1
|
Klein D, Palla G, Lange M, Klein M, Piran Z, Gander M, Meng-Papaxanthos L, Sterr M, Saber L, Jing C, Bastidas-Ponce A, Cota P, Tarquis-Medina M, Parikh S, Gold I, Lickert H, Bakhti M, Nitzan M, Cuturi M, Theis FJ. Mapping cells through time and space with moscot. Nature 2025; 638:1065-1075. [PMID: 39843746 PMCID: PMC11864987 DOI: 10.1038/s41586-024-08453-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/25/2024] [Indexed: 01/24/2025]
Abstract
Single-cell genomic technologies enable the multimodal profiling of millions of cells across temporal and spatial dimensions. However, experimental limitations hinder the comprehensive measurement of cells under native temporal dynamics and in their native spatial tissue niche. Optimal transport has emerged as a powerful tool to address these constraints and has facilitated the recovery of the original cellular context1-4. Yet, most optimal transport applications are unable to incorporate multimodal information or scale to single-cell atlases. Here we introduce multi-omics single-cell optimal transport (moscot), a scalable framework for optimal transport in single-cell genomics that supports multimodality across all applications. We demonstrate the capability of moscot to efficiently reconstruct developmental trajectories of 1.7 million cells from mouse embryos across 20 time points. To illustrate the capability of moscot in space, we enrich spatial transcriptomic datasets by mapping multimodal information from single-cell profiles in a mouse liver sample and align multiple coronal sections of the mouse brain. We present moscot.spatiotemporal, an approach that leverages gene-expression data across both spatial and temporal dimensions to uncover the spatiotemporal dynamics of mouse embryogenesis. We also resolve endocrine-lineage relationships of delta and epsilon cells in a previously unpublished mouse, time-resolved pancreas development dataset using paired measurements of gene expression and chromatin accessibility. Our findings are confirmed through experimental validation of NEUROD2 as a regulator of epsilon progenitor cells in a model of human induced pluripotent stem cell islet cell differentiation. Moscot is available as open-source software, accompanied by extensive documentation.
Collapse
Affiliation(s)
- Dominik Klein
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Giovanni Palla
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Marius Lange
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | | - Zoe Piran
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Manuel Gander
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
| | | | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Lama Saber
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Changying Jing
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Munich Medical Research School (MMRS), Ludwig Maximilian University (LMU), Munich, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Shrey Parikh
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
| | - Ilan Gold
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
- School of Medicine, Technical University of Munich, Munich, Germany.
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Center, Munich, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center, Munich, Germany.
- Department of Mathematics, Technical University of Munich, Garching, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| |
Collapse
|
2
|
Bandral M, Sussel L, Lorberbaum DS. Retinoid signaling in pancreas development, islet function, and disease. Curr Top Dev Biol 2024; 161:297-318. [PMID: 39870436 DOI: 10.1016/bs.ctdb.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
All-trans retinoic acid (ATRA) signaling is essential in numerous different biological contexts. This review highlights the diverse roles of ATRA during development, function, and diseases of the pancreas. ATRA is essential to specify pancreatic progenitors from gut tube endoderm, endocrine and exocrine differentiation, and adult islet function. ATRA concentration must be carefully regulated during the derivation of islet-like cells from human pluripotent stem cells (hPSCs) to optimize the expression of key pancreatic transcription factors while mitigating adverse and unwanted cell-types in these cultures. The ATRA pathway is integral to the pancreas and here we will present selected studies from decades of research that has laid the essential groundwork for ongoing projects dedicated to unraveling the complexities of ATRA signaling in the pancreas.
Collapse
Affiliation(s)
- Manuj Bandral
- University of Michigan, Department of Pharmacology, Caswell Diabetes Institute, Ann Arbor, MI, United States
| | - Lori Sussel
- University of Colorado Denver Anschutz Medical Campus, Barbara Davis Center for Diabetes, Aurora, CO, United States
| | - David S Lorberbaum
- University of Michigan, Department of Pharmacology, Caswell Diabetes Institute, Ann Arbor, MI, United States.
| |
Collapse
|
3
|
Gupta D, Burstein AW, Schwalbe DC, Shankar K, Varshney S, Singh O, Paul S, Ogden SB, Osborne-Lawrence S, Metzger NP, Richard CP, Campbell JN, Zigman JM. Ghrelin deletion and conditional ghrelin cell ablation increase pancreatic islet size in mice. J Clin Invest 2023; 133:e169349. [PMID: 38099492 PMCID: PMC10721155 DOI: 10.1172/jci169349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/05/2023] [Indexed: 12/18/2023] Open
Abstract
Ghrelin exerts key effects on islet hormone secretion to regulate blood glucose levels. Here, we sought to determine whether ghrelin's effects on islets extend to the alteration of islet size and β cell mass. We demonstrate that reducing ghrelin - by ghrelin gene knockout (GKO), conditional ghrelin cell ablation, or high-fat diet (HFD) feeding - was associated with increased mean islet size (up to 62%), percentage of large islets (up to 854%), and β cell cross-sectional area (up to 51%). In GKO mice, these effects were more apparent in 10- to 12-week-old mice than in 4-week-old mice. Higher β cell numbers from decreased β cell apoptosis drove the increase in β cell cross-sectional area. Conditional ghrelin cell ablation in adult mice increased the β cell number per islet by 40% within 4 weeks. A negative correlation between islet size and plasma ghrelin in HFD-fed plus chow-fed WT mice, together with even larger islet sizes in HFD-fed GKO mice than in HFD-fed WT mice, suggests that reduced ghrelin was not solely responsible for diet-induced obesity-associated islet enlargement. Single-cell transcriptomics revealed changes in gene expression in several GKO islet cell types, including upregulation of Manf, Dnajc3, and Gnas expression in β cells, which supports decreased β cell apoptosis and/or increased β cell proliferation. These effects of ghrelin reduction on islet morphology might prove useful when designing new therapies for diabetes.
Collapse
Affiliation(s)
- Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Avi W. Burstein
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Dana C. Schwalbe
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Subhojit Paul
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sean B. Ogden
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Nathan P. Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Corine P. Richard
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - John N. Campbell
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffrey M. Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine and
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Olaniru OE, Kadolsky U, Kannambath S, Vaikkinen H, Fung K, Dhami P, Persaud SJ. Single-cell transcriptomic and spatial landscapes of the developing human pancreas. Cell Metab 2023; 35:184-199.e5. [PMID: 36513063 DOI: 10.1016/j.cmet.2022.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
Current differentiation protocols have not been successful in reproducibly generating fully functional human beta cells in vitro, partly due to incomplete understanding of human pancreas development. Here, we present detailed transcriptomic analysis of the various cell types of the developing human pancreas, including their spatial gene patterns. We integrated single-cell RNA sequencing with spatial transcriptomics at multiple developmental time points and revealed distinct temporal-spatial gene cascades. Cell trajectory inference identified endocrine progenitor populations and branch-specific genes as the progenitors differentiate toward alpha or beta cells. Spatial differentiation trajectories indicated that Schwann cells are spatially co-located with endocrine progenitors, and cell-cell connectivity analysis predicted that they may interact via L1CAM-EPHB2 signaling. Our integrated approach enabled us to identify heterogeneity and multiple lineage dynamics within the mesenchyme, showing that it contributed to the exocrine acinar cell state. Finally, we have generated an interactive web resource for investigating human pancreas development for the research community.
Collapse
Affiliation(s)
- Oladapo Edward Olaniru
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London SE1 1UL, UK.
| | - Ulrich Kadolsky
- Genomics Research Platform and Single Cell Laboratory, Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, UK; Genomics WA, University of Western Australia, Harry Perkins Institute of Medical Research and Telethon Kids Institute QEII Campus, Nedlands, Perth, WA 6009, Australia
| | - Shichina Kannambath
- Genomics Research Platform and Single Cell Laboratory, Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, UK
| | - Heli Vaikkinen
- Genomics Research Platform and Single Cell Laboratory, Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, UK
| | - Kathy Fung
- Genomics Research Platform and Single Cell Laboratory, Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, UK
| | - Pawan Dhami
- Genomics Research Platform and Single Cell Laboratory, Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, UK
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
5
|
Caplan LR, Vavinskaya V, Gelikman DG, Jyotsana N, Trinh VQ, Olive KP, Tan MCB, DelGiorno KE. Enteroendocrine Cell Formation Is an Early Event in Pancreatic Tumorigenesis. Front Physiol 2022; 13:865452. [PMID: 35574446 PMCID: PMC9091171 DOI: 10.3389/fphys.2022.865452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a 5-year survival rate of only 11%, due, in part, to late diagnosis, making the need to understand early events in tumorigenesis critical. Acinar-to-ductal metaplasia (ADM), when not resolved, is a PDAC precursor. Recently, we showed that ADM is constituted by a heterogenous population of cells, including hormone-producing enteroendocrine cells (EECs: gamma, delta, epsilon, and enterochromaffin cells). In this study, we employed histopathological techniques to identify and quantify the abundance of EEC subtypes throughout pancreatic tumorigenesis in mouse models and human disease. We found that EECs are most abundant in ADM and significantly decrease with lesion progression. Co-immunofluorescence identifies distinct lineages and bihormonal populations. Evaluation of EEC abundance in mice lacking Pou2f3 demonstrates that the tuft cell master regulator transcription factor is not required for EEC formation. We compared these data to human neoplasia and PDAC and observed similar trends. Lastly, we confirm that EECs are a normal cellular compartment within the murine and human pancreatic ductal trees. Altogether, these data identify EECs as a cellular compartment of the normal pancreas, which expands early in tumorigenesis and is largely lost with disease progression.
Collapse
Affiliation(s)
- Leah R Caplan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Vera Vavinskaya
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - David G Gelikman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States.,College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Nidhi Jyotsana
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Vincent Q Trinh
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kenneth P Olive
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, United States
| | - Marcus C B Tan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Ingram Cancer Center, Nashville, TN, United States
| | - Kathleen E DelGiorno
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Ingram Cancer Center, Nashville, TN, United States.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
6
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
7
|
Napolitano T, Avolio F, Silvano S, Forcisi S, Pfeifer A, Vieira A, Navarro-Sanz S, Friano ME, Ayachi C, Garrido-Utrilla A, Atlija J, Hadzic B, Becam J, Sousa-De-Veiga A, Plaisant MD, Balaji S, Pisani DF, Mondin M, Schmitt-Kopplin P, Amri EZ, Collombat P. Gfi1 Loss Protects against Two Models of Induced Diabetes. Cells 2021; 10:cells10112805. [PMID: 34831029 PMCID: PMC8616283 DOI: 10.3390/cells10112805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Although several approaches have revealed much about individual factors that regulate pancreatic development, we have yet to fully understand their complicated interplay during pancreas morphogenesis. Gfi1 is transcription factor specifically expressed in pancreatic acinar cells, whose role in pancreas cells fate identity and specification is still elusive. Methods: In order to gain further insight into the function of this factor in the pancreas, we generated animals deficient for Gfi1 specifically in the pancreas. Gfi1 conditional knockout animals were phenotypically characterized by immunohistochemistry, RT-qPCR, and RNA scope. To assess the role of Gfi1 in the pathogenesis of diabetes, we challenged Gfi1-deficient mice with two models of induced hyperglycemia: long-term high-fat/high-sugar feeding and streptozotocin injections. Results: Interestingly, mutant mice did not show any obvious deleterious phenotype. However, in depth analyses demonstrated a significant decrease in pancreatic amylase expression, leading to a diminution in intestinal carbohydrates processing and thus glucose absorption. In fact, Gfi1-deficient mice were found resistant to diet-induced hyperglycemia, appearing normoglycemic even after long-term high-fat/high-sugar diet. Another feature observed in mutant acinar cells was the misexpression of ghrelin, a hormone previously suggested to exhibit anti-apoptotic effects on β-cells in vitro. Impressively, Gfi1 mutant mice were found to be resistant to the cytotoxic and diabetogenic effects of high-dose streptozotocin administrations, displaying a negligible loss of β-cells and an imperturbable normoglycemia. Conclusions: Together, these results demonstrate that Gfi1 could turn to be extremely valuable for the development of new therapies and could thus open new research avenues in the context of diabetes research.
Collapse
Affiliation(s)
- Tiziana Napolitano
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Fabio Avolio
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark;
| | - Serena Silvano
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Sara Forcisi
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environment Health, 85764 Neuherberg, Germany; (S.F.); (P.S.-K.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Anja Pfeifer
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Andhira Vieira
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | | | - Marika Elsa Friano
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Chaïma Ayachi
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Anna Garrido-Utrilla
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | | | - Biljana Hadzic
- Pediatric Oncology & Hematology Department, Centre Hospitalier Universitaire de Nice, Hopital Archet 2, 06202 Nice, France;
| | - Jérôme Becam
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Anette Sousa-De-Veiga
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Magali Dodille Plaisant
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | | | - Didier F. Pisani
- Medicine Faculty, Université Côte d’Azur, CNRS, LP2M, 06003 Nice, France;
| | - Magali Mondin
- Pôle Imagerie Photonique, Bordeaux Imaging Center, Université de Bordeaux, UMS 3420 CNRS-US4 Inserm, 33076 Bordeaux, France;
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environment Health, 85764 Neuherberg, Germany; (S.F.); (P.S.-K.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ez-Zoubir Amri
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Patrick Collombat
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
- Correspondence:
| |
Collapse
|
8
|
Gupta D, Dowsett GKC, Mani BK, Shankar K, Osborne-Lawrence S, Metzger NP, Lam BYH, Yeo GSH, Zigman JM. High Coexpression of the Ghrelin and LEAP2 Receptor GHSR With Pancreatic Polypeptide in Mouse and Human Islets. Endocrinology 2021; 162:6325122. [PMID: 34289060 PMCID: PMC8379901 DOI: 10.1210/endocr/bqab148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Islets represent an important site of direct action of the hormone ghrelin, with expression of the ghrelin receptor (growth hormone secretagogue receptor; GHSR) having been localized variably to alpha cells, beta cells, and/or somatostatin (SST)-secreting delta cells. To our knowledge, GHSR expression by pancreatic polypeptide (PP)-expressing gamma cells has not been specifically investigated. Here, histochemical analyses of Ghsr-IRES-Cre × Cre-dependent ROSA26-yellow fluorescent protein (YFP) reporter mice showed 85% of GHSR-expressing islet cells coexpress PP, 50% coexpress SST, and 47% coexpress PP + SST. Analysis of single-cell transcriptomic data from mouse pancreas revealed 95% of Ghsr-expressing cells coexpress Ppy, 100% coexpress Sst, and 95% coexpress Ppy + Sst. This expression was restricted to gamma-cell and delta-cell clusters. Analysis of several single-cell human pancreatic transcriptome data sets revealed 59% of GHSR-expressing cells coexpress PPY, 95% coexpress SST, and 57% coexpress PPY + SST. This expression was prominent in delta-cell and beta-cell clusters, also occurring in other clusters including gamma cells and alpha cells. GHSR expression levels were upregulated by type 2 diabetes mellitus in beta cells. In mice, plasma PP positively correlated with fat mass and with plasma levels of the endogenous GHSR antagonist/inverse agonist LEAP2. Plasma PP also elevated on LEAP2 and synthetic GHSR antagonist administration. These data suggest that in addition to delta cells, beta cells, and alpha cells, PP-expressing pancreatic cells likely represent important direct targets for LEAP2 and/or ghrelin both in mice and humans.
Collapse
Affiliation(s)
- Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
| | - Georgina K C Dowsett
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Bharath K Mani
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
| | - Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
| | - Nathan P Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
| | - Brian Y H Lam
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Giles S H Yeo
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Correspondence: Giles S. H. Yeo, PhD, Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Hills Rd, Cambridge, CB2 0QQ, UK.
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA
- Correspondence: Jeffrey M. Zigman, MD, PhD, Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, MC9077, Dallas, TX 75390-9077, USA.
| |
Collapse
|
9
|
Sequential progenitor states mark the generation of pancreatic endocrine lineages in mice and humans. Cell Res 2021; 31:886-903. [PMID: 33692492 DOI: 10.1038/s41422-021-00486-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
The pancreatic islet contains multiple hormone+ endocrine lineages (α, β, δ, PP and ε cells), but the developmental processes that underlie endocrinogenesis are poorly understood. Here, we generated novel mouse lines and combined them with various genetic tools to enrich all types of hormone+ cells for well-based deep single-cell RNA sequencing (scRNA-seq), and gene coexpression networks were extracted from the generated data for the optimization of high-throughput droplet-based scRNA-seq analyses. These analyses defined an entire endocrinogenesis pathway in which different states of endocrine progenitor (EP) cells sequentially differentiate into specific endocrine lineages in mice. Subpopulations of the EP cells at the final stage (EP4early and EP4late) show different potentials for distinct endocrine lineages. ε cells and an intermediate cell population were identified as distinct progenitors that independently generate both α and PP cells. Single-cell analyses were also performed to delineate the human pancreatic endocrinogenesis process. Although the developmental trajectory of pancreatic lineages is generally conserved between humans and mice, clear interspecies differences, including differences in the proportions of cell types and the regulatory networks associated with the differentiation of specific lineages, have been detected. Our findings support a model in which sequential transient progenitor cell states determine the differentiation of multiple cell lineages and provide a blueprint for directing the generation of pancreatic islets in vitro.
Collapse
|
10
|
Malhotra S, Levitsky LL. Ghrelin: Growth Hormone Release to Hunger Hormone to Glucose Regulation: Lessons From a Rare Genetic Disorder. J Clin Endocrinol Metab 2021; 106:e375-e376. [PMID: 33075133 DOI: 10.1210/clinem/dgaa762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/17/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Sonali Malhotra
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lynne L Levitsky
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Spears E, Serafimidis I, Powers AC, Gavalas A. Debates in Pancreatic Beta Cell Biology: Proliferation Versus Progenitor Differentiation and Transdifferentiation in Restoring β Cell Mass. Front Endocrinol (Lausanne) 2021; 12:722250. [PMID: 34421829 PMCID: PMC8378310 DOI: 10.3389/fendo.2021.722250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
In all forms of diabetes, β cell mass or function is reduced and therefore the capacity of the pancreatic cells for regeneration or replenishment is a critical need. Diverse lines of research have shown the capacity of endocrine as well as acinar, ductal and centroacinar cells to generate new β cells. Several experimental approaches using injury models, pharmacological or genetic interventions, isolation and in vitro expansion of putative progenitors followed by transplantations or a combination thereof have suggested several pathways for β cell neogenesis or regeneration. The experimental results have also generated controversy related to the limitations and interpretation of the experimental approaches and ultimately their physiological relevance, particularly when considering differences between mouse, the primary animal model, and human. As a result, consensus is lacking regarding the relative importance of islet cell proliferation or progenitor differentiation and transdifferentiation of other pancreatic cell types in generating new β cells. In this review we summarize and evaluate recent experimental approaches and findings related to islet regeneration and address their relevance and potential clinical application in the fight against diabetes.
Collapse
Affiliation(s)
- Erick Spears
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ioannis Serafimidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
- VA Tennessee Valley Healthcare System, Nashville, TN, United States
- *Correspondence: Anthony Gavalas, ; Alvin C. Powers,
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
- *Correspondence: Anthony Gavalas, ; Alvin C. Powers,
| |
Collapse
|
12
|
Yong HJ, Xie G, Liu C, Wang W, Naji A, Irianto J, Wang YJ. Gene Signatures of NEUROGENIN3+ Endocrine Progenitor Cells in the Human Pancreas. Front Endocrinol (Lausanne) 2021; 12:736286. [PMID: 34566896 PMCID: PMC8456125 DOI: 10.3389/fendo.2021.736286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
NEUROGENIN3+ (NEUROG3+) cells are considered to be pancreatic endocrine progenitors. Our current knowledge on the molecular program of NEUROG3+ cells in humans is largely extrapolated from studies in mice. We hypothesized that single-cell RNA-seq enables in-depth exploration of the rare NEUROG3+ cells directly in humans. We aligned four large single-cell RNA-seq datasets from postnatal human pancreas. Our integrated analysis revealed 10 NEUROG3+ epithelial cells from a total of 11,174 pancreatic cells. Noticeably, human NEUROG3+ cells clustered with mature pancreatic cells and epsilon cells displayed the highest frequency of NEUROG3 positivity. We confirmed the co-expression of NEUROG3 with endocrine markers and the high percentage of NEUROG3+ cells among epsilon cells at the protein level based on immunostaining on pancreatic tissue sections. We further identified unique genetic signatures of the NEUROG3+ cells. Regulatory network inference revealed novel transcription factors including Prospero homeobox protein 1 (PROX1) may act jointly with NEUROG3. As NEUROG3 plays a central role in endocrine differentiation, knowledge gained from our study will accelerate the development of beta cell regeneration therapies to treat diabetes.
Collapse
Affiliation(s)
- Hyo Jeong Yong
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Gengqiang Xie
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Chengyang Liu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Wei Wang
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Ali Naji
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Jerome Irianto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Yue J. Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
- *Correspondence: Yue J. Wang,
| |
Collapse
|
13
|
Cao J, O'Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, Zager MA, Aldinger KA, Blecher-Gonen R, Zhang F, Spielmann M, Palis J, Doherty D, Steemers FJ, Glass IA, Trapnell C, Shendure J. A human cell atlas of fetal gene expression. Science 2020; 370:370/6518/eaba7721. [PMID: 33184181 DOI: 10.1126/science.aba7721] [Citation(s) in RCA: 422] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
The gene expression program underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of gene expression and chromatin accessibility in fetal tissues. For gene expression, we applied three-level combinatorial indexing to >110 samples representing 15 organs, ultimately profiling ~4 million single cells. We leveraged the literature and other atlases to identify and annotate hundreds of cell types and subtypes, both within and across tissues. Our analyses focused on organ-specific specializations of broadly distributed cell types (such as blood, endothelial, and epithelial), sites of fetal erythropoiesis (which notably included the adrenal gland), and integration with mouse developmental atlases (such as conserved specification of blood cells). These data represent a rich resource for the exploration of in vivo human gene expression in diverse tissues and cell types.
Collapse
Affiliation(s)
- Junyue Cao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Diana R O'Day
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Hannah A Pliner
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Paul D Kingsley
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Mei Deng
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael A Zager
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kimberly A Aldinger
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ronnie Blecher-Gonen
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Malte Spielmann
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA. .,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA. .,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.,Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
14
|
Lorberbaum DS, Docherty FM, Sussel L. Animal Models of Pancreas Development, Developmental Disorders, and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:65-85. [PMID: 32304069 DOI: 10.1007/978-981-15-2389-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pancreas is a glandular organ responsible for diverse homeostatic functions, including hormone production from the endocrine islet cells to regulate blood sugar levels and enzyme secretion from the exocrine acinar cells to facilitate food digestion. These pancreatic functions are essential for life; therefore, preserving pancreatic function is of utmost importance. Pancreas dysfunction can arise either from developmental disorders or adult onset disease, both of which are caused by defects in shared molecular pathways. In this chapter, we discuss what is known about the molecular mechanisms controlling pancreas development, how disruption of these mechanisms can lead to developmental defects and disease, and how essential pancreas functions can be modeled using human pluripotent stem cells. At the core of understanding of these molecular processes are animal model studies that continue to be essential for elucidating the mechanisms underlying human pancreatic functions and diseases.
Collapse
Affiliation(s)
- David S Lorberbaum
- Barbara Davis Center, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Fiona M Docherty
- Barbara Davis Center, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Lori Sussel
- Barbara Davis Center, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
15
|
Mastracci TL, Colvin SC, Padgett LR, Mirmira RG. Hypusinated eIF5A is expressed in the pancreas and spleen of individuals with type 1 and type 2 diabetes. PLoS One 2020; 15:e0230627. [PMID: 32208453 PMCID: PMC7092972 DOI: 10.1371/journal.pone.0230627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/04/2020] [Indexed: 01/19/2023] Open
Abstract
The gene encoding eukaryotic initiation factor 5A (EIF5A) is found in diabetes-susceptibility loci in mouse and human. eIF5A is the only protein known to contain hypusine (hydroxyputrescine lysine), a polyamine-derived amino acid formed post-translationally in a reaction catalyzed by deoxyhypusine synthase (DHPS). Previous studies showed pharmacologic blockade of DHPS in type 1 diabetic NOD mice and type 2 diabetic db/db mice improved glucose tolerance and preserved beta cell mass, which suggests that hypusinated eIF5A (eIF5AHyp) may play a role in diabetes pathogenesis by direct action on the beta cells and/or altering the adaptive or innate immune responses. To translate these findings to human, we examined tissue from individuals with and without type 1 and type 2 diabetes to determine the expression of eIF5AHyp. We detected eIF5AHyp in beta cells, exocrine cells and immune cells; however, there was also unexpected enrichment of eIF5AHyp in pancreatic polypeptide-expressing PP cells. Interestingly, the presence of eIF5AHyp co-expressing PP cells was not enhanced with disease. These data identify new aspects of eIF5A biology and highlight the need to examine human tissue to understand disease.
Collapse
Affiliation(s)
- Teresa L. Mastracci
- Indiana Biosciences Research Institute, Indianapolis, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stephanie C. Colvin
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Leah R. Padgett
- Indiana Biosciences Research Institute, Indianapolis, Indiana, United States of America
| | - Raghavendra G. Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
16
|
Yang W, Chi Y, Meng Y, Chen Z, Xiang R, Yan H, Yang J. FAM3A plays crucial roles in controlling PDX1 and insulin expressions in pancreatic beta cells. FASEB J 2020; 34:3915-3931. [PMID: 31944392 DOI: 10.1096/fj.201902368rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 11/11/2022]
Abstract
So far, the mechanism that links mitochondrial dysfunction to PDX1 inhibition in the pathogenesis of pancreatic β cell dysfunction under diabetic condition remains largely unclear. This study determined the role of mitochondrial protein FAM3A in regulating PDX1 expression in pancreatic β cells using gain- and loss-of function methods in vitro and in vivo. Within pancreas, FAM3A is highly expressed in β, α, δ, and pp cells of islets. Islet FAM3A expression was correlated with insulin expression under physiological and diabetic conditions. Mice with specific knockout of FAM3A in islet β cells exhibited markedly blunted insulin secretion and glucose intolerance. FAM3A-deficient islets showed significant decrease in PDX1 expression, and insulin expression and secretion. FAM3A overexpression upregulated PDX1 and insulin expressions, and augmented insulin secretion in cultured islets and β cells. Mechanistically, FAM3A enhanced ATP production to elevate cellular Ca2+ level and promote insulin secretion. Furthermore, FAM3A-induced ATP release activated CaM to function as a co-activator of FOXA2, stimulating PDX1 gene transcription. In conclusion, FAM3A plays crucial roles in controlling PDX1 and insulin expressions in pancreatic β cells. Inhibition of FAM3A will trigger mitochondrial dysfunction to repress PDX1 and insulin expressions.
Collapse
Affiliation(s)
- Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Zhenzhen Chen
- State Key Laboratory of Cardiovascular Disease, Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
17
|
Gray SM, Page LC, Tong J. Ghrelin regulation of glucose metabolism. J Neuroendocrinol 2019; 31:e12705. [PMID: 30849212 PMCID: PMC6688917 DOI: 10.1111/jne.12705] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Ghrelin and its receptor, the growth hormone secretagogue receptor 1a (GHSR1a), are implicated in the regulation of glucose metabolism via direct actions in the pancreatic islet, as well as peripheral insulin-sensitive tissues and the brain. Although many studies have explored the role of ghrelin in glucose tolerance and insulin secretion, a complete mechanistic understanding remains to be clarified. This review highlights the local expression and function of ghrelin and GHSR1a in pancreatic islets and how this axis may modulate insulin secretion from pancreatic β-cells. Additionally, we discuss the effect of ghrelin on in vivo glucose metabolism in rodents and humans, as well as the metabolic circumstances under which the action of ghrelin may predominate.
Collapse
Affiliation(s)
- Sarah. M. Gray
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701
| | - Laura C. Page
- Division of Endocrinology, Department of Pediatrics, Duke University, Durham, NC 27701
| | - Jenny Tong
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701
- Division of Endocrinology, Department of Pediatrics, Duke University, Durham, NC 27701
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University, Durham, NC 27701
| |
Collapse
|
18
|
Sakata N, Yoshimatsu G, Kodama S. Development and Characteristics of Pancreatic Epsilon Cells. Int J Mol Sci 2019; 20:ijms20081867. [PMID: 31014006 PMCID: PMC6514973 DOI: 10.3390/ijms20081867] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022] Open
Abstract
Pancreatic endocrine cells expressing the ghrelin gene and producing the ghrelin hormone were first identified in 2002. These cells, named ε cells, were recognized as the fifth type of endocrine cells. Differentiation of ε cells is induced by various transcription factors, including Nk2 homeobox 2, paired box proteins Pax-4 and Pax6, and the aristaless-related homeobox. Ghrelin is generally considered to be a "hunger hormone" that stimulates the appetite and is produced mainly by the stomach. Although the population of ε cells is small in adults, they play important roles in regulating other endocrine cells, especially β cells, by releasing ghrelin. However, the roles of ghrelin in β cells are complex. Ghrelin contributes to increased blood glucose levels by suppressing insulin release from β cells and is also involved in the growth and proliferation of β cells and the prevention of β cell apoptosis. Despite increasing evidence and clarification of the mechanisms of ε cells over the last 20 years, many questions remain to be answered. In this review, we present the current evidence for the participation of ε cells in differentiation and clarify their characteristics by focusing on the roles of ghrelin.
Collapse
Affiliation(s)
- Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka 814-0180, Japan.
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka 814-0180, Japan.
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka 814-0180, Japan.
| |
Collapse
|
19
|
Abstract
Diabetes mellitus is a multifactorial disease affecting increasing numbers of patients worldwide. Progression to insulin-dependent diabetes mellitus is characterized by the loss or dysfunction of pancreatic β-cells, but the pathomechanisms underlying β-cell failure in type 1 diabetes mellitus and type 2 diabetes mellitus are still poorly defined. Regeneration of β-cell mass from residual islet cells or replacement by β-like cells derived from stem cells holds great promise to stop or reverse disease progression. However, the development of new treatment options is hampered by our limited understanding of human pancreas organogenesis due to the restricted access to primary tissues. Therefore, the challenge is to translate results obtained from preclinical model systems to humans, which requires comparative modelling of β-cell biology in health and disease. Here, we discuss diverse modelling systems across different species that provide spatial and temporal resolution of cellular and molecular mechanisms to understand the evolutionary conserved genotype-phenotype relationship and translate them to humans. In addition, we summarize the latest knowledge on organoids, stem cell differentiation platforms, primary micro-islets and pseudo-islets, bioengineering and microfluidic systems for studying human pancreas development and homeostasis ex vivo. These new modelling systems and platforms have opened novel avenues for exploring the developmental trajectory, physiology, biology and pathology of the human pancreas.
Collapse
Affiliation(s)
- Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Technical University of Munich, Medical Faculty, Munich, Germany.
| |
Collapse
|
20
|
Li Z, Yu R, Yin W, Qin Y, Ma L, Mulholland M, Zhang W. mTOR Signaling in X/A-Like Cells Contributes to Lipid Homeostasis in Mice. Hepatology 2019; 69:860-875. [PMID: 30141265 PMCID: PMC6351211 DOI: 10.1002/hep.30229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/19/2018] [Indexed: 01/02/2023]
Abstract
Gastric mechanistic target of rapamycin (mTOR) signaling is inversely associated with the expression and secretion of ghrelin, a 28-aa peptide hormone produced by gastric X/A-like cells. Ghrelin contributes to obesity and hepatic steatosis. We sought to control global lipid metabolism via the manipulation of gastric mTOR signaling in X/A-like cells. We established a ghrl-cre transgene in which the Cre enzyme is expressed in X/A-like cells under the control of the ghrelin-promoter. mTORflox/flox and tuberous sclerosis 1 (TSC1)flox/flox mice were separately bred with ghrl-cre mice to generate mTOR-ghrl-cre or TSC1-ghrl-cre mice, within which mTOR signaling was suppressed or activated, respectively. Lipid metabolism in liver and adipose depots was analyzed. Under the control of the ghrelin-promoter, the Cre enzyme was exclusively expressed in stomach X/A-like cells in adult animals. Knockout of mTOR in X/A-like cells increased circulating acyl-ghrelin and promoted hepatic lipogenesis with effects on adipose depots. Activation of mTOR signaling by deletion of its upstream inhibitor, TSC1, decreased ghrelin expression and secretion, altering lipid metabolism as evidenced by resistance to high-fat diet-induced obesity and hepatic steatosis. Both ghrelin administration and injection of rapamycin, an inhibitor of mTOR, altered the phenotypes of TSC1-ghrl-cre mice. Conclusion: Gastric mTOR signaling in X/A-like cells contributes to organism lipid homeostasis by regulating hepatic and adipose lipid metabolism. Gastric mTOR signaling may provide an alternative strategy for intervention in lipid disorders.
Collapse
Affiliation(s)
- Ziru Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China,Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA
| | - Ruili Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Wenzhen Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yan Qin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Liangxiao Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Michael Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA,Corresponding author. Contact information: Michael W. Mulholland, Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA. Tel: 1-734-936-3236; ; Or. Weizhen Zhang, NCRC 26-241N, 2800 Plymouth Rd, Ann Arbor, MI 48105, United State, Tel: 1-734-615-0360; Fax: 1-734-763-4135;
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China,Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA,Corresponding author. Contact information: Michael W. Mulholland, Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA. Tel: 1-734-936-3236; ; Or. Weizhen Zhang, NCRC 26-241N, 2800 Plymouth Rd, Ann Arbor, MI 48105, United State, Tel: 1-734-615-0360; Fax: 1-734-763-4135;
| |
Collapse
|
21
|
Liu J, Banerjee A, Herring CA, Attalla J, Hu R, Xu Y, Shao Q, Simmons AJ, Dadi PK, Wang S, Jacobson DA, Liu B, Hodges E, Lau KS, Gu G. Neurog3-Independent Methylation Is the Earliest Detectable Mark Distinguishing Pancreatic Progenitor Identity. Dev Cell 2019; 48:49-63.e7. [PMID: 30620902 PMCID: PMC6327977 DOI: 10.1016/j.devcel.2018.11.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/26/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022]
Abstract
In the developing pancreas, transient Neurog3-expressing progenitors give rise to four major islet cell types: α, β, δ, and γ; when and how the Neurog3+ cells choose cell fate is unknown. Using single-cell RNA-seq, trajectory analysis, and combinatorial lineage tracing, we showed here that the Neurog3+ cells co-expressing Myt1 (i.e., Myt1+Neurog3+) were biased toward β cell fate, while those not simultaneously expressing Myt1 (Myt1-Neurog3+) favored α fate. Myt1 manipulation only marginally affected α versus β cell specification, suggesting Myt1 as a marker but not determinant for islet-cell-type specification. The Myt1+Neurog3+ cells displayed higher Dnmt1 expression and enhancer methylation at Arx, an α-fate-promoting gene. Inhibiting Dnmts in pancreatic progenitors promoted α cell specification, while Dnmt1 overexpression or Arx enhancer hypermethylation favored β cell production. Moreover, the pancreatic progenitors contained distinct Arx enhancer methylation states without transcriptionally definable sub-populations, a phenotype independent of Neurog3 activity. These data suggest that Neurog3-independent methylation on fate-determining gene enhancers specifies distinct endocrine-cell programs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Amrita Banerjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles A Herring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan Attalla
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ruiying Hu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanwen Xu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiujia Shao
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Emily Hodges
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
22
|
Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Lab Anim Res 2018; 34:147-159. [PMID: 30671100 PMCID: PMC6333611 DOI: 10.5625/lar.2018.34.4.147] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Genetically engineered mouse models are commonly preferred for studying the human disease due to genetic and pathophysiological similarities between mice and humans. In particular, Cre-loxP system is widely used as an integral experimental tool for generating the conditional. This system has enabled researchers to investigate genes of interest in a tissue/cell (spatial control) and/or time (temporal control) specific manner. A various tissue-specific Cre-driver mouse lines have been generated to date, and new Cre lines are still being developed. This review provides a brief overview of Cre-loxP system and a few commonly used promoters for expression of tissue-specific Cre recombinase. Also, we finally introduce some available links to the Web sites that provides detailed information about Cre mouse lines including their characterization.
Collapse
|
23
|
Dominguez Gutierrez G, Kim J, Lee AH, Tong J, Niu J, Gray SM, Wei Y, Ding Y, Ni M, Adler C, Murphy AJ, Gromada J, Xin Y. Gene Signature of the Human Pancreatic ε Cell. Endocrinology 2018; 159:4023-4032. [PMID: 30380031 PMCID: PMC6963699 DOI: 10.1210/en.2018-00833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022]
Abstract
The ghrelin-producing ε cell represents the fifth endocrine cell type in human pancreatic islets. The abundance of ε cells in adult pancreas is extremely low, which has hampered the investigation on the molecular pathways regulating the development and the function of this cell type. In this study, we explored the molecular features defining the function of pancreatic ε cells isolated from adult nondiabetic donors using single-cell RNA sequencing technology. We focus on transcription factors, cell surface receptors, and genes involved in metabolic pathways that contribute to regulation of cellular function. Furthermore, the genes that separate ε cells from the other islet endocrine cell types are presented. This study expands prior knowledge about the genes important for ε cell functioning during development and provides a resource to interrogate the transcriptome of this rare human islet cell type.
Collapse
Affiliation(s)
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Ann-Hwee Lee
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Jenny Tong
- Division of Endocrinology, Metabolism and Nutrition, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - JingJing Niu
- Division of Endocrinology, Metabolism and Nutrition, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Sarah M Gray
- Division of Endocrinology, Metabolism and Nutrition, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Yueming Ding
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | | | - Yurong Xin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| |
Collapse
|
24
|
Balboa D, Saarimäki-Vire J, Borshagovski D, Survila M, Lindholm P, Galli E, Eurola S, Ustinov J, Grym H, Huopio H, Partanen J, Wartiovaara K, Otonkoski T. Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. eLife 2018; 7:38519. [PMID: 30412052 PMCID: PMC6294552 DOI: 10.7554/elife.38519] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
Insulin gene mutations are a leading cause of neonatal diabetes. They can lead to proinsulin misfolding and its retention in endoplasmic reticulum (ER). This results in increased ER-stress suggested to trigger beta-cell apoptosis. In humans, the mechanisms underlying beta-cell failure remain unclear. Here we show that misfolded proinsulin impairs developing beta-cell proliferation without increasing apoptosis. We generated induced pluripotent stem cells (iPSCs) from people carrying insulin (INS) mutations, engineered isogenic CRISPR-Cas9 mutation-corrected lines and differentiated them to beta-like cells. Single-cell RNA-sequencing analysis showed increased ER-stress and reduced proliferation in INS-mutant beta-like cells compared with corrected controls. Upon transplantation into mice, INS-mutant grafts presented reduced insulin secretion and aggravated ER-stress. Cell size, mTORC1 signaling, and respiratory chain subunits expression were all reduced in INS-mutant beta-like cells, yet apoptosis was not increased at any stage. Our results demonstrate that neonatal diabetes-associated INS-mutations lead to defective beta-cell mass expansion, contributing to diabetes development.
Collapse
Affiliation(s)
- Diego Balboa
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Mantas Survila
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Emilia Galli
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Solja Eurola
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heli Grym
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hanna Huopio
- University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Juha Partanen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Kirmo Wartiovaara
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Clinical Genetics, HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
25
|
Byrnes LE, Wong DM, Subramaniam M, Meyer NP, Gilchrist CL, Knox SM, Tward AD, Ye CJ, Sneddon JB. Lineage dynamics of murine pancreatic development at single-cell resolution. Nat Commun 2018; 9:3922. [PMID: 30254276 PMCID: PMC6156586 DOI: 10.1038/s41467-018-06176-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/16/2018] [Indexed: 01/07/2023] Open
Abstract
Organogenesis requires the complex interactions of multiple cell lineages that coordinate their expansion, differentiation, and maturation over time. Here, we profile the cell types within the epithelial and mesenchymal compartments of the murine pancreas across developmental time using a combination of single-cell RNA sequencing, immunofluorescence, in situ hybridization, and genetic lineage tracing. We identify previously underappreciated cellular heterogeneity of the developing mesenchyme and reconstruct potential lineage relationships among the pancreatic mesothelium and mesenchymal cell types. Within the epithelium, we find a previously undescribed endocrine progenitor population, as well as an analogous population in both human fetal tissue and human embryonic stem cells differentiating toward a pancreatic beta cell fate. Further, we identify candidate transcriptional regulators along the differentiation trajectory of this population toward the alpha or beta cell lineages. This work establishes a roadmap of pancreatic development and demonstrates the broad utility of this approach for understanding lineage dynamics in developing organs. Coordinated proliferation and differentiation of diverse cell populations drive pancreatic epithelial and mesenchymal development. Here, the authors profile cell type dynamics in the developing mouse pancreas using single-cell RNA sequencing, identifying mesenchymal subtypes and undescribed endocrine progenitors.
Collapse
Affiliation(s)
- Lauren E Byrnes
- Diabetes Center, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Daniel M Wong
- Diabetes Center, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Meena Subramaniam
- Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Nathaniel P Meyer
- Diabetes Center, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Caroline L Gilchrist
- Diabetes Center, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Sarah M Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, CA, 94143, USA
| | - Aaron D Tward
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, 513 Parnassus Avenue, CA, 94143, USA
| | - Chun J Ye
- Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Julie B Sneddon
- Diabetes Center, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA.
| |
Collapse
|
26
|
Napolitano T, Silvano S, Vieira A, Balaji S, Garrido-Utrilla A, Friano ME, Atlija J, Collombat P. Role of ghrelin in pancreatic development and function. Diabetes Obes Metab 2018; 20 Suppl 2:3-10. [PMID: 30230184 DOI: 10.1111/dom.13385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 11/28/2022]
Abstract
Ghrelin is a gastric peptide with anabolic functions. It acutely stimulates growth hormone (GH) secretion from the anterior pituitary glands and modulates hypothalamic circuits that control food intake and energy expenditure. Besides its central activity, ghrelin is also involved in the regulation of pancreatic development and physiology. Particularly, several studies highlighted the ability of ghrelin to sustain β-cell viability and proliferation. Furthermore, ghrelin seems to exert inhibitory effects on pancreatic acinar and endocrine secretory functions. Due to its pleiotropic activity on energy metabolism, ghrelin has become a topic of great interest for experimental research focused on type II diabetes and obesity. The aim of this review is to illustrate the complex and not fully understood interplay between ghrelin, pancreas and glucose homeostasis.
Collapse
Affiliation(s)
- Tiziana Napolitano
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Serena Silvano
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Andhira Vieira
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Shruti Balaji
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Anna Garrido-Utrilla
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Marika E Friano
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Josipa Atlija
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| | - Patrick Collombat
- Inserm, CNRS, iBV, University of Nice Sophia Antipolis, Nice, France
- iBV, Institut de Biologie Valrose, Centre de Biochimie, University of Nice Sophia Antipolis, Nice Cedex 2, France
| |
Collapse
|
27
|
Liu SY, Huang CH, Shieh JC, Lee TL. Cinnamomum osmophloeum Kanehira ethanol extracts prevents human liver-derived HepG2 cell death from oxidation stress by induction of ghrelin gene expression. J Biosci 2018; 42:439-448. [PMID: 29358557 DOI: 10.1007/s12038-017-9697-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Diabetes patients associated with liver disease carry a significant risk of morbidity and mortality. Cinnamon has been reported to reduce fructose-induced oxidative stress in the rat liver. However, the mechanism by which cinnamon protects the liver in a high-saccharide environment remains to be investigated. HepG2 cells were cultured with 30 mM D-ribose to mimic the high-oxidative-stress environment, typical of a liver in a diabetic patient. Three different chemical types of C. osmophloeum ethanol extracts (CEEs) were added in HepG2 culture media and the administration of all three CEEs protected HepG2 cells from D-ribose damage and increased cell survival by approximately 20 percent. Exclusively, the transcript variant 1 of the ghrelin gene, but not variant 3, was 2-3 times induced by the addition of these CEEs. Moreover, the mRNAs of ghrelin processing enzyme, furin, and mboat4 were detected in HepG2 cells. The ghrelin hormones in the culture media were increased 4-9 times by the addition of CEEs. The protective effects of ghrelin on HepG2 cells in D-ribose environment were further confirmed by recombinant ghrelin transfection. We conclude that the CEEs induce ghrelin gene expression and protect HepG2 cells from D-ribose-induced oxidative damage through ghrelin signalling.
Collapse
Affiliation(s)
- Shu-Ying Liu
- Department of Molecular Biotechnology, Da-Yeh University, Changhua, Taiwan
| | | | | | | |
Collapse
|
28
|
Pancreatic Inflammation Redirects Acinar to β Cell Reprogramming. Cell Rep 2017; 17:2028-2041. [PMID: 27851966 DOI: 10.1016/j.celrep.2016.10.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 09/06/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022] Open
Abstract
Using a transgenic mouse model to express MafA, Pdx1, and Neurog3 (3TF) in a pancreatic acinar cell- and doxycycline-dependent manner, we discovered that the outcome of transcription factor-mediated acinar to β-like cellular reprogramming is dependent on both the magnitude of 3TF expression and on reprogramming-induced inflammation. Overly robust 3TF expression causes acinar cell necrosis, resulting in marked inflammation and acinar-to-ductal metaplasia. Generation of new β-like cells requires limiting reprogramming-induced inflammation, either by reducing 3TF expression or by eliminating macrophages. The new β-like cells were able to reverse streptozotocin-induced diabetes 6 days after inducing 3TF expression but failed to sustain their function after removal of the reprogramming factors.
Collapse
|
29
|
Wu J, Lyu B, Gan T, Wang L, Zhu M. Electroacupuncture improves acute bowel injury recovery in rat models. Exp Ther Med 2017; 14:4655-4662. [PMID: 29201164 PMCID: PMC5704319 DOI: 10.3892/etm.2017.5159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/24/2017] [Indexed: 01/24/2023] Open
Abstract
Electroacupuncture (EA) accelerates intestinal functional recovery in sepsis. The present study investigated ghrelin and ghrelin receptor (GSH-R) levels during EA in rats with acute bowel injury (ABI). Rats were grouped into four groups: Sham, ABI, ABI+EA and ABI+GHRA+EA (n=12 per group). ABI was induced by cecal ligation and puncture (CLP). EA on bilateral Zusanli acupoints was performed following CLP. GSH-R blocker (GHRA) was used following CLP but prior to EA for ABI+GHRA+EA rats. Rats were sacrificed 12 h following CLP. Serum ghrelin, tumor necrosis factor-α (TNF-α) and high mobility group box 1 (HMGB1) levels, as well as ghrelin and GSH-R protein expression, water content, pathological changes and myeloperoxidase (MPO) and diamine oxidase (DAO) activities in the bowel tissues, were measured. ABI rats, compared with the sham rats, had significantly lower levels of ghrelin and GSH-R in the serum and bowel tissue, and higher Chiu's score (all P<0.05). The ABI+EA rats, compared with the ABI rats, had significantly reduced serum TNF-α and HMGB1 levels, bowel water content, MPO activity and Chiu's score (all P<0.05), and significantly higher serum ghrelin (121.2±10.7 vs. 86.7±6.4 pg/ml), bowel ghrelin (0.12±0.02 vs. 0.08±0.01), GSH-R (0.05±0.04 vs. 0.03±0.01) and DAO activity (18.74±4.18 vs. 13.52±2.33 U/ml; all P<0.05), indicating an improvement of the intestinal mucosal barrier. GHRA reversed the protective effects of EA. Therefore, EA improved ABI recovery by promoting ghrelin secretion and upregulating GSH-R expression.
Collapse
Affiliation(s)
- Jiannong Wu
- Department of Critical Care, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Bin Lyu
- Division of Gastroenterology, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Tie'er Gan
- Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Lingcong Wang
- Department of Critical Care, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Meifei Zhu
- Department of Critical Care, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
30
|
Scavuzzo MA, Yang D, Borowiak M. Organotypic pancreatoids with native mesenchyme develop Insulin producing endocrine cells. Sci Rep 2017; 7:10810. [PMID: 28883507 PMCID: PMC5589819 DOI: 10.1038/s41598-017-11169-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Replacement of lost beta cells in patients with diabetes has the potential to alleviate them of their disease, yet current protocols to make beta cells are inadequate for therapy. In vitro screens can reveal the signals necessary for endocrine maturation to improve beta cell production, however the complexities of in vivo development that lead to beta cell formation are lost in two-dimensional systems. Here, we create three-dimensional organotypic pancreatic cultures, named pancreatoids, composed of embryonic day 10.5 murine epithelial progenitors and native mesenchyme. These progenitors assemble in scaffold-free, floating conditions and, with the inclusion of native mesenchyme, develop into pancreatoids expressing markers of different pancreatic lineages including endocrine-like cells. Treatment of pancreatoids with (-)-Indolactam-V or phorbol 12-myristate 13-acetate, two protein kinase C activators, leads to altered morphology which otherwise would be overlooked in two-dimensional systems. Protein kinase C activation also led to fewer Insulin+ cells, decreased Ins1 and Ins2 mRNA levels, and increased Pdx1 and Hes1 mRNA levels with a high number of DBA+ cells. Thus, organotypic pancreatoids provide a useful tool for developmental studies, and can further be used for disease modeling, small molecules and genetic screens, or applied to human pluripotent stem cell differentiation for beta-like cell formation.
Collapse
Affiliation(s)
- Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diane Yang
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA. .,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX, 77030, USA. .,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Karakulak M, Saygili U, Temur M, Yilmaz Ö, Özün Özbay P, Calan M, Coşar H. Comparison of umbilical cord ghrelin concentrations in full-term pregnant women with or without gestational diabetes. Endocr Res 2017; 42:79-85. [PMID: 27352223 DOI: 10.1080/07435800.2016.1194855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Ghrelin is a potent orexigenic peptide hormone secreted from the gastrointestinal tract that plays a crucial role in the regulation of lipids and glucose metabolism. Ghrelin also has links with fetal development and growth. Gestational diabetes mellitus (GDM) causes fetal macrosomia, but there is no available evidence of a relationship between ghrelin levels and birth weight in women with GDM. The purpose of this study is to investigate whether umbilical cord ghrelin concentrations are altered in full-term pregnant women with GDM compared to women without GDM and whether birth weight is correlated with ghrelin levels. MATERIALS AND METHODS Sixty pregnant women with GDM and 64 healthy pregnant women without GDM were included in this cross-sectional study. Blood samples were drawn from the umbilical vein following birth. Ghrelin concentrations were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS Umbilical vein ghrelin levels were decreased in women with GDM (879.6 ± 256.1 vs. 972.2 ± 233.6 pg/ml in women without GDM, p=0.033), whereas birth weights were higher for babies in the GDM than in the non-GDM group (3448 ± 410 vs. 3308 ± 365 gr, respectively, p=0.046). Umbilical ghrelin levels were inversely correlated with birth weight (r=-0.765, p<0.001). Multiple regression analysis revealed that birth weight was independently and negatively associated with umbilical ghrelin levels (β= -2.077, 95% CI=-2.652 to -1.492, p=0.002). CONCLUSIONS Umbilical ghrelin levels were lower in GDM women. Birth weight was inversely associated with umbilical ghrelin levels. This association may be explained by a negative feedback mechanism between ghrelin and birth weight.
Collapse
Affiliation(s)
- Murat Karakulak
- a Silivri State Hospital , Department of Obstetrics and Gynecology , Istanbul , Turkey
| | - Uğur Saygili
- b Dokuzeylul University Medical School , Department of Obstetrics and Gynecology , Izmir , Turkey
| | - Muzaffer Temur
- c Manisa Merkezefendi Hospital , Department of Obstetrics and Gynecology , Manisa , Turkey
| | - Özgür Yilmaz
- c Manisa Merkezefendi Hospital , Department of Obstetrics and Gynecology , Manisa , Turkey
| | - Pelin Özün Özbay
- d Aydin Obstetrics and Pediatrics Hospital Department of Obstetrics and Gynecology , Aydin , Turkey
| | - Mehmet Calan
- e Izmir Bozyaka Research Hospital , Department of Endocrinology Izmir , Turkey
| | - Hese Coşar
- f M.D. Manisa Merkezefendi Hospital , Department of Pediatrics Division of Neonatology , Manisa , Turkey
| |
Collapse
|
32
|
Clarifying the Ghrelin System's Ability to Regulate Feeding Behaviours Despite Enigmatic Spatial Separation of the GHSR and Its Endogenous Ligand. Int J Mol Sci 2017; 18:ijms18040859. [PMID: 28422060 PMCID: PMC5412441 DOI: 10.3390/ijms18040859] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 12/23/2022] Open
Abstract
Ghrelin is a hormone predominantly produced in and secreted from the stomach. Ghrelin is involved in many physiological processes including feeding, the stress response, and in modulating learning, memory and motivational processes. Ghrelin does this by binding to its receptor, the growth hormone secretagogue receptor (GHSR), a receptor found in relatively high concentrations in hypothalamic and mesolimbic brain regions. While the feeding and metabolic effects of ghrelin can be explained by the effects of this hormone on regions of the brain that have a more permeable blood brain barrier (BBB), ghrelin produced within the periphery demonstrates a limited ability to reach extrahypothalamic regions where GHSRs are expressed. Therefore, one of the most pressing unanswered questions plaguing ghrelin research is how GHSRs, distributed in brain regions protected by the BBB, are activated despite ghrelin’s predominant peripheral production and poor ability to transverse the BBB. This manuscript will describe how peripheral ghrelin activates central GHSRs to encourage feeding, and how central ghrelin synthesis and ghrelin independent activation of GHSRs may also contribute to the modulation of feeding behaviours.
Collapse
|
33
|
Afelik S, Rovira M. Pancreatic β-cell regeneration: Facultative or dedicated progenitors? Mol Cell Endocrinol 2017; 445:85-94. [PMID: 27838399 DOI: 10.1016/j.mce.2016.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/21/2016] [Accepted: 11/08/2016] [Indexed: 12/19/2022]
Abstract
The adult pancreas is only capable of limited regeneration. Unlike highly regenerative tissues such as the skin, intestinal crypts and hematopoietic system, no dedicated adult stem cells or stem cell niche have so far been identified within the adult pancreas. New β cells have been shown to form in the adult pancreas, in response to high physiological demand or experimental β-cell ablation, mostly by replication of existing β cells. The possibility that new β cells are formed from other sources is currently a point of major controversy. Under particular injury conditions, fully differentiated pancreatic duct and acinar cells have been shown to dedifferentiate into a progenitor-like state, however the extent, to which ductal, acinar or other endocrine cells contribute to restoring pancreatic β-cell mass remains to be resolved. In this review we focus on regenerative events in the pancreas with emphasis on the restoration of β-cell mass. We present an overview of regenerative responses noted within the different pancreatic lineages, following injury. We also highlight the intrinsic plasticity of the adult pancreas that allows for inter-conversion of fully differentiated pancreatic lineages through manipulation of few genes or growth factors. Taken together, evidence from a number of studies suggest that differentiated pancreatic lineages could act as facultative progenitor cells, but the extent to which these contribute to β-cell regeneration in vivo is still a matter of contention.
Collapse
Affiliation(s)
- Solomon Afelik
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, 840 South Wood Street, CSB 920 (Rm 502), Chicago, IL 60612, USA.
| | - Meritxell Rovira
- Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
34
|
Cheng CW, Villani V, Buono R, Wei M, Kumar S, Yilmaz OH, Cohen P, Sneddon JB, Perin L, Longo VD. Fasting-Mimicking Diet Promotes Ngn3-Driven β-Cell Regeneration to Reverse Diabetes. Cell 2017; 168:775-788.e12. [PMID: 28235195 PMCID: PMC5357144 DOI: 10.1016/j.cell.2017.01.040] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/23/2016] [Accepted: 01/30/2017] [Indexed: 01/01/2023]
Abstract
Stem-cell-based therapies can potentially reverse organ dysfunction and diseases, but the removal of impaired tissue and activation of a program leading to organ regeneration pose major challenges. In mice, a 4-day fasting mimicking diet (FMD) induces a stepwise expression of Sox17 and Pdx-1, followed by Ngn3-driven generation of insulin-producing β cells, resembling that observed during pancreatic development. FMD cycles restore insulin secretion and glucose homeostasis in both type 2 and type 1 diabetes mouse models. In human type 1 diabetes pancreatic islets, fasting conditions reduce PKA and mTOR activity and induce Sox2 and Ngn3 expression and insulin production. The effects of the FMD are reversed by IGF-1 treatment and recapitulated by PKA and mTOR inhibition. These results indicate that a FMD promotes the reprogramming of pancreatic cells to restore insulin generation in islets from T1D patients and reverse both T1D and T2D phenotypes in mouse models. PAPERCLIP.
Collapse
Affiliation(s)
- Chia-Wei Cheng
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Koch Institute at MIT, 500 Main Street, Cambridge, MA 02139, USA
| | - Valentina Villani
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, Los Angeles, CA 90027, USA
| | - Roberta Buono
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milan 20139, Italy
| | - Min Wei
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Sanjeev Kumar
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Omer H Yilmaz
- Koch Institute at MIT, 500 Main Street, Cambridge, MA 02139, USA
| | - Pinchas Cohen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Julie B Sneddon
- Diabetes Center, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, Los Angeles, CA 90027, USA
| | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milan 20139, Italy.
| |
Collapse
|
35
|
Churchill AJ, Gutiérrez GD, Singer RA, Lorberbaum DS, Fischer KA, Sussel L. Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development. eLife 2017; 6:e20010. [PMID: 28071588 PMCID: PMC5224921 DOI: 10.7554/elife.20010] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Many pancreatic transcription factors that are essential for islet cell differentiation have been well characterized; however, because they are often expressed in several different cell populations, their functional hierarchy remains unclear. To parse out the spatiotemporal regulation of islet cell differentiation, we used a Neurog3-Cre allele to ablate Nkx2.2, one of the earliest and most broadly expressed islet transcription factors, specifically in the Neurog3+ endocrine progenitor lineage (Nkx2.2△endo). Remarkably, many essential components of the β cell transcriptional network that were down-regulated in the Nkx2.2KO mice, were maintained in the Nkx2.2△endo mice - yet the Nkx2.2△endo mice displayed defective β cell differentiation and recapitulated the Nkx2.2KO phenotype. This suggests that Nkx2.2 is not only required in the early pancreatic progenitors, but has additional essential activities within the endocrine progenitor population. Consistently, we demonstrate Nkx2.2 functions as an integral component of a modular regulatory program to correctly specify pancreatic islet cell fates.
Collapse
Affiliation(s)
- Angela J Churchill
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- Genetics and Development Doctoral Program, Columbia University Medical School, New York, Columbia
| | - Giselle Dominguez Gutiérrez
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- Nutritional and Metabolic Biology Doctoral Program, Columbia University Medical School, New York, Columbia
| | - Ruth A Singer
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- The Integrated Graduate Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical School, New York, Columbia
| | | | - Kevin A Fischer
- Barbara Davis Center, University of Colorado, Denver, United States
| | - Lori Sussel
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- Genetics and Development Doctoral Program, Columbia University Medical School, New York, Columbia
- Nutritional and Metabolic Biology Doctoral Program, Columbia University Medical School, New York, Columbia
- The Integrated Graduate Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical School, New York, Columbia
- Barbara Davis Center, University of Colorado, Denver, United States
| |
Collapse
|
36
|
Kolar GR, Grote SM, Yosten GLC. Targeting orphan G protein-coupled receptors for the treatment of diabetes and its complications: C-peptide and GPR146. J Intern Med 2017; 281:25-40. [PMID: 27306986 PMCID: PMC6092955 DOI: 10.1111/joim.12528] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
G protein-coupled receptors (GPCRs) are the most abundant receptor family encoded by the human genome and are the targets of a high percentage of drugs currently in use or in clinical trials for the treatment of diseases such as diabetes and its associated complications. Thus, orphan GPCRs, for which the ligand is unknown, represent an important untapped source of therapeutic potential for the treatment of many diseases. We have identified the previously orphan GPCR, GPR146, as the putative receptor of proinsulin C-peptide, which may prove to be an effective treatment for diabetes-associated complications. For example, we have found a potential role of C-peptide and GPR146 in regulating the function of the retinal pigment epithelium, a monolayer of cells in the retina that serves as part of the blood-retinal barrier and is disrupted in diabetic macular oedema. However, C-peptide signalling in this cell type appears to depend at least in part on extracellular glucose concentration and its interaction with insulin. In this review, we discuss the therapeutic potential of orphan GPCRs with a special focus on C-peptide and GPR146, including past and current strategies used to 'deorphanize' this diverse family of receptors, past successes and the inherent difficulties of this process.
Collapse
Affiliation(s)
- G R Kolar
- Department of Pathology, St Louis University School of Medicine, St Louis, MO, USA
| | - S M Grote
- Department of Pharmacology and Physiology, St Louis University School of Medicine, St Louis, MO, USA
| | - G L C Yosten
- Department of Pharmacology and Physiology, St Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
37
|
Mani BK, Osborne-Lawrence S, Vijayaraghavan P, Hepler C, Zigman JM. β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals. J Clin Invest 2016; 126:3467-78. [PMID: 27548523 DOI: 10.1172/jci86270] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 07/07/2016] [Indexed: 01/06/2023] Open
Abstract
Ghrelin is an orexigenic gastric peptide hormone secreted when caloric intake is limited. Ghrelin also regulates blood glucose, as emphasized by the hypoglycemia that is induced by caloric restriction in mouse models of deficient ghrelin signaling. Here, we hypothesized that activation of β1-adrenergic receptors (β1ARs) localized to ghrelin cells is required for caloric restriction-associated ghrelin release and the ensuing protective glucoregulatory response. In mice lacking the β1AR specifically in ghrelin-expressing cells, ghrelin secretion was markedly blunted, resulting in profound hypoglycemia and prevalent mortality upon severe caloric restriction. Replacement of ghrelin blocked the effects of caloric restriction in β1AR-deficient mice. We also determined that treating calorically restricted juvenile WT mice with beta blockers led to reduced plasma ghrelin and hypoglycemia, the latter of which is similar to the life-threatening, fasting-induced hypoglycemia observed in infants treated with beta blockers. These findings highlight the critical functions of ghrelin in preventing hypoglycemia and promoting survival during severe caloric restriction and the requirement for ghrelin cell-expressed β1ARs in these processes. Moreover, these results indicate a potential role for ghrelin in mediating beta blocker-associated hypoglycemia in susceptible individuals, such as young children.
Collapse
|
38
|
Arnes L, Akerman I, Balderes DA, Ferrer J, Sussel L. βlinc1 encodes a long noncoding RNA that regulates islet β-cell formation and function. Genes Dev 2016; 30:502-7. [PMID: 26944677 PMCID: PMC4782045 DOI: 10.1101/gad.273821.115] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pancreatic β cells are responsible for maintaining glucose homeostasis; their absence or malfunction results in diabetes mellitus. Although there is evidence that long noncoding RNAs (lncRNAs) play important roles in development and disease, none have been investigated in vivo in the context of pancreas development. In this study, we demonstrate that βlinc1 (β-cell long intergenic noncoding RNA 1), a conserved lncRNA, is necessary for the specification and function of insulin-producing β cells through the coordinated regulation of a number of islet-specific transcription factors located in the genomic vicinity of βlinc1. Furthermore, deletion of βlinc1 results in defective islet development and disruption of glucose homeostasis in adult mice.
Collapse
Affiliation(s)
- Luis Arnes
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | - Ildem Akerman
- Genomic Programming of Β-Cells Laboratory, Institut d'Investigacions August Pi I Sunyer (IDIBAPS), Barcelona 08036, Spain; Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Dina A Balderes
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | - Jorge Ferrer
- Genomic Programming of Β-Cells Laboratory, Institut d'Investigacions August Pi I Sunyer (IDIBAPS), Barcelona 08036, Spain; Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Lori Sussel
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| |
Collapse
|
39
|
Gross S, Garofalo DC, Balderes DA, Mastracci TL, Dias JM, Perlmann T, Ericson J, Sussel L. The novel enterochromaffin marker Lmx1a regulates serotonin biosynthesis in enteroendocrine cell lineages downstream of Nkx2.2. Development 2016; 143:2616-28. [PMID: 27287799 DOI: 10.1242/dev.130682] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/26/2016] [Indexed: 12/17/2022]
Abstract
Intestinal hormone-producing cells represent the largest endocrine system in the body, but remarkably little is known about enteroendocrine cell type specification in the embryo and adult. We analyzed stage- and cell type-specific deletions of Nkx2.2 and its functional domains in order to characterize its role in the development and maintenance of enteroendocrine cell lineages in the mouse duodenum and colon. Although Nkx2.2 regulates enteroendocrine cell specification in the duodenum at all stages examined, it controls the differentiation of progressively fewer enteroendocrine cell populations when deleted from Ngn3(+) progenitor cells or in the adult duodenum. During embryonic development Nkx2.2 regulates all enteroendocrine cell types, except gastrin and preproglucagon. In developing Ngn3(+) enteroendocrine progenitor cells, Nkx2.2 is not required for the specification of neuropeptide Y and vasoactive intestinal polypeptide, indicating that a subset of these cell populations derive from an Nkx2.2-independent lineage. In adult duodenum, Nkx2.2 becomes dispensable for cholecystokinin and secretin production. In all stages and Nkx2.2 mutant conditions, serotonin-producing enterochromaffin cells were the most severely reduced enteroendocrine lineage in the duodenum and colon. We determined that the transcription factor Lmx1a is expressed in enterochromaffin cells and functions downstream of Nkx2.2. Lmx1a-deficient mice have reduced expression of Tph1, the rate-limiting enzyme for serotonin biosynthesis. These data clarify the function of Nkx2.2 in the specification and homeostatic maintenance of enteroendocrine populations, and identify Lmx1a as a novel enterochromaffin cell marker that is also essential for the production of the serotonin biosynthetic enzyme Tph1.
Collapse
Affiliation(s)
- Stefanie Gross
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Diana C Garofalo
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Dina A Balderes
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Teresa L Mastracci
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - José M Dias
- Department of Cell and Molecular Biology, Karolinska Institute, von Eulers v. 3, 171 77, Stockholm, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institute, von Eulers v. 3, 171 77, Stockholm, Sweden Ludwig Institute for Cancer Research, Stockholm Branch, Nobels v. 3, 171 77, Stockholm, Sweden
| | - Johan Ericson
- Department of Cell and Molecular Biology, Karolinska Institute, von Eulers v. 3, 171 77, Stockholm, Sweden
| | - Lori Sussel
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
40
|
Kang HS, Takeda Y, Jeon K, Jetten AM. The Spatiotemporal Pattern of Glis3 Expression Indicates a Regulatory Function in Bipotent and Endocrine Progenitors during Early Pancreatic Development and in Beta, PP and Ductal Cells. PLoS One 2016; 11:e0157138. [PMID: 27270601 PMCID: PMC4896454 DOI: 10.1371/journal.pone.0157138] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/25/2016] [Indexed: 11/21/2022] Open
Abstract
The transcription factor Glis-similar 3 (Glis3) has been implicated in the development of neonatal, type 1 and type 2 diabetes. In this study, we examined the spatiotemporal expression of Glis3 protein during embryonic and neonatal pancreas development as well as its function in PP cells. To obtain greater insights into the functions of Glis3 in pancreas development, we examined the spatiotemporal expression of Glis3 protein in a knockin mouse strain expressing a Glis3-EGFP fusion protein. Immunohistochemistry showed that Glis3-EGFP was not detectable during early pancreatic development (E11.5 and E12.5) and at E13.5 and 15.5 was not expressed in Ptf1a+ cells in the tip domains indicating that Glis3 is not expressed in multipotent pancreatic progenitors. Glis3 was first detectable at E13.5 in the nucleus of bipotent progenitors in the trunk domains, where it co-localized with Sox9, Hnf6, and Pdx1. It remained expressed in preductal and Ngn3+ endocrine progenitors and at later stages becomes restricted to the nucleus of pancreatic beta and PP cells as well as ductal cells. Glis3-deficiency greatly reduced, whereas exogenous Glis3, induced Ppy expression, as reported for insulin. Collectively, our study demonstrates that Glis3 protein exhibits a temporal and cell type-specific pattern of expression during embryonic and neonatal pancreas development that is consistent with a regulatory role for Glis3 in promoting endocrine progenitor generation, regulating insulin and Ppy expression in beta and PP cells, respectively, and duct morphogenesis.
Collapse
Affiliation(s)
- Hong Soon Kang
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
| | - Yukimasa Takeda
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
| | - Kilsoo Jeon
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
| | - Anton M. Jetten
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
- * E-mail:
| |
Collapse
|
41
|
Mohan H, Gasner M, Ramesh N, Unniappan S. Ghrelin, ghrelin-O-acyl transferase, nucleobindin-2/nesfatin-1 and prohormone convertases in the pancreatic islets of Sprague Dawley rats during development. J Mol Histol 2016; 47:325-36. [DOI: 10.1007/s10735-016-9673-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/29/2016] [Indexed: 12/18/2022]
|
42
|
Beer RL, Parsons MJ, Rovira M. Centroacinar cells: At the center of pancreas regeneration. Dev Biol 2016; 413:8-15. [PMID: 26963675 DOI: 10.1016/j.ydbio.2016.02.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
The process of regeneration serves to heal injury by replacing missing cells. Understanding regeneration can help us replace cell populations lost during disease, such as the insulin-producing β cells lost in diabetic patients. Centroacinar cells (CACs) are a specialized ductal pancreatic cell type that act as progenitors to replace β cells in the zebrafish. However, whether CACs contribute to β-cell regeneration in adult mammals remains controversial. Here we review the current understanding of the role of CACs as endocrine progenitors during regeneration in zebrafish and mammals.
Collapse
Affiliation(s)
- Rebecca L Beer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States.
| | - Michael J Parsons
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States; Department of Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Meritxell Rovira
- Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
43
|
Kim HS, Lee MK. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas. J Diabetes Investig 2016; 7:286-96. [PMID: 27330712 PMCID: PMC4847880 DOI: 10.1111/jdi.12475] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022] Open
Abstract
Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β‐cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β‐cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin‐producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β‐cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β‐cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin‐producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin‐producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin‐producing cells, especially duct and acinar cells.
Collapse
Affiliation(s)
- Hyo-Sup Kim
- Division of Endocrinology and Metabolism Department of Medicine Sungkyunkwan University School of Medicine Samsung Biomedical Research Institute Samsung Medical Center Seoul Korea
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism Department of Medicine Sungkyunkwan University School of Medicine Samsung Biomedical Research Institute Samsung Medical Center Seoul Korea
| |
Collapse
|
44
|
Jiang FX, Morahan G. Multipotent pancreas progenitors: Inconclusive but pivotal topic. World J Stem Cells 2015; 7:1251-1261. [PMID: 26730269 PMCID: PMC4691693 DOI: 10.4252/wjsc.v7.i11.1251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/20/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023] Open
Abstract
The establishment of multipotent pancreas progenitors (MPP) should have a significant impact not only on the ontology of the pancreas, but also for the translational research of glucose-responding endocrine β-cells. Deficiency of the latter may lead to the pandemic type 1 or type 2 diabetes mellitus, a metabolic disorder. An ideal treatment of which would potentially be the replacement of destroyed or failed β-cells, by restoring function of endogenous pancreatic endocrine cells or by transplantation of donor islets or in vitro generated insulin-secreting cells. Thus, considerable research efforts have been devoted to identify MPP candidates in the pre- and post-natal pancreas for the endogenous neogenesis or regeneration of endocrine insulin-secreting cells. In order to advance this inconclusive but critical field, we here review the emerging concepts, recent literature and newest developments of potential MPP and propose measures that would assist its forward progression.
Collapse
|
45
|
Lizio M, Ishizu Y, Itoh M, Lassmann T, Hasegawa A, Kubosaki A, Severin J, Kawaji H, Nakamura Y, Suzuki H, Hayashizaki Y, Carninci P, Forrest ARR. Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line. Front Genet 2015; 6:331. [PMID: 26635867 PMCID: PMC4650373 DOI: 10.3389/fgene.2015.00331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022] Open
Abstract
Mammals are composed of hundreds of different cell types with specialized functions. Each of these cellular phenotypes are controlled by different combinations of transcription factors. Using a human non islet cell insulinoma cell line (TC-YIK) which expresses insulin and the majority of known pancreatic beta cell specific genes as an example, we describe a general approach to identify key cell-type-specific transcription factors (TFs) and their direct and indirect targets. By ranking all human TFs by their level of enriched expression in TC-YIK relative to a broad collection of samples (FANTOM5), we confirmed known key regulators of pancreatic function and development. Systematic siRNA mediated perturbation of these TFs followed by qRT-PCR revealed their interconnections with NEUROD1 at the top of the regulation hierarchy and its depletion drastically reducing insulin levels. For 15 of the TF knock-downs (KD), we then used Cap Analysis of Gene Expression (CAGE) to identify thousands of their targets genome-wide (KD-CAGE). The data confirm NEUROD1 as a key positive regulator in the transcriptional regulatory network (TRN), and ISL1, and PROX1 as antagonists. As a complimentary approach we used ChIP-seq on four of these factors to identify NEUROD1, LMX1A, PAX6, and RFX6 binding sites in the human genome. Examining the overlap between genes perturbed in the KD-CAGE experiments and genes with a ChIP-seq peak within 50 kb of their promoter, we identified direct transcriptional targets of these TFs. Integration of KD-CAGE and ChIP-seq data shows that both NEUROD1 and LMX1A work as the main transcriptional activators. In the core TRN (i.e., TF-TF only), NEUROD1 directly transcriptionally activates the pancreatic TFs HSF4, INSM1, MLXIPL, MYT1, NKX6-3, ONECUT2, PAX4, PROX1, RFX6, ST18, DACH1, and SHOX2, while LMX1A directly transcriptionally activates DACH1, SHOX2, PAX6, and PDX1. Analysis of these complementary datasets suggests the need for caution in interpreting ChIP-seq datasets. (1) A large fraction of binding sites are at distal enhancer sites and cannot be directly associated to their targets, without chromatin conformation data. (2) Many peaks may be non-functional: even when there is a peak at a promoter, the expression of the gene may not be affected in the matching perturbation experiment.
Collapse
Affiliation(s)
- Marina Lizio
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Yuri Ishizu
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Masayoshi Itoh
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; RIKEN Preventive Medicine and Diagnosis Innovation Program Yokohama, Japan
| | - Timo Lassmann
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; Telethon Kids Institute, The University of Western Australia Subiaco, WA, Australia
| | - Akira Hasegawa
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | | | - Jessica Severin
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Hideya Kawaji
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; RIKEN Preventive Medicine and Diagnosis Innovation Program Yokohama, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center Ibaraki, Japan
| | | | - Harukazu Suzuki
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Yoshihide Hayashizaki
- RIKEN Center for Life Science Technologies Yokohama, Japan ; RIKEN Preventive Medicine and Diagnosis Innovation Program Yokohama, Japan
| | - Piero Carninci
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Alistair R R Forrest
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; QEII Medical Centre and Centre for Medical Research, Harry Perkins Institute of Medical Research, The University of Western Australia Nedlands, WA, Australia
| |
Collapse
|
46
|
Elrick MM, Samson WK, Corbett JA, Salvatori AS, Stein LM, Kolar GR, Naatz A, Yosten GLC. Neuronostatin acts via GPR107 to increase cAMP-independent PKA phosphorylation and proglucagon mRNA accumulation in pancreatic α-cells. Am J Physiol Regul Integr Comp Physiol 2015; 310:R143-55. [PMID: 26561648 DOI: 10.1152/ajpregu.00369.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/08/2015] [Indexed: 12/17/2022]
Abstract
Neuronostatin (NST) is a recently described peptide that is produced from the somatostatin preprohormone in pancreatic δ-cells. NST has been shown to increase glucagon secretion from primary rat pancreatic islets in low-glucose conditions. Here, we demonstrate that NST increases proglucagon message in α-cells and identify a potential mechanism for NST's cellular activities, including the phosphorylation of PKA following activation of the G protein-coupled receptor, GPR107. GPR107 is abundantly expressed in the pancreas, particularly, in rodent and human α-cells. Compromise of GPR107 in pancreatic α-cells results in failure of NST to increase PKA phosphorylation and proglucagon mRNA levels. We also demonstrate colocalization of GPR107 and NST on both mouse and human pancreatic α-cells. Taken together with our group's observation that NST infusion in conscious rats impairs glucose clearance in response to a glucose challenge and that plasma levels of the peptide are elevated in the fasted compared with the fed or fasted-refed state, these studies support the hypothesis that endogenous NST regulates islet cell function by interacting with GPR107 and initiating signaling in glucagon-producing α-cells.
Collapse
Affiliation(s)
- Mollisa M Elrick
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Willis K Samson
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison S Salvatori
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Lauren M Stein
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Grant R Kolar
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri; and
| | - Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gina L C Yosten
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri;
| |
Collapse
|
47
|
Epigenetic modifications and long noncoding RNAs influence pancreas development and function. Trends Genet 2015; 31:290-9. [PMID: 25812926 DOI: 10.1016/j.tig.2015.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/29/2023]
Abstract
Insulin-producing β cells within the pancreatic islet of Langerhans are responsible for maintaining glucose homeostasis; the loss or malfunction of β cells results in diabetes mellitus. Recent advances in cell purification strategies and sequencing technologies as well as novel molecular tools have revealed that epigenetic modifications and long noncoding RNAs (lncRNAs) represent an integral part of the transcriptional mechanisms regulating pancreas development and β cell function. Importantly, these findings have uncovered a new layer of gene regulation in the pancreas that can be exploited to enhance the restoration and/or repair of β cells to treat diabetes.
Collapse
|
48
|
Sangan CB, Jover R, Heimberg H, Tosh D. In vitro reprogramming of pancreatic alpha cells towards a beta cell phenotype following ectopic HNF4α expression. Mol Cell Endocrinol 2015; 399:50-9. [PMID: 25224487 DOI: 10.1016/j.mce.2014.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 08/21/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022]
Abstract
There is currently a shortage of organ donors available for pancreatic beta cell transplantation into diabetic patients. An alternative source of beta cells is pre-existing pancreatic cells. While we know that beta cells can arise directly from alpha cells during pancreatic regeneration we do not understand the molecular basis for the switch in phenotype. The aim of the present study was to investigate if hepatocyte nuclear factor 4 alpha (HNF4α), a transcription factor essential for a normal beta cell phenotype, could induce the reprogramming of alpha cells towards potential beta cells. We utilised an in vitro model of pancreatic alpha cells, the murine αTC1-9 cell line. We initially characterised the αTC1-9 cell line before and following adenovirus-mediated ectopic expression of HNF4α. We analysed the phenotype at transcript and protein level and assessed its glucose-responsiveness. Ectopic HNF4α expression in the αTC1-9 cell line induced a change in morphology (1.7-fold increase in size), suppressed glucagon expression, induced key beta cell-specific markers (insulin, C-peptide, glucokinase, GLUT2 and Pax4) and pancreatic polypeptide (PP) and enabled the cells to secrete insulin in a glucose-regulated manner. In conclusion, HNF4α reprograms alpha cells to beta-like cells.
Collapse
Affiliation(s)
| | - Ramiro Jover
- Experimental Hepatology Unit. Hosp. La Fe & Dep. Biochemistry, University of Valencia. CIBERehd, Spain
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Tosh
- Centre for Regenerative Medicine, University of Bath, Bath, UK.
| |
Collapse
|
49
|
Abstract
Diabetes mellitus is caused by absolute (type 1) or relative (type 2) deficiency of insulin-secreting islet β cells. An ideal treatment of diabetes would, therefore, be to replace the lost or deficient β cells, by transplantation of donated islets or differentiated endocrine cells or by regeneration of endogenous islet cells. Due to their ability of unlimited proliferation and differentiation into all functional lineages in our body, including β cells, embryonic stem cells and induced pluripotent stem cells are ideally placed as cell sources for a diabetic transplantation therapy. Unfortunately, the inability to generate functional differentiated islet cells from pluripotent stem cells and the poor availability of donor islets have severely restricted the broad clinical use of the replacement therapy. Therefore, endogenous sources that can be directed to becoming insulin-secreting cells are actively sought after. In particular, any cell types in the developing or adult pancreas that may act as pancreatic stem cells (PSC) would provide an alternative renewable source for endogenous regeneration. In this review, we will summarize the latest progress and knowledge of such PSC, and discuss ways that facilitate the future development of this often controversial, but crucial research.
Collapse
Affiliation(s)
- Fang-Xu Jiang
- 1 Islet Cell Development Program, Harry Perkins Institute of Medical Research, and Centre for Medical Research, The University of Western Australia , Perth, Australia
| | | |
Collapse
|
50
|
Heppner KM, Tong J. Mechanisms in endocrinology: regulation of glucose metabolism by the ghrelin system: multiple players and multiple actions. Eur J Endocrinol 2014; 171:R21-32. [PMID: 24714083 DOI: 10.1530/eje-14-0183] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ghrelin is a 28-amino acid peptide secreted mainly from the X/A-like cells of the stomach. Ghrelin is found in circulation in both des-acyl (dAG) and acyl forms (AG). Acylation is catalyzed by the enzyme ghrelin O-acyltransferase (GOAT). AG acts on the GH secretagogue receptor (GHSR) in the CNS to promote feeding and adiposity and also acts on GHSR in the pancreas to inhibit glucose-stimulated insulin secretion. These well-described actions of AG have made it a popular target for obesity and type 2 diabetes mellitus pharmacotherapies. However, despite the lack of a cognate receptor, dAG appears to have gluco-regulatory action, which adds an additional layer of complexity to ghrelin's regulation of glucose metabolism. This review discusses the current literature on the gluco-regulatory action of the ghrelin system (dAG, AG, GHSR, and GOAT) with specific emphasis aimed toward distinguishing AG vs dAG action.
Collapse
Affiliation(s)
- Kristy M Heppner
- Division of DiabetesObesity and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA andDivision of EndocrinologyDiabetes and Metabolism, Department of Medicine, University of Cincinnati, 260 Stetson Street, Suite 4200, Cincinnati, Ohio 45219-0547, USA
| | - Jenny Tong
- Division of DiabetesObesity and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA andDivision of EndocrinologyDiabetes and Metabolism, Department of Medicine, University of Cincinnati, 260 Stetson Street, Suite 4200, Cincinnati, Ohio 45219-0547, USA
| |
Collapse
|