1
|
Arenillas C, Celada L, Ruiz-Cantador J, Calsina B, Datta D, García-Galea E, Fasani R, Moreno-Cárdenas AB, Alba-Linares JJ, Miranda-Barrio B, Martínez-Montes ÁM, Alvarez-Escola C, Lecumberri B, González García A, K. Flores S, Esquivel E, Ding Y, Peitzsch M, Robles-Guirado JÁ, Regojo Zapata RM, Pozo-Kreilinger JJ, Iglesias C, Dwight T, Muir CA, Oleaga A, Garrido-Lestache Rodríguez-Monte ME, Del Cerro MJ, Martínez-Bendayán I, Álvarez-González E, Cubiella T, Lourenço DM, A. Pereira MA, Burnichon N, Buffet A, Broberg C, Dickson PV, Fraga MF, Llorente Pendás JL, Rueda Soriano J, Buendía Fuentes F, Toledo SP, Clifton-Bligh R, Dienstmann R, Villanueva J, Capdevila J, Gimenez-Roqueplo AP, Favier J, Nuciforo P, Young WF, Bechmann N, Opotowsky AR, Vaidya A, Bancos I, Weghorn D, Robledo M, Casteràs A, Dos-Subirà L, Adameyko I, Chiara MD, Dahia PL, Toledo RA. Convergent Genetic Adaptation in Human Tumors Developed Under Systemic Hypoxia and in Populations Living at High Altitudes. Cancer Discov 2025; 15:1037-1062. [PMID: 40199338 PMCID: PMC12046333 DOI: 10.1158/2159-8290.cd-24-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/21/2024] [Accepted: 01/27/2025] [Indexed: 04/10/2025]
Abstract
SIGNIFICANCE This study reveals a broad convergence in genetic adaptation to hypoxia between natural populations and tumors, suggesting that insights from natural populations could enhance our understanding of cancer biology and identify novel therapeutic targets. See related commentary by Lee, p. 875.
Collapse
Affiliation(s)
- Carlota Arenillas
- Biomarkers and Clonal Dynamics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lucía Celada
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - José Ruiz-Cantador
- Adult Congenital Heart Disease Unit, Department of Cardiology, Hospital Universitario La Paz, Madrid, Spain
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Debayan Datta
- Biomarkers and Clonal Dynamics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Eduardo García-Galea
- Oncology Data Science (ODysSey) Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Roberta Fasani
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana Belén Moreno-Cárdenas
- Biomarkers and Clonal Dynamics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan José Alba-Linares
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Berta Miranda-Barrio
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Integrated Adult Congenital Heart Disease Unit, Department of Cardiology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, the Netherlands
| | - Ángel M. Martínez-Montes
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Beatriz Lecumberri
- Department of Endocrinology and Nutrition, Hospital Universitario La Paz, Madrid, Spain
| | - Ana González García
- Adult Congenital Heart Disease Unit, Department of Cardiology, Hospital Universitario La Paz, Madrid, Spain
| | - Shahida K. Flores
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas
| | - Emmanuel Esquivel
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas
| | - Yanli Ding
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - José-Ángel Robles-Guirado
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | | | - Carmela Iglesias
- Department of Pathology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Trisha Dwight
- Cancer Genetics, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
- The University of Sydney, Sydney, Australia
| | - Christopher A. Muir
- Department of Endocrinology, St. Vincent’s Hospital, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Amelia Oleaga
- Department of Endocrinology and Nutrition, Hospital Universitario de Basurto, Bilbao, Spain
| | | | - Maria Jesús Del Cerro
- Department of Pediatric Cardiology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Isaac Martínez-Bendayán
- Department of Pediatric Cardiology, Instituto de Investigación Biomédica (Cardiopatía Estructural y Congénita) and Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Enol Álvarez-González
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Department of Functional Biology, Genetic Area, University of Oviedo, Oviedo, Spain
| | - Tamara Cubiella
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Delmar Muniz Lourenço
- Endocrinology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Maria Adelaide A. Pereira
- Endocrinology Division, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Nelly Burnichon
- AP-HP, Hôpital Européen Georges Pompidou, Département de Médecine Génomique des Tumeurs et des Cancers, Paris, France
- Inserm, Centre de recherche des Cordeliers, Université Paris-Cité, Sorbonne Université, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Alexandre Buffet
- AP-HP, Hôpital Européen Georges Pompidou, Département de Médecine Génomique des Tumeurs et des Cancers, Paris, France
- Inserm, Centre de recherche des Cordeliers, Université Paris-Cité, Sorbonne Université, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Craig Broberg
- Adult Congenital Heart Program, Division of Cardiology, Oregon Health and Science University, Portland, Oregon
| | - Paxton V. Dickson
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mario F. Fraga
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo, Oviedo, Spain
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José Luis Llorente Pendás
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Joaquín Rueda Soriano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Adult Congenital Heart Disease Unit, Department of Cardiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Francisco Buendía Fuentes
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Adult Congenital Heart Disease Unit, Department of Cardiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | | | - Roderick Clifton-Bligh
- Department of Endocrinology and Cancer Genetics Unit, Kolling Institute, Royal North Shore Hospital, Sydney, Australia
| | - Rodrigo Dienstmann
- Oncology Data Science (ODysSey) Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- University of Vic – Central University of Catalonia, Vic, Spain
| | - Josep Villanueva
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Jaume Capdevila
- Neuroendocrine and Endocrine Tumor Translational Research Program (NET-VHIO), Vall Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Medical Oncology, Gastrointestinal and Endocrine Tumor Unit, Vall d’Hebron Hospital Universitari, Vall d’Hebron Hospital Campus, Barcelona, Spain
| | - Anne-Paule Gimenez-Roqueplo
- AP-HP, Hôpital Européen Georges Pompidou, Département de Médecine Génomique des Tumeurs et des Cancers, Paris, France
- Inserm, Centre de recherche des Cordeliers, Université Paris-Cité, Sorbonne Université, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Judith Favier
- Inserm, Centre de recherche des Cordeliers, Université Paris-Cité, Sorbonne Université, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alexander R. Opotowsky
- Cincinnati Adult Congenital Heart Disease Program, Heart Institute, Cincinnati Children’s Hospital, University of Cincinnati, Cincinnati, Ohio
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anand Vaidya
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Irina Bancos
- Division of Endocrinology, Mayo Clinic, Rochester, Minnesota
| | | | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Anna Casteràs
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Endocrinology and Nutrition, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Dos-Subirà
- Integrated Adult Congenital Heart Disease Unit, Department of Cardiology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- European Reference Network for Rare, Low-Prevalence, or Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, the Netherlands
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - María-Dolores Chiara
- Health Research Institute of Asturias (ISPA), University of Oviedo, Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Patricia L.M. Dahia
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas
| | - Rodrigo A. Toledo
- Biomarkers and Clonal Dynamics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025; 25:167-188. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Huang Z, Zheng Y, Wang W, Zhou W, Zhang Y, Wei C, Zhang X, Jin X, Yin J. Uncovering disease-related multicellular pathway modules on large-scale single-cell transcriptomes with scPAFA. Commun Biol 2024; 7:1523. [PMID: 39550507 PMCID: PMC11569158 DOI: 10.1038/s42003-024-07238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
Pathway analysis is a crucial analytical phase in disease research on single-cell RNA sequencing (scRNA-seq) data, offering biological interpretations based on prior knowledge. However, currently available tools for generating cell-level pathway activity scores (PAS) exhibit computational inefficacy in large-scale scRNA-seq datasets. Additionally, disease-related pathways are often identified through cross-condition comparisons within specific cell types, overlooking potential patterns that involve multiple cell types. Here, we present single-cell pathway activity factor analysis (scPAFA), a Python library designed for large-scale single-cell datasets allowing rapid PAS computation and uncovering biologically interpretable disease-related multicellular pathway modules, which are low-dimensional representations of disease-related PAS alterations in multiple cell types. Application on colorectal cancer (CRC) datasets and large-scale lupus atlas over 1.2 million cells demonstrated that scPAFA can achieve over 40-fold reductions in the runtime of PAS computation and further identified reliable and interpretable multicellular pathway modules that capture the heterogeneity of CRC and transcriptional abnormalities in lupus patients, respectively. Overall, scPAFA presents a valuable addition to existing research tools in disease research, with the potential to reveal complex disease mechanisms and support biomarker discovery at the pathway level.
Collapse
Affiliation(s)
- Zhuoli Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Yuhui Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Weikai Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Wenwen Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Yanbo Zhang
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Chen Wei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Xiuqing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Xin Jin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- BGI Research, Shenzhen, 518083, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jianhua Yin
- BGI Research, Shenzhen, 518083, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
4
|
Ray SK, Mukherjee S. Interaction Among Noncoding RNAs, DNA Damage Reactions, and Genomic Instability in the Hypoxic Tumor: Is it Therapeutically Exploitable Practice? Curr Mol Med 2023; 23:200-215. [PMID: 35048804 DOI: 10.2174/1566524022666220120123557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023]
Abstract
Hypoxia is a classical function of the tumor's microenvironment with a substantial effect on the development and therapeutic response of cancer. When put in hypoxic environments, cells undergo several biological reactions, including activation of signaling pathways that control proliferation, angiogenesis, and death. These pathways have been adapted by cancer cells to allow tumors to survive and even develop in hypoxic conditions, and poor prognosis is associated with tumor hypoxia. The most relevant transcriptional regulator in response to hypoxia, Hypoxia-inducible factor-1 alpha (HIF-1α), has been shown to modulate hypoxic gene expression and signaling transduction networks significantly. The significance of non-coding RNAs in hypoxic tumor regions has been revealed in an increasing number of studies over the past few decades. In regulating hypoxic gene expression, these hypoxia-responsive ncRNAs play pivotal roles. Hypoxia, a general characteristic of the tumor's microenvironment, significantly affects the expression of genes and is closely associated with the development of cancer. Indeed, the number of known hypoxia-associated lncRNAs has increased dramatically, demonstrating the growing role of lncRNAs in cascades and responses to hypoxia signaling. Decades of research have helped us create an image of the shift in hypoxic cancer cells' DNA repair capabilities. Emerging evidence suggests that hypoxia can trigger genetic instability in cancer cells because of microenvironmental tumor stress. Researchers have found that critical genes' expression is coordinately repressed by hypoxia within the DNA damage and repair pathways. In this study, we include an update of current knowledge on the presentation, participation, and potential clinical effect of ncRNAs in tumor hypoxia, DNA damage reactions, and genomic instability, with a specific emphasis on their unusual cascade of molecular regulation and malignant progression induced by hypoxia.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020. India
| |
Collapse
|
5
|
Harris B, Saleem S, Cook N, Searle E. Targeting hypoxia in solid and haematological malignancies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:318. [PMID: 36320041 PMCID: PMC9628170 DOI: 10.1186/s13046-022-02522-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia‐inducible glycolytic enzyme hexokinase‐2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date.
Collapse
Affiliation(s)
- Bill Harris
- grid.412917.80000 0004 0430 9259Experimental Cancer Medicine Team, Christie NHS Foundation Trust, Manchester, UK
| | - Sana Saleem
- grid.412917.80000 0004 0430 9259Haematology Department, Christie NHS Foundation Trust, Manchester, UK
| | - Natalie Cook
- grid.412917.80000 0004 0430 9259Experimental Cancer Medicine Team, Christie NHS Foundation Trust, Manchester, UK ,grid.5379.80000000121662407Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Emma Searle
- grid.412917.80000 0004 0430 9259Haematology Department, Christie NHS Foundation Trust, Manchester, UK ,grid.5379.80000000121662407Division of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Ucaryilmaz Metin C, Ozcan G. The HIF-1α as a Potent Inducer of the Hallmarks in Gastric Cancer. Cancers (Basel) 2022; 14:2711. [PMID: 35681691 PMCID: PMC9179860 DOI: 10.3390/cancers14112711] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxia is the principal architect of the topographic heterogeneity in tumors. Hypoxia-inducible factor-1α (HIF-1α) reinforces all hallmarks of cancer and donates cancer cells with more aggressive characteristics at hypoxic niches. HIF-1α potently induces sustained growth factor signaling, angiogenesis, epithelial-mesenchymal transition, and replicative immortality. Hypoxia leads to the selection of cancer cells that evade growth suppressors or apoptotic triggers and deregulates cellular energetics. HIF-1α is also associated with genetic instability, tumor-promoting inflammation, and escape from immunity. Therefore, HIF-1α may be an important therapeutic target in cancer. Despite that, the drug market lacks safe and efficacious anti-HIF-1α molecules, raising the quest for fully unveiling the complex interactome of HIF-1α in cancer to discover more effective strategies. The knowledge gap is even wider in gastric cancer, where the number of studies on hypoxia is relatively low compared to other well-dissected cancers. A comprehensive review of the molecular mechanisms by which HIF-1α induces gastric cancer hallmarks could provide a broad perspective to the investigators and reveal missing links to explore in future studies. Thus, here we review the impact of HIF-1α on the cancer hallmarks with a specific focus on gastric cancer.
Collapse
Affiliation(s)
| | - Gulnihal Ozcan
- Department of Medical Pharmacology, School of Medicine, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
7
|
Changes in Methylation Patterns of Tumor Suppressor Genes during Extended Human Embryonic Stem Cell Cultures. Stem Cells Int 2021; 2021:5575185. [PMID: 34552632 PMCID: PMC8452414 DOI: 10.1155/2021/5575185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/23/2022] Open
Abstract
While studies on embryonic stem cells have been actively conducted, little is known about the epigenetic mechanisms in human embryonic stem cells (hESCs) in extended culture systems. Here, we investigated whether CpG island (CGI) methylation patterns of 24 tumor suppressor genes could be maintained during extended hESC cultures. In total, 10 hESC lines were analyzed. For each cell line, genomic DNA was extracted from early and late passages of cell cultures. CGI methylation levels of 24 tumor suppressor genes were analyzed using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), pyrosequencing, and real-time polymerase chain reaction (PCR). Different CGI methylation patterns of CASP8, FHIT, and CHFR genes were identified in between early and late passages in some hESC lines. CGI methylation levels of CASP8 significantly increased at late passage in CHA-36, CHA-40, and CHA-42 cell lines compared to those at early passage. The CGI methylation of the FHIT gene was higher at late passage than at early passage in CHA-15, CHA-31, CHA-32, and iPS (FS)-1 cell lines but decreased at the late passage in CHA-20 and H1 cell lines. Different CGI methylation patterns were detected for the CHFR gene only in iPS (FS)-1, and the level significantly increased at late passage. Thus, our findings show that CGI methylation patterns could be altered during prolonged ESC cultures and examining these epigenetic changes is important to assess the maintenance, differentiation, and clinical usage of stem cells.
Collapse
|
8
|
Arabsorkhi Z, Sadeghi H, Gharib E, Rejali L, Asadzadeh-Aghdaei H, Nazemalhosseini-Mojarad E. Can hypoxia-inducible factor-1α overexpression discriminate human colorectal cancers with different microsatellite instability? Genes Genet Syst 2021; 96:193-198. [PMID: 34421088 DOI: 10.1266/ggs.21-00026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clinicopathological features of high-frequency microsatellite instability (MSI-H) colorectal cancers (CRCs) are different from low-frequency MSI (MSI-L) and microsatellite stable (MSS) CRCs. The clinical features of MSI-L cases are unknown, and although the tumors usually show instability for dinucleotide markers, evaluation based on dinucleotides alone could lead to the misclassification of MSI-L or MSS as MSI-H. In this research, we investigated the usefulness of hypoxia-inducible factor-1α (HIF-1α) expression to discriminate MSI-L from MSS and MSI-H in human CRC. Tumor tissue from 94 CRC patients was used to determine the expression level of HIF-1α mRNA and HIF-1α protein using quantitative real-time PCR and immunohistochemistry analyses, respectively. The results indicated that HIF-1α mRNA and HIF-1α protein levels were upregulated in CRC patients compared with controls (P < 0.0001). Average HIF-1α expression in tissues with advanced stages and grades was also higher than that in earlier stages and grades. Expression of HIF-1α mRNA varied between CRC patients with different types of microsatellite instability (MSS, MSI-L and MSI-H). Taken together, our findings provide preliminary evidence that HIF-1α expression level in CRC tumors correlates with different MSI categories. HIF-1α expression may therefore represent a novel marker to separate the MSI-L group from the MSS and MSI-H groups.
Collapse
Affiliation(s)
- Zahra Arabsorkhi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences
| | - Hossein Sadeghi
- Molecular Genetics Department, Genomic Research Center, Shahid Beheshti University of Medical Sciences
| | - Ehsan Gharib
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences
| | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences
| | - Ehsan Nazemalhosseini-Mojarad
- Department of Gastrointestinal Cancer, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences
| |
Collapse
|
9
|
Jiang F, Mao Y, Lu B, Zhou G, Wang J. A hypoxia risk signature for the tumor immune microenvironment evaluation and prognosis prediction in acute myeloid leukemia. Sci Rep 2021; 11:14657. [PMID: 34282207 PMCID: PMC8289869 DOI: 10.1038/s41598-021-94128-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most prevalent form of acute leukemia. Patients with AML often have poor clinical prognoses. Hypoxia can activate a series of immunosuppressive processes in tumors, resulting in diseases and poor clinical prognoses. However, how to evaluate the severity of hypoxia in tumor immune microenvironment remains unknown. In this study, we downloaded the profiles of RNA sequence and clinicopathological data of pediatric AML patients from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database, as well as those of AML patients from Gene Expression Omnibus (GEO). In order to explore the immune microenvironment in AML, we established a risk signature to predict clinical prognosis. Our data showed that patients with high hypoxia risk score had shorter overall survival, indicating that higher hypoxia risk scores was significantly linked to immunosuppressive microenvironment in AML. Further analysis showed that the hypoxia could be used to serve as an independent prognostic indicator for AML patients. Moreover, we found gene sets enriched in high-risk AML group participated in the carcinogenesis. In summary, the established hypoxia-related risk model could act as an independent predictor for the clinical prognosis of AML, and also reflect the response intensity of the immune microenvironment in AML.
Collapse
Affiliation(s)
- Feng Jiang
- grid.8547.e0000 0001 0125 2443Department of Neonatology, Obstetrics and Gynecology Hospital, Fudan University, No. 419, Fangxie Road, Shanghai, 200011 China
| | - Yan Mao
- grid.412676.00000 0004 1799 0784Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Binbin Lu
- grid.412676.00000 0004 1799 0784Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Guoping Zhou
- grid.412676.00000 0004 1799 0784Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Jimei Wang
- grid.8547.e0000 0001 0125 2443Department of Neonatology, Obstetrics and Gynecology Hospital, Fudan University, No. 419, Fangxie Road, Shanghai, 200011 China
| |
Collapse
|
10
|
Tseng WC, Lee PY, Tsai MT, Chang FP, Chen NJ, Chien CT, Hung SC, Tarng DC. Hypoxic mesenchymal stem cells ameliorate acute kidney ischemia-reperfusion injury via enhancing renal tubular autophagy. Stem Cell Res Ther 2021; 12:367. [PMID: 34183058 PMCID: PMC8240301 DOI: 10.1186/s13287-021-02374-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/09/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is an emerging global healthcare issue without effective therapy yet. Autophagy recycles damaged organelles and helps maintain tissue homeostasis in acute renal ischemia-reperfusion (I/R) injury. Hypoxic mesenchymal stem cells (HMSCs) represent an innovative cell-based therapy in AKI. Moreover, the conditioned medium of HMSCs (HMSC-CM) rich in beneficial trophic factors may serve as a cell-free alternative therapy. Nonetheless, whether HMSCs or HMSC-CM mitigate renal I/R injury via modulating tubular autophagy remains unclear. METHODS Renal I/R injury was induced by clamping of the left renal artery with right nephrectomy in male Sprague-Dawley rats. The rats were injected with either PBS, HMSCs, or HMSC-CM immediately after the surgery and sacrificed 48 h later. Renal tubular NRK-52E cells subjected to hypoxia-reoxygenation (H/R) injury were co-cultured with HMSCs or treated with HMSC-CM to assess the regulatory effects of HSMCs on tubular autophagy and apoptosis. The association of tubular autophagy gene expression and renal recovery was also investigated in patients with ischemic AKI. RESULT HMSCs had a superior anti-oxidative effect in I/R-injured rat kidneys as compared to normoxia-cultured mesenchymal stem cells. HMSCs further attenuated renal macrophage infiltration and inflammation, reduced tubular apoptosis, enhanced tubular proliferation, and improved kidney function decline in rats with renal I/R injury. Moreover, HMSCs suppressed superoxide formation, reduced DNA damage and lipid peroxidation, and increased anti-oxidants expression in renal tubular epithelial cells during I/R injury. Co-culture of HMSCs with H/R-injured NRK-52E cells also lessened tubular cell death. Mechanistically, HMSCs downregulated the expression of pro-inflammatory interleukin-1β, proapoptotic Bax, and caspase 3. Notably, HMSCs also upregulated the expression of autophagy-related LC3B, Atg5 and Beclin 1 in renal tubular cells both in vivo and in vitro. Addition of 3-methyladenine suppressed the activity of autophagy and abrogated the renoprotective effects of HMSCs. The renoprotective effect of tubular autophagy was further validated in patients with ischemic AKI. AKI patients with higher renal LC3B expression were associated with better renal recovery. CONCLUSION The present study describes that the enhancing effect of MSCs, and especially of HMCSs, on tissue autophagy can be applied to suppress renal tubular apoptosis and attenuate renal impairment during renal I/R injury in the rat. Our findings provide further mechanistic support to HMSCs therapy and its investigation in clinical trials of ischemic AKI.
Collapse
Affiliation(s)
- Wei-Cheng Tseng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao-Tung University, Hsinchu, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Ying Lee
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Ming-Tsun Tsai
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fu-Pang Chang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nien-Jung Chen
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shih-Chieh Hung
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Integrative Stem Cell Center, Department of Orthopedics, and Institute of New Drug Development, New Drug Development Center, China Medical University, Taichung, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, 128, Section 2, Academia Road, Taipei, 11529, Taiwan.
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao-Tung University, Hsinchu, Taiwan. .,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao-Tung University, Hsinchu, Taiwan.
| |
Collapse
|
11
|
Cowman S, Pizer B, Sée V. Downregulation of both mismatch repair and non-homologous end-joining pathways in hypoxic brain tumour cell lines. PeerJ 2021; 9:e11275. [PMID: 33986995 PMCID: PMC8092103 DOI: 10.7717/peerj.11275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/24/2021] [Indexed: 01/11/2023] Open
Abstract
Glioblastoma, a grade IV astrocytoma, has a poor survival rate in part due to ineffective treatment options available. These tumours are heterogeneous with areas of low oxygen levels, termed hypoxic regions. Many intra-cellular signalling pathways, including DNA repair, can be altered by hypoxia. Since DNA damage induction and subsequent activation of DNA repair mechanisms is the cornerstone of glioblastoma treatment, alterations to DNA repair mechanisms could have a direct influence on treatment success. Our aim was to elucidate the impact of chronic hypoxia on DNA repair gene expression in a range of glioblastoma cell lines. We adopted a NanoString transcriptomic approach to examine the expression of 180 DNA repair-related genes in four classical glioblastoma cell lines (U87-MG, U251-MG, D566-MG, T98G) exposed to 5 days of normoxia (21% O2), moderate (1% O2) or severe (0.1% O2) hypoxia. We observed altered gene expression in several DNA repair pathways including homologous recombination repair, non-homologous end-joining and mismatch repair, with hypoxia primarily resulting in downregulation of gene expression. The extent of gene expression changes was dependent on hypoxic severity. Some, but not all, of these downregulations were directly under the control of HIF activity. For example, the downregulation of LIG4, a key component of non-homologous end-joining, was reversed upon inhibition of the hypoxia-inducible factor (HIF). In contrast, the downregulation of the mismatch repair gene, PMS2, was not affected by HIF inhibition. This suggests that numerous molecular mechanisms lead to hypoxia-induced reprogramming of the transcriptional landscape of DNA repair. Whilst the global impact of hypoxia on DNA repair gene expression is likely to lead to genomic instability, tumorigenesis and reduced sensitivity to anti-cancer treatment, treatment re-sensitising might require additional approaches to a simple HIF inhibition.
Collapse
Affiliation(s)
- Sophie Cowman
- Institute of Systems, Molecular and Integrative Biology, Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, Merseyside, United Kingdom.,Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt-Lake-City, Utah, United States
| | - Barry Pizer
- Paediatric Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, Merseyside, United Kingdom
| | - Violaine Sée
- Institute of Systems, Molecular and Integrative Biology, Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool, Merseyside, United Kingdom
| |
Collapse
|
12
|
Kaplan AR, Glazer PM. Impact of hypoxia on DNA repair and genome integrity. Mutagenesis 2021; 35:61-68. [PMID: 31282537 DOI: 10.1093/mutage/gez019] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a hallmark of the tumour microenvironment with profound effects on tumour biology, influencing cancer progression, the development of metastasis and patient outcome. Hypoxia also contributes to genomic instability and mutation frequency by inhibiting DNA repair pathways. This review summarises the diverse mechanisms by which hypoxia affects DNA repair, including suppression of homology-directed repair, mismatch repair and base excision repair. We also discuss the effects of hypoxia mimetics and agents that induce hypoxia on DNA repair, and we highlight areas of potential clinical relevance as well as future directions.
Collapse
Affiliation(s)
- Alanna R Kaplan
- Department of Therapeutic Radiology, New Haven, CT, USA.,Department of Experimental Pathology, New Haven, CT, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, New Haven, CT, USA.,Department of Genetics, Yale University, New Haven, CT, USA
| |
Collapse
|
13
|
An interplay of NOX1-derived ROS and oxygen determines the spermatogonial stem cell self-renewal efficiency under hypoxia. Genes Dev 2021; 35:250-260. [PMID: 33446567 PMCID: PMC7849365 DOI: 10.1101/gad.339903.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) produced by NADPH1 oxidase 1 (NOX1) are thought to drive spermatogonial stem cell (SSC) self-renewal through feed-forward production of ROS by the ROS-BCL6B-NOX1 pathway. Here we report the critical role of oxygen on ROS-induced self-renewal. Cultured SSCs proliferated poorly and lacked BCL6B expression under hypoxia despite increase in mitochondria-derived ROS. Due to lack of ROS amplification under hypoxia, NOX1-derived ROS were significantly reduced, and Nox1-deficient SSCs proliferated poorly under hypoxia but normally under normoxia. NOX1-derived ROS also influenced hypoxic response in vivo because Nox1-deficient undifferentiated spermatogonia showed significantly reduced expression of HIF1A, a master transcription factor for hypoxic response. Hypoxia-induced poor proliferation occurred despite activation of MYC and suppression of CDKN1A by HIF1A, whose deficiency exacerbated self-renewal efficiency. Impaired proliferation of Nox1- or Hif1a-deficient SSCs under hypoxia was rescued by Cdkn1a depletion. Consistent with these observations, Cdkn1a-deficient SSCs proliferated actively only under hypoxia but not under normoxia. On the other hand, chemical suppression of mitochondria-derived ROS or Top1mt mitochondria-specific topoisomerase deficiency did not influence SSC fate, suggesting that NOX1-derived ROS play a more important role in SSCs than mitochondria-derived ROS. These results underscore the importance of ROS origin and oxygen tension on SSC self-renewal.
Collapse
|
14
|
Sharma S, Bhonde R. Genetic and epigenetic stability of stem cells: Epigenetic modifiers modulate the fate of mesenchymal stem cells. Genomics 2020; 112:3615-3623. [DOI: 10.1016/j.ygeno.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
|
15
|
Begg K, Tavassoli M. Inside the hypoxic tumour: reprogramming of the DDR and radioresistance. Cell Death Discov 2020; 6:77. [PMID: 32864165 PMCID: PMC7434912 DOI: 10.1038/s41420-020-00311-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
The hypoxic tumour is a chaotic landscape of struggle and adaption. Against the adversity of oxygen starvation, hypoxic cancer cells initiate a reprogramming of transcriptional activities, allowing for survival, metastasis and treatment failure. This makes hypoxia a crucial feature of aggressive tumours. Its importance, to cancer and other diseases, was recognised by the award of the 2019 Nobel Prize in Physiology or Medicine for research contributing to our understanding of the cellular response to oxygen deprivation. For cancers with limited treatment options, for example those that rely heavily on radiotherapy, the results of hypoxic adaption are particularly restrictive to treatment success. A fundamental aspect of this hypoxic reprogramming with direct relevance to radioresistance, is the alteration to the DNA damage response, a complex set of intermingling processes that guide the cell (for good or for bad) towards DNA repair or cell death. These alterations, compounded by the fact that oxygen is required to induce damage to DNA during radiotherapy, means that hypoxia represents a persistent obstacle in the treatment of many solid tumours. Considerable research has been done to reverse, correct or diminish hypoxia's power over successful treatment. Though many clinical trials have been performed or are ongoing, particularly in the context of imaging studies and biomarker discovery, this research has yet to inform clinical practice. Indeed, the only hypoxia intervention incorporated into standard of care is the use of the hypoxia-activated prodrug Nimorazole, for head and neck cancer patients in Denmark. Decades of research have allowed us to build a picture of the shift in the DNA repair capabilities of hypoxic cancer cells. A literature consensus tells us that key signal transducers of this response are upregulated, where repair proteins are downregulated. However, a complete understanding of how these alterations lead to radioresistance is yet to come.
Collapse
Affiliation(s)
- Katheryn Begg
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King’s College London, Hodgkin Building, London, SE1 1UL UK
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King’s College London, Hodgkin Building, London, SE1 1UL UK
| |
Collapse
|
16
|
Vito A, El-Sayes N, Mossman K. Hypoxia-Driven Immune Escape in the Tumor Microenvironment. Cells 2020; 9:E992. [PMID: 32316260 PMCID: PMC7227025 DOI: 10.3390/cells9040992] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment is a complex ecosystem comprised of many different cell types, abnormal vasculature and immunosuppressive cytokines. The irregular growth kinetics with which tumors grow leads to increased oxygen consumption and, in turn, hypoxic conditions. Hypoxia has been associated with poor clinical outcome, increased tumor heterogeneity, emergence of resistant clones and evasion of immune detection. Additionally, hypoxia-driven cell death pathways have traditionally been thought of as tolerogenic processes. However, as researchers working in the field of immunotherapy continue to investigate and unveil new types of immunogenic cell death (ICD), it has become clear that, in some instances, hypoxia may actually induce ICD within a tumor. In this review, we will discuss hypoxia-driven immune escape that drives poor prognostic outcomes, the ability of hypoxia to induce ICD and potential therapeutic targets amongst hypoxia pathways.
Collapse
Affiliation(s)
- Alyssa Vito
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.V.); (N.E.-S.)
| | - Nader El-Sayes
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.V.); (N.E.-S.)
| | - Karen Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
17
|
Xiang Z, Zhou Q, Hu M, Sanders YY. MeCP2 epigenetically regulates alpha-smooth muscle actin in human lung fibroblasts. J Cell Biochem 2020; 121:3616-3625. [PMID: 32115750 DOI: 10.1002/jcb.29655] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND A critical feature for fibroblasts differentiation into myofibroblasts is the expression of alpha-smooth muscle actin (α-SMA) during the tissue injury and repair process. The epigenetic mechanism, DNA methylation, is involved in regulating α-SMA expression. It is not clear how methyl-CpG-binding protein 2 (MeCP2) interacts with CpG-rich region in α-SMA, and if the CpG methylation status would affect MeCP2 binding and regulation of α-SMA expression. METHODS The association of MeCP2 with α-SMA CpG rich region were examined by chromatin immunoprecipitation (ChIP) assays in primary fibroblasts from idiopathic pulmonary fibrosis (IPF) and non-IPF control individuals, and in the lung fibroblasts treated with profibrotic cytokine transforming growth factor β1 (TGF-β1). The regulation of α-SMA by MeCP2 was examined by knocking down MeCP2 with small interfering RNA (siRNA). To explore the effects of the DNA methylation status of the CpG rich region on α-SMA expression, the cells were treated with DNA methyltransferase inhibitor, 5'-azacytidine (5'-aza). The expression of α-SMA was examined by Western blot and quantitative polymerase chain reaction, the association with MeCP2 was assessed by ChIP assays, and the methylation status was checked by bisulfate sequencing. RESULTS The human lung fibroblasts with increased α-SMA showed an enriched association of MeCP2, while knockdown MeCP2 by siRNA reduced α-SMA upregulation by TGF-β1. The 5'-Aza-treated cells have decreased α-SMA expression with reduced MeCP2 association. However, bisulfite sequencing revealed that most CpG sites are unmethylated despite the different expression levels of α-SMA after being treated by TGF-β1 or 5'-aza. CONCLUSION Our data indicate that the methyl-binding protein MeCP2 is critical for α-SMA expression in human lung myofibroblast, and the DNA methylation status at the CpG rich region of α-SMA is not a determinative factor for its inducible expression.
Collapse
Affiliation(s)
- Zheyi Xiang
- Laboratory of Clinical Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Qingxian Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Min Hu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
18
|
Mohammad G, Radhakrishnan R, Kowluru RA. Epigenetic Modifications Compromise Mitochondrial DNA Quality Control in the Development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2020; 60:3943-3951. [PMID: 31546260 PMCID: PMC6759036 DOI: 10.1167/iovs.19-27602] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Diabetes causes dysfunction in the retinal mitochondria and increases base mismatches in their DNA (mtDNA). The enzyme responsible for repairing the base mismatches, MutL homolog 1 (Mlh1), is compromised. Diabetes also favors many epigenetic modifications and activates DNA methylation machinery, and Mlh1 has a CpG-rich promoter. Our aim is to identify the molecular mechanism responsible for impaired mtDNA mismatch repair in the pathogenesis of diabetic retinopathy. Methods Human retinal endothelial cells, incubated in 20 mM glucose, were analyzed for mitochondrial localization of Mlh1 by an immunofluorescence technique, Mlh1 promoter DNA methylation by the methylated DNA capture method, and the binding of Dnmt1 and transcriptional factor Sp1 by chromatin immunoprecipitation. The results were confirmed in retinal microvessels from streptozotocin-induced diabetic mice, with or without Dnmt inhibitors, and from human donors with diabetic retinopathy. Results Compared with cells in 5 mM glucose, high glucose decreased Mlh1 mitochondrial localization, and its promoter DNA was hypermethylated with increased Dnmt-1 binding and decreased Sp1 binding. Dnmt inhibitors attenuated Mlh1 promoter hypermethylation and prevented a decrease in its gene transcripts and an increase in mtDNA mismatches. The administration of Dnmt inhibitors in mice ameliorated a diabetes-induced increase in Mlh1 promoter hypermethylation and a decrease in its gene transcripts. Similar decreases in Mlh1 gene transcripts and its promoter DNA hypermethylation were observed in human donors. Conclusions Thus, as a result of the epigenetic modifications of the Mlh1 promoter, its transcription is decreased, and decreased mitochondrial accumulation fails to repair mtDNA mismatches. Therapies targeted to halt DNA methylation have the potential to prevent/halt mtDNA damage and the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Ghulam Mohammad
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, Michigan, United States
| | - Rakesh Radhakrishnan
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, Michigan, United States
| | - Renu A Kowluru
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
19
|
Sonugür FG, Akbulut H. The Role of Tumor Microenvironment in Genomic Instability of Malignant Tumors. Front Genet 2019; 10:1063. [PMID: 31737046 PMCID: PMC6828977 DOI: 10.3389/fgene.2019.01063] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Genomic instability is an essential feature of cancer cells. The somatic mutation theory suggests that along with inherited ones, the changes in DNA caused by environmental factors may cause cancer. Although approximately 50–60 mutations per tumor are observed in established cancer tissue, it is known that not all of these mutations occur at the beginning of carcinogenesis but also occur later in the disease progression. The high frequency of somatic mutations referring to genomic instability contributes to the intratumoral genetic heterogeneity and treatment resistance. The contribution of the tumor microenvironment to the mutations observed following the acquirement of essential malignant characteristics of a cancer cell is one of the topics that have been extensively investigated in recent years. The frequency of mutations in hematologic tumors is generally less than solid tumors. Although it is a hematologic tumor, multiple myeloma is more similar to solid tumors in terms of the high number of chromosomal abnormalities and genetic heterogeneity. In multiple myeloma, bone marrow microenvironment also plays a role in genomic instability that occurs in the very early stages of the disease. In this review, we will briefly summarize the role of the tumor microenvironment and bone marrow microenvironment in the genomic instability seen in solid tumors and multiple myeloma.
Collapse
Affiliation(s)
- F Gizem Sonugür
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey.,Department of Basic Oncology, Ankara University Cancer Research Institute, Ankara, Turkey
| | - Hakan Akbulut
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey.,Department of Basic Oncology, Ankara University Cancer Research Institute, Ankara, Turkey
| |
Collapse
|
20
|
Steichen C, Hannoun Z, Luce E, Hauet T, Dubart-Kupperschmitt A. Genomic integrity of human induced pluripotent stem cells: Reprogramming, differentiation and applications. World J Stem Cells 2019; 11:729-747. [PMID: 31692979 PMCID: PMC6828592 DOI: 10.4252/wjsc.v11.i10.729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Ten years after the initial generation of induced pluripotent stem cells (hiPSCs) from human tissues, their potential is no longer questioned, with over 15000 publications listed on PubMed, covering various fields of research; including disease modeling, cell therapy strategies, pharmacology/toxicology screening and 3D organoid systems. However, despite evidences that the presence of mutations in hiPSCs should be a concern, publications addressing genomic integrity of these cells represent less than 1% of the literature. After a first overview of the mutation types currently reported in hiPSCs, including karyotype abnormalities, copy number variations, single point mutation as well as uniparental disomy, this review will discuss the impact of reprogramming parameters such as starting cell type and reprogramming method on the maintenance of the cellular genomic integrity. Then, a specific focus will be placed on culture conditions and subsequent differentiation protocols and how their may also trigger genomic aberrations within the cell population of interest. Finally, in a last section, the impact of genomic alterations on the possible usages of hiPSCs and their derivatives will also be exemplified and discussed. We will also discuss which techniques or combination of techniques should be used to screen for genomic abnormalities with a particular focus on the necessary quality controls and the potential alternatives.
Collapse
Affiliation(s)
- Clara Steichen
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers F-86021, France
- Université de Poitiers, Faculté de Médecine et Pharmacie, Bâtiment D1, 6 rue de la milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
| | - Zara Hannoun
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Eléanor Luce
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- Département Hospitalo-Universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Thierry Hauet
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers F-86021, France
- Université de Poitiers, Faculté de Médecine et Pharmacie, Bâtiment D1, 6 rue de la milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
- Service de Biochimie, Pôle Biospharm, CHU de Poitiers, Poitiers F-86021, France
- Fédération Hospitalo-Universitaire SUPORT, CHU de Poitiers, Poitiers F-86021, France
| | - Anne Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- Département Hospitalo-Universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| |
Collapse
|
21
|
Mani C, Reddy PH, Palle K. DNA repair fidelity in stem cell maintenance, health, and disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165444. [PMID: 30953688 DOI: 10.1016/j.bbadis.2019.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Stem cells are a sub population of cell types that form the foundation of our body, and have the potential to replicate, replenish and repair limitlessly to maintain the tissue and organ homeostasis. Increased lifetime and frequent replication set them vulnerable for both exogenous and endogenous agents-induced DNA damage compared to normal cells. To counter these damages and preserve genetic information, stem cells have evolved with various DNA damage response and repair mechanisms. Furthermore, upon experiencing irreparable DNA damage, stem cells mostly prefer early senescence or apoptosis to avoid the accumulation of damages. However, the failure of these mechanisms leads to various diseases, including cancer. Especially, given the importance of stem cells in early development, DNA repair deficiency in stem cells leads to various disabilities like developmental delay, premature aging, sensitivity to DNA damaging agents, degenerative diseases, etc. In this review, we have summarized the recent update about how DNA repair mechanisms are regulated in stem cells and their association with disease progression and pathogenesis.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, United States of America
| | - P Hemachandra Reddy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, United States of America
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, United States of America.
| |
Collapse
|
22
|
Nakasone S, Mimaki S, Ichikawa T, Aokage K, Miyoshi T, Sugano M, Kojima M, Fujii S, Kuwata T, Ochiai A, Tsuboi M, Goto K, Tsuchihara K, Ishii G. Podoplanin-positive cancer-associated fibroblast recruitment within cancer stroma is associated with a higher number of single nucleotide variants in cancer cells in lung adenocarcinoma. J Cancer Res Clin Oncol 2018; 144:893-900. [PMID: 29511884 DOI: 10.1007/s00432-018-2619-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 03/02/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Podoplanin-positive cancer-associated fibroblasts (CAFs) play an essential role in tumor progression. However, it is still unclear whether specific genomic alterations of cancer cells are required to recruit podoplanin-positive CAFs. The aim of this study was to investigate the relationship between the mutation status of lung adenocarcinoma cells and the presence of podoplanin-positive CAFs. METHODS Ninety-seven lung adenocarcinomas for which whole exome sequencing data were available were enrolled. First, we analyzed the clinicopathological features of the cases, and then, evaluated the relationship between genetic features of cancer cells (major driver mutations and the number of single nucleotide variants, SNVs) and the presence of podoplanin-positive CAFs. RESULTS The presence of podoplanin-positive CAFs was associated with smoking history, solid predominant subtype, and lymph node metastasis. We could not find any significant correlations between major genetic mutations (EGFR, KRAS, TP53, MET, ERBB2, BRAF, and PIC3CA) in cancer cells and the presence of podoplanin-positive CAFs. However, cases with podoplanin-positive CAFs had a significantly higher number of SNVs in cancer cells than the podoplanin-negative CAFs cases (median 84 vs 37, respectively; p = 0.001). This was also detected in a non-smoker subgroup (p = 0.037). Multivariate analyses revealed that the number of SNVs in cancer cells was the only statistically significant independent predictor for the presence of podoplanin-positive CAFs (p = 0.044). CONCLUSIONS In lung adenocarcinoma, the presence of podoplanin-positive CAFs was associated with higher numbers of SNVs in cancer cells, suggesting a relationship between accumulations of SNVs in cancer cells and the generation of a tumor-promoting microenvironment.
Collapse
Affiliation(s)
- Shoko Nakasone
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Sachiyo Mimaki
- Division of Translational Research, Research Center for Innovate Oncology, National Cancer Center, Kashiwa, Japan
| | - Tomohiro Ichikawa
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Keiju Aokage
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tomohiro Miyoshi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masato Sugano
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Motohiro Kojima
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Satoshi Fujii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Atsushi Ochiai
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Katsuya Tsuchihara
- Division of Translational Research, Research Center for Innovate Oncology, National Cancer Center, Kashiwa, Japan
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
23
|
FM19G11 and Ependymal Progenitor/Stem Cell Combinatory Treatment Enhances Neuronal Preservation and Oligodendrogenesis after Severe Spinal Cord Injury. Int J Mol Sci 2018; 19:ijms19010200. [PMID: 29315225 PMCID: PMC5796149 DOI: 10.3390/ijms19010200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/02/2023] Open
Abstract
Spinal cord injury (SCI) suffers from a lack of effective therapeutic strategies. We have previously shown that individual therapeutic strategies, transplantation of ependymal stem/progenitor cells of the spinal cord after injury (epSPCi) or FM19G11 pharmacological treatment, induce moderate functional recovery after SCI. Here, the combination of treatments has been assayed for functional and histological analysis. Immediately after severe SCI, one million epSPCi were intramedullary injected, and the FM19G11 compound or dimethyl sulfoxide (DMSO) (as the vehicle control) was administrated via intrathecal catheterization. The combination of treatments, epSPCi and FM19G11, improves locomotor tasks compared to the control group, but did not significantly improve the Basso, Beattie, Bresnahan (BBB) scores for locomotor analysis in comparison with the individual treatments. However, the histological analysis of the spinal cord tissues, two months after SCI and treatments, demonstrated that when we treat the animals with both epSPCi and FM19G11, an improved environment for neuronal preservation was generated by reduction of the glial scar extension. The combinatorial treatment also contributes to enhancing the oligodendrocyte precursor cells by inducing the expression of Olig1 in vivo. These results suggest that a combination of therapies may be an exciting new therapeutic treatment for more efficient neuronal activity recovery after severe SCI.
Collapse
|
24
|
Tang W, Liu X, Qiu L, Zhao X, Huang M, Yin J, Li J, Guo W, Zhu X, Chen Z. Influence of hypoxia-related genetic polymorphisms on the prognosis of patients with metastatic gastric cancer treated with EOF. Oncol Lett 2017; 15:1334-1342. [PMID: 29399184 DOI: 10.3892/ol.2017.7414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 09/01/2017] [Indexed: 11/06/2022] Open
Abstract
Tumor hypoxia is common in a number of solid tumor types including gastric cancer, and is associated with treatment resistance and poor prognosis. The present study aimed to investigate the function of hypoxia-associated genetic polymorphisms in predicting treatment response and survival in patients with metastatic gastric cancer (MGC) treated with EOF (oxaliplatin and 5-fluorouracil combined with epirubicin) as first-line chemotherapy. The present retrospective study enrolled 108 Chinese patients with MGC receiving EOF as first-line chemotherapy, and genotyped six single nucleotide polymorphisms (SNPs) in four hypoxia-associated genes [myoglobin (MB) rs7292 and rs7293, ATP Binding Cassette Subfamily G Member 2 rs2231142, MutL homolog 1 (MLH1) rs1800734 and rs9852810, and Poly(ADP-Ribose) Polymerase 1 rs1136410]. The results of the present study indicated that the CT/TT genotype of MB rs7292, as well as the GG genotype of MLH1 rs9852810, were independent favorable predictive factors of progression-free survival [PFS; MB rs7292: hazard ratio (HR)=0.135, 95% confidence interval (CI)=0.057-0.321, P<0.001; MLH1 rs9852810: HR=0.494, 95% CI=0.267-0.913, P=0.024). Using a prognostic index based on the favorable SNPs for PFS (MB rs7292 CT/TT genotype, and MLH1 rs9852810 GG genotype), patients were classified into a low-risk group (involving one or two of the two SNPs) and a high-risk group (involving neither of the two SNPs), with a PFS of 180.0 and 117.0 days, respectively (P=0.002). The results of the present study demonstrated that the CT/TT genotype of MB rs7292 and the GG genotype of MLH1 rs9852810 were independent favorable predictive factors of PFS in patients with MGC treated with EOF. Identification of those SNPs in blood samples may allow for the prediction of the short-term efficacy of first-line EOF treatment in patients with MGC.
Collapse
Affiliation(s)
- Wenbo Tang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xin Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Lixin Qiu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoying Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jiliang Yin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Zhiyu Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
25
|
Bigot N, Mouche A, Preti M, Loisel S, Renoud ML, Le Guével R, Sensebé L, Tarte K, Pedeux R. Hypoxia Differentially Modulates the Genomic Stability of Clinical-Grade ADSCs and BM-MSCs in Long-Term Culture. Stem Cells 2015; 33:3608-20. [PMID: 26422646 DOI: 10.1002/stem.2195] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/02/2015] [Indexed: 12/12/2022]
Abstract
Long-term cultures under hypoxic conditions have been demonstrated to maintain the phenotype of mesenchymal stromal/stem cells (MSCs) and to prevent the emergence of senescence. According to several studies, hypoxia has frequently been reported to drive genomic instability in cancer cells and in MSCs by hindering the DNA damage response and DNA repair. Thus, we evaluated the occurrence of DNA damage and repair events during the ex vivo expansion of clinical-grade adipose-derived stromal cells (ADSCs) and bone marrow (BM)-derived MSCs cultured with platelet lysate under 21% (normoxia) or 1% (hypoxia) O2 conditions. Hypoxia did not impair cell survival after DNA damage, regardless of MSC origin. However, ADSCs, unlike BM-MSCs, displayed altered γH2AX signaling and increased ubiquitylated γH2AX levels under hypoxic conditions, indicating an impaired resolution of DNA damage-induced foci. Moreover, hypoxia specifically promoted BM-MSC DNA integrity, with increased Ku80, TP53BP1, BRCA1, and RAD51 expression levels and more efficient nonhomologous end joining and homologous recombination repair. We further observed that hypoxia favored mtDNA stability and maintenance of differentiation potential after genotoxic stress. We conclude that long-term cultures under 1% O2 were more suitable for BM-MSCs as suggested by improved genomic stability compared with ADSCs.
Collapse
Affiliation(s)
- Nicolas Bigot
- INSERM U917, Microenvironnement et Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Etablissement Français du Sang Bretagne, Rennes, France
| | - Audrey Mouche
- INSERM U917, Microenvironnement et Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Etablissement Français du Sang Bretagne, Rennes, France
| | - Milena Preti
- Etablissement Français du Sang Pyrénées Méditerranée, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,UMR5273-INSERM U1031, Toulouse, France
| | - Séverine Loisel
- INSERM U917, Microenvironnement et Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Etablissement Français du Sang Bretagne, Rennes, France
| | - Marie-Laure Renoud
- Etablissement Français du Sang Pyrénées Méditerranée, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,UMR5273-INSERM U1031, Toulouse, France
| | - Rémy Le Guével
- Université de Rennes 1, Rennes, France.,ImPACcell, SFR Biosit, Université de Rennes 1, Rennes, France
| | - Luc Sensebé
- Etablissement Français du Sang Pyrénées Méditerranée, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,UMR5273-INSERM U1031, Toulouse, France
| | - Karin Tarte
- INSERM U917, Microenvironnement et Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Etablissement Français du Sang Bretagne, Rennes, France.,Service ITeCH, CHU Pontchaillou, Rennes, France
| | - Rémy Pedeux
- INSERM U917, Microenvironnement et Cancer, Rennes, France.,Université de Rennes 1, Rennes, France.,Etablissement Français du Sang Bretagne, Rennes, France
| |
Collapse
|
26
|
Somaiah N, Rothkamm K, Yarnold J. Where Do We Look for Markers of Radiotherapy Fraction Size Sensitivity? Clin Oncol (R Coll Radiol) 2015; 27:570-8. [PMID: 26108884 DOI: 10.1016/j.clon.2015.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/31/2015] [Accepted: 06/06/2015] [Indexed: 02/06/2023]
Abstract
The response of human normal tissues to radiotherapy fraction size is often described in terms of cellular recovery, but the causal links between cellular and tissue responses to ionising radiation are not necessarily straightforward. This article reviews the evidence for a cellular basis to clinical fractionation sensitivity in normal tissues and discusses the significance of a long-established inverse association between fractionation sensitivity and proliferative indices. Molecular mechanisms of fractionation sensitivity involving DNA damage repair and cell cycle control are proposed that will probably require modification before being applicable to human cancer. The article concludes by discussing the kind of correlative research needed to test for and validate predictive biomarkers of tumour fractionation sensitivity.
Collapse
Affiliation(s)
- N Somaiah
- The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, London, UK.
| | - K Rothkamm
- University Medical Center, Hamburg-Eppendorf, Germany
| | - J Yarnold
- The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
27
|
Sharma S, Bhonde R. Mesenchymal stromal cells are genetically stable under a hostile in vivo–like scenario as revealed by in vitro micronucleus test. Cytotherapy 2015; 17:1384-95. [DOI: 10.1016/j.jcyt.2015.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 06/30/2015] [Accepted: 07/05/2015] [Indexed: 02/07/2023]
|
28
|
Scanlon SE, Glazer PM. Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment. DNA Repair (Amst) 2015; 32:180-189. [PMID: 25956861 DOI: 10.1016/j.dnarep.2015.04.030] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxia, as a pervasive feature in the microenvironment of solid tumors, plays a significant role in cancer progression, metastasis, and ultimately clinical outcome. One key cellular consequence of hypoxic stress is the regulation of DNA repair pathways, which contributes to the genomic instability and mutator phenotype observed in human cancers. Tumor hypoxia can vary in severity and duration, ranging from acute fluctuating hypoxia arising from temporary blockages in the immature microvasculature, to chronic moderate hypoxia due to sparse vasculature, to complete anoxia at distances more than 150 μM from the nearest blood vessel. Paralleling the intra-tumor heterogeneity of hypoxia, the effects of hypoxia on DNA repair occur through diverse mechanisms. Acutely, hypoxia activates DNA damage signaling pathways, primarily via post-translational modifications. On a longer timescale, hypoxia leads to transcriptional and/or translational downregulation of most DNA repair pathways including DNA double-strand break repair, mismatch repair, and nucleotide excision repair. Furthermore, extended hypoxia can lead to long-term persistent silencing of certain DNA repair genes, including BRCA1 and MLH1, revealing a mechanism by which tumor suppressor genes can be inactivated. The discoveries of the hypoxic modulation of DNA repair pathways have highlighted many potential ways to target susceptibilities of hypoxic cancer cells. In this review, we will discuss the multifaceted hypoxic control of DNA repair at the transcriptional, post-transcriptional, and epigenetic levels, and we will offer perspective on the future of its clinical implications.
Collapse
Affiliation(s)
- Susan E Scanlon
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA; Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
29
|
EMAST is a Form of Microsatellite Instability That is Initiated by Inflammation and Modulates Colorectal Cancer Progression. Genes (Basel) 2015; 6:185-205. [PMID: 25836926 PMCID: PMC4488660 DOI: 10.3390/genes6020185] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 12/12/2022] Open
Abstract
DNA mismatch repair (MMR) function is critical for correcting errors coincident with polymerase-driven DNA replication, and its proteins are frequent targets for inactivation (germline or somatic), generating a hypermutable tumor that drives cancer progression. The biomarker for defective DNA MMR is microsatellite instability-high (MSI-H), observed in ~15% of colorectal cancers, and defined by mono- and dinucleotide microsatellite frameshift mutations. MSI-H is highly correlated with loss of MMR protein expression, is commonly diploid, is often located in the right side of the colon, prognosticates good patient outcome, and predicts poor efficacy with 5-fluorouracil treatment. Elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) is another form of MSI at tetranucleotide repeats that has been observed in multiple cancers, but its etiology and clinical relevance to patient care has only been recently illuminated. Specifically, EMAST is an acquired somatic defect observed in up to 60% of colorectal cancers and caused by unique dysfunction of the DNA MMR protein MSH3 (and its DNA MMR complex MutSβ, a heterodimer of MSH2-MSH3), and in particular a loss-of-function phenotype due to a reversible shift from its normal nuclear location into the cytosol in response to oxidative stress and the pro-inflammatory cytokine interleukin-6. Tumor hypoxia may also be a contributor. Patients with EMAST colorectal cancers show diminished prognosis compared to patients without the presence of EMAST in their cancer. In addition to defective DNA MMR recognized by tetranucleotide (and di- and tri-nucleotide) frameshifts, loss of MSH3 also contributes to homologous recombination-mediated repair of DNA double stranded breaks, indicating the MSH3 dysfunction is a complex defect for cancer cells that generates not only EMAST but also may contribute to chromosomal instability and aneuploidy. Areas for future investigation for this most common DNA MMR defect among colorectal cancers include relationships between EMAST and chemotherapy response, patient outcome with aneuploid changes in colorectal cancers, target gene mutation analysis, and mechanisms related to inflammation-induced compartmentalization and inactivation for MSH3.
Collapse
|
30
|
Bigot N, Guérillon C, Loisel S, Bertheuil N, Sensebé L, Tarte K, Pedeux R. ING1b negatively regulates HIF1α protein levels in adipose-derived stromal cells by a SUMOylation-dependent mechanism. Cell Death Dis 2015; 6:e1612. [PMID: 25611387 PMCID: PMC4669774 DOI: 10.1038/cddis.2014.577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/18/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
Abstract
Hypoxic niches help maintain mesenchymal stromal cell properties, and their amplification under hypoxia sustains their immature state. However, how MSCs maintain their genomic integrity in this context remains elusive, since hypoxia may prevent proper DNA repair by downregulating expression of BRCA1 and RAD51. Here, we find that the ING1b tumor suppressor accumulates in adipose-derived stromal cells (ADSCs) upon genotoxic stress, owing to SUMOylation on K193 that is mediated by the E3 small ubiquitin-like modifier (SUMO) ligase protein inhibitor of activated STAT protein γ (PIAS4). We demonstrate that ING1b finely regulates the hypoxic response by triggering HIF1α proteasomal degradation. On the contrary, when mutated on its SUMOylation site, ING1b failed to efficiently decrease HIF1α levels. Consistently, we observed that the adipocyte differentiation, generally described to be downregulated by hypoxia, was highly dependent on ING1b expression, during the early days of this process. Accordingly, contrary to what was observed with HIF1α, the absence of ING1b impeded the adipogenic induction under hypoxic conditions. These data indicate that ING1b contributes to adipogenic induction in adipose-derived stromal cells, and thus hinders the phenotype maintenance of ADSCs.
Collapse
Affiliation(s)
- N Bigot
- 1] INSERM U917, Microenvironnement et Cancer, Rennes, France [2] Université de Rennes 1, Rennes, France [3] Etablissement Français du Sang Bretagne, Rennes, France
| | - C Guérillon
- 1] INSERM U917, Microenvironnement et Cancer, Rennes, France [2] Université de Rennes 1, Rennes, France [3] Etablissement Français du Sang Bretagne, Rennes, France
| | - S Loisel
- 1] INSERM U917, Microenvironnement et Cancer, Rennes, France [2] Université de Rennes 1, Rennes, France [3] Etablissement Français du Sang Bretagne, Rennes, France
| | - N Bertheuil
- 1] Université de Rennes 1, Rennes, France [2] Service ITeCH, CHU Pontchaillou, Rennes, France
| | - L Sensebé
- 1] Etablissement Français du Sang Pyrénées Méditerranée [2] Université Paul Sabatier, Toulouse, France [3] UMR5273-INSERM U1031, Toulouse, France
| | - K Tarte
- 1] INSERM U917, Microenvironnement et Cancer, Rennes, France [2] Université de Rennes 1, Rennes, France [3] Etablissement Français du Sang Bretagne, Rennes, France [4] Service ITeCH, CHU Pontchaillou, Rennes, France
| | - R Pedeux
- 1] INSERM U917, Microenvironnement et Cancer, Rennes, France [2] Université de Rennes 1, Rennes, France [3] Etablissement Français du Sang Bretagne, Rennes, France
| |
Collapse
|
31
|
Oliveira PH, da Silva CL, Cabral JM. Concise Review: Genomic Instability in Human Stem Cells: Current Status and Future Challenges. Stem Cells 2014; 32:2824-32. [DOI: 10.1002/stem.1796] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/03/2014] [Accepted: 06/09/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Pedro H. Oliveira
- Institut Pasteur; Microbial Evolutionary Genomics, Département Génomes et Génétique; Paris France
- CNRS; UMR3525 Paris France
| | - Cláudia Lobato da Silva
- Institute for Biotechnology and Bioengineering, Department of Bioengineering; Instituto Superior Técnico, Universidade de Lisboa; Lisboa Portugal
| | - Joaquim M.S. Cabral
- Institute for Biotechnology and Bioengineering, Department of Bioengineering; Instituto Superior Técnico, Universidade de Lisboa; Lisboa Portugal
| |
Collapse
|
32
|
Chan N, Ali M, McCallum GP, Kumareswaran R, Koritzinsky M, Wouters BG, Wells PG, Gallinger S, Bristow RG. Hypoxia provokes base excision repair changes and a repair-deficient, mutator phenotype in colorectal cancer cells. Mol Cancer Res 2014; 12:1407-15. [PMID: 25030372 DOI: 10.1158/1541-7786.mcr-14-0246] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UNLABELLED Regions of acute and chronic hypoxia exist within solid tumors and can lead to increased rates of mutagenesis and/or altered DNA damage and repair protein expression. Base excision repair (BER) is responsible for resolving small, non-helix-distorting lesions from the genome that potentially cause mutations by mispairing or promoting DNA breaks during replication. Germline and somatic mutations in BER genes, such as MutY Homolog (MUTYH/MYH) and DNA-directed polymerase (POLB), are associated with increased risk of colorectal cancer. However, very little is known about the expression and function of BER proteins under hypoxic stress. Using conditions of chronic hypoxia, decreased expression of BER proteins was observed because of a mechanism involving suppressed BER protein synthesis in multiple colorectal cancer cell lines. Functional BER was impaired as determined by MYH- and 8-oxoguanine (OGG1)-specific glycosylase assays. A formamidopyrimidine-DNA glycosylase (Fpg) Comet assay revealed elevated residual DNA base damage in hypoxic cells 24 hours after H2O2 treatment as compared with normoxic controls. Similarly, high-performance liquid chromatography analysis demonstrated that 8-oxo-2'-deoxyguanosine lesions were elevated in hypoxic cells 3 and 24 hours after potassium bromate (KBrO3) treatment when compared with aerobic cells. Correspondingly, decreased clonogenic survival was observed following exposure to the DNA base damaging agents H2O2 and MMS, but not to the microtubule interfering agent paclitaxel. Thus, a persistent downregulation of BER components by the microenvironment modifies and facilitates a mutator phenotype, driving genetic instability and cancer progression. IMPLICATIONS Aberrant BER is a contributing factor for the observed genetic instability in hypoxic tumor cells.
Collapse
Affiliation(s)
- Norman Chan
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Mohsin Ali
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Gordon P McCallum
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Ramya Kumareswaran
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Bradly G Wouters
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Steven Gallinger
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Robert G Bristow
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Ree AH, Saelen MG, Kalanxhi E, Østensen IHG, Schee K, Røe K, Abrahamsen TW, Dueland S, Flatmark K. Biomarkers of histone deacetylase inhibitor activity in a phase 1 combined-modality study with radiotherapy. PLoS One 2014; 9:e89750. [PMID: 24587009 PMCID: PMC3934935 DOI: 10.1371/journal.pone.0089750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Following the demonstration that histone deacetylase inhibitors enhanced experimental radiation-induced clonogenic suppression, the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study, combining fractionated radiotherapy with daily vorinostat for pelvic carcinoma, was designed to evaluate both clinical and novel biomarker endpoints, the latter relating to pharmacodynamic indicators of vorinostat action in clinical radiotherapy. PATIENTS AND METHODS Potential biomarkers of vorinostat radiosensitizing action, not simultaneously manifesting molecular perturbations elicited by the radiation itself, were explored by gene expression array analysis of study patients' peripheral blood mononuclear cells (PBMC), sampled at baseline (T0) and on-treatment two and 24 hours (T2 and T24) after the patients had received vorinostat. RESULTS This strategy revealed 1,600 array probes that were common for the comparisons T2 versus T0 and T24 versus T2 across all of the patients, and furthermore, that no significantly differential expression was observed between the T0 and T24 groups. Functional annotation analysis of the array data showed that a significant number of identified genes were implicated in gene regulation, the cell cycle, and chromatin biology. Gene expression was validated both in patients' PBMC and in vorinostat-treated human carcinoma xenograft models, and transient repression of MYC was consistently observed. CONCLUSION Within the design of the PRAVO study, all of the identified genes showed rapid and transient induction or repression and therefore, in principle, fulfilled the requirement of being pharmacodynamic biomarkers of vorinostat action in fractionated radiotherapy, possibly underscoring the role of MYC in this therapeutic setting.
Collapse
Affiliation(s)
- Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Marie Grøn Saelen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Erta Kalanxhi
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Ingrid H. G. Østensen
- Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristina Schee
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Kathrine Røe
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Torveig Weum Abrahamsen
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
- Department of Gastroenterological Surgery, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
34
|
Jumonji domain-containing protein 2B silencing induces DNA damage response via STAT3 pathway in colorectal cancer. Br J Cancer 2014; 110:1014-26. [PMID: 24473398 PMCID: PMC3929886 DOI: 10.1038/bjc.2013.808] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022] Open
Abstract
Background: Jumonji domain-containing protein 2B (JMJD2B), directly targeted by hypoxia-inducible factor 1α, maintains the histone methylation balance important for the transcriptional activation of many oncogenes. Jumonji domain-containing protein 2B has been implicated in colorectal cancer (CRC) progression; however, the mechanism remains unclear. Methods: Immunofluorescence and western blotting detected phosphorylated histone H2AX, characteristic of double-strand breaks, and comet assay was used to investigate DNA damage, in CRC cells after JMJD2B small interfering RNA (siRNA) transfection. We assessed the resulting in vitro responses, that is, cell cycle progression, apoptosis, and senescence coupled with JMJD2B silencing-induced DNA damage, studying the regulatory role of signal transducers and activators of transcription 3 (STAT3). The JMJD2B silencing anti-cancer effect was determined using an in vivo CRC xenograft model. Results: Jumonji domain-containing protein 2B knockdown induced DNA damage via ataxia telangiectasia-mutated (ATM) and ATM and Rad3-related pathway activation, resulting in cell cycle arrest, apoptosis, and senescence in both normoxia and hypoxia. Signal transducers and activators of transcription 3 suppression by JMJD2B silencing enhanced DNA damage. Intratumoural injection of JMJD2B siRNA suppressed tumour growth in vivo and activated the DNA damage response (DDR). Conclusions: Jumonji domain-containing protein 2B has an essential role in cancer cell survival and tumour growth via DDR mediation, which STAT3 partially regulates, suggesting that JMJD2B is a potential anti-cancer target.
Collapse
|
35
|
Jiang L, Peng WW, Li LF, Du R, Wu TT, Zhou ZJ, Zhao JJ, Yang Y, Qu DL, Zhu YQ. Effects of deferoxamine on the repair ability of dental pulp cells in vitro. J Endod 2014; 40:1100-4. [PMID: 25069915 DOI: 10.1016/j.joen.2013.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/25/2013] [Accepted: 12/06/2013] [Indexed: 01/07/2023]
Abstract
INTRODUCTION In previous studies, we found that hypoxia promoted the mineralization of dental pulp cells (DPCs). However, the clinical application of hypoxia as a therapy is questionable or unfeasible. Deferoxamine (DFO), a medication for iron overload, has also been shown to induce hypoxia. The purpose of this study was to investigate the effects of DFO on the repair ability of DPCs. METHODS DPCs were obtained by using a tissue explant technique in vitro and were treated with different concentrations of DFO or hypoxia culture for 2 days. The viability, proliferation, migration, and odontogenic differentiation of DPCs were assayed and analyzed. The expression of hypoxia-inducible factor 1-alpha (HIF-1α) was assessed through Western blotting. RESULTS Ten micromolars of DFO enhanced the expression of HIF-1α similarly to hypoxia and did not affect the viability of DPCs for 2 days. Furthermore, the proliferation, migration, and odontogenic differentiation of DPCs were promoted by DFO. CONCLUSIONS These results suggest that DFO might improve the repair ability of DPCs by HIF-1α.
Collapse
Affiliation(s)
- Long Jiang
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei-Wei Peng
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Li-Fen Li
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Rong Du
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Tian-Tian Wu
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhuo-Jun Zhou
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jun-Jun Zhao
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ya Yang
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Dong-Lin Qu
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ya-Qin Zhu
- Department of General Dentistry, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
36
|
Sun Y, Yang Y, Zeng S, Tan Y, Lu G, Lin G. Identification of proteins related to epigenetic regulation in the malignant transformation of aberrant karyotypic human embryonic stem cells by quantitative proteomics. PLoS One 2014; 9:e85823. [PMID: 24465727 PMCID: PMC3895013 DOI: 10.1371/journal.pone.0085823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 12/02/2013] [Indexed: 11/19/2022] Open
Abstract
Previous reports have demonstrated that human embryonic stem cells (hESCs) tend to develop genomic alterations and progress to a malignant state during long-term in vitro culture. This raises concerns of the clinical safety in using cultured hESCs. However, transformed hESCs might serve as an excellent model to determine the process of embryonic stem cell transition. In this study, ITRAQ-based tandem mass spectrometry was used to quantify normal and aberrant karyotypic hESCs proteins from simple to more complex karyotypic abnormalities. We identified and quantified 2583 proteins, and found that the expression levels of 316 proteins that represented at least 23 functional molecular groups were significantly different in both normal and abnormal hESCs. Dysregulated protein expression in epigenetic regulation was further verified in six pairs of hESC lines in early and late passage. In summary, this study is the first large-scale quantitative proteomic analysis of the malignant transformation of aberrant karyotypic hESCs. The data generated should serve as a useful reference of stem cell-derived tumor progression. Increased expression of both HDAC2 and CTNNB1 are detected as early as the pre-neoplastic stage, and might serve as prognostic markers in the malignant transformation of hESCs.
Collapse
Affiliation(s)
- Yi Sun
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, China
| | - Yixuan Yang
- Key Laboratory of Molecular Biology for Infectious Diseases of Ministry of Education of China, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sicong Zeng
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Yueqiu Tan
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, China
| | - Guangxiu Lu
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- * E-mail: (G. Lin); (G. Lu)
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, China
- * E-mail: (G. Lin); (G. Lu)
| |
Collapse
|
37
|
Bentivegna A, Miloso M, Riva G, Foudah D, Butta V, Dalprà L, Tredici G. DNA Methylation Changes during In Vitro Propagation of Human Mesenchymal Stem Cells: Implications for Their Genomic Stability? Stem Cells Int 2013; 2013:192425. [PMID: 24288545 PMCID: PMC3833027 DOI: 10.1155/2013/192425] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/10/2013] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold great promise for the treatment of numerous diseases. A major problem for MSC therapeutic use is represented by the very low amount of MSCs which can be isolated from different tissues; thus ex vivo expansion is indispensable. Long-term culture, however, is associated with extensive morphological and functional changes of MSCs. In addition, the concern that they may accumulate stochastic mutations which lead the risk of malignant transformation still remains. Overall, the genome of human MSCs (hMSCs) appears to be apparently stable throughout culture, though transient clonal aneuploidies have been detected. Particular attention should be given to the use of low-oxygen environment in order to increase the proliferative capacity of hMSCs, since data on the effect of hypoxic culture conditions on genomic stability are few and contradictory. Furthermore, specific and reproducible epigenetic changes were acquired by hMSCs during ex vivo expansion, which may be connected and trigger all the biological changes observed. In this review we address current issues on long-term culture of hMSCs with a 360-degree view, starting from the genomic profiles and back, looking for an epigenetic interpretation of their genetic stability.
Collapse
Affiliation(s)
- Angela Bentivegna
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Mariarosaria Miloso
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Gabriele Riva
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Dana Foudah
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Valentina Butta
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Leda Dalprà
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Giovanni Tredici
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy
| |
Collapse
|
38
|
Luoto KR, Kumareswaran R, Bristow RG. Tumor hypoxia as a driving force in genetic instability. Genome Integr 2013; 4:5. [PMID: 24152759 PMCID: PMC4016142 DOI: 10.1186/2041-9414-4-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/16/2013] [Indexed: 12/26/2022] Open
Abstract
Sub-regions of hypoxia exist within all tumors and the presence of intratumoral hypoxia has an adverse impact on patient prognosis. Tumor hypoxia can increase metastatic capacity and lead to resistance to chemotherapy and radiotherapy. Hypoxia also leads to altered transcription and translation of a number of DNA damage response and repair genes. This can lead to inhibition of recombination-mediated repair of DNA double-strand breaks. Hypoxia can also increase the rate of mutation. Therefore, tumor cell adaptation to the hypoxic microenvironment can drive genetic instability and malignant progression. In this review, we focus on hypoxia-mediated genetic instability in the context of aberrant DNA damage signaling and DNA repair. Additionally, we discuss potential therapeutic approaches to specifically target repair-deficient hypoxic tumor cells.
Collapse
Affiliation(s)
- Kaisa R Luoto
- Ontario Cancer Institute, Radiation Medicine Program, Princess Margaret Cancer Centre (University Health Network), Toronto, ON, Canada
| | - Ramya Kumareswaran
- Ontario Cancer Institute, Radiation Medicine Program, Princess Margaret Cancer Centre (University Health Network), Toronto, ON, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Radiation Medicine Program, Princess Margaret Cancer Centre (University Health Network), 610 University Avenue, Toronto, ON M5G2M9, Canada
| | - Robert G Bristow
- Ontario Cancer Institute, Radiation Medicine Program, Princess Margaret Cancer Centre (University Health Network), Toronto, ON, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Radiation Medicine Program, Princess Margaret Cancer Centre (University Health Network), 610 University Avenue, Toronto, ON M5G2M9, Canada
| |
Collapse
|
39
|
Rietman EA, Friesen DE, Hahnfeldt P, Gatenby R, Hlatky L, Tuszynski JA. An integrated multidisciplinary model describing initiation of cancer and the Warburg hypothesis. Theor Biol Med Model 2013; 10:39. [PMID: 23758735 PMCID: PMC3689044 DOI: 10.1186/1742-4682-10-39] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/29/2013] [Indexed: 12/25/2022] Open
Abstract
Background In this paper we propose a chemical physics mechanism for the initiation of the glycolytic switch commonly known as the Warburg hypothesis, whereby glycolytic activity terminating in lactate continues even in well-oxygenated cells. We show that this may result in cancer via mitotic failure, recasting the current conception of the Warburg effect as a metabolic dysregulation consequent to cancer, to a biophysical defect that may contribute to cancer initiation. Model Our model is based on analogs of thermodynamic concepts that tie non-equilibrium fluid dynamics ultimately to metabolic imbalance, disrupted microtubule dynamics, and finally, genomic instability, from which cancers can arise. Specifically, we discuss how an analog of non-equilibrium Rayleigh-Benard convection can result in glycolytic oscillations and cause a cell to become locked into a higher-entropy state characteristic of cancer. Conclusions A quantitative model is presented that attributes the well-known Warburg effect to a biophysical mechanism driven by a convective disturbance in the cell. Contrary to current understanding, this effect may precipitate cancer development, rather than follow from it, providing new insights into carcinogenesis, cancer treatment, and prevention.
Collapse
Affiliation(s)
- Edward A Rietman
- Center of Cancer Systems Biology, GeneSys Research Institute, Tufts University School of Medicine, Boston, MA 02142, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Hyka-Nouspikel N, Desmarais J, Gokhale PJ, Jones M, Meuth M, Andrews PW, Nouspikel T. Deficient DNA damage response and cell cycle checkpoints lead to accumulation of point mutations in human embryonic stem cells. Stem Cells 2013; 30:1901-10. [PMID: 22821732 DOI: 10.1002/stem.1177] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human embryonic stem cells (hESCs) tend to lose genomic integrity during long periods of culture in vitro and to acquire a cancer-like phenotype. In this study, we aim at understanding the contribution of point mutations to the adaptation process and at providing a mechanistic explanation for their accumulation. We observed that, due to the absence of p21/Waf1/Cip1, cultured hESCs lack proper cell cycle checkpoints and are vulnerable to the kind of DNA damage usually repaired by the highly versatile nucleotide excision repair (NER) pathway. In response to UV-induced DNA damage, the majority of hESCs succumb to apoptosis; however, a subpopulation continues to proliferate, carrying damaged DNA and accumulating point mutations with a typical UV-induced signature. The UV-resistant cells retain their proliferative capacity and potential for pluripotent differentiation and are markedly less apoptotic to subsequent UV exposure. These findings demonstrate that, due to deficient DNA damage response, the modest NER activity in hESCs is insufficient to prevent increased mutagenesis. This provides for the appearance of genetically aberrant hESCs, paving the way for further major genetic changes.
Collapse
|
41
|
Shia J, Zhang L, Shike M, Guo M, Stadler Z, Xiong X, Tang LH, Vakiani E, Katabi N, Wang H, Bacares R, Ruggeri J, Boland CR, Ladanyi M, Klimstra DS. Secondary mutation in a coding mononucleotide tract in MSH6 causes loss of immunoexpression of MSH6 in colorectal carcinomas with MLH1/PMS2 deficiency. Mod Pathol 2013; 26:131-8. [PMID: 22918162 PMCID: PMC3793326 DOI: 10.1038/modpathol.2012.138] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunohistochemical staining for DNA mismatch repair proteins may be affected by various biological and technical factors. Staining variations that could potentially lead to erroneous interpretations have been recognized. A recently recognized staining variation is the significant reduction of staining for MSH6 in some colorectal carcinomas. The frequency and specific characteristics of this aberrant MSH6 staining pattern, however, have not been well analyzed. In this study of 420 colorectal carcinoma samples obtained from patients fulfilling the Revised Bethesda Guidelines, we detected 9 tumors (2%) showing extremely limited staining for MSH6 with positive staining present in <5% of the tumor cells. Our analyses showed that these tumors belonged to two distinct categories: (1) MLH1 and/or PMS2 protein-deficient carcinomas (n=5, including 1 with a pathogenic mutation in PMS2); and (2) MLH1, PMS2 and MSH2 normal but with chemotherapy or chemoradiation therapy before surgery (n=4). To test our hypothesis that somatic mutation in the coding region microsatellite of the MSH6 gene might be a potential underlying mechanism for such limited MSH6 staining, we evaluated frameshift mutation in a (C)(8) tract in exon 5 of the MSH6 gene in seven tumors that had sufficient DNA for analysis, and detected mutation in four; all four tumors belonged to the MLH1/PMS2-deficient group. In conclusion, our data outline the main scenarios where significant reduction of MSH6 staining is more likely to occur in colorectal carcinoma, and suggest that somatic mutations of the coding region microsatellites of the MSH6 gene is an underlying mechanism for this staining phenomenon in MLH1/PMS2-deficient carcinomas.
Collapse
Affiliation(s)
- Jinru Shia
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | - Liying Zhang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Moshe Shike
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Min Guo
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Zsofia Stadler
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Xiaoling Xiong
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Laura H Tang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nora Katabi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Hangjun Wang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ruben Bacares
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jeanine Ruggeri
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - C Richard Boland
- Division of Gastroenterology, Baylor University Medical Center, GI Cancer Research Laboratory and Baylor Research Institute, Dallas, TX, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - David S Klimstra
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
42
|
Zimmermann M, Box C, Eccles SA. Two-dimensional vs. three-dimensional in vitro tumor migration and invasion assays. Methods Mol Biol 2013; 986:227-52. [PMID: 23436416 DOI: 10.1007/978-1-62703-311-4_15] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Motility and invasion are key hallmarks that distinguish benign from malignant tumors, enabling cells to cross tissue boundaries, disseminate in blood and lymph and establish metastases at distant sites. Similar properties are also utilized by activated endothelial cells during tumor-induced angiogenesis. It is now appreciated that these processes might provide a rich source of novel molecular targets with the potential for inhibitors to restrain both metastasis and neoangiogenesis. Such therapeutic strategies require assays that can rapidly and quantitatively measure cell movement and the ability to traverse physiological barriers. The need for high-throughput, however, must be balanced by assay designs that accommodate, as far as possible, the complexity of the in vivo tumor microenvironment. This chapter aims to give an overview of some commonly used migration and invasion assays to aid in the selection of a balanced portfolio of techniques for the rapid and accurate evaluation of novel therapeutic agents.
Collapse
Affiliation(s)
- Miriam Zimmermann
- Tumour Biology and Metastasis, Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, McElwain Laboratories, The Institute of Cancer Research, Surrey, UK
| | | | | |
Collapse
|
43
|
Oliveira PH, Boura JS, Abecasis MM, Gimble JM, da Silva CL, Cabral JMS. Impact of hypoxia and long-term cultivation on the genomic stability and mitochondrial performance of ex vivo expanded human stem/stromal cells. Stem Cell Res 2012; 9:225-36. [PMID: 22903042 DOI: 10.1016/j.scr.2012.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 12/17/2022] Open
Abstract
Recent studies have described the occurrence of chromosomal abnormalities and mitochondrial dysfunction in human stem/stromal cells (SCs), particularly after extensive passaging in vitro and/or expansion under low oxygen tensions. To deepen this knowledge we investigated the influence of hypoxia (2% O(2)) and prolonged passaging (>P10) of human bone marrow stromal cells (BMSCs) and adipose-derived stromal cells (ASCs) on the expression of genes involved in DNA repair and cell-cycle regulation pathways, as well as on the occurrence of microsatellite instability and changes in telomere length. Our results show that hypoxic conditions induce an immediate and concerted down-regulation of genes involved in DNA repair and damage response pathways (MLH1, RAD51, BRCA1, and Ku80), concomitantly with the occurrence of microsatellite instability while maintaining telomere length. We further searched for mutations occurring in the mitochondrial genome, and monitored changes in intracellular ATP content, membrane potential and mitochondrial DNA content. Hypoxia led to a simultaneous decrease in ATP content and in the number of mitochondrial genomes, whereas the opposite effect was observed after prolonged passaging. Moreover, we show that neither hypoxia nor prolonged passaging significantly affected the integrity of the mitochondrial genome. Ultimately, we present evidence on how hypoxia selectively impacts the cellular response of BMSCs and ASCs, thus pointing for the need to optimize oxygen tension according to the cell source.
Collapse
Affiliation(s)
- Pedro H Oliveira
- Department of Bioengineering and Institute for Biotechnology and Bioengineering, Instituto Superior Técnico (IST), Technical University of Lisbon, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
44
|
González IR, Moreno-Manzano V, Rodríguez-Jimenez FJ, Sepúlveda P, Sánchez-Puelles JM. The biology of HIFα proteins in cell differentiation and disease. VITAMINS AND HORMONES 2012; 87:367-79. [PMID: 22127251 DOI: 10.1016/b978-0-12-386015-6.00036-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The biology of the α subunits of the hypoxia-inducible factors (HIFα) has expanded in the past years from their original role in angiogenesis to their nowadays position in the self-renewal and differentiation of stem cells. Hypoxia is a physiological condition in different tissues-including tumors-and, may cause stem cells in the onset of genomic instability, this last associated in the scientific literature with the acquisition of a malignant phenotypes. HIFα proteins have been the subjects of excellent scientific contributions in the past years, providing new paradigms in the biology of these key proteins and their pivotal role in cell homeostasis. Over other therapeutic implications, the relevance of studies focused on the etiology of tumor-initiating cells and the characterization of the mechanisms that could lead to their malignancy, is gaining significance in the health areas of cancer and regenerative medicine.
Collapse
Affiliation(s)
- Inmaculada Royo González
- Molecular Pharmacology Unit, Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | |
Collapse
|
45
|
Down-regulation of MutS homolog 3 by hypoxia in human colorectal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:889-99. [PMID: 22343000 DOI: 10.1016/j.bbamcr.2012.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 01/12/2023]
Abstract
Down-regulation of hMSH3 is associated with elevated microsatellite alterations at selected tetranucleotide repeats and low levels of microsatellite instability in colorectal cancer (CRC). However, the mechanism that down-regulates hMSH3 in CRC is not known. In this study, a significant association between over-expression of glucose transporter 1, a marker for hypoxia, and down-regulation of hMSH3 in CRC tissues was observed. Therefore, we examined the effect of hypoxia on the expression of hMSH3 in human cell lines. When cells with wild type p53 (wt-p53) were exposed to hypoxia, rapid down-regulation of both hMSH2 and hMSH3 occurred. In contrast, when null or mutated p53 (null/mut-p53) cells were exposed to hypoxia, only hMSH3 was down-regulated, and at slower rate than wt-p53 cells. Using a reporter assay, we found that disruption of the two putative hypoxia response elements (HREs) located within the promoter region of the hMSH3 abrogated the suppressive effect of hypoxia on reporter activity regardless of p53 status. In an EMSA, two different forms of HIF-1α complexes that specifically bind to these HREs were detected. A larger complex containing HIF-1α predominantly bound to the HREs in hypoxic null/mut-p53 cells whereas a smaller complex predominated in wt-p53 cells. Finally, HIF-1α knockdown by siRNA significantly inhibited down-regulation of hMSH3 by hypoxia in both wt-p53 and mut-p53 cells. Taken together, our results suggest that the binding of HIF-1α complexes to HRE sites is necessary for down-regulation of hMSH3 in both wt-p53 and mut-p53 cells.
Collapse
|
46
|
Rodríguez-Jiménez FJ, Moreno-Manzano V. Modulation of hypoxia-inducible factors (HIF) from an integrative pharmacological perspective. Cell Mol Life Sci 2012; 69:519-34. [PMID: 21984597 PMCID: PMC11115032 DOI: 10.1007/s00018-011-0813-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/17/2011] [Accepted: 09/01/2011] [Indexed: 12/11/2022]
Abstract
Oxygen homeostasis determines the activity and expression of a multitude of cellular proteins and the interplay of pathways that affect crucial cellular processes for development, physiology, and pathophysiology. Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes in available oxygen in the cellular environment and drives cellular adaptation to such conditions. Selective gene expression under hypoxic conditions is the result of an exquisite regulation of HIF, from the pre-transcriptional stage of the HIF gene to the final transcriptional activity of HIF protein. We provide a dissected analysis of HIF modulation with special focus on hypoxic conditions and HIF pharmacological interventions that can guide the application of any future HIF-mediated therapy.
Collapse
|
47
|
Williamson EA, Wray JW, Bansal P, Hromas R. Overview for the histone codes for DNA repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:207-27. [PMID: 22749147 DOI: 10.1016/b978-0-12-387665-2.00008-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA damage occurs continuously as a result of various factors-intracellular metabolism, replication, and exposure to genotoxic agents, such as ionizing radiation and chemotherapy. If left unrepaired, this damage could result in changes or mutations within the cell genomic material. There are a number of different pathways that the cell can utilize to repair these DNA breaks. However, it is of utmost interest to know how the DNA damage is signaled to the various DNA pathways. As DNA damage occurs within the chromatin, we postulate that modifications of histones are important for signaling the position of DNA damage, recruiting the DNA repair proteins to the site of damage, and creating an open structure such that the repair proteins can access the site of damage. We discuss the modifications that occur on the histones and the manner in which they relate to the type of damage that has occurred as well as the DNA repair pathways that are activated.
Collapse
|
48
|
Ramaekers CH, van den Beucken T, Meng A, Kassam S, Thoms J, Bristow RG, Wouters BG. Hypoxia disrupts the Fanconi anemia pathway and sensitizes cells to chemotherapy through regulation of UBE2T. Radiother Oncol 2011; 101:190-7. [DOI: 10.1016/j.radonc.2011.05.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 11/25/2022]
|
49
|
Pal A, Srivastava T, Sharma MK, Mehndiratta M, Das P, Sinha S, Chattopadhyay P. Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia. J Cell Mol Med 2011; 14:2646-54. [PMID: 19508390 PMCID: PMC4373486 DOI: 10.1111/j.1582-4934.2009.00792.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxia is an integral part of tumorigenesis and contributes extensively to the neoplastic phenotype including drug resistance and genomic instability. It has also been reported that hypoxia results in global demethylation. Because a majority of the cytosine-phosphate-guanine (CpG) islands are found within the repeat elements of DNA, and are usually methylated under normoxic conditions, we suggested that retrotransposable Alu or short interspersed nuclear elements (SINEs) which show altered methylation and associated changes of gene expression during hypoxia, could be associated with genomic instability. U87MG glioblastoma cells were cultured in 0.1% O2 for 6 weeks and compared with cells cultured in 21% O2 for the same duration. Real-time PCR analysis showed a significant increase in SINE and reverse transcriptase coding long interspersed nuclear element (LINE) transcripts during hypoxia. Sequencing of bisulphite treated DNA as well as the Combined Bisulfite Restriction Analysis (COBRA) assay showed that the SINE loci studied underwent significant hypomethylation though there was patchy hypermethylation at a few sites. The inter-alu PCR profile of DNA from cells cultured under 6-week hypoxia, its 4-week revert back to normoxia and 6-week normoxia showed several changes in the band pattern indicating increased alu mediated genomic alteration. Our results show that aberrant methylation leading to increased transcription of SINE and reverse transcriptase associated LINE elements could lead to increased genomic instability in hypoxia. This might be a cause of genetic heterogeneity in tumours especially in variegated hypoxic environment and lead to a development of foci of more aggressive tumour cells.
Collapse
Affiliation(s)
- Arnab Pal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
50
|
Karlsen TA, Mirtaheri P, Shahdadfar A, Fløisand Y, Brinchmann JE. Effect of three-dimensional culture and incubator gas concentration on phenotype and differentiation capability of human mesenchymal stem cells. J Cell Biochem 2011; 112:684-93. [PMID: 21268090 DOI: 10.1002/jcb.22978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To obtain sufficient numbers of cells for tissue engineering applications, human bone marrow-derived mesenchymal stem cells (hBM-MSC) are commonly cultured as monolayers in incubators containing room air. In this study, we investigated whether three-dimensional (3D) culture conditions and incubator gas concentrations more similar to those observed in vivo impacted on cell expansion, differentiation capability, or phenotype of hBM-MSC. We found that 3D culture alone increased the expression of some molecules involved in osteogenic and adipogenic differentiation. In contrast, 3D culture did not induce chondrogenic differentiation, but enhanced the response to the chondrogenic differentiation medium. Changing the oxygen concentration to 6% and the carbon dioxide concentration to 7.5% did not impact on the results of any of our assays, showing that the hyperoxia of room air is not detrimental to hBM-MSC proliferation, differentiation, or phenotype.
Collapse
Affiliation(s)
- Tommy A Karlsen
- Institute of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | | | | | | |
Collapse
|