeal muscle contraction, the accumulation of lipofuscin pigment and ATP levels. Our results show that treatment of worms with either doxycycline, azithromycin (inhibitors of the small and the large mitochondrial ribosomes, respectively), or a combination of both, significantly extended median lifespan of C. elegans, enhanced their pharyngeal pumping rate, reduced their lipofuscin content and their energy consumption (ATP levels), as compared to control untreated worms, suggesting an aging-abrogating effect for these drugs. Similarly, DPI, an inhibitor of mitochondrial complex I and II, was capable of prolonging the median lifespan of treated worms. On the other hand, subjecting worms to vitamin C, a pro-oxidant, failed to extend C. elegans lifespan and upregulated its energy consumption, revealing an increase in ATP level. Therefore, our longevity study reveals that mitochondrial inhibitors (i.e., mitochondria-targeting antibiotics) could abrogate aging and extend lifespan in C. elegans.
Collapse
Affiliation(s)
- Gloria Bonuccelli
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester M5 4BR, UK
| | - Darren R. Brooks
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester M5 4BR, UK
| | - Sally Shepherd
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester M5 4BR, UK
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester M5 4BR, UK
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester M5 4BR, UK
| |
Collapse
|
5
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
6
|
Cheng Y, Qu Z, Jiang Q, Xu T, Zheng H, Ye P, He M, Tong Y, Ma Y, Bao A. Functional Materials for Subcellular Targeting Strategies in Cancer Therapy: Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305095. [PMID: 37665594 DOI: 10.1002/adma.202305095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Indexed: 09/05/2023]
Abstract
Neoadjuvant and adjuvant therapies have made significant progress in cancer treatment. However, tumor adjuvant therapy still faces challenges due to the intrinsic heterogeneity of cancer, genomic instability, and the formation of an immunosuppressive tumor microenvironment. Functional materials possess unique biological properties such as long circulation times, tumor-specific targeting, and immunomodulation. The combination of functional materials with natural substances and nanotechnology has led to the development of smart biomaterials with multiple functions, high biocompatibilities, and negligible immunogenicities, which can be used for precise cancer treatment. Recently, subcellular structure-targeting functional materials have received particular attention in various biomedical applications including the diagnosis, sensing, and imaging of tumors and drug delivery. Subcellular organelle-targeting materials can precisely accumulate therapeutic agents in organelles, considerably reduce the threshold dosages of therapeutic agents, and minimize drug-related side effects. This review provides a systematic and comprehensive overview of the research progress in subcellular organelle-targeted cancer therapy based on functional nanomaterials. Moreover, it explains the challenges and prospects of subcellular organelle-targeting functional materials in precision oncology. The review will serve as an excellent cutting-edge guide for researchers in the field of subcellular organelle-targeted cancer therapy.
Collapse
Affiliation(s)
- Yanxiang Cheng
- Department of Gynecology, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Zhen Qu
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Qian Jiang
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Tingting Xu
- Department of Clinical Laboratory, Wuhan Blood Center (WHBC), No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Hongyun Zheng
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Mingdi He
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Yan Ma
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| |
Collapse
|
7
|
Hajikhani Z, Haririan I, Akrami M, Hajikhani S. Nanoarchitectonics of doxycycline-loaded vitamin E-D-α-tocopheryl polyethylene glycol 1000 succinate micelles for ovarian cancer stem cell treatment. Nanomedicine (Lond) 2023; 18:1441-1458. [PMID: 37830450 DOI: 10.2217/nnm-2022-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Aim: This study aim to develop doxycycline within the D-α-tocopheryl polyethylene glycol 1000 succinate micelle platform as an anticancer stem cell agent. Materials & methods: The optimized nanomicelle formulation was prepared using the solvent casting method and evaluated through physicochemical and biological characterization. Results: Nanomicelles exhibited mean particle sizes of 14.48 nm (polydispersity index: 0.22) using dynamic light scattering and 18.22 nm using transmission electron micrography. Drug loading and encapsulation efficiency were 2% and 66.73%, respectively. Doxycycline-loaded micelles exhibited sustained release, with 98.5% released in 24 h. IC50 values were 20 μg/ml for free drug and 5 μg/ml for micelles after 48 h of cell exposure. A significant 74% reduction in CD44 biomarker and 100% colony formation inhibition were observed. Conclusion: Doxycycline in hemo/biocompatible nanomicelles holds potential for ovarian cancer stem cell therapy.
Collapse
Affiliation(s)
- Zoha Hajikhani
- Department of Pharmaceutical Biomaterials & Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials & Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomaterials, University of Tehran & Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials & Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomaterials, University of Tehran & Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Saba Hajikhani
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, Iran
| |
Collapse
|
8
|
Domínguez-Zorita S, Cuezva JM. The Mitochondrial ATP Synthase/IF1 Axis in Cancer Progression: Targets for Therapeutic Intervention. Cancers (Basel) 2023; 15:3775. [PMID: 37568591 PMCID: PMC10417293 DOI: 10.3390/cancers15153775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer poses a significant global health problem with profound personal and economic implications on National Health Care Systems. The reprograming of metabolism is a major trait of the cancer phenotype with a clear potential for developing effective therapeutic strategies to combat the disease. Herein, we summarize the relevant role that the mitochondrial ATP synthase and its physiological inhibitor, ATPase Inhibitory Factor 1 (IF1), play in metabolic reprogramming to an enhanced glycolytic phenotype. We stress that the interplay in the ATP synthase/IF1 axis has additional functional roles in signaling mitohormetic programs, pro-oncogenic or anti-metastatic phenotypes depending on the cell type. Moreover, the same axis also participates in cell death resistance of cancer cells by restrained mitochondrial permeability transition pore opening. We emphasize the relevance of the different post-transcriptional mechanisms that regulate the specific expression and activity of ATP synthase/IF1, to stimulate further investigations in the field because of their potential as future targets to treat cancer. In addition, we review recent findings stressing that mitochondria metabolism is the primary altered target in lung adenocarcinomas and that the ATP synthase/IF1 axis of OXPHOS is included in the most significant signature of metastatic disease. Finally, we stress that targeting mitochondrial OXPHOS in pre-clinical mouse models affords a most effective therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| |
Collapse
|
9
|
Razi S, Haghparast A, Chodari Khameneh S, Ebrahimi Sadrabadi A, Aziziyan F, Bakhtiyari M, Nabi-Afjadi M, Tarhriz V, Jalili A, Zalpoor H. The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Commun Signal 2023; 21:143. [PMID: 37328876 PMCID: PMC10273768 DOI: 10.1186/s12964-023-01129-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 06/18/2023] Open
Abstract
In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | | | | | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
- Cytotech and Bioinformatics Research Group, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran.
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran.
- Parvaz Research Ideas Supporter Institute, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Rühle A, Zou J, Glaser M, Halle L, Gkika E, Schäfer H, Knopf A, Becker C, Grosu AL, Popp I, Nicolay NH. The influence of antibiotic administration on the outcomes of head-and-neck squamous cell carcinoma patients undergoing definitive (chemo)radiation. Eur Arch Otorhinolaryngol 2023; 280:2605-2616. [PMID: 36764957 PMCID: PMC10066162 DOI: 10.1007/s00405-023-07868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
PURPOSE Effects of antibiotic administration on patients' microbiome may negatively influence cancer outcomes, and adverse prognoses after antibiotic application have been demonstrated for cancer patients receiving immune checkpoint inhibitors. While the microbiome may play an important role also in head-and-neck squamous cell carcinoma (HNSCC), the prognostic value of antibiotic treatment here is largely unknown. We therefore analyzed whether antibiotic prescription is associated with impaired oncological outcomes of HNSCC patients undergoing definitive (chemo)radiation. METHODS A cohort of 220 HNSCC patients undergoing definitive (chemo)radiation between 2010 and 2019 was analyzed. The influence of antibiotic administration on locoregional control, progression-free survival (PFS) and overall survival (OS) was determined using Kaplan-Meier and Cox analyses. RESULTS A total of 154 patients were treated with antibiotics within 30 days before (chemo)radiation (pretherapeutic) or during (chemo)radiation (peritherapeutic). While antibiotic prescription was not associated with age, ECOG, tumor localization or radiotherapy characteristics, patients treated with antibiotics had significantly higher tumor stages. Peritherapeutic antibiotic administration diminished PFS (HR = 1.397, p < 0.05, log-rank test) and OS (HR = 1.407, p < 0.05), whereas pretherapeutic administration did not. Antibiotic application was an independent prognosticator for OS (HR = 1.703, p < 0.05) and PFS (HR = 1.550, p < 0.05) in the multivariate Cox analysis within the subgroup of patients aged < 75 years. CONCLUSION Peritherapeutic antibiotic usage was associated with impaired oncological outcomes in HNSCC patients undergoing (chemo)radiation. Further studies including microbiome analyses are required to elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, University of Freiburg-Medical Center, Robert-Koch-Str. 3, 79106, Freiburg, Germany.
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Jiadai Zou
- Department of Radiation Oncology, University of Freiburg-Medical Center, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Margaretha Glaser
- Department of Radiation Oncology, University of Freiburg-Medical Center, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Lennard Halle
- Department of Radiation Oncology, University of Freiburg-Medical Center, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University of Freiburg-Medical Center, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Henning Schäfer
- Department of Radiation Oncology, University of Freiburg-Medical Center, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Knopf
- Department of Otorhinolaryngology, University of Freiburg-Medical Center, Freiburg, Germany
| | - Christoph Becker
- Department of Otorhinolaryngology, University of Freiburg-Medical Center, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University of Freiburg-Medical Center, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilinca Popp
- Department of Radiation Oncology, University of Freiburg-Medical Center, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, University of Freiburg-Medical Center, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomed Pharmacother 2023; 158:114126. [PMID: 36521246 DOI: 10.1016/j.biopha.2022.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is a standard cytotoxic therapy against solid cancers. It uses ionizing radiation to kill tumor cells through damage to DNA, either directly or indirectly. Radioresistance is often associated with dysregulated DNA damage repair processes. Most radiosensitizers enhance radiation-mediated DNA damage and reduce the rate of DNA repair ultimately leading to accumulation of DNA damages, cell-cycle arrest, and cell death. Recently, agents targeting key signals in DNA damage response such as DNA repair pathways and cell-cycle have been developed. This new class of molecularly targeted radiosensitizing agents is being evaluated in preclinical and clinical studies to monitor their activity in potentiating radiation cytotoxicity of tumors and reducing normal tissue toxicity. The molecular pathways of DNA damage response are reviewed with a focus on the repair mechanisms, therapeutic targets under current clinical evaluation including ATM, ATR, CDK1, CDK4/6, CHK1, DNA-PKcs, PARP-1, Wee1, & MPS1/TTK and potential new targets (BUB1, and DNA LIG4) for radiation sensitization.
Collapse
|
12
|
Sung BJ, Lim SB, Yang WM, Kim JH, Kulkarni RN, Kim YB, Lee MK. ROCK1 regulates insulin secretion from β-cells. Mol Metab 2022; 66:101625. [PMID: 36374631 PMCID: PMC9649378 DOI: 10.1016/j.molmet.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE The endocrine pancreatic β-cells play a pivotal role in maintaining whole-body glucose homeostasis and its dysregulation is a consistent feature in all forms of diabetes. However, knowledge of intracellular regulators that modulate β-cell function remains incomplete. We investigated the physiological role of ROCK1 in the regulation of insulin secretion and glucose homeostasis. METHODS Mice lacking ROCK1 in pancreatic β-cells (RIP-Cre; ROCK1loxP/loxP, β-ROCK1-/-) were studied. Glucose and insulin tolerance tests as well as glucose-stimulated insulin secretion (GSIS) were measured. An insulin secretion response to a direct glucose or pyruvate or pyruvate kinase (PK) activator stimulation in isolated islets from β-ROCK1-/- mice or β-cell lines with knockdown of ROCK1 was also evaluated. A proximity ligation assay was performed to determine the physical interactions between PK and ROCK1. RESULTS Mice with a deficiency of ROCK1 in pancreatic β-cells exhibited significantly increased blood glucose levels and reduced serum insulin without changes in body weight. Interestingly, β-ROCK1-/- mice displayed a progressive impairment of glucose tolerance while maintaining insulin sensitivity mostly due to impaired GSIS. Consistently, GSIS markedly decreased in ROCK1-deficient islets and ROCK1 knockdown INS-1 cells. Concurrently, ROCK1 blockade led to a significant decrease in intracellular calcium and ATP levels and oxygen consumption rates in isolated islets and INS-1 cells. Treatment of ROCK1-deficient islets or ROCK1 knockdown β-cells either with pyruvate or a PK activator rescued the impaired GSIS. Mechanistically, we observed that glucose stimulation in β-cells greatly enhanced ROCK1 binding to PK. CONCLUSIONS Our findings demonstrate that β-cell ROCK1 is essential for glucose-stimulated insulin secretion and for glucose homeostasis and that ROCK1 acts as an upstream regulator of glycolytic pyruvate kinase signaling.
Collapse
Affiliation(s)
- Byung-Jun Sung
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Sung-Bin Lim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Won-Mo Yang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, and Harvard Medical School, Boston, MA, USA.
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Nowon Eulji University Hospital, Eulji University School of Medicine, Seoul, South Korea.
| |
Collapse
|
13
|
Assessment of the In Vitro Cytotoxic Profile of Two Broad-Spectrum Antibiotics-Tetracycline and Ampicillin-On Pharyngeal Carcinoma Cells. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091289. [PMID: 36143966 PMCID: PMC9505149 DOI: 10.3390/medicina58091289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
Background and Objectives: In spite of the fact that antibiotics are considered to be the cornerstone of modern medicine, their use in the treatment of cancer remains controversial. In the present study, the main objective was to examine the effects of two antibiotics—tetracycline and ampicillin—on the viability, morphology, migration, and organization and structure of the nuclei and the actin fiber network of pharyngeal carcinoma cells—Detroit-562. Materials and Methods: In order to determine the viability of the cells, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was applied after the cells were stimulated with five concentrations of tetracycline and ampicillin (10, 25, 50, 75, and 100 μM) for 72 h. A scratch assay was used to assess the migration ability of the cells. For the visualization of the nuclei and actin fibers, 4,6-diamidino-2-phenylindole (Dapi) and Rhodamine-Phalloidin were used. Results: There are different effects of tetracycline and ampicillin. Thus, tetracycline: (i) exhibited a concentration-dependent cytotoxic effect, decreasing cell viability to approximately 46%; (ii) inhibits cellular migration up to 16% compared to 60% for control cells; and (iii) induces changes in cell morphology as well as apoptotic changes in the nucleus and F-actin fibers. In contrast, in the case of ampicillin, an increase in viability up to 113% was observed at 10 μM, while a decrease in viability up to approximately 94% was observed at the highest concentration tested (100 μM). Conclusions: The results indicated a different effect regarding the impact on pharyngeal carcinoma cells. Thus, tetracycline has a concentration-dependent cytotoxic effect, while in the case of ampicillin a slight stimulation of cell viability was observed.
Collapse
|
14
|
Chan Wah Hak CML, Rullan A, Patin EC, Pedersen M, Melcher AA, Harrington KJ. Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Front Oncol 2022; 12:971959. [PMID: 36106115 PMCID: PMC9465159 DOI: 10.3389/fonc.2022.971959] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the most effective and frequently used treatments for a wide range of cancers. In addition to its direct anti-cancer cytotoxic effects, ionising radiation can augment the anti-tumour immune response by triggering pro-inflammatory signals, DNA damage-induced immunogenic cell death and innate immune activation. Anti-tumour innate immunity can result from recruitment and stimulation of dendritic cells (DCs) which leads to tumour-specific adaptive T-cell priming and immunostimulatory cell infiltration. Conversely, radiotherapy can also induce immunosuppressive and anti-inflammatory mediators that can confer radioresistance. Targeting the DNA damage response (DDR) concomitantly with radiotherapy is an attractive strategy for overcoming radioresistance, both by enhancing the radiosensitivity of tumour relative to normal tissues, and tipping the scales in favour of an immunostimulatory tumour microenvironment. This two-pronged approach exploits genomic instability to circumvent immune evasion, targeting both hallmarks of cancer. In this review, we describe targetable DDR proteins (PARP (poly[ADP-ribose] polymerase); ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), DNA-PKcs (DNA-dependent protein kinase, catalytic subunit) and Wee1 (Wee1-like protein kinase) and their potential intersections with druggable immunomodulatory signalling pathways, including nucleic acid-sensing mechanisms (Toll-like receptors (TLR); cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and retinoic acid-inducible gene-I (RIG-I)-like receptors), and how these might be exploited to enhance radiation therapy. We summarise current preclinical advances, recent and ongoing clinical trials and the challenges of therapeutic combinations with existing treatments such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Antonio Rullan
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Emmanuel C. Patin
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Malin Pedersen
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Alan A. Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J. Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
15
|
Shah P, McGuigan CW, Cheng S, Vanpouille-Box C, Demaria S, Weiss RS, Lammerding J. ATM Modulates Nuclear Mechanics by Regulating Lamin A Levels. Front Cell Dev Biol 2022; 10:875132. [PMID: 35721517 PMCID: PMC9198445 DOI: 10.3389/fcell.2022.875132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/13/2022] [Indexed: 12/18/2022] Open
Abstract
Ataxia-telangiectasia mutated (ATM) is one of the three main apical kinases at the crux of DNA damage response and repair in mammalian cells. ATM activates a cascade of downstream effector proteins to regulate DNA repair and cell cycle checkpoints in response to DNA double-strand breaks. While ATM is predominantly known for its role in DNA damage response and repair, new roles of ATM have recently begun to emerge, such as in regulating oxidative stress or metabolic pathways. Here, we report the surprising discovery that ATM inhibition and deletion lead to reduced expression of the nuclear envelope protein lamin A. Lamins are nuclear intermediate filaments that modulate nuclear shape, structure, and stiffness. Accordingly, inhibition or deletion of ATM resulted in increased nuclear deformability and enhanced cell migration through confined spaces, which requires substantial nuclear deformation. These findings point to a novel connection between ATM and lamin A and may have broad implications for cells with ATM mutations-as found in patients suffering from Ataxia Telangiectasia and many human cancers-which could lead to enhanced cell migration and increased metastatic potential.
Collapse
Affiliation(s)
- Pragya Shah
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Connor W. McGuigan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Svea Cheng
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York City, NY, United States
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York City, NY, United States
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, United States
| | - Robert S. Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
16
|
Formulation and Characterization of Doxycycline-Loaded Polymeric Nanoparticles for Testing Antitumor/Antiangiogenic Action in Experimental Colon Cancer in Mice. NANOMATERIALS 2022; 12:nano12050857. [PMID: 35269343 PMCID: PMC8912660 DOI: 10.3390/nano12050857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023]
Abstract
Nanotherapeutics can enhance the characteristics of drugs, such as rapid systemic clearance and systemic toxicities. Polymeric nanoparticles (PRNPs) depend on dispersion of a drug in an amorphous state in a polymer matrix. PRNPs are capable of delivering drugs and improving their safety. The primary goal of this study is to formulate doxycycline-loaded PRNPs by applying the nanoprecipitation method. Eudragit S100 (ES100) (for DOX-PRNP1) and hydroxypropyl methyl cellulose phthalate HP55 (for DOX-PRNP2) were tested as the drug carrying polymers and the DOX-PRNP2 showed better characteristics and drug release % and was hence selected to be tested in the biological study. Six different experimental groups were formed from sixty male albino mice. 1,2,-Dimethylhydrazine was used for 16 weeks to induce experimental colon cancer. We compared the oral administration of DOX-PRNP2 in doses of 5 and 10 mg/kg with the free drug. Results indicated that DOX-PRNP2 had greater antitumor activity, as evidenced by an improved histopathological picture for colon specimens as well as a decrease in the tumor scores. In addition, when compared to free DOX, the DOX-PRNP2 reduced the angiogenic indicators VEGD and CD31 to a greater extent. Collectively, the findings demonstrated that formulating DOX in PRNPs was useful in enhancing antitumor activity and can be used in other models of cancers to verify their efficacy and compatibility with our study.
Collapse
|
17
|
Poonacha KNT, Villa TG, Notario V. The Interplay among Radiation Therapy, Antibiotics and the Microbiota: Impact on Cancer Treatment Outcomes. Antibiotics (Basel) 2022; 11:331. [PMID: 35326794 PMCID: PMC8944497 DOI: 10.3390/antibiotics11030331] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/01/2022] Open
Abstract
Radiation therapy has been used for more than a century, either alone or in combination with other therapeutic modalities, to treat most types of cancer. On average, radiation therapy is included in the treatment plans for over 50% of all cancer patients, and it is estimated to contribute to about 40% of curative protocols, a success rate that may reach 90%, or higher, for certain tumor types, particularly on patients diagnosed at early disease stages. A growing body of research provides solid support for the existence of bidirectional interaction between radiation exposure and the human microbiota. Radiation treatment causes quantitative and qualitative changes in the gut microbiota composition, often leading to an increased abundance of potentially hazardous or pathogenic microbes and a concomitant decrease in commensal bacteria. In turn, the resulting dysbiotic microbiota becomes an important contributor to worsen the adverse events caused in patients by the inflammatory process triggered by the radiation treatment and a significant determinant of the radiation therapy anti-tumor effectiveness. Antibiotics, which are frequently included as prophylactic agents in cancer treatment protocols to prevent patient infections, may affect the radiation/microbiota interaction through mechanisms involving both their antimicrobial activity, as a mediator of microbiota imbalances, and their dual capacity to act as pro- or anti-tumorigenic effectors and, consequently, as critical determinants of radiation therapy outcomes. In this scenario, it becomes important to introduce the use of probiotics and/or other agents that may stabilize the healthy microbiota before patients are exposed to radiation. Ultimately, newly developed methodologies may facilitate performing personalized microbiota screenings on patients before radiation therapy as an accurate way to identify which antibiotics may be used, if needed, and to inform the overall treatment planning. This review examines currently available data on these issues from the perspective of improving radiation therapy outcomes.
Collapse
Affiliation(s)
| | - Tomás G. Villa
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15705 La Coruña, Spain;
| | - Vicente Notario
- Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
18
|
Stereotactic Laser Ablation (SLA) followed by consolidation stereotactic radiosurgery (cSRS) as treatment for brain metastasis that recurred locally after initial radiosurgery (BMRS): a multi-institutional experience. J Neurooncol 2022; 156:295-306. [PMID: 35001245 DOI: 10.1007/s11060-021-03893-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The optimal treatment paradigm for brain metastasis that recurs locally after initial radiosurgery remains an area of active investigation. Here, we report outcomes for patients with BMRS treated with stereotactic laser ablation (SLA, also known as laser interstitial thermal therapy, LITT) followed by consolidation radiosurgery. METHODS Clinical outcomes of 20 patients with 21 histologically confirmed BMRS treated with SLA followed by consolidation SRS and > 6 months follow-up were collected retrospectively across three participating institutions. RESULTS Consolidation SRS (5 Gy × 5 or 6 Gy × 5) was carried out 16-73 days (median of 26 days) post-SLA in patients with BMRS. There were no new neurological deficits after SLA/cSRS. While 3/21 (14.3%) patients suffered temporary Karnofsky Performance Score (KPS) decline after SLA, no KPS decline was observed after cSRS. There were no 30-day mortalities or wound complications. Two patients required re-admission within 30 days of cSRS (severe headache that resolved with steroid therapy (n = 1) and new onset seizure (n = 1)). With a median follow-up of 228 days (range: 178-1367 days), the local control rate at 6 and 12 months (LC6, LC12) was 100%. All showed diminished FLAIR volume surrounding the SLA/cSRS treated BMRS at the six-month follow-up; none of the patients required steroid for symptoms attributable to these BMRS. These results compare favorably to the available literature for repeat SRS or SLA-only treatment of BMRS. CONCLUSIONS This multi-institutional experience supports further investigations of SLA/cSRS as a treatment strategy for BMRS.
Collapse
|
19
|
Ansari SMR, Hijazi FS, Souchelnytskyi S. Targeted and systemic insights into the crosstalk between DNA-dependent protein kinase catalytic subunit and receptors of estrogen, progesterone and epidermal growth factor in the context of cancer. Mol Biol Rep 2021; 49:587-594. [PMID: 34731368 DOI: 10.1007/s11033-021-06797-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/01/2021] [Indexed: 01/17/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has emerged as a regulator of carcinogenesis. Increased expression of DNA-PKcs correlates with metastatic cancers. Here we review recently reported crosstalk of DNA-PKcs with estrogen (ER), progesterone (PR) and epidermal growth factor (EGFR) receptors. The reports show an extensive network of functional and direct interactions. Targeted studies focused on specific molecular mechanisms, and a systems biology network analysis shows unbiasedly engagement of various cellular functions. Feedforward regulation between expression and activities of DNA-PKcs and ER, DNA-PKcs-dependent phosphorylation of PR and an impact on PR-dependent transcription, and DNA-PKcs-promoted EGFR-dependent aggressiveness and metastases are examples of the results of targeted studies. Systems biology approach extracted many more genes and proteins engaged by DNA-PKcs in interaction with ER, PR, and EGFR. Examples are such regulators and predictors of breast tumorigenesis as BRCA1, TP53, and 18 genes of the MammaPrint signature. Reviewed here data suggest that the diagnostic value of DNA-PKcs in the context of ER, PR and EGFR signaling is defined by a network signature rather than by single markers. This review summarizes mechanisms of DNA-PKcs interaction with ER, PR, and EGFR, highlights tumor suppressors and oncogenes engaged by DNA-PKcs, and emphasizes the importance of diagnostic network-based signatures.
Collapse
Affiliation(s)
| | | | - Serhiy Souchelnytskyi
- College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar. .,Oranta CancerDiagnostics AB, 75263, Uppsala, Sweden. .,Lviv State University, Lviv, 79010, Ukraine. .,Bukovinian State Medical University, Chernivtsi, 58000, Ukraine.
| |
Collapse
|
20
|
Clark CA, Yang ES. Harnessing DNA Repair Defects to Augment Immune-Based Therapies in Triple-Negative Breast Cancer. Front Oncol 2021; 11:703802. [PMID: 34631532 PMCID: PMC8497895 DOI: 10.3389/fonc.2021.703802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has poor prognosis with limited treatment options, with little therapeutic progress made during the past several decades. DNA damage response (DDR) associated therapies, including radiation and inhibitors of DDR, demonstrate potential efficacy against TNBC, especially under the guidance of genomic subtype-directed treatment. The tumor immune microenvironment also contributes greatly to TNBC malignancy and response to conventional and targeted therapies. Immunotherapy represents a developing trend in targeted therapies directed against TNBC and strategies combining immunotherapy and modulators of the DDR pathways are being pursued. There is increasing understanding of the potential interplay between DDR pathways and immune-associated signaling. As such, the question of how we treat TNBC regarding novel immuno-molecular strategies is continually evolving. In this review, we explore the current and upcoming treatment options of TNBC in the context of DNA repair mechanisms and immune-based therapies, with a focus on implications of recent genomic analyses and clinical trial findings.
Collapse
Affiliation(s)
- Curtis A. Clark
- Department of Radiation Oncology, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, United States
| |
Collapse
|
21
|
Asadi S, Soleimani N, Babadi ZK, Ebrahimipour GH. Isolation and identification of the bacterium producing antitumor and antimicrobial compounds derived from Iranian swamp frog (Rana ridibunda) skin. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:372-380. [PMID: 34540176 PMCID: PMC8416579 DOI: 10.18502/ijm.v13i3.6400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background and Objectives: Cancer incidence and recurrence, antibiotic resistance, and overuse of antibiotics have become a global concern. The purpose of this study was to identify and isolate bacteria from the skin of the Rana ridibunda, Iranian swamp frog, which has produced antimicrobial compounds, and investigate its cytotoxic activity on the breast (MCF7) and glioblastoma (U87) cancer cell line. Materials and Methods: An antibiotic-producing bacterium was isolated from the frog skin. The bacterium was identified based on 16S rDNA sequencing and biochemical and morphological characteristics. Antimicrobial activity of the culture supernatant was examined by disc diffusion and MIC methods. Cytoplasmic and cell wall extracts of bacteria were prepared by sonication. SDS-PAGE was then used to examine protein contents of them. The cancer cell lines were treated with cytoplasmic and cell wall extracts at different concentrations. The effects of cytotoxicity were assessed by MTT assay at 24 and 48 h intervals. Finally, the results were analyzed by SPSS. Results: The isolated bacterium was identified as a new strain of Bacillus atrophaeus. MIC and disc diffusion methods showed that the Bacillus atrophaeus antimicrobial activity was broad spectrum. MTT assay showed IC50 values 30 μg/ml and 20 μg/ml for U87 and MCF7 cells after 24–48 h exposure, respectively. Conclusion: The cytoplasmic extracts of Bacillus atrophaeus has anticancer potential and can be used as an alternative or complementary candidate in the treatment of cancer. Further in vivo and in vitro mechanistic studies are suggested to confirm the biological activities.
Collapse
Affiliation(s)
- Sepideh Asadi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Khosravi Babadi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Gholam Hossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
22
|
Hassan SN, Mohamed Yusoff AA, Idris Z, Mohd Redzwan N, Ahmad F. Exploring the cytotoxicity and anticancer effects of doxycycline and azithromycin on human glioblastoma multiforme cells. Neurol Res 2021; 44:242-251. [PMID: 34533110 DOI: 10.1080/01616412.2021.1975225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Previous studies had reported on the cytotoxic activities of generic antibiotics such as doxycycline (DOXY) and azithromycin (AZI) in multiple types of human cancers. Given that resistance to standard anti-glioblastoma multiforme (GBM) drug [temozolomide (TMZ)] is common and inevitable, alternative candidates are greatly needed. PURPOSE AND METHOD The present study was undertaken to explore the cytotoxicity and anticancer effects of DOXY and AZI on human GBM U87 cells via 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), Hoechst, Annexin V-FITC/PI, and clonogenic assays. CompuSyn software was used to determine the combination index (CI) for DOXY+AZI. RESULT Individual treatment with DOXY and AZI decreased U87 cell viability in dose- and time-dependent, and quantitatively comparable to TMZ. Nevertheless, combinations of both antibiotics evidenced antagonistic behaviour in U87 cells. Increased apoptotic event was also observed with the individual treatment of DOXY and AZI. Furthermore, the proliferative and clonogenic capability of 21-day survived U87 cells was completely terminated by DOXY and AZI, but not TMZ. CONCLUSION The antiproliferative and apoptosis-inducing activity exhibited by both antibiotics against U87 cells demonstrates their potential as a likely alternative to combat GBM. It would be interesting to find out more about their molecular players and cytotoxic effects in different types of GBM cells, including glioma stem cells (GSCs).
Collapse
Affiliation(s)
- Siti Nazihahasma Hassan
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian Kelantan, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian Kelantan, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian Kelantan, Malaysia.,Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian Kelantan, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian Kelantan, Malaysia
| | - Norhanani Mohd Redzwan
- Hospital Universiti Sains Malaysia, Kubang Kerian Kelantan, Malaysia.,Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian Kelantan, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian Kelantan, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian Kelantan, Malaysia.,Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
23
|
Synthesis of Silver-Doxycycline Complex Nanoparticles and Their Biological Evaluation on MCF-7 Cell Line of the Breast Cancer. J CHEM-NY 2021. [DOI: 10.1155/2021/9944214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the current study, we aim to evaluate the effect of the combination of silver and doxycycline (silver-doxycycline complex) on the viability of the MCF-7 cell line of the breast in comparison with each of them. The Ag-doxycycline NPs were synthesized using silver nitrate and doxycycline solutions. The synthesized Ag-doxycycline NPs were characterized with several analyses. Ag-doxycycline NPs with a concentration of 25 μM is significantly more effective in decreasing the viability of MCF-7 cells than Ag with the same concentration (
). Doxycycline with a concentration of 6.25 μM also has a more potent effect on the viability of MCF-7 cells than Ag with the same concentration (
). Ag-doxycycline NPs with a 25 μM concentration is more effective than the concentration of 3.125 μM (
). Ag-doxycycline NPs were found to be more effective than AgNPs alone in inhibiting the growth of the MCF-7 cells. Also, the increasing utility of nanotechnology in multiple aspects of medicine can lead to using this technology in the treatment of different types of cancer in the future.
Collapse
|
24
|
Yi YW, Park NY, Park JI, Seong YS, Hong YB. Doxycycline potentiates the anti-proliferation effects of gemcitabine in pancreatic cancer cells. Am J Cancer Res 2021; 11:3515-3536. [PMID: 34354858 PMCID: PMC8332860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023] Open
Abstract
Gemcitabine is often recommended as a first-line treatment for patients with metastatic pancreatic cancer. However, gemcitabine resistance is a major challenge in the treatment of pancreatic ductal adenocarcinoma. Our group serendipitously identified the role of doxycycline as a potentiator of gemcitabine efficacy in pancreatic cancer cells. Doxycycline and gemcitabine co-treatment was significantly more cytotoxic to pancreatic cancer cells compared to gemcitabine alone. Interestingly, doxycycline only exerted synergistic effects when coupled with gemcitabine as opposed to other conventional chemotherapeutics including nucleoside analogs. The anti-clonogenic effects of gemcitabine on pancreatic cancer cells were also enhanced by doxycycline. According to cell cycle analyses, doxycycline prolonged gemcitabine-mediated S phase cell cycle arrest. Further, gene expression profiling analyses indicated that a small set of genes involved in cell cycle regulation were uniquely modulated by gemcitabine and doxycycline co-treatment compared to gemcitabine alone. Western blot analyses indicated that several cell cycle-related proteins, including cyclin D1, p21, and DNA damage inducible transcript 4 (DDIT4), were further modulated by doxycycline and gemcitabine co-treatment. Taken together, our findings indicate that doxycycline enhances the effects of gemcitabine on cell cycle progression, thus rendering pancreatic cancer cells more sensitive to gemcitabine. However, additional studies are required to assess the mechanisms of doxycycline and gemcitabine synergism, which might lead to novel treatment options for pancreatic cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook UniversityCheonan, Korea
| | - Na Young Park
- Department of Translational Biomedical Sciences, Graduate School of Dong-A UniversityBusan 49201, Korea
| | - Joo-In Park
- Department of Translational Biomedical Sciences, Graduate School of Dong-A UniversityBusan 49201, Korea
- Department of Biochemistry, College of Medicine, Dong-A UniversityBusan 49201, Korea
| | - Yeon-Sun Seong
- Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook UniversityCheonan, Korea
- Department of Biochemistry, College of Medicine, Dankook UniversityCheonan 31116, Korea
- Graduate School of Convergence Medical Science, Dankook UniversityCheonan 31116, Korea
| | - Young Bin Hong
- Department of Translational Biomedical Sciences, Graduate School of Dong-A UniversityBusan 49201, Korea
- Department of Biochemistry, College of Medicine, Dong-A UniversityBusan 49201, Korea
| |
Collapse
|
25
|
Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? Cancers (Basel) 2021; 13:cancers13133193. [PMID: 34206772 PMCID: PMC8269327 DOI: 10.3390/cancers13133193] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.
Collapse
|
26
|
Skaperda Z, Tekos F, Makri S, Angelakis C, Vassi E, Vardakas P, Patouna A, Terizi K, Kyriazi D, Kouretas D. A novel combined bioactivity / chemoactivity holistic approach for the evaluation of dietary supplements. Food Chem Toxicol 2021; 152:112159. [PMID: 33789120 DOI: 10.1016/j.fct.2021.112159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
There is increasing evidence that the excessive generation of free radicals in the human body plays a major role in the pathophysiology and development of various diseases, closely associated with oxidative damage. In this frame, the consumption of antioxidant nutrients through food or dietary supplements may prevent from the harmful effects of free radicals on human cells. This work proposes a holistic approach consisting of distinct methodologies, suitable to evaluate the antioxidant and chemoprotective activity of three novel dietary supplements, each one containing active substances with complementary properties. In the first step, this approach includes in vitro studies to evaluate the antioxidant activity of the dietary supplements by measuring the parameters of free radical scavenging capacity, of reducing power activity, as well as, their ability to protect biomolecules from oxidation. Furthermore, the evaluation of their antimutagenic and antigenotoxic effects is also presented. SubsequentlySub, the specific effects of the dietary supplements were examined in three cancer cell lines (HepG2, HeLa, MKN45), by measuring redox biomarkers such as glutathione, reactive oxygen species and thiobarbituric acid reactive substances, using flow cytometry and spectrophotometry. Our results indicate that all the dietary supplements exhibit high antioxidant, antimutagenic, antigenotoxic and lipid protective activity. The most prominent result is their capability to induce oxidative damage on cancer cells via the critical decrease of the levels of their intracellular glutathione, as well as the increase of ROS and lipid peroxidation levels after the administration of non-cytotoxic concentrations. We suggest that the proposed methodology could constitute a valuable tool for the characterization of dietary supplements based on their chemical and functional properties.
Collapse
Affiliation(s)
- Zoi Skaperda
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Sotiria Makri
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Christos Angelakis
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Eleni Vassi
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Periklis Vardakas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Anastasia Patouna
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Kallirroi Terizi
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Despina Kyriazi
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece.
| |
Collapse
|
27
|
Spector LP, Tiffany M, Ferraro NM, Abell NS, Montgomery SB, Kay MA. Evaluating the Genomic Parameters Governing rAAV-Mediated Homologous Recombination. Mol Ther 2021; 29:1028-1046. [PMID: 33248247 PMCID: PMC7934627 DOI: 10.1016/j.ymthe.2020.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/16/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have the unique ability to promote targeted integration of transgenes via homologous recombination at specified genomic sites, reaching frequencies of 0.1%-1%. We studied genomic parameters that influence targeting efficiencies on a large scale. To do this, we generated more than 1,000 engineered, doxycycline-inducible target sites in the human HAP1 cell line and infected this polyclonal population with a library of AAV-DJ targeting vectors, with each carrying a unique barcode. The heterogeneity of barcode integration at each target site provided an assessment of targeting efficiency at that locus. We compared targeting efficiency with and without target site transcription for identical chromosomal positions. Targeting efficiency was enhanced by target site transcription, while chromatin accessibility was associated with an increased likelihood of targeting. ChromHMM chromatin states characterizing transcription and enhancers in wild-type K562 cells were also associated with increased AAV-HR efficiency with and without target site transcription, respectively. Furthermore, the amenability of a site to targeting was influenced by the endogenous transcriptional level of intersecting genes. These results define important parameters that may not only assist in designing optimal targeting vectors for genome editing, but also provide new insights into the mechanism of AAV-mediated homologous recombination.
Collapse
Affiliation(s)
- Laura P Spector
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Tiffany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole M Ferraro
- Biomedical Informatics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan S Abell
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark A Kay
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Oliveira GL, Coelho AR, Marques R, Oliveira PJ. Cancer cell metabolism: Rewiring the mitochondrial hub. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166016. [PMID: 33246010 DOI: 10.1016/j.bbadis.2020.166016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
To adapt to tumoral environment conditions or even to escape chemotherapy, cells rapidly reprogram their metabolism to handle adversities and survive. Given the rapid rise of studies uncovering novel insights and therapeutic opportunities based on the role of mitochondria in tumor metabolic programing and therapeutics, this review summarizes most significant developments in the field. Taking in mind the key role of mitochondria on carcinogenesis and tumor progression due to their involvement on tumor plasticity, metabolic remodeling, and signaling re-wiring, those organelles are also potential therapeutic targets. Among other topics, we address the recent data intersecting mitochondria as of prognostic value and staging in cancer, by mitochondrial DNA (mtDNA) determination, and current inhibitors developments targeting mtDNA, OXPHOS machinery and metabolic pathways. We contribute for a holistic view of the role of mitochondria metabolism and directed therapeutics to understand tumor metabolism, to circumvent therapy resistance, and to control tumor development.
Collapse
Affiliation(s)
- Gabriela L Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ana R Coelho
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ricardo Marques
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal.
| |
Collapse
|
29
|
Sánchez-Alvarez R, De Francesco EM, Fiorillo M, Sotgia F, Lisanti MP. Mitochondrial Fission Factor (MFF) Inhibits Mitochondrial Metabolism and Reduces Breast Cancer Stem Cell (CSC) Activity. Front Oncol 2020; 10:1776. [PMID: 33194575 PMCID: PMC7642822 DOI: 10.3389/fonc.2020.01776] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
Elevated mitochondrial biogenesis and metabolism represent key features of breast cancer stem cells (CSCs), whose propagation is conducive to disease onset and progression. Therefore, interfering with mitochondria biology and function may be regarded as a useful approach to eradicate CSCs. Here, we used the breast cancer cell line MCF7 as a model system to interrogate how mitochondrial fission contributes to the development of mitochondrial dysfunction toward the inhibition of metabolic flux and stemness. We generated an isogenic MCF7 cell line transduced with Mitochondrial Fission Factor (MCF7-MFF), which is primarily involved in mitochondrial fission. We evaluated the biochemical, molecular and functional properties of MCF7-MFF cells, as compared to control MCF7 cells transduced with the empty vector (MCF7-Control). We observed that MFF over-expression reduces both mitochondrial mass and activity, as evaluated using the mitochondrial probes MitroTracker Red and MitoTracker Orange, respectively. The analysis of metabolic flux using the Seahorse XFe96 revealed the inhibition of OXPHOS and glycolysis in MCF7-MFF cells, suggesting that increased mitochondrial fission may impair the biochemical properties of these organelles. Notably, CSCs activity, assessed by 3D-tumorsphere assays, was reduced in MCF7-MFF cells. A similar trend was observed for the activity of ALDH, a well-established marker of stemness. We conclude that enhanced mitochondrial fission may compromise CSCs propagation, through the impairment of mitochondrial function, possibly leading to a quiescent cell phenotype. Unbiased proteomic analysis revealed that proteins involved in mitochondrial dysfunction, oxidative stress-response, fatty acid metabolism and hypoxia signaling are among the most highly up-regulated in MCF7-MFF cells. Of note, integrated analysis of top regulatory networks obtained from unbiased proteomics in MCF7-MFF cells predicts that this cell phenotype activates signaling systems and effectors involved in the inhibition of cell survival and adhesion, together with the activation of specific breast cancer cell death programs. Overall, our study shows that unbalanced and abnormal activation of mitochondrial fission may drive the impairment of mitochondrial metabolic function, leading to inhibition of CSC propagation, and the activation of quiescence programs. Exploiting the potential of mitochondria to control pivotal events in tumor biology may, therefore, represent a useful tool to prevent disease progression.
Collapse
Affiliation(s)
- Rosa Sánchez-Alvarez
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Ernestina Marianna De Francesco
- Translational Medicine, School of Science, Engineering and Environment (SEE), Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom.,Department of Clinical and Experimental Medicine, University of Catania, and ARNAS Garibaldi, Catania, Italy
| | - Marco Fiorillo
- Translational Medicine, School of Science, Engineering and Environment (SEE), Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
30
|
Ózsvári B, Magalhães LG, Latimer J, Kangasmetsa J, Sotgia F, Lisanti MP. A Myristoyl Amide Derivative of Doxycycline Potently Targets Cancer Stem Cells (CSCs) and Prevents Spontaneous Metastasis, Without Retaining Antibiotic Activity. Front Oncol 2020; 10:1528. [PMID: 33042796 PMCID: PMC7523513 DOI: 10.3389/fonc.2020.01528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Here, we describe the chemical synthesis and biological activity of a new Doxycycline derivative, designed specifically to more effectively target cancer stem cells (CSCs). In this analog, a myristic acid (14 carbon) moiety is covalently attached to the free amino group of 9-amino-Doxycycline. First, we determined the IC50 of Doxy-Myr using the 3D-mammosphere assay, to assess its ability to inhibit the anchorage-independent growth of breast CSCs, using MCF7 cells as a model system. Our results indicate that Doxy-Myr is >5-fold more potent than Doxycycline, as it appears to be better retained in cells, within a peri-nuclear membranous compartment. Moreover, Doxy-Myr did not affect the viability of the total MCF7 cancer cell population or normal fibroblasts grown as 2D-monolayers, showing remarkable selectivity for CSCs. Using both gram-negative and gram-positive bacterial strains, we also demonstrated that Doxy-Myr did not show antibiotic activity, against Escherichia coli and Staphylococcus aureus. Interestingly, other complementary Doxycycline amide derivatives, with longer (16 carbon; palmitic acid) or shorter (12 carbon; lauric acid) fatty acid chain lengths, were both less potent than Doxy-Myr for the targeting of CSCs. Finally, using MDA-MB-231 cells, we also demonstrate that Doxy-Myr has no appreciable effect on tumor growth, but potently inhibits tumor cell metastasis in vivo, with little or no toxicity. In summary, by using 9-amino-Doxycycline as a scaffold, here we have designed new chemical entities for their further development as anti-cancer agents. These compounds selectively target CSCs, e.g., Doxy-Myr, while effectively minimizing the risk of driving antibiotic resistance. Taken together, our current studies provide proof-of-principle, that existing FDA-approved drugs can be further modified and optimized, to successfully target the anchorage-independent growth of CSCs and to prevent the process of spontaneous tumor cell metastasis.
Collapse
Affiliation(s)
- Béla Ózsvári
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Manchester, United Kingdom
| | - Luma G Magalhães
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Manchester, United Kingdom
| | - Joe Latimer
- Salford Antibiotic Research Network, School of Science, Engineering and Environment (SEE), University of Salford, Manchester, United Kingdom
| | | | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Manchester, United Kingdom.,Lunella Biotech, Inc., Ottawa, ON, Canada
| | - Michael P Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Manchester, United Kingdom.,Lunella Biotech, Inc., Ottawa, ON, Canada
| |
Collapse
|
31
|
Peiris-Pagès M, Ozsvári B, Sotgia F, Lisanti MP. Mitochondrial and ribosomal biogenesis are new hallmarks of stemness, oncometabolism and biomass accumulation in cancer: Mito-stemness and ribo-stemness features. Aging (Albany NY) 2020; 11:4801-4835. [PMID: 31311889 PMCID: PMC6682537 DOI: 10.18632/aging.102054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022]
Abstract
Using proteomics analysis, we previously compared MCF7 breast cancer cells grown as 3D tumor spheres, with the same cell line grown as monolayers. Our results indicated that during 3D anchorage‐independent growth, the cellular machinery associated with i) mitochondrial biogenesis and ii) ribosomal biogenesis, were both significantly increased. Here, for simplicity, we refer to these two new oncogenic hallmarks as “mito‐stemness” and “ribo‐stemness” features. We have now applied this same type of strategy to begin to understand how fibroblasts and MCF7 breast cancer cells change their molecular phenotype, when they are co‐cultured together. We have previously shown that MCF7‐fibroblast co‐cultures are a valuable model of resistance to apoptosis induced by hormonal therapies, such as Tamoxifen and Fulvestrant. Here, we directly show that these mixed co‐cultures demonstrate the induction of mito‐stemness and ribo‐stemness features, likely reflecting a mechanism for cancer cells to increase their capacity for accumulating biomass. In accordance with the onset of a stem‐like phenotype, KRT19 (keratin 19) was induced by ~6‐fold during co‐culture. KRT19 is a well‐established epithelial CSC marker that is used clinically to identify metastatic breast cancer cells in sentinel lymph node biopsies. The potential molecular therapeutic targets that we identified by label‐free proteomics of MCF7‐fibroblast co‐cultures were then independently validated using a bioinformatics approach. More specifically, we employed publically‐available transcriptional profiling data derived from primary tumor samples from breast cancer patients, which were previously subjected to laser‐capture micro‐dissection, to physically separate breast cancer cells from adjacent tumor stroma. This allowed us to directly validate that the proteins up‐regulated in this co‐culture model were also transcriptionally elevated in patient‐derived breast cancer cells in vivo. This powerful approach for target identification and translational validation, including the use of patient outcome data, can now be applied to other tumor types as well, to validate new therapeutic targets that are more clinically relevant, for patient benefit. Moreover, we discuss the therapeutic implications of these findings for new drug development, drug repurposing and Tamoxifen‐resistance, to effectively target mito‐stemness and ribo‐stemness features in breast cancer patients. We also discuss the broad implications of this “organelle biogenesis” approach to cancer therapy.
Collapse
Affiliation(s)
- Maria Peiris-Pagès
- Clinical and Experimental Pharmacology, University of Manchester, Cancer Research UK, Manchester, United Kingdom
| | - Béla Ozsvári
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
32
|
Synthesis and Antitumor Activity of Doxycycline Polymeric Nanoparticles: Effect on Tumor Apoptosis in Solid Ehrlich Carcinoma. Molecules 2020; 25:molecules25143230. [PMID: 32679837 PMCID: PMC7396998 DOI: 10.3390/molecules25143230] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 02/01/2023] Open
Abstract
Objectives: The aim of this study was to prepare doxycycline polymeric nanoparticles (DOXY-PNPs) with hope to enhance its chemotherapeutic potential against solid Ehrlich carcinoma (SEC). Methods: Three DOXY-PNPs were formulated by nanoprecipitation method using hydroxypropyl methyl cellulose (HPMC) as a polymer. The prepared DOXY-PNPs were evaluated for the encapsulation efficiency (EE%), the drug loading capacity, particle size, zeta potential (ZP) and the in-vitro release for selection of the best formulation. PNP number 3 was selected for further biological testing based on the best pharmaceutical characters. PNP3 (5 and 10 mg/kg) was evaluated for the antitumor potential against SEC grown in female mice by measuring the tumor mass as well as the expression and immunohistochemical staining for the apoptosis markers; caspase 3 and BAX. Results: The biological study documented the greatest reduction in tumor mass in mice treated with PNP3. Importantly, treatment with 5 mg/kg of DOXY-PNPs produced a similar chemotherapeutic effect to that produced by 10 mg/kg of free DOXY. Further, a significant elevation in mRNA expression and immunostaining for caspase 3 and BAX was detected in mice group treated with DOXY-PNPs. Conclusions: The DOXY-PNPs showed greater antitumor potential against SEC grown in mice and greater values for Spearman’s correlation coefficients were detected when correlation with tumor mass or apoptosis markers was examined; this is in comparison to free DOXY. Hence, DOXY-PNPs should be tested in other tumor types to further determine the utility of the current technique in preparing chemotherapeutic agents and enhancing their properties.
Collapse
|
33
|
Garg M. Epithelial Plasticity, Autophagy and Metastasis: Potential Modifiers of the Crosstalk to Overcome Therapeutic Resistance. Stem Cell Rev Rep 2020; 16:503-510. [PMID: 32125607 DOI: 10.1007/s12015-019-09945-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) initiates malignant transformation of cancer cells and is responsible for the generation of heterogenic subsets of cancer stem cells (CSCs). Signals in the form of environmental cues and paracrine factors within tumor microenvironment (TME) niche, support the possibility of generation of pool of CSCs with two distinct functional transition states. Cyclic CSCs with predominant epithelial phenotype, self-renew and differentiate into mature cancer cells. Subsets of autophagic/ non-cyclic CSCs with predominant mesenchymal phenotype have capacity to invade, metastasize, resist to apoptosis, escape immunosurveillance, survive chemotherapies and are majorly responsible for cancer mortality. Differences in phenotypic plasticity may form the basis of differential impact of therapeutic outcomes on heterogeneous subpopulations of CSCs. Activation of autophagy is responsible for the recycling of damaged organelles and protein aggregates, regulates EMT, confers the survival advantage to neoplastic cells to anti-cancer therapies, significantly affects the invasive potential of cancer cells and supports their metastatic dissemination in a tissue and tumor stage dependent manner. Therapy resistance is the primary obstacle in the complete ablation of tumor cells. Combinational treatments based on targeting autophagic CSCs and inhibiting EMT regulators may represent potential anticancer strategies for the prevention of cancer invasion, metastatic spread and disease relapse.
Collapse
Affiliation(s)
- Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
34
|
Fiorillo M, Tóth F, Sotgia F, Lisanti MP. Doxycycline, Azithromycin and Vitamin C (DAV): A potent combination therapy for targeting mitochondria and eradicating cancer stem cells (CSCs). Aging (Albany NY) 2020; 11:2202-2216. [PMID: 31002656 PMCID: PMC6520007 DOI: 10.18632/aging.101905] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
Here, we devised a new strategy for eradicating cancer stem cells (CSCs), via a “synthetic-metabolic” approach, involving two FDA-approved antibiotics and a dietary vitamin supplement. This approach was designed to induce a “rho-zero-like” phenotype in cancer cells. This strategy effectively results in the synergistic eradication of CSCs, using vanishingly small quantities of two antibiotics. The 2 metabolic targets are i) the large mitochondrial ribosome and ii) the small mitochondrial ribosome. Azithromycin inhibits the large mitochondrial ribosome as an off-target side-effect. In addition, Doxycycline inhibits the small mitochondrial ribosome as an off-target side-effect. Vitamin C acts as a mild pro-oxidant, which can produce free radicals and, as a consequence, induces mitochondrial biogenesis. Remarkably, treatment with a combination of Doxycycline (1 μM), Azithromycin (1 μM) plus Vitamin C (250 μM) very potently inhibited CSC propagation by >90%, using the MCF7 ER(+) breast cancer cell line as a model system. The strong inhibitory effects of this DAV triple combination therapy on mitochondrial oxygen consumption and ATP production were directly validated using metabolic flux analysis. Therefore, the induction of mitochondrial biogenesis due to mild oxidative stress, coupled with inhibition of mitochondrial protein translation, may be a new promising therapeutic anti-cancer strategy. Consistent with these assertions, Vitamin C is known to be highly concentrated within mitochondria, by a specific transporter, namely SVCT2, in a sodium-coupled manner. Also, the concentrations of antibiotics used here represent sub-antimicrobial levels of Doxycycline and Azithromycin, thereby avoiding the potential problems associated with antibiotic resistance. Finally, we also discuss possible implications for improving health-span and life-span, as Azithromycin is an anti-aging drug that behaves as a senolytic, which selectively kills and removes senescent fibroblasts.
Collapse
Affiliation(s)
- Marco Fiorillo
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, M5 4WT, United Kingdom.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Fanni Tóth
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, M5 4WT, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, M5 4WT, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, M5 4WT, United Kingdom
| |
Collapse
|
35
|
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020; 5:60. [PMID: 32355263 PMCID: PMC7192953 DOI: 10.1038/s41392-020-0150-x] [Citation(s) in RCA: 641] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the most common countermeasures for treating a wide range of tumors. However, the radioresistance of cancer cells is still a major limitation for radiotherapy applications. Efforts are continuously ongoing to explore sensitizing targets and develop radiosensitizers for improving the outcomes of radiotherapy. DNA double-strand breaks are the most lethal lesions induced by ionizing radiation and can trigger a series of cellular DNA damage responses (DDRs), including those helping cells recover from radiation injuries, such as the activation of DNA damage sensing and early transduction pathways, cell cycle arrest, and DNA repair. Obviously, these protective DDRs confer tumor radioresistance. Targeting DDR signaling pathways has become an attractive strategy for overcoming tumor radioresistance, and some important advances and breakthroughs have already been achieved in recent years. On the basis of comprehensively reviewing the DDR signal pathways, we provide an update on the novel and promising druggable targets emerging from DDR pathways that can be exploited for radiosensitization. We further discuss recent advances identified from preclinical studies, current clinical trials, and clinical application of chemical inhibitors targeting key DDR proteins, including DNA-PKcs (DNA-dependent protein kinase, catalytic subunit), ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), the MRN (MRE11-RAD50-NBS1) complex, the PARP (poly[ADP-ribose] polymerase) family, MDC1, Wee1, LIG4 (ligase IV), CDK1, BRCA1 (BRCA1 C terminal), CHK1, and HIF-1 (hypoxia-inducible factor-1). Challenges for ionizing radiation-induced signal transduction and targeted therapy are also discussed based on recent achievements in the biological field of radiotherapy.
Collapse
Affiliation(s)
- Rui-Xue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, People's Republic of China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, 100850, Beijing, People's Republic of China.
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, 511436, Guangzhou, People's Republic of China.
| |
Collapse
|
36
|
Mitochondria as target to inhibit proliferation and induce apoptosis of cancer cells: the effects of doxycycline and gemcitabine. Sci Rep 2020; 10:4363. [PMID: 32152409 PMCID: PMC7063048 DOI: 10.1038/s41598-020-61381-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/25/2020] [Indexed: 01/09/2023] Open
Abstract
Doxycycline has anti-tumour effects in a range of tumour systems. The aims of this study were to define the role mitochondria play in this process and examine the potential of doxycycline in combination with gemcitabine. We studied the adenocarcinoma cell line A549, its mitochondrial DNA-less derivative A549 ρ° and cultured fibroblasts. Treatment with doxycycline for 5 days resulted in a decrease of mitochondrial-encoded proteins, respiration and membrane potential, and an increase of reactive oxygen species in A549 cells and fibroblasts, but fibroblasts were less affected. Doxycycline slowed proliferation of A549 cells by 35%. Cellular ATP levels did not change. Doxycycline alone had no effect on apoptosis; however, in combination with gemcitabine given during the last 2 days of treatment, doxycycline increased caspase 9 and 3/7 activities, resulting in a further decrease of surviving A549 cells by 59% and of fibroblasts by 24% compared to gemcitabine treatment alone. A549 ρ° cells were not affected by doxycycline. Key effects of doxycycline observed in A549 cells, such as the decrease of mitochondrial-encoded proteins and surviving cells were also seen in the cancer cell lines COLO357 and HT29. Our results suggest that doxycycline suppresses cancer cell proliferation and primes cells for apoptosis by gemcitabine.
Collapse
|
37
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|
38
|
Shen YA, Pan SC, Chu I, Lai RY, Wei YH. Targeting cancer stem cells from a metabolic perspective. Exp Biol Med (Maywood) 2020; 245:465-476. [PMID: 32102562 PMCID: PMC7082881 DOI: 10.1177/1535370220909309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The process of cancer development and progression is driven by distinct subsets of cancer stem cells (CSCs) that contribute the self-renewal capacity as the major impetus to the metastatic dissemination and main impediments in cancer treatment. Given that CSCs are so scarce in the tumor mass, there are debatable points on the metabolic signatures of CSCs. As opposed to differentiated tumor progenies, CSCs display exquisite patterns of metabolism that, depending on the type of cancer, predominately rely on glycolysis, oxidative metabolism of glutamine, fatty acids, or amino acids for ATP production. Metabolic heterogeneity of CSCs, which attributes to differences in type and microenvironment of tumors, confers CSCs to have the plasticity to cope with the endogenous mitochondrial stress and exogenous microenvironment. In essence, CSCs and normal stem cells are like mirror images of each other in terms of metabolism. To achieve reprogramming, CSCs not only need to upregulate their metabolic engine for self-renewal and defense mechanism, but also expedite the antioxidant defense to sustain the redox homeostasis. In the context of these pathways, this review portrays the connection between the metabolic features of CSCs and cancer stemness. Identification of the metabolic features in conferring resistance to anticancer treatment dictated by CSCs can enhance the opportunity to open up a new therapeutic dimension, which might not only improve the effectiveness of cancer therapies but also annihilate the whole tumor without recurrence. Henceforth, we highlight current findings of potential therapeutic targets for the design of alternative strategies to compromise the growth, drug resistance, and metastasis of CSCs by altering their metabolic phenotypes. Perturbing the versatile skills of CSCs by barricading metabolic signaling might bring about plentiful approaches to discover novel therapeutic targets for clinical application in cancer treatments.Impact statementThis minireview highlights the current evidence on the mechanisms of pivotal metabolic pathways that attribute to cancer stem cells (CSCs) with a special focus on developing metabolic strategies of anticancer treatment that can be exploited in preclinical and clinical settings. Specific metabolic inhibitors that can overwhelm the properties of CSCs may impede tumor recurrence and metastasis, and potentially achieve a permanent cure of cancer patients.
Collapse
Affiliation(s)
- Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Siao-Cian Pan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| | - I Chu
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ruo-Yun Lai
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
39
|
Gupta A, Ökesli-Armlovich A, Morgens D, Bassik MC, Khosla C. A genome-wide analysis of targets of macrolide antibiotics in mammalian cells. J Biol Chem 2020; 295:2057-2067. [PMID: 31915244 DOI: 10.1074/jbc.ra119.010770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/05/2020] [Indexed: 01/04/2023] Open
Abstract
Macrolide antibiotics, such as erythromycin and josamycin, are natural polyketide products harboring 14- to 16-membered macrocyclic lactone rings to which various sugars are attached. These antibiotics are used extensively in the clinic because of their ability to inhibit bacterial protein synthesis. More recently, some macrolides have been shown to also possess anti-inflammatory and other therapeutic activities in mammalian cells. To better understand the targets and effects of this drug class in mammalian cells, we used a genome-wide shRNA screen in K562 cancer cells to identify genes that modulate cellular sensitivity to josamycin. Among the most sensitizing hits were proteins involved in mitochondrial translation and the mitochondrial unfolded protein response, glycolysis, and the mitogen-activated protein kinase signaling cascade. Further analysis revealed that cells treated with josamycin or other antibacterial agents exhibited impaired oxidative phosphorylation and metabolic shifts to glycolysis. Interestingly, we observed that knockdown of the mitogen-activated protein kinase kinase kinase 4 (MAP3K4) gene, which contributes to p38 mitogen-activated protein kinase signaling, sensitized cells only to josamycin but not to other antibacterial agents. There is a growing interest in better characterizing the therapeutic effects and toxicities of antibiotics in mammalian cells to guide new applications in both cellular and clinical studies. To our knowledge, this is the first report of an unbiased genome-wide screen to investigate the effects of a clinically used antibiotic on human cells.
Collapse
Affiliation(s)
- Amita Gupta
- Department of Chemical Engineering, Stanford University, Stanford, California 94305; Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305
| | - Aye Ökesli-Armlovich
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305; Department of Chemistry, Stanford University, Stanford, California 94305
| | - David Morgens
- Department of Genetics, Stanford University, Stanford, California 94305
| | - Michael C Bassik
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305; Department of Genetics, Stanford University, Stanford, California 94305
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305; Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305; Department of Chemistry, Stanford University, Stanford, California 94305; Department of Biochemistry, Stanford University, Stanford, California 94305.
| |
Collapse
|
40
|
Aminzadeh-Gohari S, Weber DD, Vidali S, Catalano L, Kofler B, Feichtinger RG. From old to new - Repurposing drugs to target mitochondrial energy metabolism in cancer. Semin Cell Dev Biol 2020; 98:211-223. [PMID: 31145995 PMCID: PMC7613924 DOI: 10.1016/j.semcdb.2019.05.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
Abstract
Although we have entered the era of personalized medicine and tailored therapies, drugs that target a large variety of cancers regardless of individual patient differences would be a major advance nonetheless. This review article summarizes current concepts and therapeutic opportunities in the area of targeting aerobic mitochondrial energy metabolism in cancer. Old drugs previously used for diseases other than cancer, such as antibiotics and antidiabetics, have the potential to inhibit the growth of various tumor entities. Many drugs are reported to influence mitochondrial metabolism. However, here we consider only those drugs which predominantly inhibit oxidative phosphorylation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Silvia Vidali
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Institute of Human Genetics, Helmholtz Zentrum München, Technical University of Munich, Munich, Germany
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Corresponding author at: Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Muellner-Hauptstrasse 48, 5020 Salzburg, Austria. (B. Kofler)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
41
|
The ER-alpha mutation Y537S confers Tamoxifen-resistance via enhanced mitochondrial metabolism, glycolysis and Rho-GDI/PTEN signaling: Implicating TIGAR in somatic resistance to endocrine therapy. Aging (Albany NY) 2019; 10:4000-4023. [PMID: 30573703 PMCID: PMC6326696 DOI: 10.18632/aging.101690] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023]
Abstract
Naturally-occurring somatic mutations in the estrogen receptor gene (ESR1) have been previously implicated in the clinical development of resistance to hormonal therapies, such as Tamoxifen. For example, the somatic mutation Y537S has been specifically associated with acquired endocrine resistance. Briefly, we recombinantly-transduced MCF7 cells with a lentiviral vector encoding ESR1 (Y537S). As a first step, we confirmed that MCF7-Y537S cells are indeed functionally resistant to Tamoxifen, as compared with vector alone controls. Importantly, further phenotypic characterization of Y537S cells revealed that they show increased resistance to Tamoxifen-induced apoptosis, allowing them to form mammospheres with higher efficiency, in the presence of Tamoxifen. Similarly, Y537S cells had elevated basal levels of ALDH activity, a marker of “stemness”, which was also Tamoxifen-resistant. Metabolic flux analysis of Y537S cells revealed a hyper-metabolic phenotype, with significantly increased mitochondrial respiration and high ATP production, as well as enhanced aerobic glycolysis. Finally, to understand which molecular signaling pathways that may be hyper-activated in Y537S cells, we performed unbiased label-free proteomics analysis. Our results indicate that TIGAR over-expression and the Rho-GDI/PTEN signaling pathway appear to be selectively activated by the Y537S mutation. Remarkably, this profile is nearly identical in MCF7-TAMR cells; these cells were independently-generated in vitro, suggesting a highly conserved mechanism underlying Tamoxifen-resistance. Importantly, we show that the Y537S mutation is specifically associated with the over-expression of a number of protein markers of poor clinical outcome (COL6A3, ERBB2, STAT3, AFP, TFF1, CDK4 and CD44). In summary, we have uncovered a novel metabolic mechanism leading to endocrine resistance, which may have important clinical implications for improving patient outcomes.
Collapse
|
42
|
Pellegrino M, Rizza P, Donà A, Nigro A, Ricci E, Fiorillo M, Perrotta I, Lanzino M, Giordano C, Bonofiglio D, Bruno R, Sotgia F, Lisanti MP, Sisci D, Morelli C. FoxO3a as a Positive Prognostic Marker and a Therapeutic Target in Tamoxifen-Resistant Breast Cancer. Cancers (Basel) 2019; 11:cancers11121858. [PMID: 31769419 PMCID: PMC6966564 DOI: 10.3390/cancers11121858] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Resistance to endocrine treatments is a major clinical challenge in the management of estrogen receptor positive breast cancers. Although multiple mechanisms leading to endocrine resistance have been proposed, the poor outcome of this subgroup of patients demands additional studies. Methods: FoxO3a involvement in the acquisition and reversion of tamoxifen resistance was assessed in vitro in three parental ER+ breast cancer cells, MCF-7, T47D and ZR-75-1, in the deriving Tamoxifen resistant models (TamR) and in Tet-inducible TamR/FoxO3a stable cell lines, by growth curves, PLA, siRNA, RT-PCR, Western blot, Immunofluorescence, Transmission Electron Microscopy, TUNEL, cell cycle, proteomics analyses and animal models. FoxO3a clinical relevance was validated in silico by Kaplan–Meier survival curves. Results: Here, we show that tamoxifen resistant breast cancer cells (TamR) express low FoxO3a levels. The hyperactive growth factors signaling, characterizing these cells, leads to FoxO3a hyper-phosphorylation and subsequent proteasomal degradation. FoxO3a re-expression by using TamR tetracycline inducible cells or by treating TamR with the anticonvulsant lamotrigine (LTG), restored the sensitivity to the antiestrogen and strongly reduced tumor mass in TamR-derived mouse xenografts. Proteomics data unveiled novel potential mediators of FoxO3a anti-proliferative and pro-apoptotic activity, while the Kaplan–Meier analysis showed that FoxO3a is predictive of a positive response to tamoxifen therapy in Luminal A breast cancer patients. Conclusions: Altogether, our data indicate that FoxO3a is a key target to be exploited in endocrine-resistant tumors. In this context, LTG, being able to induce FoxO3a, might represent a valid candidate in combination therapy to prevent resistance to tamoxifen in patients at risk.
Collapse
Affiliation(s)
- Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.P.); (P.R.); (A.N.); (E.R.); (M.L.); (C.G.); (D.B.); (R.B.)
| | - Pietro Rizza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.P.); (P.R.); (A.N.); (E.R.); (M.L.); (C.G.); (D.B.); (R.B.)
| | - Ada Donà
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA;
| | - Alessandra Nigro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.P.); (P.R.); (A.N.); (E.R.); (M.L.); (C.G.); (D.B.); (R.B.)
| | - Elena Ricci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.P.); (P.R.); (A.N.); (E.R.); (M.L.); (C.G.); (D.B.); (R.B.)
| | - Marco Fiorillo
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester M5 4WT, UK; (M.F.); (F.S.); (M.P.L.)
| | - Ida Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis (CM2), Transmission Electron Microscopy Laboratory, University of Calabria, Rende, 87036 Cosenza, Italy;
| | - Marilena Lanzino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.P.); (P.R.); (A.N.); (E.R.); (M.L.); (C.G.); (D.B.); (R.B.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.P.); (P.R.); (A.N.); (E.R.); (M.L.); (C.G.); (D.B.); (R.B.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.P.); (P.R.); (A.N.); (E.R.); (M.L.); (C.G.); (D.B.); (R.B.)
| | - Rosalinda Bruno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.P.); (P.R.); (A.N.); (E.R.); (M.L.); (C.G.); (D.B.); (R.B.)
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester M5 4WT, UK; (M.F.); (F.S.); (M.P.L.)
| | - Michael P. Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester M5 4WT, UK; (M.F.); (F.S.); (M.P.L.)
| | - Diego Sisci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.P.); (P.R.); (A.N.); (E.R.); (M.L.); (C.G.); (D.B.); (R.B.)
- Correspondence: (D.S.); (C.M.)
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.P.); (P.R.); (A.N.); (E.R.); (M.L.); (C.G.); (D.B.); (R.B.)
- Correspondence: (D.S.); (C.M.)
| |
Collapse
|
43
|
Bonuccelli G, Sotgia F, Lisanti MP. Matcha green tea (MGT) inhibits the propagation of cancer stem cells (CSCs), by targeting mitochondrial metabolism, glycolysis and multiple cell signalling pathways. Aging (Albany NY) 2019; 10:1867-1883. [PMID: 30153655 PMCID: PMC6128439 DOI: 10.18632/aging.101483] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022]
Abstract
Matcha green tea (MGT) is a natural product that is currently used as a dietary supplement and may have significant anti-cancer properties. However, the molecular mechanism(s) underpinning its potential health benefits remain largely unknown. Here, we used MCF7 cells (an ER(+) human breast cancer cell line) as a model system, to systematically dissect the effects of MGT at the cellular level, via i) metabolic phenotyping and ii) unbiased proteomics analysis. Our results indicate that MGT is indeed sufficient to inhibit the propagation of breast cancer stem cells (CSCs), with an IC-50 of ~0.2 mg/ml, in tissue culture. Interestingly, metabolic phenotyping revealed that treatment with MGT is sufficient to suppress both oxidative mitochondrial metabolism (OXPHOS) and glycolytic flux, shifting cancer cells towards a more quiescent metabolic state. Unbiased label-free proteomics analysis identified the specific mitochondrial proteins and glycolytic enzymes that were down-regulated by MGT treatment. Moreover, to discover the underlying signalling pathways involved in this metabolic shift, we subjected our proteomics data sets to bio-informatics interrogation via Ingenuity Pathway Analysis (IPA) software. Our results indicate that MGT strongly affected mTOR signalling, specifically down-regulating many components of the 40S ribosome. This raises the intriguing possibility that MGT can be used as inhibitor of mTOR, instead of chemical compounds, such as rapamycin. In addition, other key pathways were affected, including the anti-oxidant response, cell cycle regulation, as well as interleukin signalling. Our results are consistent with the idea that MGT may have significant therapeutic potential, by mediating the metabolic reprogramming of cancer cells.
Collapse
Affiliation(s)
- Gloria Bonuccelli
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
44
|
Ozsvari B, Sotgia F, Lisanti MP. Exploiting mitochondrial targeting signal(s), TPP and bis-TPP, for eradicating cancer stem cells (CSCs). Aging (Albany NY) 2019; 10:229-240. [PMID: 29466249 PMCID: PMC5842849 DOI: 10.18632/aging.101384] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/09/2018] [Indexed: 12/03/2022]
Abstract
Tri-phenyl-phosphonium (TPP) is a non-toxic chemical moiety that functionally behaves as a mitochondrial targeting signal (MTS) in living cells. Here, we explored the hypothesis that TPP-related compounds could be utilized to inhibit mitochondria in cancer stem cells (CSCs). We randomly selected 9 TPP-related compounds for screening, using an ATP depletion assay. Based on this approach, five compounds were identified as “positive hits”; two had no detectable effect on ATP production. Remarkably, this represents a >50% hit rate. We validated that the five positive hit compounds all inhibited oxygen consumption rates (OCR), using the Seahorse XFe96 metabolic flux analyzer. Interestingly, these TPP-related compounds were non-toxic and had little or no effect on ATP production in normal human fibroblasts, but selectively targeted adherent “bulk” cancer cells. Finally, these positive hit compounds also inhibited the propagation of CSCs in suspension, as measured functionally using the 3D mammosphere assay. Therefore, these TPP-related compounds successfully inhibited anchorage-independent growth, which is normally associated with a metastatic phenotype. Interestingly, the most effective molecule that we identified contained two TPP moieties (i.e., bis-TPP). More specifically, 2-butene-1,4-bis-TPP potently and selectively inhibited CSC propagation, with an IC-50 < 500 nM. Thus, we conclude that the use of bis-TPP, a “dimeric” mitochondrial targeting signal, may be a promising new approach for the chemical eradication of CSCs. Future studies on the efficacy of 2-butene-1,4-bis-TPP and its derivatives are warranted. In summary, we show that TPP-related compounds provide a novel chemical strategy for effectively killing both i) “bulk” cancer cells and ii) CSCs, while specifically minimizing or avoiding off-target side-effects in normal cells. These results provide the necessary evidence that “normal” mitochondria and “malignant” mitochondria are truly biochemically distinct, removing a significant barrier to therapeutically targeting cancer metabolism.
Collapse
Affiliation(s)
- Bela Ozsvari
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom.,The Paterson Institute, University of Manchester, Withington, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom.,The Paterson Institute, University of Manchester, Withington, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester, United Kingdom.,The Paterson Institute, University of Manchester, Withington, United Kingdom
| |
Collapse
|
45
|
Frosina G, Marubbi D, Marcello D, Daga A. Radiosensitization of orthotopic GIC-driven glioblastoma by doxycycline causes skin damage. Radiat Oncol 2019; 14:58. [PMID: 30961616 PMCID: PMC6454723 DOI: 10.1186/s13014-019-1266-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
Doxycycline (DXC) is a tetracycline antibiotic which has been proposed as a breast cancer radiosensitizer by specifically reducing the expression of the DNA repair enzyme DNA PK in breast cancer initiating cells. Since DXC presents favorable pharmacokinetics properties including the capacity to cross the blood-brain barrier, it has been hypothesized that it could radiosensitize brain tumors as well. We have investigated the radiosensitizing capacity of DXC towards human glioma initiating cells (GIC)-driven orthotopic glioblastomas (GB) in NOD/SCID mice that faithfully mimic the growth properties of the clinical tumors of origin. DXC at 10 mg/Kg body weight was subcutaneously delivered daily, 5 days/week for 4 weeks. At the same time, radiotherapeutic fractions of 0.25 Gy to the head were delivered every 3–4 days (twice/week) for 15 weeks. No survival advantage was observed in DXC-treated mice as compared to vehicle-treated mice by this radiosensitizing protocol. On the contrary, skin damage with hair loss and deep ulcers were observed after 4 weeks in DXC-treated mice leading to discontinuation of drug treatment. These results do not support the use of DXC as a radiosensitizer for brain tumors and indicate skin damage as an important side effect of DXC.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| | - Daniela Marubbi
- Cell Oncology, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.,Department of Experimental Medicine (DIMES), University of Genova, 16132, Genoa, Italy
| | - Diana Marcello
- Mutagenesis & Cancer Prevention, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Antonio Daga
- Cell Oncology, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| |
Collapse
|
46
|
Misak A, Kurakova L, Goffa E, Brezova V, Grman M, Ondriasova E, Chovanec M, Ondrias K. Sulfide (Na₂S) and Polysulfide (Na₂S₂) Interacting with Doxycycline Produce/Scavenge Superoxide and Hydroxyl Radicals and Induce/Inhibit DNA Cleavage. Molecules 2019; 24:molecules24061148. [PMID: 30909480 PMCID: PMC6470963 DOI: 10.3390/molecules24061148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/07/2023] Open
Abstract
Doxycycline (DOXY) is an antibiotic routinely prescribed in human and veterinary medicine for antibacterial treatment, but it has also numerous side effects that include oxidative stress, inflammation, cancer or hypoxia-induced injury. Endogenously produced hydrogen sulfide (H₂S) and polysulfides affect similar biological processes, in which reactive oxygen species (ROS) play a role. Herein, we have studied the interaction of DOXY with H₂S (Na₂S) or polysulfides (Na₂S₂, Na₂S₃ and Na₂S₄) to gain insights into the biological effects of intermediates/products that they generate. To achieve this, UV-VIS, EPR spectroscopy and plasmid DNA (pDNA) cleavage assay were employed. Na₂S or Na₂S₂ in a mixture with DOXY, depending on ratio, concentration and time, displayed bell-shape kinetics in terms of producing/scavenging superoxide and hydroxyl radicals and decomposing hydrogen peroxide. In contrast, the effects of individual compounds (except for Na₂S₂) were hardly observable. In addition, DOXY, as well as oxytetracycline and tetracycline, interacting with Na₂S or other studied polysulfides reduced the •cPTIO radical. Tetracyclines induced pDNA cleavage in the presence of Na₂S. Interestingly, they inhibited pDNA cleavage induced by other polysulfides. In conclusion, sulfide and polysulfides interacting with tetracyclines produce/scavenge free radicals, indicating a consequence for free radical biology under conditions of ROS production and tetracyclines administration.
Collapse
Affiliation(s)
- Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| | - Lucia Kurakova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia.
| | - Eduard Goffa
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| | - Vlasta Brezova
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia.
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| | - Elena Ondriasova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia.
| | - Miroslav Chovanec
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| |
Collapse
|
47
|
Jagust P, de Luxán-Delgado B, Parejo-Alonso B, Sancho P. Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells. Front Pharmacol 2019; 10:203. [PMID: 30967773 PMCID: PMC6438930 DOI: 10.3389/fphar.2019.00203] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Cancer heterogeneity constitutes the major source of disease progression and therapy failure. Tumors comprise functionally diverse subpopulations, with cancer stem cells (CSCs) as the source of this heterogeneity. Since these cells bear in vivo tumorigenicity and metastatic potential, survive chemotherapy and drive relapse, its elimination may be the only way to achieve long-term survival in patients. Thanks to the great advances in the field over the last few years, we know now that cellular metabolism and stemness are highly intertwined in normal development and cancer. Indeed, CSCs show distinct metabolic features as compared with their more differentiated progenies, though their dominant metabolic phenotype varies across tumor entities, patients and even subclones within a tumor. Following initial works focused on glucose metabolism, current studies have unveiled particularities of CSC metabolism in terms of redox state, lipid metabolism and use of alternative fuels, such as amino acids or ketone bodies. In this review, we describe the different metabolic phenotypes attributed to CSCs with special focus on metabolism-based therapeutic strategies tested in preclinical and clinical settings.
Collapse
Affiliation(s)
- Petra Jagust
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz de Luxán-Delgado
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Beatriz Parejo-Alonso
- Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Patricia Sancho
- Centre for Stem Cells in Cancer and Ageing, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Traslational Research Unit, Hospital Universitario Miguel Servet, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| |
Collapse
|
48
|
Toledo-Guzmán ME, Bigoni-Ordóñez GD, Ibáñez Hernández M, Ortiz-Sánchez E. Cancer stem cell impact on clinical oncology. World J Stem Cells 2018; 10:183-195. [PMID: 30613312 PMCID: PMC6306557 DOI: 10.4252/wjsc.v10.i12.183] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a widespread worldwide chronic disease. In most cases, the high mortality rate from cancer correlates with a lack of clear symptoms, which results in late diagnosis for patients, and consequently, advanced tumor disease with poor probabilities for cure, since many patients will show chemo- and radio-resistance. Several mechanisms have been studied to explain chemo- and radio-resistance to anti-tumor therapies, including cell signaling pathways, anti-apoptotic mechanisms, stemness, metabolism, and cellular phenotypes. Interestingly, the presence of cancer stem cells (CSCs), which are a subset of cells within the tumors, has been related to therapy resistance. In this review, we focus on evaluating the presence of CSCs in different tumors such as breast cancer, gastric cancer, lung cancer, and hematological neoplasias, highlighting studies where CSCs were identified in patient samples. It is evident that there has been a great drive to identify the cell surface phenotypes of CSCs so that they can be used as a tool for anti-tumor therapy treatment design. We also review the potential effect of nanoparticles, drugs, natural compounds, aldehyde dehydrogenase inhibitors, cell signaling inhibitors, and antibodies to treat CSCs from specific tumors. Taken together, we present an overview of the role of CSCs in tumorigenesis and how research is advancing to target these highly tumorigenic cells to improve oncology patient outcomes.
Collapse
Affiliation(s)
- Mariel E Toledo-Guzmán
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | | | - Miguel Ibáñez Hernández
- Departamento de Bioquímica, Laboratorio de Terapia Génica, Escuela Nacional de Ciencias Biológicas, Posgrado de Biomedicina y Biotecnología Molecular, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| |
Collapse
|
49
|
Sotgia F, Ozsvari B, Fiorillo M, De Francesco EM, Bonuccelli G, Lisanti MP. A mitochondrial based oncology platform for targeting cancer stem cells (CSCs): MITO-ONC-RX. Cell Cycle 2018; 17:2091-2100. [PMID: 30257595 PMCID: PMC6226227 DOI: 10.1080/15384101.2018.1515551] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Here, we wish to propose a new systematic approach to cancer therapy, based on the targeting of mitochondrial metabolism, especially in cancer stem cells (CSCs). In the future, we envision that anti-mitochondrial therapy would ultimately be practiced as an add-on to more conventional therapy, largely for the prevention of tumor recurrence and cancer metastasis. This mitochondrial based oncology platform would require a panel of FDA-approved therapeutics (e.g. Doxycycline) that can safely be used to inhibit mitochondrial OXPHOS and/or biogenesis in CSCs. In addition, new therapeutics that target mitochondria could also be developed, to optimize their ability to eradicate CSCs. Finally, in this context, mitochondrial-based biomarkers (i.e. "Mito-signatures") could be utilized as companion diagnostics, to identify high-risk cancer patients at diagnosis, facilitating the early detection of tumor recurrence and the prevention of treatment failure. In summary, we suggest that new clinical trials are warranted to test and possibly implement this emerging treatment strategy, in a variety of human cancer types. This general approach, using FDA-approved antibiotics to target mitochondria, was effective in killing CSCs originating from many different cancer types, including DCIS, breast (ER(+) and ER(-)), prostate, ovarian, lung and pancreatic cancers, as well as melanoma and glioblastoma, among others. Thus, we propose the term MITO-ONC-RX, to describe this anti-mitochondrial platform for targeting CSCs. The use of re-purposed FDA-approved drugs will undoubtedly help to accelerate the clinical evaluation of this approach, as these drugs can move directly into Phase II clinical trials, saving considerable amounts of time (10-15 y) and billions in financial resources.
Collapse
Affiliation(s)
- Federica Sotgia
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK
| | - Bela Ozsvari
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK
| | - Marco Fiorillo
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK.,b Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , Rende , Italy
| | - Ernestina Marianna De Francesco
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK.,b Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , Rende , Italy
| | - Gloria Bonuccelli
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK
| | - Michael P Lisanti
- a Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC) , University of Salford , Greater Manchester , UK
| |
Collapse
|
50
|
Piekna-Przybylska D, Maggirwar SB. CD4+ memory T cells infected with latent HIV-1 are susceptible to drugs targeting telomeres. Cell Cycle 2018; 17:2187-2203. [PMID: 30198385 DOI: 10.1080/15384101.2018.1520568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The population of HIV reservoir in infected person is very small, but extremely long-lived and is a major obstacle for an HIV cure. We previously showed that cells with established HIV latency have deficiencies in DNA damage response (DDR). Here, we investigated ability of HIV-1 to interfere with telomere maintenance, and the effects of targeting telomeres on latently infected cells. Our results show that telomeres are elongated in cultured primary memory CD4 + T cells (TCM) after HIV-1 infection and when virus latency is established. Similarly, much longer telomeres were found in several Jurkat-derived latently infected cell lines, indicating that virus stimulates telomere elongation. Exposing primary CD4+ TCM cells to BRACO19, an agent targeting telomeres, resulted in a higher rate of apoptosis for infected cultures at day 3 post-infection, during HIV-1 latency and for PMA-stimulated cultures with low level of HIV-1 reactivation. Importantly, BRACO19 induced apoptosis in infected cells with potency similar to etoposide and camptothecin, whereas uninfected cells were less affected by BRACO19. We also determined that apoptosis induced by BRACO19 is not caused by telomeres shortening, but is related to formation of gamma-H2AX, implicating DNA damage or uncapping of telomeres, which triggers genome instability. In conclusion, our results indicate that HIV-1 stimulates telomere elongation during latency, suggesting that HIV reservoir has greater capacity for clonal expansion and extended lifespan. Higher rates of apoptosis in response to BRACO19 treatment suggest that HIV reservoirs are more susceptible to targeting telomere maintenance and to inhibitors targeting DDR, which is also involved in stabilizing telomeres.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- a Department of Microbiology and Immunology, School of Medicine and Dentistry , University of Rochester , Rochester , NY , USA
| | - Sanjay B Maggirwar
- a Department of Microbiology and Immunology, School of Medicine and Dentistry , University of Rochester , Rochester , NY , USA
| |
Collapse
|