1
|
Poondla N, Babaeizad A, Sheykhhasan M, Barry CJ, Manoochehri H, Tanzadehpanah H, Mahaki H, Al-Musawi S. Exosome-based therapies and biomarkers in stroke: Current advances and future directions. Exp Neurol 2025; 391:115286. [PMID: 40328416 DOI: 10.1016/j.expneurol.2025.115286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Stroke is a challenging neurological condition caused by interrupted blood flow to the brain and presents substantial global health concerns due to its prevalence and limited treatment options. Exosomes, tiny vesicles released by cells, are gaining attention for their potential in targeted drug delivery and as diagnostic and therapeutic biomarkers for stroke. This article outlines recent advances in exosome-based drug delivery systems and examines their application in managing stroke. Stroke presents with diverse symptoms depending on the brain region affected, and current treatments primarily aim to restore blood flow and manage risk factors. Exosomes exhibit a unique structure and composition and contain bioactive molecules. Their ability to cross the blood-brain barrier and target specific cells makes them promising candidates for precise drug delivery in stroke therapy. Exosomes contribute extensively to stroke pathophysiology and present considerable therapeutic promise by promoting neuroprotection and assisting in brain repair mechanisms. They can be engineered to carry various therapeutic substances, such as small molecules, enabling highly specific targeted delivery. Furthermore, the molecular compositions of exosomes reflect the pathological changes observed in stroke, indicating their potential use as biomarkers for early diagnosis, monitoring of disease progression, and creating individualized treatment strategies. Despite promising developments, challenges remain in optimizing exosome production, purification, and cargo loading. Further investigations into their biological mechanisms and clinical validation are crucial for translating their potential into tangible benefits for patients. This article highlights recent advances and future prospects in exosome research, underscoring their application as novel diagnostic and therapeutic tools in stroke management.
Collapse
Affiliation(s)
- Naresh Poondla
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Global Health Research, Saveetha Medical College& Hospital, Chennai 602105, India
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | | | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
2
|
Bu F, Yuan X, Cui X, Guo R. Bibliometric Analysis and Visualized Study of Research on Mesenchymal Stem Cells in Ischemic Stroke. Stem Cell Rev Rep 2025:10.1007/s12015-025-10878-9. [PMID: 40257541 DOI: 10.1007/s12015-025-10878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND One of the major global causes of death and disability is ischemic stroke (IS). Mesenchymal stem cells (MSCs) emerge as a cell-based therapy for numerous diseases. Recently, research on the role of MSCs in ischemic stroke has developed rapidly worldwide. Bibliometric analysis of MSCs for IS has not yet been published, though. AIM Through bibliometric analysis, the aim of this study was to assess the current state of research on MSCs in the field of ischemic stroke research worldwide and to identify important results, major research areas, and emerging trends. METHODS Publications related to MSCs in ischemic stroke from January 1, 2002, to December 31, 2022, were obtained from the Web of Science Core Collection (WoSCC). We used HistCite, VOSViewer, CiteSpace, and Bibliometrix for bibliometric analysis and visualization. We employed the Total Global Citation Score (TGCS) to assess the impact of publications. RESULTS The bibliometric analysis included a total of 2,048 publications. The 1,386 papers used in this study were authored by 200 individuals across 200 organizations in 72 countries, published in 202 journals. Cesar V Borlongan published the most documents among high-productivity authors. Michael Chopp was the author with the highest average number of citations per paper, with an average paper citation time of 118.54. We found that research of MSCs in ischemic stroke developed rapidly starting in 2008. Neurosciences were the most productive journals, and Chinese researchers have produced the most research papers in this subject. The most cited article is "Systemic administration of exosomes released from mesenchymal stromal cells promotes functional recovery and neurovascular plasticity after stroke in rats". CONCLUSION This study uses both numbers and descriptions to thoroughly review the research on MSCs related to IS. This information provides valuable experience for researchers to carry out MSCs' work on IS.
Collapse
Affiliation(s)
- Fanwei Bu
- Xinxiang First People's Hospital, Xinxiang, China
| | | | - Xiaocan Cui
- Xinxiang First People's Hospital, Xinxiang, China
| | - Ruyue Guo
- Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
3
|
Kawiková I, Špička V, Lai JCK, Askenase PW, Wen L, Kejík Z, Jakubek M, Valeš K, Španiel F. Extracellular vesicles as precision therapeutics for psychiatric conditions: targeting interactions among neuronal, glial, and immune networks. Front Immunol 2025; 16:1454306. [PMID: 40264776 PMCID: PMC12011847 DOI: 10.3389/fimmu.2025.1454306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/14/2025] [Indexed: 04/24/2025] Open
Abstract
The critical role of the immune system in brain function and dysfunction is well recognized, yet development of immune therapies for psychiatric diseases has been slow due to concerns about iatrogenic immune deficiencies. These concerns are emphasized by the lack of objective diagnostic tools in psychiatry. A promise to resolve this conundrum lies in the exploitation of extracellular vesicles (EVs) that are physiologically produced or can be synthetized. EVs regulate recipient cell functions and offer potential for EVs-based therapies. Intranasal EVs administration enables the targeting of specific brain regions and functions, thereby facilitating the design of precise treatments for psychiatric diseases. The development of such therapies requires navigating four dynamically interacting networks: neuronal, glial, immune, and EVs. These networks are profoundly influenced by brain fluid distribution. They are crucial for homeostasis, cellular functions, and intercellular communication. Fluid abnormalities, like edema or altered cerebrospinal fluid (CSF) dynamics, disrupt these networks, thereby negatively impacting brain health. A deeper understanding of the above-mentioned four dynamically interacting networks is vital for creating diagnostic biomarker panels to identify distinct patient subsets with similar neuro-behavioral symptoms. Testing the functional pathways of these biomarkers could lead to new therapeutic tools. Regulatory approval will depend on robust preclinical data reflecting progress in these interdisciplinary areas, which could pave the way for the design of innovative and precise treatments. Highly collaborative interdisciplinary teams will be needed to achieve these ambitious goals.
Collapse
Affiliation(s)
- Ivana Kawiková
- National Institute of Mental Health, Klecany, Czechia
- Department of Medicine, Yale School of Medicine, New Haven, CT, United States
- Department of Biology, Hartford University, West Hartford, CT, United States
| | - Václav Špička
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - James C. K. Lai
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University College of Pharmacy, Pocatello, ID, United States
- Department of Diagnostic Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale School of Medicine, New Haven, CT, United States
| | - Philip W. Askenase
- Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Li Wen
- Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Zdeněk Kejík
- Biotechnology and Biomedical Center in Vestec (BIOCEV) , First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Milan Jakubek
- Biotechnology and Biomedical Center in Vestec (BIOCEV) , First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Karel Valeš
- National Institute of Mental Health, Klecany, Czechia
- 3rd Medical Faculty, Charles University, Prague, Czechia
| | - Filip Španiel
- National Institute of Mental Health, Klecany, Czechia
- 3rd Medical Faculty, Charles University, Prague, Czechia
| |
Collapse
|
4
|
Fu X, Li J, Yang S, Jing J, Zheng Q, Zhang T, Xu Z. Blood-brain barrier repair: potential and challenges of stem cells and exosomes in stroke treatment. Front Cell Neurosci 2025; 19:1536028. [PMID: 40260076 PMCID: PMC12009835 DOI: 10.3389/fncel.2025.1536028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/12/2025] [Indexed: 04/23/2025] Open
Abstract
Stroke is characterized with high morbidity, mortality and disability all over the world, and one of its core pathologies is blood-brain barrier (BBB) dysfunction. BBB plays a crucial physiological role in protecting brain tissues and maintaining homeostasis in central nervous system (CNS). BBB dysfunction serves as a key factor in the development of cerebral edema, inflammation, and further neurological damage in stroke patients. Currently, stem cells and their derived exosomes have shown remarkable potential in repairing the damaged BBB and improving neurological function after stroke. Stem cells repair the integrity of BBB through anti-inflammatory, antioxidant, angiogenesis and regulation of intercellular signaling mechanisms, while stem cell-derived exosomes, as natural nanocarriers, further enhance the therapeutic effect by carrying active substances such as proteins, RNAs and miRNAs. This review will present the latest research advances in stem cells and their exosomes in stroke treatment, as well as the challenges of cell source, transplantation timing, dosage, and route of administration in clinical application, aiming to discuss their mechanisms of repairing BBB integrity and potential for clinical application, and proposes future research directions. Stem cells and exosomes are expected to provide new strategies for early diagnosis and precise treatment of stroke, and promote breakthroughs in the field of stroke.
Collapse
Affiliation(s)
- Xiaochen Fu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Jia Li
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Shoujun Yang
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiapeng Jing
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Qinzhi Zheng
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Ting Zhang
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Zhuo Xu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Vahab SA, V VK, Kumar VS. Exosome-based drug delivery systems for enhanced neurological therapeutics. Drug Deliv Transl Res 2025; 15:1121-1138. [PMID: 39325272 DOI: 10.1007/s13346-024-01710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Exosomes are small extracellular vesicles naturally secreted by cells into body fluids, enriched with bioactive molecules such as RNAs, proteins, and lipids. These nanosized vesicles play a crucial role in physiological and pathological processes by facilitating intercellular communication and modulating cellular responses, particularly within the central nervous system (CNS). Their ability to cross the blood-brain barrier and reflect the characteristics of their parent cells makes exosomal cargo a promising candidate for biomarkers in the early diagnosis and clinical assessment of neurological conditions. This review offers a comprehensive overview of current knowledge on the characterization of mammalian-derived exosomes, their application as drug delivery systems for neurological disorders, and ongoing clinical trials involving exosome-loaded cargo. Despite their promising attributes, a significant challenge remains the lack of standardized isolation methods, as current techniques are often complex, costly, and require sophisticated equipment, affecting the scalability and affordability of exosome-based therapies. The review highlights the engineering potential of exosomes, emphasizing their ability to be customized for targeted therapeutic delivery through surface modification or conjugation. Future advancements in addressing these challenges and leveraging the unique properties of exosomes could lead to innovative and effective therapeutic strategies in neurology.
Collapse
Affiliation(s)
- Safa A Vahab
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Vyshma K V
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Vrinda S Kumar
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India.
| |
Collapse
|
6
|
Sun Y, Wan G, Bao X. Extracellular Vesicles as a Potential Therapy for Stroke. Int J Mol Sci 2025; 26:3130. [PMID: 40243884 PMCID: PMC11989175 DOI: 10.3390/ijms26073130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Although thrombolytic therapy has enjoyed relative success, limitations remain, such as a narrow therapeutic window and inconsistent efficacy. Consequently, there is a pressing need to develop novel therapeutic approaches. In recent years, extracellular vesicles (EVs) have garnered increasing attention as a potential alternative to stem cell therapy. Because of their ability to cross the blood-brain barrier and exert neuroprotective effects in cerebral ischemia and hemorrhage, the exploration of EVs for clinical application in stroke treatment is expanding. EVs are characterized by high heterogeneity, with their composition closely mirroring that of their parent cells. This property enables EVs to distinguish between cerebral ischemia and hemorrhage, thus facilitating a more rapid and accurate diagnosis. Additionally, EVs can be engineered to carry specific molecules, such as miRNAs, targeting them to specific cells, potentially enhancing the therapeutic outcome and improving stroke prognosis. In this review, we will also explore the methodologies for the isolation and extraction of EVs, critically evaluating the advantages and disadvantages of various commonly employed separation techniques. Furthermore, we will briefly address current EV preservation and administration methods, providing a comprehensive overview of the state of EV-based therapies in stroke treatment.
Collapse
Affiliation(s)
- Ye Sun
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.S.); (G.W.)
| | - Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.S.); (G.W.)
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.S.); (G.W.)
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100730, China
| |
Collapse
|
7
|
Lin KC, Yeh JN, Sung PH, Yin TC, Chiang JY, Huang CR, Chen YL, Wang YT, Chen KH, Yip HK. Exogenous mitochondria added on benefits for cellular prion protein overexpression in adipose-derived mesenchymal stem cells treatment on intracranial hemorrhage rat. J Mol Histol 2025; 56:106. [PMID: 40080193 PMCID: PMC11906555 DOI: 10.1007/s10735-025-10382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/21/2025] [Indexed: 03/15/2025]
Abstract
We examined whether combined exogenous mitochondria (ExMito) and cellular prion protein overexpression (Ove-PrPC) in adipose-derived mesenchymal stem cell (Ove-PrPC in ADMSCs) therapy is superior to a single therapy for protecting the brain against intracranial hemorrhage (ICH) in rats. In vitro, compared with the control group, ExMito transfusion into recipient cells (i.e., N2a cells) significantly increased under hypoxic conditions (P < 0.001) and augmented ρ0 cell proliferation and cell-cycle activation (P < 0.001). PrPC-OE in ADMSCs exhibited higher resistance to H2O2-induced cell senescence and mitochondrial and DNA damage compared to ADMSCs (P < 0.001). Rats were categorized into group 1 (sham-control), 2 (ICH), 3 [ICH + ExMito (350 μg) by intracranial injection at 3 h after ICH], 4 [ICH + PrPC-OE in ADMSCs (6.0 × 105 cells) and intracranial injection and 1.2 × 106 cells by intravenous injection)], and 5 (ICH + combined ExMito + PrPC-OE in ADMSCs). By day 28, the brain infarct volume, brain infarct area, inflammatory cell infiltration, and biomarkers for DNA and mitochondrial damage were highest in group 2, lowest in group 1, and significantly lower in group 5 than in groups 3 and 4. NeuN cells exhibited the opposite pattern for brain infarct volume, and neurological function (corner test) significantly improved in groups 3 and 4, with further improvement in group 5 compared with that in group 2 (P < 0.0001). Combined ExMito + PrPC-OE ADMSCs therapy was superior to either therapy alone in mitigating the ICH-induced brain damage.
Collapse
Affiliation(s)
- Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niaosung Dist, No. 123, Dapi Rd., Kaohsiung, 833401, Taiwan, ROC
| | - Jui-Ning Yeh
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niaosung Dist, No. 123, Dapi Rd., Kaohsiung, 833401, Taiwan, ROC
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833401, Taiwan, ROC
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833401, Taiwan, ROC
| | - Tsung-Cheng Yin
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833401, Taiwan, ROC
- Center for General Education, Cheng Shiu University, Kaohsiung, Taiwan, ROC
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan, ROC
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan, ROC
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niaosung Dist, No. 123, Dapi Rd., Kaohsiung, 833401, Taiwan, ROC
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833401, Taiwan, ROC
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niaosung Dist, No. 123, Dapi Rd., Kaohsiung, 833401, Taiwan, ROC
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833401, Taiwan, ROC
| | - Yi-Ting Wang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niaosung Dist, No. 123, Dapi Rd., Kaohsiung, 833401, Taiwan, ROC
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833401, Taiwan, ROC
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niaosung Dist, No. 123, Dapi Rd., Kaohsiung, 833401, Taiwan, ROC.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niaosung Dist, No. 123, Dapi Rd., Kaohsiung, 833401, Taiwan, ROC.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833401, Taiwan, ROC.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833401, Taiwan, ROC.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404333, Taiwan, ROC.
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333323, Taiwan, ROC.
| |
Collapse
|
8
|
Wang Y, Ding H, Bai R, Li Q, Ren B, Lin P, Li C, Chen M, Xu X. Exosomes from adipose-derived stem cells accelerate wound healing by increasing the release of IL-33 from macrophages. Stem Cell Res Ther 2025; 16:80. [PMID: 39984984 PMCID: PMC11846291 DOI: 10.1186/s13287-025-04203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) -derived exosomes, especially adipose-derived mesenchymal stem cell exosomes (ADSC-Exos), have emerged as a promising alternative for skin damage repair with anti-inflammatory, angiogenic and cell proliferation effects while overcoming some of the limitations of MSC. However, the mechanism by which ADSC-Exos regulates inflammatory cells during wound healing remains unclear. This study investigated how ADSC-Exos regulate macrophages to promote wound healing. METHODS ADSC-Exos were isolated using ultracentrifugation, with subsequent quantification of exosomes particle number. To investigate their role in wound healing, the effects of ADSC-Exos on inflammation, angiogenesis, collagen deposition and macrophage polarization were evaluated through immunohistochemical staining, immunofluorescence and western blotting. Changes in gene expression associated with ADSC-Exos-induced macrophage polarization were analyzed using qPCR. RNA sequencing was performed to identify differentially expressed genes affected by ADSC-Exos. The critical role of IL-33 in the wound healing process was further confirmed using Il33-/- mice. Additionally, co-culture experiments were conducted to explore the effects of IL-33 on keratinocyte proliferation, collagen deposition and epithelialization. RESULTS ADSC-Exos inhibited the expression of TNF-α and IL-6, induced M2 macrophage polarization, promoted collagen deposition and angiogenesis, and accelerated wound healing. RNA sequencing identified IL-33 as a key mediator in this process. In Il33-/- mice, impaired wound healing and decreased M2 macrophage polarization were observed. The co-culture experiments showed that IL-33 enhanced keratinocyte function through activation of the Wnt/β-catenin signaling pathway. These findings highlight the therapeutic potential of ADSC-Exos in wound healing by modulating IL-33. CONCLUSIONS ADSC-Exos promote wound healing by regulating macrophage polarization and enhancing IL-33 release which drives keratinocyte proliferation, collagen deposition and epithelialization via the Wnt/β-catenin signaling pathway. These findings provide a mechanistic basis for the therapeutic potential of ADSC-Exos in tissue repair and regeneration.
Collapse
Affiliation(s)
- Yichen Wang
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Chinese PLA Medical School , Beijing, 100853, China
| | - Hongfan Ding
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Ruiqi Bai
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Qiang Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Boyuan Ren
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Pianpian Lin
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Chengfei Li
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Minliang Chen
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Xiao Xu
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, No. 69 Yongding Road, Haidian District, Beijing, 100039, People's Republic of China.
| |
Collapse
|
9
|
Lee J, Var SR, Chen D, Natera-Rodriguez DE, Hassanipour M, West MD, Low WC, Grande AW, Larocca D. Exosomes derived from highly scalable and regenerative human progenitor cells promote functional improvement in a rat model of ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631793. [PMID: 39829810 PMCID: PMC11741374 DOI: 10.1101/2025.01.07.631793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Globally, there are 15 million stroke patients each year who have significant neurological deficits. Today, there are no treatments that directly address these deficits. With demographics shifting to an older population, the problem is worsening. Therefore, it is crucial to develop feasible therapeutic treatments for stroke. In this study, we tested exosomes derived from embryonic endothelial progenitor cells (eEPC) to assess their therapeutic efficacy in a rat model of ischemic stroke. Importantly, we have developed purification methods aimed at producing robust and scalable exosomes suitable for manufacturing clinical grade therapeutic exosomes. We characterized exosome cargos including RNA-seq, miRNAs targets, and proteomic mass spectrometry analysis, and we found that eEPC-exosomes were enhanced with angiogenic miRNAs (i.e., miR-126), anti-inflammatory miRNA (i.e., miR-146), and anti-apoptotic miRNAs (i.e., miR-21). The angiogenic activity of diverse eEPC-exosomes sourced from a panel of eEPC production lines was assessed in vitro by live-cell vascular tube formation and scratch wound assays, showing that several eEPC-exosomes promoted the proliferation, tube formation, and migration in endothelial cells. We further applied the exosomes systemically in a rat middle cerebral artery occlusion (MCAO) model of stroke and tested for neurological recovery (mNSS) after injury in ischemic animals. The mNSS scores revealed that recovery of sensorimotor functioning in ischemic MCAO rats increased significantly after intravenous administration of eEPC-exosomes and outpaced recovery obtained through treatment with umbilical cord stem cells. Finally, we investigated the potential mechanism of eEPC-exosomes in mitigating ischemic stroke injury and inflammation by the expression of neuronal, endothelial, and inflammatory markers. Taken together, these data support the finding that eEPCs provide a valuable source of exosomes for developing scalable therapeutic products and therapies for stroke and other ischemic diseases.
Collapse
Affiliation(s)
- Jieun Lee
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
| | - Susanna R. Var
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Derek Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Mohammad Hassanipour
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
| | - Michael D. West
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
- LifeCraft Sciences, Inc., Alameda, California, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew W. Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dana Larocca
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
- Further Biotechnologies, LLC, Alameda, California, USA
| |
Collapse
|
10
|
Lee J, Geum D, Park DH, Kim JH. Molecular Targeting of Ischemic Stroke: The Promise of Naïve and Engineered Extracellular Vesicles. Pharmaceutics 2024; 16:1492. [PMID: 39771472 PMCID: PMC11678501 DOI: 10.3390/pharmaceutics16121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Ischemic stroke (IS) remains a leading cause of mortality and long-term disability worldwide, with limited therapeutic options available. Despite the success of early interventions, such as tissue-type plasminogen activator administration and mechanical thrombectomy, many patients continue to experience persistent neurological deficits. The pathophysiology of IS is multifaceted, encompassing excitotoxicity, oxidative and nitrosative stress, inflammation, and blood-brain barrier disruption, all of which contribute to neural cell death, further complicating the treatment of IS. Recently, extracellular vesicles (EVs) secreted naturally by various cell types have emerged as promising therapeutic agents because of their ability to facilitate selective cell-to-cell communication, neuroprotection, and tissue regeneration. Furthermore, engineered EVs, designed to enhance targeted delivery and therapeutic cargo, hold the potential to improve their therapeutic benefits by mitigating neuronal damage and promoting neurogenesis and angiogenesis. This review summarizes the characteristics of EVs, the molecular mechanisms underlying IS pathophysiology, and the emerging role of EVs in IS treatment at the molecular level. This review also explores the recent advancements in EV engineering, including the incorporation of specific proteins, RNAs, or pharmacological agents into EVs to enhance their therapeutic efficacy.
Collapse
Affiliation(s)
- Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| | - Dongho Geum
- Department of Medical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Dong-Hyuk Park
- Department of Neurosurgery, Anam Hospital, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
11
|
Pawluk H, Tafelska-Kaczmarek A, Sopońska M, Porzych M, Modrzejewska M, Pawluk M, Kurhaluk N, Tkaczenko H, Kołodziejska R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024; 14:1130. [PMID: 39334896 PMCID: PMC11430825 DOI: 10.3390/biom14091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is the second leading cause of death worldwide, and its incidence is rising rapidly. Acute ischemic stroke is a subtype of stroke that accounts for the majority of stroke cases and has a high mortality rate. An effective treatment for stroke is to minimize damage to the brain's neural tissue by restoring blood flow to decreased perfusion areas of the brain. Many reports have concluded that both oxidative stress and excitotoxicity are the main pathological processes associated with ischemic stroke. Current measures to protect the brain against serious damage caused by stroke are insufficient. For this reason, it is important to investigate oxidative and antioxidant strategies to reduce oxidative damage. This review focuses on studies assessing the concentration of oxidative stress biomarkers and the level of antioxidants (enzymatic and non-enzymatic) and their impact on the clinical prognosis of patients after stroke. Mechanisms related to the production of ROS/RNS and the role of oxidative stress in the pathogenesis of ischemic stroke are presented, as well as new therapeutic strategies aimed at reducing the effects of ischemia and reperfusion.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Sopońska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Porzych
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
12
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
13
|
Lanci A, Iacono E, Merlo B. Therapeutic Application of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Domestic Animals. Animals (Basel) 2024; 14:2147. [PMID: 39123673 PMCID: PMC11310970 DOI: 10.3390/ani14152147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Recently, the therapeutic potential of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) has been extensively studied in both human and veterinary medicine. EVs are nano-sized particles containing biological components commonly found in other biological materials. For that reason, EV isolation and characterization are critical to draw precise conclusions during their investigation. Research on EVs within veterinary medicine is still considered in its early phases, yet numerous papers were published in recent years. The conventional adult tissues for deriving MSCs include adipose tissue and bone marrow. Nonetheless, alternative sources such as synovial fluid, endometrium, gingiva, and milk have also been intermittently used. Fetal adnexa are amniotic membrane/fluid, umbilical cord and Wharton's jelly. Cells derived from fetal adnexa exhibit an intermediate state between embryonic and adult cells, demonstrating higher proliferative and differentiative potential and longer telomeres compared to cells from adult tissues. Summarized here are the principal and recent preclinical and clinical studies performed in domestic animals such as horse, cattle, dog and cat. To minimize the use of antibiotics and address the serious issue of antibiotic resistance as a public health concern, they will undoubtedly also be utilized in the future to treat infections in domestic animals. A number of concerns, including large-scale production with standardization of EV separation and characterization techniques, must be resolved for clinical application.
Collapse
Affiliation(s)
- Aliai Lanci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| | - Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| |
Collapse
|
14
|
Zhao W, Li K, Li L, Wang R, Lei Y, Yang H, Sun L. Mesenchymal Stem Cell-Derived Exosomes as Drug Delivery Vehicles in Disease Therapy. Int J Mol Sci 2024; 25:7715. [PMID: 39062956 PMCID: PMC11277139 DOI: 10.3390/ijms25147715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Exosomes are small vesicles containing proteins, nucleic acids, and biological lipids, which are responsible for intercellular communication. Studies have shown that exosomes can be utilized as effective drug delivery vehicles to accurately deliver therapeutic substances to target tissues, enhancing therapeutic effects and reducing side effects. Mesenchymal stem cells (MSCs) are a class of stem cells widely used for tissue engineering, regenerative medicine, and immunotherapy. Exosomes derived from MSCs have special immunomodulatory functions, low immunogenicity, the ability to penetrate tumor tissues, and high yield, which are expected to be engineered into efficient drug delivery systems. Despite the promising promise of MSC-derived exosomes, exploring their optimal preparation methods, drug-loading modalities, and therapeutic potential remains challenging. Therefore, this article reviews the related characteristics, preparation methods, application, and potential risks of MSC-derived exosomes as drug delivery systems in order to find potential therapeutic breakthroughs.
Collapse
Affiliation(s)
- Wenzhe Zhao
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Kaixuan Li
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Liangbo Li
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Ruichen Wang
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Hui Yang
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
| | - Leming Sun
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| |
Collapse
|
15
|
Susa F, Arpicco S, Pirri CF, Limongi T. An Overview on the Physiopathology of the Blood-Brain Barrier and the Lipid-Based Nanocarriers for Central Nervous System Delivery. Pharmaceutics 2024; 16:849. [PMID: 39065547 PMCID: PMC11279990 DOI: 10.3390/pharmaceutics16070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The state of well-being and health of our body is regulated by the fine osmotic and biochemical balance established between the cells of the different tissues, organs, and systems. Specific districts of the human body are defined, kept in the correct state of functioning, and, therefore, protected from exogenous or endogenous insults of both mechanical, physical, and biological nature by the presence of different barrier systems. In addition to the placental barrier, which even acts as a linker between two different organisms, the mother and the fetus, all human body barriers, including the blood-brain barrier (BBB), blood-retinal barrier, blood-nerve barrier, blood-lymph barrier, and blood-cerebrospinal fluid barrier, operate to maintain the physiological homeostasis within tissues and organs. From a pharmaceutical point of view, the most challenging is undoubtedly the BBB, since its presence notably complicates the treatment of brain disorders. BBB action can impair the delivery of chemical drugs and biopharmaceuticals into the brain, reducing their therapeutic efficacy and/or increasing their unwanted bioaccumulation in the surrounding healthy tissues. Recent nanotechnological innovation provides advanced biomaterials and ad hoc customized engineering and functionalization methods able to assist in brain-targeted drug delivery. In this context, lipid nanocarriers, including both synthetic (liposomes, solid lipid nanoparticles, nanoemulsions, nanostructured lipid carriers, niosomes, proniosomes, and cubosomes) and cell-derived ones (extracellular vesicles and cell membrane-derived nanocarriers), are considered one of the most successful brain delivery systems due to their reasonable biocompatibility and ability to cross the BBB. This review aims to provide a complete and up-to-date point of view on the efficacy of the most varied lipid carriers, whether FDA-approved, involved in clinical trials, or used in in vitro or in vivo studies, for the treatment of inflammatory, cancerous, or infectious brain diseases.
Collapse
Affiliation(s)
- Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Tania Limongi
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| |
Collapse
|
16
|
Larson A, Natera-Rodriguez DE, Crane A, Larocca D, Low WC, Grande AW, Lee J. Emerging Roles of Exosomes in Stroke Therapy. Int J Mol Sci 2024; 25:6507. [PMID: 38928214 PMCID: PMC11203879 DOI: 10.3390/ijms25126507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is the number one cause of morbidity in the United States and number two cause of death worldwide. There is a critical unmet medical need for more effective treatments of ischemic stroke, and this need is increasing with the shift in demographics to an older population. Recently, several studies have reported the therapeutic potential of stem cell-derived exosomes as new candidates for cell-free treatment in stoke. This review focuses on the use of stem cell-derived exosomes as a potential treatment tool for stroke patients. Therapy using exosomes can have a clear clinical advantage over stem cell transplantation in terms of safety, cost, and convenience, as well as reducing bench-to-bed latency due to fewer regulatory milestones. In this review article, we focus on (1) the therapeutic potential of exosomes in stroke treatment, (2) the optimization process of upstream and downstream production, and (3) preclinical application in a stroke animal model. Finally, we discuss the limitations and challenges faced by exosome therapy in future clinical applications.
Collapse
Affiliation(s)
- Anthony Larson
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Dilmareth E. Natera-Rodriguez
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Andrew Crane
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Dana Larocca
- DC Biotechnology Consulting, Alameda, CA 94501, USA;
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Andrew W. Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jieun Lee
- UniverXome Bioengineering, Inc. (Formerly Known as AgeX Therapeutics Inc.), Alameda, CA 94501, USA
| |
Collapse
|
17
|
Menjivar NG, Oropallo J, Gebremedhn S, Souza LA, Gad A, Puttlitz CM, Tesfaye D. MicroRNA Nano-Shuttles: Engineering Extracellular Vesicles as a Cutting-Edge Biotechnology Platform for Clinical Use in Therapeutics. Biol Proced Online 2024; 26:14. [PMID: 38773366 PMCID: PMC11106895 DOI: 10.1186/s12575-024-00241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous transporters of various active biomolecules with inflicting phenotypic capabilities, that are naturally secreted by almost all cells with a promising vantage point as a potential leading drug delivery platform. The intrinsic characteristics of their low toxicity, superior structural stability, and cargo loading capacity continue to fuel a multitude of research avenues dedicated to loading EVs with therapeutic and diagnostic cargos (pharmaceutical compounds, nucleic acids, proteins, and nanomaterials) in attempts to generate superior natural nanoscale delivery systems for clinical application in therapeutics. In addition to their well-known role in intercellular communication, EVs harbor microRNAs (miRNAs), which can alter the translational potential of receiving cells and thus act as important mediators in numerous biological and pathological processes. To leverage this potential, EVs can be structurally engineered to shuttle therapeutic miRNAs to diseased recipient cells as a potential targeted 'treatment' or 'therapy'. Herein, this review focuses on the therapeutic potential of EV-coupled miRNAs; summarizing the biogenesis, contents, and function of EVs, as well as providing both a comprehensive discussion of current EV loading techniques and an update on miRNA-engineered EVs as a next-generation platform piloting benchtop studies to propel potential clinical translation on the forefront of nanomedicine.
Collapse
Affiliation(s)
- Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jaiden Oropallo
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Orthopaedic Research Center (ORC), Translational Medicine Institute (TMI), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- J.R. Simplot Company, 1099 W. Front St, Boise, ID, 83702, USA
| | - Luca A Souza
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, 225 Av. Duque de Caxias Norte, Pirassununga, SP, 13635-900, Brazil
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Christian M Puttlitz
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
18
|
Pratiwi DIN, Alhajlah S, Alawadi A, Hjazi A, Alawsi T, Almalki SG, Alsalamy A, Kumar A. Mesenchymal stem cells and their extracellular vesicles as emerging therapeutic tools in the treatment of ischemic stroke. Tissue Cell 2024; 87:102320. [PMID: 38342071 DOI: 10.1016/j.tice.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Ischemic stroke (IS) is a neurological condition characterized by severe long-term consequences and an unfavorable prognosis for numerous patients. Despite advancements in stroke treatment, existing therapeutic approaches possess certain limitations. However, accumulating evidence suggests that mesenchymal stem/stromal cells (MSCs) hold promise as a potential therapy for various neurological disorders, including IS, owing to their advantageous properties, such as immunomodulation and tissue regeneration. Additionally, MSCs primarily exert their therapeutic effects through the release of extracellular vesicles (EVs), highlighting the significance of their paracrine activities. These EVs are small double-layered phospholipid membrane vesicles, carrying a diverse cargo of proteins, lipids, and miRNAs that enable effective cell-to-cell communication. Notably, EVs have emerged as attractive substitutes for stem cell therapy due to their reduced immunogenicity, lower tumorigenic potential, and ease of administration and handling. Hence, this review summarizes the current preclinical and clinical studies performed to investigate the safety and therapeutic potential of MSCs and their EVs derived from different sources, including bone marrow, adipose tissue, umbilical cord blood, and Wharton's jelly in IS.
Collapse
Affiliation(s)
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Taif Alawsi
- Department of Laser and Optoelectronics Engineering, University of Technology, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia
| |
Collapse
|
19
|
Singh G, Mehra A, Arora S, Gugulothu D, Vora LK, Prasad R, Khatri DK. Exosome-mediated delivery and regulation in neurological disease progression. Int J Biol Macromol 2024; 264:130728. [PMID: 38467209 DOI: 10.1016/j.ijbiomac.2024.130728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Exosomes (EXOs), membranous structures originating from diverse biological sources, have recently seized the attention of researchers due to their theranostic potential for neurological diseases. Released actively by various cells, including stem cells, adipose tissue, and immune cells, EXOs wield substantial regulatory influence over the intricate landscape of neurological complications, exhibiting both positive and negative modulatory effects. In AD, EXOs play a pivotal role in disseminating and breaking down amyloid-β protein. Moreover, EXOs derived from mesenchymal stem cells showcase a remarkable capacity to mitigate pro-inflammatory phenotypes by regulating miRNAs in neurodegenerative diseases. These vesicles possess the unique ability to traverse the blood-brain barrier, governing the aggregation of mutant huntingtin protein. Understanding the exosomal functions within the CNS holds significant promise for enhancing treatment efficacy in neurological diseases. This review intricately examines the regulatory mechanisms involving EXOs in neurological disease development, highlighting therapeutic prospects and exploring their utility in exosome-based nanomedicine for various neurological complications. Additionally, the review highlights the challenges associated with drug delivery to the brain, emphasizing the complexities inherent in this critical aspect of neurotherapeutics.
Collapse
Affiliation(s)
- Gurpreet Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, India
| | - Ankit Mehra
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, India
| | - Sanchit Arora
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), M.B. Road, Pushp Vihar, Sector-3, New Delhi 110017, India
| | - Dalapathi Gugulothu
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), M.B. Road, Pushp Vihar, Sector-3, New Delhi 110017, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| | - Renuka Prasad
- Department of Anatomy, Korea University College of Medicine, Moonsuk Medical Research Building, 516, 5th floor, 73 Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dharmendra Kumar Khatri
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, India; Department of Pharmacology, Shobhaben Pratapbai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai 400056, India.
| |
Collapse
|
20
|
Padinharayil H, Varghese J, Wilson C, George A. Mesenchymal stem cell-derived exosomes: Characteristics and applications in disease pathology and management. Life Sci 2024; 342:122542. [PMID: 38428567 DOI: 10.1016/j.lfs.2024.122542] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Mesenchymal stem cells (MSCs) possess a role in tissue regeneration and homeostasis because of inherent immunomodulatory capacity and the production of factors that encourage healing. There is substantial evidence that MSCs' therapeutic efficacy is primarily determined by their paracrine function including in cancers. Extracellular vesicles (EVs) are basic paracrine effectors of MSCs that reside in numerous bodily fluids and cell homogenates and play an important role in bidirectional communication. MSC-derived EVs (MSC-EVs) offer a wide range of potential therapeutic uses that exceed cell treatment, while maintaining protocell function and having less immunogenicity. We describe characteristics and isolation methods of MSC-EVs, and focus on their therapeutic potential describing its roles in tissue repair, anti-fibrosis, and cancer with an emphasis on the molecular mechanism and immune modulation and clinical trials. We also explain current understanding and challenges in the clinical applications of MSC-EVs as a cell free therapy.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India; PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Jinsu Varghese
- PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Cornelia Wilson
- Canterbury Christ Church University, Natural Applied Sciences, Life Science Industry Liaison Lab, Discovery Park, Sandwich CT139FF, United Kingdom.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India.
| |
Collapse
|
21
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
22
|
Liang HB, Chen X, Zhao R, Li SJ, Huang PS, Tang YH, Cui GH, Liu JR. Simultaneous ischemic regions targeting and BBB crossing strategy to harness extracellular vesicles for therapeutic delivery in ischemic stroke. J Control Release 2024; 365:1037-1057. [PMID: 38109946 DOI: 10.1016/j.jconrel.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Extracellular vesicles (EVs) derived from adipose-derived stem cells (ADSC-EVs) hold great promise for ischemic stroke treatment, but their therapeutic efficacy is greatly limited due to insufficient targeting ability. Previous reports focused on single ischemic targeting or blood-brain barrier (BBB) penetration, precise delivery to the brain parenchyma has not been fully considered. This study leveraged the targeting ability of RGD peptide and the cell penetrating ability of Angiopep-2 peptide to deliver ADSC-EVs precisely to the impaired brain parenchyma. We found that dual-modified EVs (RA-EVs) significantly enhanced the transcellular permeability across BBB in vitro, and not only targeted ischemic blood vessels but also achieved rapid accumulation in the ischemic lesion area after intravenous administration in vivo. RA-EVs further decreased the infarct volume, apoptosis, BBB disruption, and neurobehavioral deficits. RNA sequencing revealed the molecular regulation mechanism after administration. These findings demonstrate that dual-modification optimizes brain parenchymal targeting and highlights the significance of recruitment and penetration as a previously unidentified strategy for harnessing EVs for therapeutic delivery in ischemic stroke.
Collapse
Affiliation(s)
- Huai-Bin Liang
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Chen
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Zhao
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shen-Jie Li
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pei-Sheng Huang
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao-Hui Tang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Hong Cui
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Ren Liu
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Clinical Research Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
23
|
Waseem A, Saudamini, Haque R, Janowski M, Raza SS. Mesenchymal stem cell-derived exosomes: Shaping the next era of stroke treatment. NEUROPROTECTION 2023; 1:99-116. [PMID: 38283953 PMCID: PMC10811806 DOI: 10.1002/nep3.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 01/30/2024]
Abstract
Exosome-based treatments are gaining traction as a viable approach to addressing the various issues faced by an ischemic stroke. These extracellular vesicles, mainly produced by Mesenchymal Stem Cells (MSCs), exhibit many properties with substantial therapeutic potential. Exosomes are particularly appealing for stroke therapy because of their low immunogenicity, effective cargo transport, and ability to cross the blood-brain barrier. Their diverse effects include neuroprotection, angiogenesis stimulation, inflammatory response modulation, and cell death pathway attenuation, synergistically promoting neuronal survival, tissue regeneration, and functional recovery. Exosomes also show potential as diagnostic indicators for early stroke identification and customized treatment options. Despite these promising qualities, current exosome-based therapeutics have some limitations. The heterogeneity of exosome release among cell types, difficulty in standardization and isolation techniques, and complications linked to dosage and targeted administration necessitates extensive investigation. It is critical to thoroughly understand exosomal processes and their complicated interactions within the cellular milieu. To improve the practicality and efficacy of exosome-based medicines, research efforts must focus on improving production processes, developing robust evaluation criteria, and developing large-scale isolation techniques. Altogether, exosomes' multifunctional properties offer a new route for transforming stroke treatment and significantly improving patient outcomes.
Collapse
Affiliation(s)
- Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
| | - Saudamini
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
- Department of BiotechnologyCentral University of South BiharGayaIndia
| | - Rizwanul Haque
- Department of BiotechnologyCentral University of South BiharGayaIndia
| | - Miroslaw Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear MedicineUniversity of MarylandBaltimoreMarylandUSA
| | - Syed S. Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
- Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
| |
Collapse
|
24
|
Chen Md G, Wu Md Y, Zou Md L, Zeng Md Y. Effect of MicroRNA-146a Modified Adipose-Derived Stem Cell Exosomes on Rat Back Wound Healing. INT J LOW EXTR WOUND 2023; 22:704-712. [PMID: 34459668 DOI: 10.1177/15347346211038092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective: To investigate the effect of MicroRNA-146a modified adipose-derived stem cell exosomes on the proliferation and migration of fibroblasts and the therapeutic effect on wound healing. Methods: Culture and identification of human adipose-derived stem cells (hASCs), miRNA-146a minic vector was constructed and transfected into hASCs, the exosomes of the empty group and overexpression group were extracted, identified, and quantitatively analyzed after 24 h of successful transfection. The exosomes were added into National Institute of Health Mouse Embryonic Fibroblasts (NIH/3T3) and cultured for 48 h, the proliferation and migration ability of NIH/3T3 fibroblasts was detected. The expression of serpin family H member 1 (SERPINH1) and phosphorylated extracellular regulated protein kinase (p-ERK) was detected by Western blot. The model of back wound was established. The exosomes were injected into 4 different sites with the shape of "cross" around the wound, and the scar diameter of the skin defect was measured at 3, 7, and 11 days, the skin of the defect was taken on the 14th day. platelet endothelial cell adhesion molecule-1 (CD31) was detected by immunofluorescence staining to evaluate angiogenesis, and Western blot was used to detect the expression of SERPINH1 and p-ERK. Results: The miR-146a mimic-exosome promoted the proliferation and migration of fibroblasts, and the expression of SERPINH1 and p-ERK2 was up-regulated. After the rats were treated with exosomes, the wound area decreased rapidly, neovascularization was promoted, and the expression of SERPINH1 and p-ERK2 was up-regulated. Conclusions: MicroRNA-146a modified adipose stem cell exosomes could regulate the expression of SERPINH1 and p-ERK, promote the migration and proliferation of fibroblasts, and neovascularization to promote the wound healing of rat back.
Collapse
Affiliation(s)
- Gangquan Chen Md
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yaling Wu Md
- Jiangxi Health Vocational College, Nanchang, China
| | - Lijin Zou Md
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yuanlin Zeng Md
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
25
|
Lino MM, Rondão T, Banerjee A, Aires I, Rodrigues M, Reis T, Santinha A, Fernandes D, Serrenho D, Sobrino T, Sargento-Freitas J, Pereira FC, Carvalho AL, Ferreira L. Small extracellular vesicles administered directly in the brain promote neuroprotection and decreased microglia reactivity in a stroke mouse model. NANOSCALE 2023; 15:18212-18217. [PMID: 37933179 DOI: 10.1039/d3nr03861k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Herein, we investigate the bioactivity of small extracellular vesicles (sEVs), focusing on their local effect in the brain. sEVs from mononuclear cells (MNCs) showed superior effects in vitro to sEVs from mesenchymal stem cells (MSCs) and were able to promote neuroprotection and decrease microglia reactivity in a stroke mouse model.
Collapse
Affiliation(s)
- Miguel M Lino
- CNC - Centre for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.
| | - Tiago Rondão
- CNC - Centre for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.
| | - Arnab Banerjee
- CNC - Centre for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.
| | - Inês Aires
- CNC - Centre for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.
| | - Magda Rodrigues
- CNC - Centre for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.
| | - Tiago Reis
- CNC - Centre for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.
| | - António Santinha
- CNC - Centre for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.
| | - Dominique Fernandes
- CNC - Centre for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.
| | - Débora Serrenho
- CNC - Centre for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Portugal
| | - Tomás Sobrino
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Frederico C Pereira
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- iCBR, Coimbra Institute for Clinical and Biomedical Research, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC - Centre for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- CNC - Centre for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
da Silva AV, Serrenho I, Araújo B, Carvalho AM, Baltazar G. Secretome as a Tool to Treat Neurological Conditions: Are We Ready? Int J Mol Sci 2023; 24:16544. [PMID: 38003733 PMCID: PMC10671352 DOI: 10.3390/ijms242216544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Due to their characteristics, mesenchymal stem cells (MSCs) are considered a potential therapy for brain tissue injury or degeneration. Nevertheless, despite the promising results observed, there has been a growing interest in the use of cell-free therapies in regenerative medicine, such as the use of stem cell secretome. This review provides an in-depth compilation of data regarding the secretome composition, protocols used for its preparation, as well as existing information on the impact of secretome administration on various brain conditions, pointing out gaps and highlighting relevant findings. Moreover, due to the ability of MSCs to respond differently depending on their microenvironment, preconditioning of MSCs has been used to modulate their composition and, consequently, their therapeutic potential. The different strategies used to modulate the MSC secretome were also reviewed. Although secretome administration was effective in improving functional impairments, regeneration, neuroprotection, and reducing inflammation in brain tissue, a high variability in secretome preparation and administration was identified, compromising the transposition of preclinical data to clinical studies. Indeed, there are no reports of the use of secretome in clinical trials. Despite the existing limitations and lack of clinical data, secretome administration is a potential tool for the treatment of various diseases that impact the CNS.
Collapse
Affiliation(s)
- Andreia Valente da Silva
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Inês Serrenho
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Beatriz Araújo
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
| | | | - Graça Baltazar
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| |
Collapse
|
27
|
Giovannelli L, Bari E, Jommi C, Tartara F, Armocida D, Garbossa D, Cofano F, Torre ML, Segale L. Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access. Bioact Mater 2023; 29:16-35. [PMID: 37456581 PMCID: PMC10338239 DOI: 10.1016/j.bioactmat.2023.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Neurodegenerative diseases represent a growing burden on healthcare systems worldwide. Mesenchymal stem cells (MSCs) have shown promise as a potential therapy due to their neuroregenerative, neuroprotective, and immunomodulatory properties, which are, however, linked to the bioactive substances they release, collectively known as secretome. This paper provides an overview of the most recent research on the safety and efficacy of MSC-derived secretome and extracellular vesicles (EVs) in clinical (if available) and preclinical models of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, Huntington's disease, acute ischemic stroke, and spinal cord injury. The article explores the biologically active substances within MSC-secretome/EVs, the mechanisms responsible for the observed therapeutic effects, and the strategies that may be used to optimize MSC-secretome/EVs production based on specific therapeutic needs. The review concludes with a critical discussion of current clinical trials and a perspective on potential future directions in translating MSC-secretome and EVs into the clinic, specifically regarding how to address the challenges associated with their pharmaceutical manufacturing, including scalability, batch-to-batch consistency, adherence to Good Manufacturing Practices (GMP) guidelines, formulation, and storage, along with quality controls, access to the market and relative costs, value for money and impact on total expenditure.
Collapse
Affiliation(s)
- Lorella Giovannelli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Claudio Jommi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | | | - Daniele Armocida
- A.U.O, Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135, Roma, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10126, Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10126, Turin, Italy
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- PharmaExceed S.r.l, 27100, Pavia, Italy
| | - Lorena Segale
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| |
Collapse
|
28
|
Ko SF, Li YC, Shao PL, Chiang JY, Sung PH, Chen YL, Yip HK. Interplay Between Inflammatory-immune and Interleukin-17 Signalings Plays a Cardinal Role on Liver Ischemia-reperfusion Injury-Synergic Effect of IL-17Ab, Tacrolimus and ADMSCs on Rescuing the Liver Damage. Stem Cell Rev Rep 2023; 19:2852-2868. [PMID: 37632641 DOI: 10.1007/s12015-023-10611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND This study tested the hypothesis that inflammatory and interleukin (IL)-17 signalings were essential for acute liver ischemia (1 h)-reperfusion (72 h) injury (IRI) that was effectively ameliorated by adipose-derived mesenchymal stem cells (ADMSCs) and tacrolimus. METHODS Adult-male SD rats (n = 50) were equally categorized into groups 1 (sham-operated-control), 2 (IRI), 3 [IRI + IL-17-monoclonic antibody (Ab)], 4 (IRI + tacrolimus), 5 (IRI + ADMSCs) and 6 (IRI + tacrolimus-ADMSCs) and liver was harvested at 72 h. RESULTS The main findings included: (1) circulatory levels: inflammatory cells, immune cells, and proinflammatory cytokines as well as liver-damage enzyme at the time point of 72 h were highest in group 2, lowest in group 1 and significantly lower in group 6 than in groups 3 to 5 (all p < 0.0001), but they did not differ among these three latter groups; (2) histopathology: the liver injury score, fibrosis, inflammatory and immune cell infiltration in liver immunity displayed an identical pattern of inflammatory cells among the groups (all p < 0.0001); and (3) protein levels: upstream and downstream inflammatory signalings, oxidative-stress, apoptotic and mitochondrial-damaged biomarkers exhibited an identical pattern of inflammatory cells among the groups (all p < 0.0001). CONCLUSION Our results obtained from circulatory, pathology and molecular-cellular levels delineated that acute IRI was an intricate syndrome that elicited complex upstream and downstream inflammatory and immune signalings to damage liver parenchyma that greatly suppressed by combined tacrolimus and ADMSCs therapy.
Collapse
Affiliation(s)
- Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, 41354, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
- , Taoyuan, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
29
|
Lu G, Su X, Wang L, Leung CK, Zhou J, Xiong Z, Wang W, Liu H, Chan WY. Neuroprotective Effects of Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cell Extracellular Vesicles in Ischemic Stroke Models. Biomedicines 2023; 11:2550. [PMID: 37760991 PMCID: PMC10525838 DOI: 10.3390/biomedicines11092550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Stroke represents the second leading cause of death and the primary cause of long-term disability in humans. The transplantation of mesenchymal stem cells (MSC) reportedly improves functional outcomes in animal models of cerebral ischemia. Here, we evaluate the neuroprotective potential of extracellular vesicles secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells (hiPS-MSC-EV) using preclinical cell-based and animal-based models of ischemic strokes. METHODS hiPS-MSC-EV were isolated using an ultrafiltration method. HT22 cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury for 2 h, followed by treatment with hiPS-MSC-EV (100 μg/mL). Male C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO) followed by an intravenous injection of hiPS-MSC-EV (100 μg) at three distinct time points. RESULTS Our experimental approach revealed hiPS-MSC-EV promoted HT22 cell proliferation, reduced apoptosis, and altered cellular morphology following OGD/R. In addition, hiPS-MSC-EV reduced the volume of infarcts, improved spontaneous movement abilities, and enhanced angiogenesis by expressing the VEGF and CXCR4 proteins in the infarcted hemisphere of the MCAO-treated mouse model. CONCLUSION Our findings provide evidence of the potential neuroprotective effects of hiPS-MSC-derived extracellular vesicles (hiPS-MSC-EVs) in both in vitro and in vivo mouse models of ischemic stroke. These results suggest that hiPS-MSC-EVs may play a role in neurorestoration and offer insights into potential cell-free strategies for addressing cerebral ischemia.
Collapse
Affiliation(s)
- Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (G.L.); (X.S.); (L.W.); (J.Z.); (W.W.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xianwei Su
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (G.L.); (X.S.); (L.W.); (J.Z.); (W.W.)
| | - Lihong Wang
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (G.L.); (X.S.); (L.W.); (J.Z.); (W.W.)
| | - Chi-Kwan Leung
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (G.L.); (X.S.); (L.W.); (J.Z.); (W.W.)
| | - Jingye Zhou
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (G.L.); (X.S.); (L.W.); (J.Z.); (W.W.)
| | - Zhiqiang Xiong
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.X.); (H.L.)
| | - Wuming Wang
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (G.L.); (X.S.); (L.W.); (J.Z.); (W.W.)
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China; (Z.X.); (H.L.)
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (G.L.); (X.S.); (L.W.); (J.Z.); (W.W.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
30
|
Zhang X, Huang Y, Liu Y, Liu Y, He X, Ma X, Gan C, Zou X, Wang S, Shu K, Lei T, Zhang H. Local transplantation of mesenchymal stem cells improves encephalo-myo-synangiosis-mediated collateral neovascularization in chronic brain ischemia. Stem Cell Res Ther 2023; 14:233. [PMID: 37667370 PMCID: PMC10478472 DOI: 10.1186/s13287-023-03465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND To explore whether local transplantation of mesenchymal stem cells (MSCs) in temporal muscle can promote collateral angiogenesis and to analyze its main mechanisms of promoting angiogenesis. METHODS Bilateral carotid artery stenosis (BCAS) treated mice were administrated with encephalo-myo-synangiosis (EMS), and bone marrow mesenchymal stem cells (BMSCs) were transplanted into the temporal muscle near the cerebral cortex. On the 30th day after EMS, the Morris water maze, immunofluorescence, laser speckle imaging, and light sheet microscopy were performed to evaluate angiogenesis; In addition, rats with bilateral common carotid artery occlusion were also followed by EMS surgery, and BMSCs from GFP reporter rats were transplanted into the temporal muscle to observe the survival time of BMSCs. Then, the concentrated BMSC-derived conditioned medium (BMSC-CM) was used to stimulate HUVECs and BMECs for ki-67 immunocytochemistry, CCK-8, transwell and chick chorioallantoic membrane assays. Finally, the cortical tissue near the temporal muscle was extracted after EMS, and proteome profiler (angiogenesis array) as well as RT-qPCR of mRNA or miRNA was performed. RESULTS The results of the Morris water maze 30 days after BMSC transplantation in BCAS mice during the EMS operation, showed that the cognitive impairment in the BCAS + EMS + BMSC group was alleviated (P < 0.05). The results of immunofluorescence, laser speckle imaging, and light sheet microscopy showed that the number of blood vessels, blood flow and astrocytes increased in the BCAS + EMS + BMSC group (P < 0.05). The BMSCs of GFP reporter rats were applied to EMS and showed that the transplanted BMSCs could survive for up to 14 days. Then, the results of ki-67 immunocytochemistry, CCK-8 and transwell assays showed that the concentrated BMSC-CM could promote the proliferation and migration of HUVECs and BMECs (P < 0.05). Finally, the results of proteome profiler (angiogenesis array) in the cerebral cortex showed that the several pro-angiogenesis factors (such as MMP-3, MMP-9, IGFBP-2 or IGFBP-3) were notably highly expressed in MSC transplantation group compared to others. CONCLUSIONS Local MSCs transplantation together with EMS surgery can promote angiogenesis and cognitive behavior in chronic brain ischemia mice. Our study illustrated that MSC local transplantation can be the potential therapeutical option for improving EMS treatment efficiency which might be translated into clinical application.
Collapse
Affiliation(s)
- Xincheng Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Yuan Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Yanchao Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Xuejun He
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Xiaopeng Ma
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
31
|
Ahmed W, Kuniyan MS, Jawed AM, Chen L. Engineered Extracellular Vesicles for Drug Delivery in Therapy of Stroke. Pharmaceutics 2023; 15:2173. [PMID: 37765144 PMCID: PMC10537154 DOI: 10.3390/pharmaceutics15092173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Extracellular vesicles (EVs) are promising therapeutic modalities for treating neurological conditions. EVs facilitate intercellular communication among brain cells under normal and abnormal physiological conditions. The potential capability of EVs to pass through the blood-brain barrier (BBB) makes them highly promising as nanocarrier contenders for managing stroke. EVs possess several potential advantages compared to existing drug-delivery vehicles. These advantages include their capacity to surpass natural barriers, target specific cells, and stability within the circulatory system. This review explores the trafficking and cellular uptake of EVs and evaluates recent findings in the field of EVs research. Additionally, an overview is provided of the techniques researchers utilize to bioengineer EVs for stroke therapy, new results on EV-BBB interactions, and the limitations and prospects of clinically using EVs for brain therapies. The primary objective of this study is to provide a comprehensive analysis of the advantages and challenges related to engineered EVs drug delivery, specifically focusing on their application in the treatment of stroke.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China;
- School of Medicine, Southeast University, Nanjing 210009, China; (M.S.K.); (A.M.J.)
| | | | - Aqil Mohammad Jawed
- School of Medicine, Southeast University, Nanjing 210009, China; (M.S.K.); (A.M.J.)
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China;
| |
Collapse
|
32
|
Laso-García F, Casado-Fernández L, Piniella D, Gómez-de Frutos MC, Arizaga-Echebarria JK, Pérez-Mato M, Alonso-López E, Otero-Ortega L, Bravo SB, Chantada-Vázquez MDP, Avendaño-Ortiz J, López-Collazo E, Lumbreras-Herrera MI, Gámez-Pozo A, Fuentes B, Díez-Tejedor E, Gutiérrez-Fernández M, Alonso de Leciñana M. Circulating extracellular vesicles promote recovery in a preclinical model of intracerebral hemorrhage. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:247-262. [PMID: 37090418 PMCID: PMC10113711 DOI: 10.1016/j.omtn.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023]
Abstract
Circulating extracellular vesicles (EVs) are proposed to participate in enhancing pathways of recovery after stroke through paracrine signaling. To verify this hypothesis in a proof-of-concept study, blood-derived allogenic EVs from rats and xenogenic EVs from humans who experienced spontaneous good recovery after an intracerebral hemorrhage (ICH) were administered intravenously to rats at 24 h after a subcortical ICH. At 28 days, both treatments improved the motor function assessment scales score, showed greater fiber preservation in the perilesional zone (diffusion tensor-fractional anisotropy MRI), increased immunofluorescence markers of myelin (MOG), and decreased astrocyte markers (GFAP) compared with controls. Comparison of the protein cargo of circulating EVs at 28 days from animals with good vs. poor recovery showed down-expression of immune system activation pathways (CO4, KLKB1, PROC, FA9, and C1QA) and of restorative processes such as axon guidance (RAC1), myelination (MBP), and synaptic vesicle trafficking (SYN1), which is in line with better tissue preservation. Up-expression of PCSK9 (neuron differentiation) in xenogenic EVs-treated animals suggests enhancement of repair pathways. In conclusion, the administration of blood-derived EVs improved recovery after ICH. These findings open a new and promising opportunity for further development of restorative therapies to improve the outcomes after an ICH.
Collapse
Affiliation(s)
- Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
- PhD Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid 28029, Spain
| | - Laura Casado-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Dolores Piniella
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
- Universidad Autónoma de Madrid and IdiPAZ Health Research Institute, La Paz University Hospital, Madrid, Spain
| | - Mari Carmen Gómez-de Frutos
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Jone Karmele Arizaga-Echebarria
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - María Pérez-Mato
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Elisa Alonso-López
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Susana Belén Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - José Avendaño-Ortiz
- TumorImmunology Laboratory and Innate Immune Response Group, IdiPAZ Health Research Institute, Madrid, Spain
| | - Eduardo López-Collazo
- TumorImmunology Laboratory and Innate Immune Response Group, IdiPAZ Health Research Institute, Madrid, Spain
| | - María Isabel Lumbreras-Herrera
- Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Angelo Gámez-Pozo
- Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Blanca Fuentes
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
- Corresponding author: María Gutiérrez-Fernández, Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Paseo de la Castellana, 261, 28046 Madrid, Spain.
| | - María Alonso de Leciñana
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
- Corresponding author: María Alonso de Leciñana, Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Paseo de la Castellana, 261, 28046 Madrid, Spain.
| |
Collapse
|
33
|
Cherian SG, Narayan SK, Arumugam M. Exosome therapies improve outcome in rodents with ischemic stroke; meta-analysis. Brain Res 2023; 1803:148228. [PMID: 36592803 DOI: 10.1016/j.brainres.2022.148228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Exosome therapy has been theorized to be safer, more effective, and less cumbersome in replacing stem cell therapies for tissue repair and regeneration. There remains considerable uncertainty on whether exosome therapy is efficacious and safe for recovery from brain injury due to cerebral infarction. There is growing consensus that systematic reviews of data, from preclinical studies which yielded conflicting and confusing results, can provide valuable directions for novel therapeutic options for several clinical conditions. This study systematically evaluated the efficacy of exosome therapy in ischemic stroke in preclinical studies in rodent models. METHODS We reviewed existing literature on exosome therapy in rodent stroke models from various databases, and reviewed the interventional measures, and outcome measures systematically, with changes in the infarct volume and functional scores as outcome parameters. Seventeen homogeneous studies were found qualitatively acceptable for meta-analysis. The study used software RevMan 5.3 to conduct the meta-analysis (PROSPERO Register Number: CRD42022314138) RESULTS: Compared to placebo, exosomes treated ischemic stroke models showed significantly reduced brain infarct volume and improved functional recovery on days 7 and 28. Though there are no safety concerns reported in any preclinical studies, there is insufficient data to make robust conclusions on the therapy's safety. INTERPRETATION Therapy with subcellular exosomes is a promising treatment to be explored further in animal ischemic stroke models to arrive at robust conclusions for its safety and therapeutic dosage. This must precede Phase I and II- human randomized clinical trials to establish the safety and proof of concept of efficacy of exosome therapy in human ischemic stroke.
Collapse
Affiliation(s)
- Simy Grace Cherian
- Department of Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvanthari Nagar, Puducherry, India
| | - Sunil K Narayan
- Department of Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvanthari Nagar, Puducherry, India.
| | - Murugesan Arumugam
- Department of Pharmacology, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India.
| |
Collapse
|
34
|
Zhang Q, Zeng Y, Zheng S, Chen L, Liu H, Chen H, Zhang X, Zou J, Zheng X, Wan Y, Huang G, Zeng Q. Research hotspots and frotiers of stem cells in stroke: A bibliometric analysis from 2004 to 2022. Front Pharmacol 2023; 14:1111815. [PMID: 36937837 PMCID: PMC10020355 DOI: 10.3389/fphar.2023.1111815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Stroke is one of the leading causes of mortality and permanent disability worldwide. However, the current stroke treatment has a limited effect. Therefore, a new treatment is urgently needed. Stem cell therapy is a cutting-edge treatment for stroke patients. This study aimed to gain better understanding of global stem cell trends in stroke via a bibliometric analysis. Methods: We used the Web of Science Core Collection to search pertinent articles about stem cells in stroke published between 2004 and 2022. Analysis was conducted using CiteSpace, VOSviewer, and the R package "bibliometrix" to identify publication outputs, countries/regions, institutions, authors/co-cited authors, journals/co-cited journals, co-cited references, and keywords. Results: A total of 6,703 publications were included in the bibliometric analysis. The total number of citations significantly and rapidly increased between 2004 and 2022, with the most pronounced growth pattern observed in the period of 2008-2009. In terms of authoritarian countries, the USA had the most publications among the countries. As for institutions and authors, the most prolific institution was the University of South Florida, followed by Oakland University and then Shanghai Jiao Tong University, and Chopp, M. and Borlongan, Cesario V, had the most output among the authors. Regarding the journals, Cell Transplantation had the highest publication, followed by Brain Research. As for references, "Mesenchymal stem cells as trophic mediators" was the most frequently cited (2,082), and the article entitled Neuronal replacement from endogenous precursors in the adult brain after stroke had the strongest burstiness (strength = 81.35). Emerging hot words in the past decade included "adhesion molecule," "mesenchymal stromal cell," "extracellular vesicle," "pluripotent stem cells," "signaling pathway," "plasticity," and "exosomes." Conclusion: Between 2004 and 2022, the terms "neurogenesis," "angiogenesis," "mesenchymal stem cells," "extracellular vesicle," "exosomes," "inflammation," and "oxidative stress" have emerged as the hot research areas for research on stem cells in stroke. Although stem cells exert a number of positive effects, the main mechanisms for mitigating the damage caused by stroke are still unknown. Clinical challenges may include complicating factors that can affect the efficacy of stem cell therapy, which are worth a deep exploration.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Yuting Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqi Zheng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Ling Chen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haining Liu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Hui Chen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Xiaofeng Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
- Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaoyan Zheng
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Kanno H, Matsumoto S, Yoshizumi T, Nakahara K, Shinonaga M, Kubo A, Fujii S, Ishizuka Y, Tanaka M, Ichihashi M, Murata H. SOCS7-Derived BC-Box Motif Peptide Mediated Cholinergic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:ijms24032786. [PMID: 36769102 PMCID: PMC9917589 DOI: 10.3390/ijms24032786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADMSCs) are a type of pluripotent somatic stem cells that differentiate into various cell types such as osteoblast, chondrocyte, and neuronal cells. ADMSCs as donor cells are used to produce regenerative medicines at hospitals and clinics. However, it has not been reported that ADMSCs were differentiated to a specific type of neuron with a peptide. Here, we report that ADMSCs differentiate to the cholinergic phenotype of neurons by the SOCS7-derived BC-box motif peptide. At operations for patients with neurological disorders, a small amount of subcutaneous fat was obtained. Two weeks later, adipose-derived mesenchymal stem cells (ADMSCs) were isolated and cultured for a further 1 to 2 weeks. Flow cytometry analysis for characterization of ADMSCs was performed with CD73, CD90, and CD105 as positive markers, and CD14, CD31, and CD56 as negative markers. The results showed that cultured cells were compatible with ADMSCs. Immunocytochemical studies showed naïve ADMSCs immunopositive for p75NTR, RET, nestin, keratin, neurofilament-M, and smooth muscle actin. ADMSCs were suggested to be pluripotent stem cells. A peptide corresponding to the amino-acid sequence of BC-box motif derived from SOCS7 protein was added to the medium at a concentration of 2 μM. Three days later, immunocytochemistry analysis, Western blot analysis, ubiquitination assay, and electrophysiological analysis with patch cramp were performed. Immunostaining revealed the expression of neurofilament H (NFH), choline acetyltransferase (ChAT), and tyrosine hydroxylase (TH). In addition, Western blot analysis showed an increase in the expression of NFH, ChAT, and TH, and the expression of ChAT was more distinct than TH. Immunoprecipitation with JAK2 showed an increase in the expression of ubiquitin. Electrophysiological analysis showed a large holding potential at the recorded cells through path electrodes. The BC-box motif peptide derived from SOCS7 promoted the cholinergic differentiation of ADMSCs. This novel method will contribute to research as well as regenerative medicine for cholinergic neuron diseases.
Collapse
Affiliation(s)
- Hiroshi Kanno
- Department of Neurosurgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan
- Correspondence: ; Tel.: +81-3-5243-5800; Fax: +81-3-5242-5826
| | - Shutaro Matsumoto
- Department of Neurosurgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
| | - Tetsuya Yoshizumi
- Department of Neurosurgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan
- Department of Neurosurgery, St. Marianna Medical University of Medicine, Kawasaki 216-8511, Japan
| | - Kimihiro Nakahara
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan
| | - Masamichi Shinonaga
- Department of Neurosurgery, International University of Health and Welfare Atami Hospital, Atami 413-0012, Japan
| | | | - Satoshi Fujii
- Department of Neurosurgery, Asahi Hospital, Tokyo 121-0078, Japan
| | | | | | | | - Hidetoshi Murata
- Department of Neurosurgery, St. Marianna Medical University of Medicine, Kawasaki 216-8511, Japan
| |
Collapse
|
36
|
Yin T, Li Y, Sung P, Chiang JY, Shao P, Yip H, Lee MS. Adipose-derived mesenchymal stem cells overexpressing prion improve outcomes via the NLRP3 inflammasome/DAMP signalling after spinal cord injury in rat. J Cell Mol Med 2023; 27:482-495. [PMID: 36660907 PMCID: PMC9930430 DOI: 10.1111/jcmm.17620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 01/21/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a highly destructive disease in human neurological functions. Adipose-derived mesenchymal stem cells (ADMSCs) have tissue regenerations and anti-inflammations, especially with prion protein overexpression (PrPcOE ). Therefore, this study tested whether PrPcOE -ADMSCs therapy offered benefits in improving outcomes via regulating nod-like-receptor-protein-3 (NLRP3) inflammasome/DAMP signalling after acute SCI in rats. Compared with ADMSCs only, the capabilities of PrPcOE -ADMSCs were significantly enhanced in cellular viability, anti-oxidative stress and migration against H2 O2 and lipopolysaccharide damages. Similarly, PrPcOE -ADMSCs significantly inhibited the inflammatory patterns of Raw264.7 cells. The SD rats (n = 32) were categorized into group 1 (Sham-operated-control), group 2 (SCI), group 3 (SCI + ADMSCs) and group 4 (SCI + PrPcOE -ADMSCs). Compared with SCI group 2, both ADMSCs and PrPcOE -ADMSCs significantly improved neurological functions. Additionally, the circulatory inflammatory cytokines levels (TNF-α/IL-6) and inflammatory cells (CD11b/c+/MPO+/Ly6G+) were highest in group 2, lowest in group 1, and significantly higher in group 3 than in group 4. By Day 3 after SCI induction, the protein expressions of inflammasome signalling (HGMB1/TLR4/MyD88/TRIF/c-caspase8/FADD/p-NF-κB/NEK7/NRLP3/ASC/c-caspase1/IL-ß) and by Day 42 the protein expressions of DAMP-inflammatory signalling (HGMB1/TLR-4/MyD88/TRIF/TRAF6/p-NF-κB/TNF-α/IL-1ß) in spinal cord tissues displayed an identical pattern as the inflammatory patterns. In conclusion, PrPcOE -ADMSCs significantly attenuated SCI in rodents that could be through suppressing the inflammatory signalling.
Collapse
Affiliation(s)
- Tsung‐Cheng Yin
- Department of Orthopaedic SurgeryKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Center for General EducationCheng Shiu UniversityKaohsiungTaiwan
| | - Yi‐Chen Li
- Clinical Medicine Research CenterNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan,Center of Cell TherapyNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan,Institute of Clinical MedicineCollege of MedicineNational Cheng Kung UniversityTainanTaiwan,Division of Cardiology, Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan
| | - Pei‐Hsun Sung
- Division of Cardiology, Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Center for Shockwave Medicine and Tissue EngineeringKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan,Institute for Translational Research in BiomedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - John Y. Chiang
- Department of Computer Science & EngineeringNational Sun Yat‐sen UniversityKaohsiungTaiwan,Department of Healthcare Administration and Medical InformaticsKaohsiung Medical UniversityKaohsiungTaiwan
| | - Pei‐Lin Shao
- Department of NursingAsia UniversityTaichungTaiwan
| | - Hon‐Kan Yip
- Division of Cardiology, Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Center for Shockwave Medicine and Tissue EngineeringKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan,Institute for Translational Research in BiomedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan,Department of NursingAsia UniversityTaichungTaiwan,Department of Medical ResearchChina Medical University Hospital, China Medical UniversityTaichungTaiwan,Division of Cardiology, Department of Internal MedicineXiamen Chang Gung HospitalXiamenChina
| | - Mel S. Lee
- Department of Orthopaedic SurgeryKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Department of Orthopedic SurgeryPao‐Chien HospitalPingtungTaiwan
| |
Collapse
|
37
|
Liu YJ, Miao HB, Lin S, Chen Z. Current Progress in Treating Systemic Lupus Erythematosus Using Exosomes/MicroRNAs. Cell Transplant 2023; 32:9636897221148775. [PMID: 36661068 PMCID: PMC9903023 DOI: 10.1177/09636897221148775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease associated with impaired organ functions that can seriously affect the daily life of patients. Recent SLE therapies frequently elicit adverse reactions and side effects in patients, and clinical heterogeneity is considerable. Mesenchymal stromal cells (MSCs) have anti-inflammatory, tissue repair, and immunomodulatory properties. Their ability to treat autoimmune diseases largely depends on secreted extracellular vesicles, especially exosomes. The effects of exosomes and microRNAs (miRNAs) on SLE have recently attracted interest. This review summarizes the applications of MSCs derived from bone marrow, adipocyte tissue, umbilical cord, synovial membrane, and gingival tissue, as well as exosomes to treating SLE and the key roles of miRNAs. The efficacy of MSCs infusion in SLE patients with impaired autologous MSCs are reviewed, and the potential of exosomes and their contents as drug delivery vectors for treating SLE and other autoimmune diseases in the future are briefly described.
Collapse
Affiliation(s)
- Yi-jing Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hai-bing Miao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Zhen Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Zhen Chen, Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan Road, Quanzhou 362000, Fujian, P.R. China.
| |
Collapse
|
38
|
Exosomes as biomarkers and therapeutic measures for ischemic stroke. Eur J Pharmacol 2023; 939:175477. [PMID: 36543286 DOI: 10.1016/j.ejphar.2022.175477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Ischemic stroke (IS) is the leading cause of long-term disability in the world and characterized by high morbidity, recurrence, complications, and mortality. Due to the lack of early diagnostic indicators, limited therapeutic measures and inadequate prognostic indicators, the diagnosis and treatment of IS remains a particular challenge at present. It has recently been reported that exosomes (EXOs) play a significant role in the pathogenesis and treatment of IS. The purpose of this paper is to probe the role of EXOs in diagnostic biomarkers and therapeutic measures for IS and to provide innovative ideas for improving the prognosis of IS.
Collapse
|
39
|
Lu Z, Tang H, Li S, Zhu S, Li S, Huang Q. Role of Circulating Exosomes in Cerebrovascular Diseases: A Comprehensive Review. Curr Neuropharmacol 2023; 21:1575-1593. [PMID: 36847232 PMCID: PMC10472809 DOI: 10.2174/1570159x21666230214112408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 03/01/2023] Open
Abstract
Exosomes are lipid bilayer vesicles that contain multiple macromolecules secreted by the parent cells and play a vital role in intercellular communication. In recent years, the function of exosomes in cerebrovascular diseases (CVDs) has been intensively studied. Herein, we briefly review the current understanding of exosomes in CVDs. We discuss their role in the pathophysiology of the diseases and the value of the exosomes for clinical applications as biomarkers and potential therapies.
Collapse
Affiliation(s)
- Zhiwen Lu
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Haishuang Tang
- Department of Nerurosurgery, Naval Medical Center of PLA, Navy Medical University, Shanghai, 200050, China
| | - Sisi Li
- Department of Cerebrovascular Intervention, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shijie Zhu
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Siqi Li
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qinghai Huang
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
40
|
Cui J, Li Y, Zhu M, Liu Y, Liu Y. Analysis of the Research Hotspot of Exosomes in Cardiovascular Disease: A Bibliometric-based Literature Review. Curr Vasc Pharmacol 2023; 21:316-345. [PMID: 37779407 DOI: 10.2174/0115701611249727230920042944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE To investigate the current status and development trend of research on exosomes in cardiovascular disease (CVD) using bibliometric analysis and to elucidate trending research topics. METHODS Research articles on exosomes in CVD published up to April 2022 were retrieved from the Web of Science database. Data were organized using Microsoft Office Excel 2019. CiteSpace 6.1 and VOSviewer 1.6.18 were used for bibliometric analysis and result visualization. RESULTS Overall, 256 original research publications containing 190 fundamental research publications and 66 clinical research publications were included. "Extracellular vesicle" was the most frequent research keyword, followed by "microrna," "apoptosis," and "angiogenesis." Most publications were from China (187, 73.05%), followed by the United States (57, 22.27%), the United Kingdom (7, 2.73%), and Japan (7, 2.73%). A systematic review of the publications revealed that myocardial infarction and stroke were the most popular topics and that exosomes and their contents, such as microRNAs (miRNAs), play positive roles in neuroprotection, inhibition of autophagy and apoptosis, promotion of angiogenesis, and protection of cardiomyocytes. CONCLUSION Research on exosomes in CVD has attracted considerable attention, with China having the most published studies. Fundamental research has focused on CVD pathogenesis; exosomes regulate the progression of CVD through biological processes, such as the inflammatory response, autophagy, and apoptosis. Clinical research has focused on biomarkers for CVD; studies on using miRNAs in exosomes as disease markers for diagnosis could become a future trend.
Collapse
Affiliation(s)
- Jing Cui
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiwen Li
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Norouzi-Barough L, Asgari Khosroshahi A, Gorji A, Zafari F, Shahverdi Shahraki M, Shirian S. COVID-19-Induced Stroke and the Potential of Using Mesenchymal Stem Cells-Derived Extracellular Vesicles in the Regulation of Neuroinflammation. Cell Mol Neurobiol 2023; 43:37-46. [PMID: 35025001 PMCID: PMC8755896 DOI: 10.1007/s10571-021-01169-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke (IS) is a known neurological complication of COVID-19 infection, which is associated with high mortality and disability. Following IS, secondary neuroinflammation that occurs can play both harmful and beneficial roles and lead to further injury or repair of damaged neuronal tissue, respectively. Since inflammation plays a pivotal role in the pathogenesis of COVID-19-induced stroke, targeting neuroinflammation could be an effective strategy for modulating the immune responses following ischemic events. Numerous investigations have indicated that the application of mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) improves functional recovery following stroke, mainly through reducing neuroinflammation as well as promoting neurogenesis and angiogenesis. Therefore, MSC-EVs can be applied for the regulation of SARS-CoV-2-mediated inflammation and the management of COVID-19- related ischemic events. In this study, we have first described the advantages and disadvantages of neuroinflammation in the pathological evolution after IS and summarized the characteristics of neuroinflammation in COVID-19-related stroke. Then, we have discussed the potential benefit of MSC-EVs in the regulation of inflammatory responses after COVID-19-induced ischemic events.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ali Gorji
- Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universitat Münster, Munster, Germany
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Fariba Zafari
- Cellular and Molecular Research Center, Research Institute for Prevention of Non- Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
- Shiraz Molecular Pathology Research Center, Dr. Daneshbod Pathol Lab, Shiraz, Iran.
| |
Collapse
|
42
|
Seyedaghamiri F, Salimi L, Ghaznavi D, Sokullu E, Rahbarghazi R. Exosomes-based therapy of stroke, an emerging approach toward recovery. Cell Commun Signal 2022; 20:110. [PMID: 35869548 PMCID: PMC9308232 DOI: 10.1186/s12964-022-00919-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/11/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractBased on clinical observations, stroke is touted as one of the specific pathological conditions, affecting an individual’s life worldwide. So far, no effective treatment has been introduced to deal with stroke post-complications. Production and release of several neurotrophic factors by different cells exert positive effects on ischemic areas following stroke. As a correlate, basic and clinical studies have focused on the development and discovery of de novo modalities to introduce these factors timely and in appropriate doses into the affected areas. Exosomes (Exo) are non-sized vesicles released from many cells during pathological and physiological conditions and participate in intercellular communication. These particles transfer several arrays of signaling molecules, like several neurotrophic factors into the acceptor cells and induce specific signaling cascades in the favor of cell bioactivity. This review aimed to highlight the emerging role of exosomes as a therapeutic approach in the regeneration of ischemic areas.
Collapse
|
43
|
Eshghi F, Tahmasebi S, Alimohammadi M, Soudi S, Khaligh SG, Khosrojerdi A, Heidari N, Hashemi SM. Study of immunomodulatory effects of mesenchymal stem cell-derived exosomes in a mouse model of LPS induced systemic inflammation. Life Sci 2022; 310:120938. [PMID: 36150466 DOI: 10.1016/j.lfs.2022.120938] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/19/2022] [Accepted: 09/04/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Sepsis is a debilitating systemic inflammation that resulted from infection or injury. Despite many advances in treatment, the resulting mortality rate has remained high due to increasing antibiotic resistance and aging communities. The present study investigated the effects of stem cell-derived exosomes in a mouse model of LPS-induced systemic inflammation. MATERIALS AND METHODS To induce sepsis, the LPS model was used. Mice were divided into three groups: normal, patient group (LPS + PBS), and treatment group (LPS + exosome). The treatment group received an intravenous exosome 1 h after induction of the model. Patient and treatment groups were sacrificed at 4, 6, 24, and 48 h after induction of the model, and their tissues were isolated. Blood samples were taken from animal hearts to perform biochemical and immunological tests. The study results were analyzed using Graph Pad Prism software version 9. RESULTS Mesenchymal stem cell-derived exosomes decreased serum levels of ALT and AST liver enzymes, decreased neutrophil to lymphocyte ratio (NLR), and improved kidney, liver, and lung tissue damage at 4, 6, and 24 h after model induction. At 24 h, the exosomes were able to reduce serum urea levels. This study revealed decreased levels of inflammatory cytokines such as IL-6, IL-1β, and TNF-α after exosome injection. CONCLUSION Our findings suggest that treating mice with stem cell-derived exosomes can ameliorate the destructive effects of inflammation caused by sepsis by reducing inflammatory factors and tissue damage.
Collapse
Affiliation(s)
- Fateme Eshghi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Neda Heidari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Zhu A, Liu N, Shang Y, Zhen Y, An Y. Signaling pathways of adipose stem cell-derived exosomes promoting muscle regeneration. Chin Med J (Engl) 2022; 135:2525-2534. [PMID: 36583914 PMCID: PMC9945488 DOI: 10.1097/cm9.0000000000002404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 12/31/2022] Open
Abstract
ABSTRACT Severe muscle injury is still a challenging clinical problem. Exosomes derived from adipose stem cells (ASC-exos) may be a potential therapeutic tool, but their mechanism is not completely clear. This review aims to elaborate the possible mechanism of ASC-exos in muscle regeneration from the perspective of signal pathways and provide guidance for further study. Literature cited in this review was acquired through PubMed using keywords or medical subject headings, including adipose stem cells, exosomes, muscle regeneration, myogenic differentiation, myogenesis, wingless/integrated (Wnt), mitogen-activated protein kinases, phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/Akt), Janus kinase/signal transducers and activators of transcription, and their combinations. We obtained the related signal pathways from proteomics analysis of ASC-exos in the literature, and identified that ASC-exos make different contributions to multiple stages of skeletal muscle regeneration by those signal pathways.
Collapse
Affiliation(s)
- Aoxuan Zhu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Na Liu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yujia Shang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
- Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
45
|
Yin TC, Shao PL, Chen KH, Lin KC, Chiang JY, Sung PH, Wu SC, Li YC, Yip HK, Lee MS. Synergic Effect of Combined Therapy of Hyperbaric Oxygen and Adipose-Derived Mesenchymal Stem Cells on Improving Locomotor Recovery After Acute Traumatic Spinal Cord Injury in Rat Mainly Through Downregulating Inflammatory and Cell-Stress Signalings. Cell Transplant 2022; 31:9636897221133821. [PMID: 36317711 PMCID: PMC9630901 DOI: 10.1177/09636897221133821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study tested whether combined hyperbaric oxygen (HBO) and allogenic adipose-derived mesenchymal stem cells (ADMSCs) would be superior to either one for improving the locomotor recovery in rat after acute traumatic spinal cord injury (TSCI) in rat. Adult-male Sprague-Dawley rats were equally categorized into group 1 (sham-operated control), group 2 (TSCI), group 3 (TSCI + HBO for 1.5 h/day for 14 consecutive days after TSCI), group 4 (TSCI + ADMSCs/1.2 × 10<sup>6</sup> cells by intravenous injection at 3 h and days 1/2 after TSCI), and group 5 (TSCI + HBO + ADMSCs), euthanized, and spinal cord tissue was harvested by day 49 after TSCI. The protein expressions of oxidative-stress (NOX-1/NOX-2), inflammatory-signaling (TLR-4/MyD88/IL-1β/TNF-α/substance-p), cell-stress signaling (PI3K/p-AKT/p-mTOR), and the voltage-gated sodium channel (Nav1.3/1.8/1.9) biomarkers were highest in group 2, lowest in group 1, and significantly lower in group 5 than in groups 3/4 (all <i>P</i> <0.0001), but they did not differ between groups 3 and 4. The spinal cord damaged area, the cellular levels of inflammatory/DNA-damaged biomarkers (CD68+/GFAP+/γ-H2AX+ cells), mitogen-activated protein kinase family biomarkers (p-P38/p-JNK/p-ERK1/2), and cellular expressions of voltage-gated sodium channel (Nav.1.3, Nav.1.8, and Nav.1.9 in NF200+ cells) as well as the pain-facilitated cellular expressions (p-P38+/peripherin+ cells, p-JNK+/peripherin+ cells, p-ERK/NF200+ cells) exhibited an identical pattern of inflammation, whereas the locomotor recovery displayed an opposite pattern of inflammation among the groups (all <i>P</i> < 0.0001). Combined HBO-ADMSCs therapy offered additional benefits for preserving the neurological architecture and facilitated the locomotor recovery against acute TSCI.
Collapse
Affiliation(s)
- Tsung-Cheng Yin
- Department of Orthopedic Surgery,
Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung
University, Kaohsiung, Taiwan,Center for General Education, Cheng
Shiu University, Kaohsiung, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University,
Taichung, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung
Chang Gung Memorial Hospital and College of Medicine, Chang Gung University,
Kaohsiung, Taiwan
| | - Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung
Chang Gung Memorial Hospital and College of Medicine, Chang Gung University,
Kaohsiung, Taiwan
| | - John Y. Chiang
- Department of Computer Science and
Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan,Department of Healthcare Administration
and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of
Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine,
Chang Gung University, Kaohsiung, Taiwan,Center for Shockwave Medicine and
Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University,
Kaohsiung, Taiwan,Institute for Translational Research in
Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University,
Kaohsiung, Taiwan
| | - Shun-Cheng Wu
- Regenerative Medicine and Cell
Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan,Orthopaedic Research Center,
Kaohsiung Medical University, Kaohsiung, Taiwan,Post-Baccalaureate Program in
Nursing, Asia University, Taichung, Taiwan
| | - Yi-Chen Li
- Department of Healthcare Administration
and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan,Clinical Medicine Research Center,
National Cheng Kung University Hospital, College of Medicine, National Cheng Kung
University, Tainan, Taiwan,Center of Cell Therapy, National
Cheng Kung University Hospital, College of Medicine, National Cheng Kung University,
Tainan, Taiwan,Institute of Clinical Medicine,
College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hon-Kan Yip
- Center for General Education, Cheng
Shiu University, Kaohsiung, Taiwan,Department of Healthcare Administration
and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan,Division of Cardiology, Department of
Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine,
Chang Gung University, Kaohsiung, Taiwan,Center for Shockwave Medicine and
Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University,
Kaohsiung, Taiwan,Department of Medical Research, China
Medical University Hospital, China Medical University, Taichung, Taiwan,Division of Cardiology, Department of
Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, China,Hon-Kan Yip, Division of Cardiology,
Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and
College of Medicine, Chang Gung University, 123, Dapi Road, Niaosung District,
Kaohsiung 83301, Taiwan.
| | - Mel S. Lee
- Department of Orthopedic Surgery,
Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung
University, Kaohsiung, Taiwan
| |
Collapse
|
46
|
Chen X, Jiang Y, Duan Y, Zhang X, Li X. Mesenchymal-Stem-Cell-Based Strategies for Retinal Diseases. Genes (Basel) 2022; 13:genes13101901. [PMID: 36292786 PMCID: PMC9602395 DOI: 10.3390/genes13101901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022] Open
Abstract
Retinal diseases are major causes of irreversible vision loss and blindness. Despite extensive research into their pathophysiology and etiology, pharmacotherapy effectiveness and surgical outcomes remain poor. Based largely on numerous preclinical studies, administration of mesenchymal stem cells (MSCs) as a therapeutic strategy for retinal diseases holds great promise, and various approaches have been applied to the therapies. However, hindered by the retinal barriers, the initial vision for the stem cell replacement strategy fails to achieve the anticipated effect and has now been questioned. Accumulating evidence now suggests that the paracrine effect may play a dominant role in MSC-based treatment, and MSC-derived extracellular vesicles emerge as a novel compelling alternative for cell-free therapy. This review summarizes the therapeutic potential and current strategies of this fascinating class of cells in retinal degeneration and other retinal dysfunctions.
Collapse
|
47
|
Yao Y, Jiang Y, Song J, Wang R, Li Z, Yang L, Wu W, Zhang L, Peng Q. Exosomes as Potential Functional Nanomaterials for Tissue Engineering. Adv Healthc Mater 2022:e2201989. [PMID: 36253093 DOI: 10.1002/adhm.202201989] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Indexed: 11/10/2022]
Abstract
Exosomes are cell-derived extracellular vesicles of 40-160 nm diameter, which carry numerous biomolecules and transmit information between cells. They are used as functional nanomaterials with great potential in biomedical areas, such as active agents and delivery systems for advanced drug delivery and disease therapy. In recent years, potential applications of exosomes in tissue engineering have attracted significant attention, and some critical progress has been made. This review gives a complete picture of exosomes and their applications in the regeneration of various tissues, such as the central nervous systems, kidney, bone, cartilage, heart, and endodontium. Approaches employed for modifying exosomes to equip them with excellent targeting capacity are summarized. Furthermore, current concerns and future outlook of exosomes in tissue engineering are discussed.
Collapse
Affiliation(s)
- Yang Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Yuhuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Jialu Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Ruojing Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Zhaoping Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Lei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Weimin Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Luyue Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| |
Collapse
|
48
|
Zhang L, Pei C, Hou D, Yang G, Yu D. Inhibition of Cerebral Ischemia/Reperfusion Injury by MSCs-Derived Small Extracellular Vesicles in Rodent Models: A Systematic Review and Meta-Analysis. Neural Plast 2022; 2022:3933252. [PMID: 36338577 PMCID: PMC9633211 DOI: 10.1155/2022/3933252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/17/2022] [Indexed: 01/03/2025] Open
Abstract
Small extracellular vesicles (sEVs) secreted by mesenchymal stem cells (MSCs) have shown great therapeutic potential in cerebral ischemia-reperfusion injury (CIRI). In this study, we firstly performed a systematic review to evaluate the efficacy of MSCs-derived sEV for experimental cerebral ischemia/reperfusion injury. 24 studies were identified by searching 8 databases from January 2012 to August 2022. The methodological quality was assessed by using the SYRCLE 's risk of bias tool for animal studies. All the data were analyzed using RevMan 5.3 software. As a result, the score of study quality ranged from 3 to 9 in a total of ten points. Meta-analyses showed that MSCs-derived sEVs could effectively alleviate neurological impairment scores, reduced the volume of cerebral infarction and brain water content, and attenuated neuronal apoptosis. Additionally, the possible mechanisms of MSCs-derived sEVs for attenuating neuronal apoptosis were inhibiting microglia-mediated neuroinflammation. Thus, MSCs-derived sEVs might be regarded as a novel insight for cerebral ischemic stroke. However, further mechanistic studies, therapeutic safety, and clinical trials are required. Systematic review registration. PROSPERO CRD42022312227.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, China
| | - Chaoying Pei
- Department of Neurology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, China
| | - Dan Hou
- Department of Neurology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, China
| | - Guoshuai Yang
- Department of Neurology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, China
| | - Dan Yu
- Department of Neurology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, China
| |
Collapse
|
49
|
Askenase PW. Recommendation: Treatment of clinical long COVID encephalopathies with nasal administered mesenchymal stromal cell extracellular vesicles. FRONTIERS IN NANOTECHNOLOGY 2022; 4. [DOI: 10.3389/fnano.2022.987117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
We propose therapy with extracellular vesicles (EVs) for dominant central nervous system aspects of chronic Long COVID Syndromes (LCS). These clinical conditions have a delayed onset of 1–3 months following the cessation of active SARS-CoV-2 virus infections that cause an acute disease called COVID-19. The therapy of LCS will be achieved by direct access to the central nervous system (CNS) by nasal administration of small EVs derived from Mesenchymal Stromal Cells (MSC). When administered nasally, they target CNS microglia and endothelia involved in LCS encephalopathy, as indicated by experimental animal models and human autopsy and spinal fluid studies. Underlying this approach is the discovery that MSC-sEV treatment for healing neuro injury targets, microglia, and macrophages that then likely release secondary trophic EVs that affect the local capillary endothelial cells to restore vascular integrity. It is postulated that the pathways of endothelial and neural pathologies in acute SARS-CoV-2 virus infections may carry over to produce underlying vascular and neurological defects mediating LCS that are susceptible to this proposed nasal therapy with MSC-sEVs.
Collapse
|
50
|
Han G, Li H, Guo H, Yi C, Yu B, Lin Y, Zheng B, He D. The roles and mechanisms of miR-26 derived from exosomes of adipose-derived stem cells in the formation of carotid atherosclerotic plaque. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1134. [PMID: 36388831 PMCID: PMC9652556 DOI: 10.21037/atm-22-4247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 10/04/2023]
Abstract
Background This study explored the serum concentrations of miR-26 in patients with carotid atherosclerosis (CAS) and defined the roles and mechanisms of miR-26 derived from the exosomes of adipose-derived stem cells (ADSC-exos). Methods The carotid artery width was diagnosed by ultrasound examination in patients with different degrees of CAS. The serum levels of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) in patients were detected by biochemistry. The serum levels of miR-26 were determined by quantitative polymerase chain reaction (qPCR). A model of CAS in ApoE-/- mice fed with a rich-fat diet was established to analyze the regulatory effects of serum miR-26 on blood lipids in mice. Adipose mesenchymal stem cell lines transfected with miR-26 were established. The regulatory relationship between the expression levels of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β, and the expression levels of miR-26 in the supernatant of each group of cells was determined by qPCR. The ADSC-exos were extracted from ADSCs and injected into model mice through the tail vein. The therapeutic effect of ADSCs expressing miR-26 on model mice was evaluated by detecting the levels of inflammatory factors and blood lipids in the serum of the mice. Results The degree of atherosclerosis (AS) was positively associated with the intima-media thickness (IMT) of the carotid artery. The serum levels of miR-26 in patients were inversely correlated with the levels of blood lipids (TC, TG, and LDL-C), and positively correlated with HDL-C levels. Similarly, in the CAS mouse model, the serum levels of miR-26 were inversely correlated with the levels of blood lipids (TC, TG, and LDL-C), and positively correlated with HDL-C level. In ADSCs transfected with miR-26, the miR-26 expression in the cell supernatant was negatively regulated by the expression of inflammatory factors, TNF-α, IL-6, and IL-1β, in the cell supernatant. ADSC-exos expressing miR-26 has positive effects on correcting blood lipids and inflammatory factors in the mouse model of CAS. Conclusions miR-26 has an active role in CAS and may be a novel target for the treatment of CAS in the future.
Collapse
Affiliation(s)
- Guochao Han
- Department of Electrophysiology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Hui Li
- Department of Electrophysiology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Hongyan Guo
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Chao Yi
- Department of Neurosurgery, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Beiguang Yu
- Department of Electrophysiology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yuan Lin
- Department of Electrophysiology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Bingjie Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongruo He
- Department of Electrophysiology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|