1
|
Sedaghat F, Mahamed P, Sultani AS, Bagherian M, Biglari M, Mohammadzadeh A, Ghasemzadeh S, Barati G, Saburi E. Revisiting Recent Tissue Engineering Technologies in Alveolar Cleft Reconstruction. Curr Stem Cell Res Ther 2024; 19:840-851. [PMID: 37461350 DOI: 10.2174/1574888x18666230717152556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/06/2023] [Accepted: 06/05/2023] [Indexed: 05/15/2024]
Abstract
Tissue engineering and regenerative medicine have received significant attention in treating degenerative disorders and presented unique opportunities for researchers. The latest research on tissue engineering and regenerative medicine to reconstruct the alveolar cleft has been reviewed in this study. Three approaches have been used to reconstruct alveolar cleft: Studies that used only stem cells or biomaterials and studies that reconstructed alveolar defects by tissue engineering using a combination of stem cells and biomaterials. Stem cells, biomaterials, and tissue-engineered constructs have shown promising results in the reconstruction of alveolar defects. However, some contrary issues, including stem cell durability and scaffold stability, were also observed. It seems that more prospective and comprehensive studies should be conducted to fully clarify the exact dimensions of the stem cells and tissue engineering reconstruction method in the therapy of alveolar cleft.
Collapse
Affiliation(s)
- Faraz Sedaghat
- School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parham Mahamed
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mobina Bagherian
- School of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Biglari
- Faculty of Dentistry, Iran University of Medical Sciences, Tehran, Iran
| | - Anisa Mohammadzadeh
- Faculty of Dentistry, Babol University of Medical Sciences, Mazandaran, Iran
| | | | | | - Ehsan Saburi
- Medical Genetics Research center, Mashhad University of medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Luke Krishnan CS, Brasch HD, Patel J, Bockett N, Paterson E, Davis PF, Tan ST. Stemness-Associated Markers Are Expressed in Extracranial Arteriovenous Malformation. Front Surg 2021; 8:621089. [PMID: 33816543 PMCID: PMC8017302 DOI: 10.3389/fsurg.2021.621089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Arteriovenous malformation (AVM) consists of a nidus with poorly formed low-resistance vessels in place of a functional capillary network. The role of somatic mutations in embryonic stem cells (ESCs) and vascular anomalies and the presence of primitive populations in vascular anomalies led us to investigate the presence of a primitive population in extracranial AVM. Methods: Extracranial AVM tissue samples from 12 patients were stained for stemness-associated markers OCT4, SOX2, NANOG, KLF4, and c-MYC using immunohistochemical staining. In situ hybridization (ISH) was performed on six tissue samples to determine transcript expression. Western blotting and RT-qPCR were performed on two AVM-derived primary cell lines to determine protein and transcript expression of these markers, respectively. Immunofluorescence staining was performed on two tissue samples to investigate marker co-localization. Results: Immunohistochemical staining demonstrated the expression of OCT4, SOX2, KLF4, and c-MYC on the endothelium and media of lesional vessels and cells within the stroma of the nidus in all 12 AVM tissue samples. ISH and RT-qPCR confirmed transcript expression of all five markers. Western blotting showed protein expression of all markers except NANOG. Immunofluorescence staining demonstrated an OCT4+/SOX2+/KLF4+/c-MYC+ population within the endothelium and media of the lesional vessels and cells within the stroma of the AVM nidus. Conclusions: Our findings may suggest the presence of a primitive population within the AVM nidus. Further investigation may lead to novel therapeutic targeting of this population.
Collapse
Affiliation(s)
| | - Helen D Brasch
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Josie Patel
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Erin Paterson
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Centre for the Study & Treatment of Vascular Birthmarks, Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand.,Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Farzaneh M, Anbiyaiee A, Khoshnam SE. Human Pluripotent Stem Cells for Spinal Cord Injury. Curr Stem Cell Res Ther 2020; 15:135-143. [PMID: 31656156 DOI: 10.2174/1574362414666191018121658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) as a serious public health issue and neurological insult is one of the most severe cause of long-term disability. To date, a variety of techniques have been widely developed to treat central nervous system injury. Currently, clinical treatments are limited to surgical decompression and pharmacotherapy. Because of their negative effects and inefficiency, novel therapeutic approaches are required in the management of SCI. Improvement and innovation of stem cell-based therapies have a huge potential for biological and future clinical applications. Human pluripotent stem cells (hPSCs) including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are defined by their abilities to divide asymmetrically, self-renew and ultimately differentiate into various cell lineages. There are considerable research efforts to use various types of stem cells, such as ESCs, neural stem cells (NSCs), and mesenchymal stem cells (MSCs) in the treatment of patients with SCI. Moreover, the use of patient-specific iPSCs holds great potential as an unlimited cell source for generating in vivo models of SCI. In this review, we focused on the potential of hPSCs in treating SCI.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Anbiyaiee
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Wang P, Zhang W, Yang R, Liu S, Ren Y, Liu X, Tan X, Chi B. Biomimetic poly(γ-glutamic acid) hydrogels based on iron (III) ligand coordination for cartilage tissue engineering. Int J Biol Macromol 2020; 167:1508-1516. [PMID: 33212107 DOI: 10.1016/j.ijbiomac.2020.11.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022]
Abstract
For the problems in the research on differentiation of mesenchymal stem cells (BMSCs), such as poor differentiation tendency and low differentiation efficiency, a novel photo-crosslinked extracellular matrix (ECM) inspired double network hydrogel that composed of poly(γ-glutamic acid) (γ-PGA) hydrogel and Fe3+ ligand coordination was designed and manufactured. Compared with those traditional γ-PGA based hydrogels, the introduction of Fe3+ significantly enhanced the mechanical properties of the hydrogel and accelerated the chondrogenesis efficiency of BMSCs chondrogenesis. The experimental results confirmed that the mechanical properties of hydrogel enhanced by the introduction of metal ions Fe3+ could promote BMSCs proliferation, induce cartilage-specific gene expression, and increase secretion of hydroxyproline (HYP) and glycosaminoglycan (GAG). As a result, this method could promote chondrogenic differentiation of BMSCs, accelerate the regeneration of cartilage, and was prospective to be conducive to the research work of cartilage defect repair. Thus, the mechanically enhanced γ-PGA hydrogel scaffold by Fe3+ could mediate BMSCs differentiation and provide a scientific and theoretical basis for research and development of biomedical materials on cartilage tissue engineering field.
Collapse
Affiliation(s)
- Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Lee J, Bayarsaikhan D, Bayarsaikhan G, Kim JS, Schwarzbach E, Lee B. Recent advances in genome editing of stem cells for drug discovery and therapeutic application. Pharmacol Ther 2020; 209:107501. [DOI: 10.1016/j.pharmthera.2020.107501] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
|
6
|
Nishakanthi G. The Shortage of Malaysian Stem Cell Ethics in Mainstream Database: a Preliminary Study. Asian Bioeth Rev 2019; 11:437-460. [PMID: 33717327 DOI: 10.1007/s41649-019-00102-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/26/2019] [Accepted: 11/11/2019] [Indexed: 01/14/2023] Open
Abstract
Ethics is a philosophical branch of inquiry that reasons between what is right and wrong. The moral philosophy of Socrates, Aristotle, and Plato from ancient Greek became the basis of most of the western ethics. These days, ethics can be divided based on its inquiries for example, normative, descriptive, metaethics, and applied ethics or based on its theories like utilitarianism, emotivism, and universal ethics. In context with applied ethics that examines issues involving emerging technologies, this study will look into the ethics of Malaysian stem cell technology based on written literature. It was mainly to identify Malaysian literature on stem cell ethics through conventional search since the mainstream international database indicated an obvious shortage. The critical review of this literature will facilitate in the understanding of unique position of Malaysia towards stem cell and its ethics in reference to the limited number. Despite the limitation, this can be a preliminary study urging for more inquiries and exploration to fulfil the multiple perspectives in ethics such as the diversity of Malaysian ethics, the impact of ethics in stem cell regulation in Malaysia, and if western contemporary ethics influences Malaysian ethics particularly involving stem cell technology.
Collapse
|
7
|
Fekrazad R, Asefi S, Eslaminejad MB, Taghiar L, Bordbar S, Hamblin MR. Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci 2019; 34:115-126. [PMID: 30264177 PMCID: PMC6344244 DOI: 10.1007/s10103-018-2620-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
Tissue engineering aims to take advantage of the ability of undifferentiated stem cells to differentiate into multiple cell types to repair damaged tissue. Photobiomodulation uses either lasers or light-emitting diodes to promote stem cell proliferation and differentiation. The present study aimed to investigate single and dual combinations of laser wavelengths on mesenchymal stem cells (MSCs). MSCs were derived from rabbit iliac bone marrow. One control and eight laser irradiated groups were designated as Infrared (IR, 810 nm), Red (R, 660 nm), Green (G, 532 nm), Blue (B, 485 nm), IR-R, IR-B, R-G, and B-G. Irradiation was repeated daily for 21 days and cell proliferation, osseous, or cartilaginous differentiation was then measured. RT-PCR biomarkers were SOX9, aggrecan, COL 2, and COL 10 expression for cartilage and ALP, COL 1, and osteocalcin expression for bone. Cellular proliferation was increased in all irradiated groups except G. All cartilage markers were significantly increased by IR and IR-B except COL 10 which was suppressed by IR-B combination. ALP expression was highest in R and IR groups during osseous differentiation. ALP was decreased by combinations of IR with B and with R, and also by G alone. R and B-G groups showed stimulated COL 1 expression; however, COL 1 was suppressed in IR-B, IR-R, and G groups. IR significantly increased osteocalcin expression, but in B, B-G, and G groups it was reduced. Cartilage differentiation was stimulated by IR and IR-B laser irradiation. The effects of single or combined laser irradiation were not clear-cut on osseous differentiation. Stimulatory effects on osteogenesis were seen for R and IR lasers, while G laser had inhibitory effects.
Collapse
Affiliation(s)
- Reza Fekrazad
- Periodontics Department, Dentistry School, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran.
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and ResearchNetwork (USERN), Tehran, Iran.
| | - Sohrab Asefi
- Orthodontic Department, Dentistry School, International Campus of Tehran University of Medical Sciences, Tehran, Iran
| | | | - Leila Taghiar
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sima Bordbar
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
8
|
Leibel S, Post M. Endogenous and Exogenous Stem/Progenitor Cells in the Lung and Their Role in the Pathogenesis and Treatment of Pediatric Lung Disease. Front Pediatr 2016; 4:36. [PMID: 27148506 PMCID: PMC4830813 DOI: 10.3389/fped.2016.00036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/31/2016] [Indexed: 12/30/2022] Open
Abstract
The lung is a complex organ with a vast surface area whose main function is to release cellular waste to be exhaled and to replenish the supply of oxygen to the tissues of the body. The conduction of air from the external environment is not without risks, and the lung contains many specialized epithelial cell subtypes that are protecting the lung from foreign material and injury. Specialized cell subtypes are produced during lung development in the fetus as well as postnatally and injury to them due to genetic disease, premature birth, or postnatal environmental injury may lead to devastating disease. Chronic diseases, such as bronchopulmonary dysplasia, cystic fibrosis, and pulmonary arterial hypertension, contribute significantly to morbidity and mortality worldwide, yet successful interventions are often limited. Stem/progenitor cells have emerged as a potentially new preventative or therapeutic option. They are generally defined by the ability to undergo self-renewal and give rise to more differentiated cells. They are important in the early development of embryonic structures and organ differentiation in utero. Postnatally, they function in continued growth, maintenance, and regeneration. Clinically, the immunomodulatory properties of some classes of stem/progenitor cells avoid the major obstacle of immunological rejection seen in organ transplantation and other cell therapies. This review highlights some known human progenitor/stem cells and the most recent advances in stem cell therapies both in vivo and in vitro to prevent and treat pediatric lung disease.
Collapse
Affiliation(s)
- Sandra Leibel
- Program of Physiology & Experimental Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Martin Post
- Program of Physiology & Experimental Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Successful isolation of viable adipose-derived stem cells from human adipose tissue subject to long-term cryopreservation: positive implications for adult stem cell-based therapeutics in patients of advanced age. Stem Cells Int 2015; 2015:146421. [PMID: 25945096 PMCID: PMC4402176 DOI: 10.1155/2015/146421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/28/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022] Open
Abstract
We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2–1159 days) from patients of varying ages (26–62 years). Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved <1 year than from tissue cryopreserved >2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages.
Collapse
|
10
|
Schroeder J, Kueper J, Leon K, Liebergall M. Stem cells for spine surgery. World J Stem Cells 2015; 7:186-194. [PMID: 25621119 PMCID: PMC4300930 DOI: 10.4252/wjsc.v7.i1.186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
In the past few years, stem cells have become the focus of research by regenerative medicine professionals and tissue engineers. Embryonic stem cells, although capable of differentiating into cell lineages of all three germ layers, are limited in their utilization due to ethical issues. In contrast, the autologous harvest and subsequent transplantation of adult stem cells from bone marrow, adipose tissue or blood have been experimentally utilized in the treatment of a wide variety of diseases ranging from myocardial infarction to Alzheimer’s disease. The physiologic consequences of stem cell transplantation and its impact on functional recovery have been studied in countless animal models and select clinical trials. Unfortunately, the bench to bedside translation of this research has been slow. Nonetheless, stem cell therapy has received the attention of spinal surgeons due to its potential benefits in the treatment of neural damage, muscle trauma, disk degeneration and its potential contribution to bone fusion.
Collapse
|
11
|
Dedeepiya VD, William JB, Parthiban JKBC, Chidambaram R, Balamurugan M, Kuroda S, Iwasaki M, Preethy S, Abraham SJK. The known-unknowns in spinal cord injury, with emphasis on cell-based therapies - a review with suggestive arenas for research. Expert Opin Biol Ther 2014; 14:617-34. [PMID: 24660978 DOI: 10.1517/14712598.2014.889676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In spite of extensive research, the progress toward a cure in spinal cord injury (SCI) is still elusive, which holds good for the cell- and stem cell-based therapies. We have critically analyzed seven known gray areas in SCI, indicating the specific arenas for research to improvise the outcome of cell-based therapies in SCI. AREAS COVERED The seven, specific known gray areas in SCI analyzed are: i) the gap between animal models and human victims; ii) uncertainty about the time, route and dosage of cells applied; iii) source of the most efficacious cells for therapy; iv) inability to address the vascular compromise during SCI; v) lack of non-invasive methodologies to track the transplanted cells; vi) need for scaffolds to retain the cells at the site of injury; and vii) physical and chemical stimuli that might be required for synapses formation yielding functional neurons. EXPERT OPINION Further research on scaffolds for retaining the transplanted cells at the lesion, chemical and physical stimuli that may help neurons become functional, a meta-analysis of timing of the cell therapy, mode of application and larger clinical studies are essential to improve the outcome.
Collapse
Affiliation(s)
- Vidyasagar Devaprasad Dedeepiya
- Nichi-In Centre for Regenerative Medicine (NCRM), The Mary-Yoshio Translational Hexagon (MYTH) , PB 1262, Chennai - 600034, Tamil Nadu , India +91 44 24732186 ; ,
| | | | | | | | | | | | | | | | | |
Collapse
|