1
|
Fujimoto D, Umemoto S, Mizumoto T, Kanki T, Hata Y, Nishiguchi Y, Date R, Zhang J, Kakizoe Y, Izumi Y, Adachi M, Kojima H, Yokoi H, Mukoyama M, Kuwabara T. Alvespimycin is identified as a novel therapeutic agent for diabetic kidney disease by chemical screening targeting extracellular vesicles. Sci Rep 2025; 15:14436. [PMID: 40281012 PMCID: PMC12032101 DOI: 10.1038/s41598-025-98894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication and play key roles in the regulation of pathophysiological processes. In diabetic kidney disease (DKD), it has been reported that macrophages recruited in the mesangial region may play pathogenic roles through inducing local inflammation in glomeruli. We focused on EV-mediated crosstalk between mesangial cells (MC) and macrophages as a novel therapeutic target for DKD. EVs released from MC induced inflammation in macrophages and the effect was enhanced under high-glucose conditions. For discovering novel therapeutic agents which can inhibit such EV-mediated mechanisms, drug repositioning is considered as an effective tool. We established a unique screening strategy and screened agents to aim at maximizing their specificity and potency to inhibit EV mechanisms, along with minimizing their toxicity. We succeeded in identifying alvespimycin, an HSP90 inhibitor. Treatment of diabetic rats with alvespimycin significantly suppressed mesangial expansion, inflammatory gene activation including macrophage markers, and proteinuria. The inhibitory effect on EV uptake was specific to alvespimycin compared with other known HSP90 inhibitors. MC-derived EVs are crucial for inflammation by intercellular crosstalk between MC and macrophages in DKD, and alvespimycin effectively ameliorated the progression of DKD by suppressing EV-mediated actions, suggesting that EV-targeted agents can be a novel therapeutic strategy.
Collapse
Affiliation(s)
- Daisuke Fujimoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shuro Umemoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Teruhiko Mizumoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tomoko Kanki
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yusuke Hata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yoshihiko Nishiguchi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Ryosuke Date
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Jingxuan Zhang
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masataka Adachi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Hideki Yokoi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
2
|
Lorico A, Santos MF, Karbanová J, Corbeil D. Extracellular membrane particles en route to the nucleus - exploring the VOR complex. Biochem Soc Trans 2025:BST20253005. [PMID: 40366329 DOI: 10.1042/bst20253005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
Intercellular communication is an essential hallmark of multicellular organisms for their development and adult tissue homeostasis. Over the past two decades, attention has been focused on communication mechanisms based on various membrane structures, as illustrated by the burst of scientific literature in the field of extracellular vesicles (EVs). These lipid bilayer-bound nano- or microparticles, as vehicle-like devices, act as regulators in various biological and physiological processes. When EVs are internalized by recipient cells, their membrane and cytoplasmic cargoes can interfere with cellular activities, affecting pathways that regulate cell proliferation, differentiation, and migration. In cancer, EVs can transfer oncogenic factors, stimulate neo-angiogenesis and immunosuppression, reprogram stromal cells, and confer drug resistance traits, thereby remodeling the surrounding microenvironment. Although the mechanisms underlying EV biogenesis and uptake are now better understood, little is known about the spatiotemporal mechanism(s) of their actions after internalization. In this respect, we have shown that a fraction of endocytosed EVs reaches the nuclear compartment via the VOR (VAP-A-ORP3-Rab7) complex-mediated docking of late endosomes to the outer nuclear membrane in the nucleoplasmic reticulum, positioning and facilitating the transfer of EV cargoes into the nucleoplasm via nuclear pores. Here, we highlight the EV heterogeneity, the cellular pathways governing EV release and uptake by donor and recipient cells, respectively, and focus on a novel intracellular pathway leading to the nuclear transfer of EV cargoes. We will discuss how to intercept it, which could open up new avenues for clinical applications in which EVs and other small extracellular particles (e.g., retroviruses) are implicated.
Collapse
Affiliation(s)
- Aurelio Lorico
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, U.S.A
| | - Mark F Santos
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, U.S.A
| | - Jana Karbanová
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Saxony, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Saxony, Germany
| | - Denis Corbeil
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Saxony, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Saxony, Germany
| |
Collapse
|
3
|
Kranc W, Kaczmarek M, Kowalska K, Pieńkowski W, Ciesiółka S, Konwerska A, Mozdziak P, Brązert M, Jeseta M, Spaczyński RZ, Pawelczyk L, Kempisty B. Morphological characteristics, extracellular vesicle structure and stem-like specificity of human follicular fluid cell subpopulation during osteodifferentiation. Exp Mol Pathol 2025; 142:104965. [PMID: 40253818 DOI: 10.1016/j.yexmp.2025.104965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Extracellular vesicles can play an important role in the processes occurring after stem cell transplantation, preventing cell apoptosis, stimulating immunological processes, and promoting the synthesis of extracellular matrix. Human follicular fluid (FF) can be a source of a subpopulation of cells with mesenchymal stem cells (MSCs) properties. Moreover these subpopulations of FF cells can differentiate into osteoblasts. In presented studies flow cytometry of ovarian FF cells confirmed positive expression of MSCs markers such as: CD44, CD90, CD105, CD73 and negative expression of a hematopoietic marker: CD45. The CD90+, CD105+, CD45- cell subpopulation has been obtained during magnetic separation using appropriate antibodies conjugated with microbeads. The extracellular vesicles (EVs) secreted by the cells during osteodifferentiation process differed from those secreted by cells culture in the basal medium. Based on the previous and current electron microscopy research, changes in size, number, and shape would support the notion that released EVs could be crucial to the ovarian FF cell subpopulation differentiation process. Osteogenic differentiation has been confirmed via Alizarin red staining. Therefore, follicular fluid (FF) can be a new source of a cell subpopulation with MSC properties, with the cells capable of differentiating into the osteogenic lineage. EVs could play a key role as mediators in tissue regeneration, especially bone tissue regeneration.
Collapse
Affiliation(s)
- Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland.
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, 15 Garbary St., 61-866 Poznań, Poland; Department of Cancer Immunology, Poznan University of Medical Sciences, 5 Garbary St., 61-866 Poznań, Poland.
| | - Katarzyna Kowalska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland.
| | - Wojciech Pieńkowski
- Division of Perinatology and Women's Diseases, Poznan University of Medical Sciences, 33 Polna St. 60-535 Poznan, Poland.
| | - Sylwia Ciesiółka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland.
| | - Aneta Konwerska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland.
| | - Paul Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA; Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA.
| | - Maciej Brązert
- Department of Diagnostic and Treatment of Infertility, Department of Gynecological Endocrinology and Infertility Treatment Karol Marcinkowski University, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland.
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 62500 Brno, Czechia.
| | - Robert Z Spaczyński
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Pastelowa 8, 60-198, Poznan, Poland..
| | - Leszek Pawelczyk
- Department of Diagnostic and Treatment of Infertility, Department of Gynecological Endocrinology and Infertility Treatment Karol Marcinkowski University, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland.
| | - Bartosz Kempisty
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA; Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 62500 Brno, Czechia; Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland; Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Torun, Poland.
| |
Collapse
|
4
|
Fan R, Liu H, Liang Q. Roles and Therapeutic Targeting of Exosomes in Sepsis-Induced Cardiomyopathy. J Cell Mol Med 2025; 29:e70559. [PMID: 40264381 PMCID: PMC12015131 DOI: 10.1111/jcmm.70559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Sepsis-induced cardiomyopathy (SICM) is a complex and fatal manifestation of sepsis, characterised by myocardial dysfunction that exacerbates the clinical prognosis in septic patients. While the pathophysiology of SICM remains incompletely understood, emerging evidence highlights the multifaceted functions of exosomes, small membrane-bound extracellular vesicles, in mediating the inflammatory responses and cardiac dysfunction involved in this condition. During sepsis, exosomes are secreted by various cells, such as cardiomyocytes, endothelial cells and macrophages, which serve as critical messengers, transferring proteins, lipids and RNA molecules that influence recipient cells, thus affecting cellular functions and disease progression. This review summarises the pathophysiology of SICM and the basics of exosomes and focuses on exosome-mediated mechanisms in SICM, including their role in inflammation, oxidative stress, mitochondrial dysfunction and myocardial injury, offering novel insights into the exosome-based therapeutic strategies in SICM.
Collapse
Affiliation(s)
- Rui Fan
- Graduate SchoolHeilongjiang University of Chinese MedicineHarbinChina
| | - Han Liu
- Graduate SchoolUniversity College LondonLondonUK
| | - Qun Liang
- Department of Critical Care MedicineFirst Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinChina
| |
Collapse
|
5
|
Maynard DM, Gochuico BR, Pri Chen H, Bleck CKE, Zerfas PM, Introne WJ, Gahl WA, Malicdan MCV. Insights into the renal pathophysiology in Hermansky-Pudlak syndrome-1 from urinary extracellular vesicle proteomics and a new mouse model. FEBS Lett 2025; 599:1055-1074. [PMID: 39739361 PMCID: PMC11995682 DOI: 10.1002/1873-3468.15088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/07/2024] [Accepted: 12/01/2024] [Indexed: 01/02/2025]
Abstract
Hermansky-Pudlak syndrome type 1 (HPS-1) is a rare, autosomal recessive disorder caused by defects in the biogenesis of lysosome-related organelles complex-3 (BLOC-3). Impaired kidney function is among its clinical manifestations. To investigate HPS-1 renal involvement, we employed 1D-gel-LC-MS/MS and compared the protein composition of urinary extracellular vesicles (uEVs) from HPS-1 patients to normal control individuals. We identified 1029 proteins, 149 of which were altered in HPS-1 uEVs. Ingenuity Pathway Analysis revealed disruptions in mitochondrial function and the LXR/RXR pathway that regulates lipid metabolism, which is supported by our novel Hps1 knockout mouse. Serum concentration of the LXR/RXR pathway protein ApoA1 in our patient cohort was positively correlated with kidney function (with the estimated glomerular filtration rate or eGFR). uEVs can be used to study epithelial cell protein trafficking in HPS-1 and may provide outcome measures for HPS-1 therapeutic interventions.
Collapse
Affiliation(s)
- Dawn M. Maynard
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRINational Institutes of HealthBethesdaMDUSA
| | - Bernadette R. Gochuico
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRINational Institutes of HealthBethesdaMDUSA
| | - Hadass Pri Chen
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRINational Institutes of HealthBethesdaMDUSA
| | | | - Patricia M. Zerfas
- Office of Research Services, Office of the DirectorNational Institutes of HealthBethesdaMDUSA
| | - Wendy J. Introne
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRINational Institutes of HealthBethesdaMDUSA
| | - William A. Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRINational Institutes of HealthBethesdaMDUSA
| | - May C. V. Malicdan
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRINational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
6
|
Meligy FY, Mohammed HSED, Abou Elghait AT, Mohamed HK, Ashry IESM, Abdel-Rahman Sayed A, Hussein OA, Salman A, Atia T, Mohamed AS, Behnsawy NH, Gaber SS, Sakr HI, Ahmed SF. Mesenchymal stem cells versus mesenchymal stem cells-derived exosomes as potential autophagy pathway modulators in a diabetic model. Adv Med Sci 2025; 70:152-165. [PMID: 39956208 DOI: 10.1016/j.advms.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/06/2024] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
PURPOSE This work compared the potential effects of bone marrow mesenchymal stem cells (BM-MSCs) with BM-MSCs-derived exosomes against impaired autophagy in streptozotocin (STZ)-induced diabetic rats. MATERIALS AND METHODS Three days after STZ injection, a single dose of (3 × 10^6) BM- MSCs or BM-MSCs-derived exosomes (80 μg/rat) was administered to evaluate their effects against nondiabetic and diabetic control rats. We assessed pancreatic structure via light and electron microscopy and evaluated its staining for insulin and the autophagy marker P62 immunohistochemically. Moreover, autophagy marker LC3 gene expression was examined by PCR. RESULTS Both BM-MSCs and BM-MSCs derived exosomes showed histological restoration of pancreatic tissues. Both treatments markedly increased the amount of insulin and significantly decreased the autophagy markers P62 and LC3. CONCLUSION Our findings suggest that both BM-MSCs and BM-MSCs-derived exosomes provides a potential alternative to modulate diabetes mellitus.
Collapse
Affiliation(s)
- Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, Jordan; Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Amal T Abou Elghait
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Histology and Cell Biology Department, Sphinx University, New Assiut city, Assiut, Egypt
| | - Heba K Mohamed
- Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Anatomy and Embryology Department, Sphinx University, New Assiut city, Assiut, Egypt
| | | | - Ayat Abdel-Rahman Sayed
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Biochemistry, Sphinx University, New Assiut city, Assiut, Egypt
| | - Ola A Hussein
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Salman
- Department of Anatomy and Histology, Faculty of Medicine, The University of Jordan, Amman, Jordan; Department of Anatomy, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Tarek Atia
- Department of Medical Laboratories, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abir S Mohamed
- Department of Public Health, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nour H Behnsawy
- Faculty of Medicine, Assiut University, Assiut, Egypt; Skilled Medical Practitioners Focus Area Coordinator 24/25, International Federation of Medical Students Association, Egypt
| | - Safy Salah Gaber
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hader I Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah, 21442, Saudi Arabia.
| | - Salwa Fares Ahmed
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Anatomy Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
7
|
Kostyusheva A, Romano E, Yan N, Lopus M, Zamyatnin AA, Parodi A. Breaking barriers in targeted Therapy: Advancing exosome Isolation, Engineering, and imaging. Adv Drug Deliv Rev 2025; 218:115522. [PMID: 39855273 DOI: 10.1016/j.addr.2025.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/23/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Exosomes have emerged as promising tools for targeted drug delivery in biomedical applications and medicine. This review delves into the scientific advancements, challenges, and future prospects specifically associated with these technologies. In this work, we trace the research milestones that led to the discovery and characterization of exosomes and extracellular vesicles, and discuss strategies for optimizing the synthetic yield and the loading of these particles with various therapeutics. In addition, we report the current major issues affecting the field and hampering the clinical translation of these technologies. Highlighting the pivotal role of imaging techniques, we explore how they drive exosome therapy and development by offering insights into biodistribution and cellular trafficking dynamics. Methodologies for vesicle isolation, characterization, loading, and delivery mechanisms are thoroughly examined, alongside strategies aimed at enhancing their therapeutic efficacy. Special emphasis was dedicated to their therapeutic properties, particularly to their ability to deliver biologics into the cytoplasm. Furthermore, we delve into the intricate balance between surface modifications and targeting properties including also transgenic methods aimed at their functionalization and visualization within biological systems. This review underscores the transformative potential of these carriers in targeted drug delivery and identifies crucial areas for further research and clinical translation.
Collapse
Affiliation(s)
- Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia
| | | | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Vidyanagari, Mumbai 400098, India
| | - Andrey A Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Department of Biological Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
| | - Alessandro Parodi
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia.
| |
Collapse
|
8
|
Shinde U, Balasinor NH, Ravichandran V, Kumar AS, Gunasekaran VP. "Extracellular Vesicle DNA: Advances and Applications as a Non-Invasive Biomarker in Disease Diagnosis and Treatment". Clin Chim Acta 2025; 568:120125. [PMID: 39793847 DOI: 10.1016/j.cca.2025.120125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Extracellular vesicles (EVs) are nanoscale, membrane-enclosed structures released by cells into the extracellular milieu. These vesicles encapsulate a diverse array of molecular constituents, including nucleic acids, proteins, and lipids, which provide insights into the physiological or pathological conditions of their parent cells. Despite their potential, the study of EV-derived DNA (EV-DNA) has gathered relatively limited attention. This review aims to present a thorough examination of the emerging knowledge surrounding the utility of EV-DNA as a non-invasive biomarker across a spectrum of diseases. The review delves into various mechanisms underlying DNA packaging within EVs and the prevalent methodologies employed for extraction of EV-DNA. The relevance of EV-DNA is assessed across numerous health conditions, notably cancer, cardiovascular diseases, neurodegenerative disorders, infectious diseases, and pregnancy-related complications. The use of EV-DNA for cancer mutation detection has demonstrated remarkable sensitivity and specificity, thereby enhancing both diagnostic accuracy and therapeutic monitoring. In the context of cardiovascular diseases, EV-DNA serves as a predictive marker for events such as myocardial infarctions and shows a correlation with the severity of the disease. With respect to neurodegenerative conditions, including Parkinson's and Alzheimer's, EV-DNA contributes to the understanding of disease mechanisms and progression. Additionally, it plays an essential role in modulating immune tolerance and facilitating communication between maternal and fetal systems. Although there is a pressing need for standardized protocols for EV isolation and DNA analysis to facilitate clinical implementation, the prospect of EV-DNA as a non-invasive biomarker for diagnostic and prognostic purposes across diverse pathological conditions is considerable.
Collapse
Affiliation(s)
- Uma Shinde
- Center for Drug Discovery and Development, Amity Institute of Biotechnology, Amity University Mumbai (AUM), Maharashtra, India
| | - Nafisa Huseni Balasinor
- ICMR-National Institute for Research in Reproductive and Child Health (ICMR- NIRRCH), Parel, Mumbai, India
| | - Vinothkannan Ravichandran
- Center for Drug Discovery and Development, Amity Institute of Biotechnology, Amity University Mumbai (AUM), Maharashtra, India
| | - Aw Santhosh Kumar
- Center for Drug Discovery and Development, Amity Institute of Biotechnology, Amity University Mumbai (AUM), Maharashtra, India; California University of Science & Medicine, CA, United States of America
| | - Vinoth Prasanna Gunasekaran
- Center for Drug Discovery and Development, Amity Institute of Biotechnology, Amity University Mumbai (AUM), Maharashtra, India.
| |
Collapse
|
9
|
Budayr OM, Miller BC, Nguyen J. Harnessing extracellular vesicle-mediated crosstalk between T cells and cancer cells for therapeutic applications. J Control Release 2025; 378:266-280. [PMID: 39657892 PMCID: PMC11830559 DOI: 10.1016/j.jconrel.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Small extracellular vesicles (EVs) are a diverse group of lipid-based particles that are ≤200 nm in diameter and contain an aqueous core. EVs have been shown to mediate intercellular communications between a wide array of immune cells; the downstream effects are diverse and have potential implications for the development of novel immunotherapeutic treatments. Despite a high volume of studies addressing the role EVs play in the immune system, our understanding of the crosstalk between T cells and cancer cells remains limited. Here, we discuss how EVs derived from cancer cells modulate T cell functions and conversely, how T cell derived EVs are crucial in modulating adaptive immune functions. In the context of cancer, tumor derived EVs (TD-EVs) halt T cell-mediated immunity by interfering with effector functions and enhancing regulatory T cell (Treg) functions. In contrast, EVs derived from effector T cells can serve to stimulate anticancer immunity, curbing metastasis and tumor growth. These findings highlight important aspects of how EVs can both mediate the therapeutic effects of T cells as well as impair T cell-mediated immunity. This calls for a deeper understanding of EV-mediated effects in order to advance them as next-generation therapeutics and nanocarriers.
Collapse
Affiliation(s)
- Omar M Budayr
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian C Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Perera N, De Blasio MJ, Febbraio MA. Harnessing the therapeutic potential of exercise in extracellular vesicle-based therapy in metabolic disease associated cardiovascular complications. Free Radic Biol Med 2025; 226:230-236. [PMID: 39549882 DOI: 10.1016/j.freeradbiomed.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality, affecting ∼18 million individuals each year. Obesity and type 2 diabetes mellitus in particular, both chronic metabolic disorders, are risk factors for CVD. The salutary effects of physical activity in preventing and ameliorating CVD have long been acknowledged, as it improves glucose and lipid homeostasis, alongside attenuating oxidative damage, increasing mitochondrial function, and ultimately improving cardiac function. Exercise serves as a catalyst for the secretion of extracellular vesicles (EVs), facilitating inter-tissue communication, by which tissues can deliver important signals from one tissue to another. In recent years, an increasing number of studies have focused on the cargo encapsulated within exercise-derived EVs, as well as the orchestration of inter-tissue crosstalk aimed at modulating metabolism and tissue function in CVDs. The precise mechanisms underpinning the cardioprotective properties of exercise-derived EVs, however, remains only partially elucidated. This review explores novel EV based therapeutic options in CVD and, in particular, EVs derived from models of exercise to alter metabolism and enhance cardiovascular outcomes.
Collapse
Affiliation(s)
- Nimna Perera
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia
| | - Miles J De Blasio
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia.
| |
Collapse
|
11
|
Amolegbe SM, Johnston NC, Ambrosi A, Ganguly A, Howcroft TK, Kuo LS, Labosky PA, Rudnicki DD, Satterlee JS, Tagle DA, Happel C. Extracellular RNA communication: A decade of NIH common fund support illuminates exRNA biology. J Extracell Vesicles 2025; 14:e70016. [PMID: 39815775 PMCID: PMC11735951 DOI: 10.1002/jev2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 01/18/2025] Open
Abstract
The discovery that extracellular RNAs (exRNA) can act as endocrine signalling molecules established a novel paradigm in intercellular communication. ExRNAs can be transported, both locally and systemically in virtually all body fluids. In association with an array of carrier vehicles of varying complexity, exRNA can alter target cell phenotype. This highlights the important role secreted exRNAs have in regulating human health and disease. The NIH Common Fund exRNA Communication program was established in 2012 to accelerate and catalyze progress in the exRNA biology field. The program addressed both exRNA and exRNA carriers, and served to generate foundational knowledge for the field from basic exRNA biology to future potential clinical applications as biomarkers and therapeutics. To address scientific challenges, the exRNA Communication program developed novel tools and technologies to isolate exRNA carriers and analyze their cargo. Here, we discuss the outcomes of the NIH Common Fund exRNA Communication program, as well as the evolution of exRNA as a scientific field through the analysis of scientific publications and NIH funding. ExRNA and associated carriers have potential clinical use as biomarkers, diagnostics, and therapeutics. Recent translational applications include exRNA-related technologies repurposed as novel diagnostics in response to the COVID-19 pandemic, the clinical use of extracellular vesicle-based biomarker assays, and exRNA carriers as drug delivery platforms. This comprehensive landscape analysis illustrates how discoveries and innovations in exRNA biology are being translated both into the commercial market and the clinic. Analysis of program outcomes and NIH funding trends demonstrate the impact of this NIH Common Fund program.
Collapse
Affiliation(s)
- Sara M. Amolegbe
- Office of the DirectorNational Institutes of HealthBethesdaMarylandUSA
| | - Nicolas C. Johnston
- National Institute on Drug AbuseNational Institutes of HealthBethesdaMarylandUSA
| | - Angela Ambrosi
- Office of the DirectorNational Institutes of HealthBethesdaMarylandUSA
| | - Aniruddha Ganguly
- National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - T. Kevin Howcroft
- National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Lillian S. Kuo
- National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | | | - Dobrila D. Rudnicki
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - John S. Satterlee
- National Institute on Drug AbuseNational Institutes of HealthBethesdaMarylandUSA
| | - Danilo A. Tagle
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Christine Happel
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
12
|
Cao M, Zou J, Shi M, Zhao D, Liu C, Liu Y, Li L, Jiang H. A promising therapeutic: Exosome-mediated mitochondrial transplantation. Int Immunopharmacol 2024; 142:113104. [PMID: 39270344 DOI: 10.1016/j.intimp.2024.113104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Mitochondrial dysfunction has been identified as a trigger for cellular autophagy dysfunction and programmed cell death. Emerging studies have revealed that, in pathological contexts, intercellular transfer of mitochondria takes place, facilitating the restoration of mitochondrial function, energy metabolism, and immune homeostasis. Extracellular vesicles, membranous structures released by cells, exhibit reduced immunogenicity and enhanced stability during the transfer of mitochondria. Thus, this review provides a concise overview of mitochondrial dysfunction related diseases and the mechanism of mitochondrial dysfunction in diseases progression, and the composition and functions of the extracellular vesicles, along with elucidating the principal mechanisms underlying intercellular mitochondrial transfer. In this article, we will focus on the advancements in both animal models and clinical trials concerning the therapeutic efficacy of extracellular vesicle-mediated mitochondrial transplantation across various systemic diseases in neurodegenerative diseases and cardiovascular diseases. Additionally, the review delves into the multifaceted roles of extracellular vesicle-transplanted mitochondria, encompassing anti-inflammatory actions, promotion of tissue repair, enhancement of cellular function, and modulation of metabolic and immune homeostasis within diverse pathological contexts, aiming to provide novel perspectives for extracellular vesicle transplantation of mitochondria in the treatment of various diseases.
Collapse
Affiliation(s)
- Meiling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiahui Zou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Mingyue Shi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Danyang Zhao
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Chang Liu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanshan Liu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
13
|
Zhang S, Yang Y, Lv X, Zhou X, Zhao W, Meng L, Xu H, Zhu S, Wang Y. Doxorubicin-Induced Cardiotoxicity Through SIRT1 Loss Potentiates Overproduction of Exosomes in Cardiomyocytes. Int J Mol Sci 2024; 25:12376. [PMID: 39596439 PMCID: PMC11594621 DOI: 10.3390/ijms252212376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Mutual interaction between doxorubicin (DOX) and cardiomyocytes is crucial for cardiotoxicity progression. Cardiomyocyte injury is an important pathological feature of DOX-induced cardiomyopathy, and its molecular pathogenesis is multifaceted. In addition to the direct toxic effects of DOX on cardiomyocytes, DOX-induced exosomes in the extracellular microenvironment also regulate the pathophysiological states of cardiomyocytes. However, the mechanisms by which DOX regulates exosome secretion and subsequent pathogenesis remain incompletely understood. Here, we found that DOX significantly increased exosome secretion from cardiomyocytes, and inhibiting this release could alleviate cardiomyocyte injury. DOX promoted exosome secretion by reducing cardiomyocyte silencing information regulator 1 (SIRT1) expression, exacerbating cardiotoxicity. DOX impaired lysosomal acidification in cardiomyocytes, reducing the degradation of intracellular multivesicular bodies (MVBs), resulting in an increase in MVB volume before fusing with the plasma membrane to release their contents. Mechanistically, SIRT1 loss inhibited lysosomal acidification by reducing the expression of the ATP6V1A subunit of the lysosomal vacuolar-type H+ ATPase (V-ATPase) proton pump. Overexpressing SIRT1 increased ATP6V1A expression, improved lysosomal acidification, inhibited exosome secretion, and thereby alleviated DOX-induced cardiotoxicity. Interestingly, DOX also induced mitochondrial-derived vesicle formation in cardiomyocytes, which may further increase the abundance of MVBs and promote exosome release. Collectively, this study identified SIRT1-mediated impairment of lysosomal acidification as a key mechanism underlying the increased exosome secretion from cardiomyocytes induced by DOX, providing new insights into DOX-induced cardiotoxicity pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine, Soochow University, Suzhou 215123, China; (S.Z.)
| |
Collapse
|
14
|
Abbas A, Almaghrbi H, Giordo R, Zayed H, Pintus G. Pathogenic mechanisms, diagnostic, and therapeutic potential of microvesicles in diabetes and its complications. Arch Biochem Biophys 2024; 761:110168. [PMID: 39349130 DOI: 10.1016/j.abb.2024.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Extracellular vesicles (EVs), particularly microvesicles (MVs), have gained significant attention for their role as mediators of intercellular communication in both physiological and pathological contexts, including diabetes mellitus (DM) and its complications. This review provides a comprehensive analysis of the emerging roles of MVs in the pathogenesis of diabetes and associated complications such as nephropathy, retinopathy, cardiomyopathy, and neuropathy. MVs, through their cargo of proteins, lipids, mRNAs, and miRNAs, regulate critical processes like inflammation, oxidative stress, immune responses, and tissue remodeling, all of which contribute to the progression of diabetes and its complications. We examine the molecular mechanisms underlying MVs' involvement in these pathological processes and discuss their potential as biomarkers and therapeutic tools, particularly for drug delivery. Despite promising evidence, challenges remain in isolating and characterizing MVs, understanding their molecular mechanisms, and validating them for clinical use. Advanced techniques such as single-cell RNA sequencing and proteomics are required to gain deeper insights. Improved isolation and purification methods are essential for translating MVs into clinical applications, with potential to develop novel diagnostic and therapeutic strategies to improve patient outcomes in diabetes.
Collapse
Affiliation(s)
- Alaa Abbas
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Heba Almaghrbi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055, Dubai, United Arab Emirates; Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
15
|
Guo S, Wang X, Shan D, Xiao Y, Ju L, Zhang Y, Wang G, Qian K. The detection, biological function, and liquid biopsy application of extracellular vesicle-associated DNA. Biomark Res 2024; 12:123. [PMID: 39402599 PMCID: PMC11476736 DOI: 10.1186/s40364-024-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Cell-derived extracellular vesicles (EVs), which carry diverse biomolecules such as nucleic acids, proteins, metabolites, and lipids reflecting their cell of origin, are released under both physiological and pathological conditions. EVs have been demonstrated to mediate cell-to-cell communication and serve as biomarkers. EV-associated DNA (EV-DNA) comprises genomic and mitochondrial DNA (i.e., gDNA and mtDNA) fragments. Some studies have revealed that EV-DNA can represent the full nuclear genome and mitochondrial genome of parental cells. Furthermore, DNA fragments loaded into EVs are stable and can be transferred to recipient cells to regulate their biological functions. In this review, we summarized and discussed EV-DNA research advances with an emphasis on EV-DNA detection at the population-EV and single-EV levels, gene transfer-associated biological functions, and clinical applications as biomarkers for disease liquid biopsy. We hope that this review will provide potential directions or guidance for future EV-DNA investigations.
Collapse
Affiliation(s)
- Shan Guo
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xin Wang
- Center for Disease Control and Prevention of Hubei Province, Wuhan, China
| | - Danni Shan
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center, Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Gang Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
16
|
Lee Y, Lim KM, Bong H, Lee SB, Jeon TI, Lee SY, Park HS, Kim JY, Song K, Kang GH, Kim SJ, Song M, Cho SG. The Immobilization of an FGF2-Derived Peptide on Culture Plates Improves the Production and Therapeutic Potential of Extracellular Vesicles from Wharton's Jelly Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:10709. [PMID: 39409038 PMCID: PMC11477336 DOI: 10.3390/ijms251910709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The skin is an essential organ that protects the body from external aggressions; therefore, damage from various wounds can significantly impair its function, and effective methods for regenerating and restoring its barrier function are crucial. This study aimed to mass-produce wound-healing exosomes using a fragment of the fibroblast growth factor 2 (FGF2)-derived peptide (FP2) to enhance cell proliferation and exosome production. Our experiments demonstrated increased cell proliferation when Wharton's jelly mesenchymal stem cells (WJ MSCs) were coated with FP2. Exosomes from FP2-coated WJ MSCs were analyzed using nanoparticle-tracking analysis, transmission electron microscopy, and Western blotting. Subsequently, fibroblasts were treated with these exosomes, and their viability and migration effects were compared. Anti-inflammatory effects were also evaluated by inducing pro-inflammatory factors in RAW264.7 cells. The treatment of fibroblasts with FP2-coated WJ MSC-derived exosomes (FP2-exo) increased the expression of FGF2, confirming their wound-healing effect in vivo. Overall, the results of this study highlight the significant impact of FP2 on the proliferation of WJ MSCs and the anti-inflammatory and wound-healing effects of exosomes, suggesting potential applications beyond wound healing.
Collapse
Affiliation(s)
- Youngseo Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
| | - Kyung-Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hanbit Bong
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
| | - Soo-Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
| | - Tak-Il Jeon
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
| | - Su-Yeon Lee
- New Materials R&D Center of AMOGREANTECH Co., Ltd., 609-1 Wolha-ro, Haseong-myeon, Gimpo-si 10011, Republic of Korea
| | - Hee-Sung Park
- New Materials R&D Center of AMOGREANTECH Co., Ltd., 609-1 Wolha-ro, Haseong-myeon, Gimpo-si 10011, Republic of Korea
| | - Ji-Young Kim
- New Materials R&D Center of AMOGREANTECH Co., Ltd., 609-1 Wolha-ro, Haseong-myeon, Gimpo-si 10011, Republic of Korea
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Se-Jong Kim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Myeongjin Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.L.); (K.-M.L.)
- R&D Team, StemExOne Co., Ltd., 307, KU Technology Innovation Building, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
17
|
Gerdes C, Basmanav FB. Intercellular transfer of plasmid DNA between in vitro cultured HEK293 cells following transient transfection. Plasmid 2024; 131-132:102729. [PMID: 38876373 DOI: 10.1016/j.plasmid.2024.102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Gene overexpression by transient transfection of in vitro cultured model cell lines with plasmid DNA is a commonly used method for studying molecular aspects of human biology and pathobiology. However, there is accumulating evidence suggesting that human cells may actively secrete fragments of DNA and the implications of this phenomenon for in vitro cultured cells transiently transfected with foreign nucleic acids has been overlooked. Therefore, in the current study we investigated whether a cell-to-cell transmission of acquired plasmid DNA takes place in a commonly used human cell line model. We transiently transfected HEK293 cells with EGFP encoding plasmids to serve as donor cells and either co-cultured these with stably mCherry expressing recipient cells in different set-ups or transferred their culture medium to the recipient cells. We found that recipient cells produced EGFP after being co-cultured with donor cells but not when they were exposed to their culture medium. The employment of different co-culture set-ups excluded that the observed effect stemmed from technical artefacts and provided evidence that an intercellular plasmid transfer takes place requiring physical proximity between living cells. This phenomenon could represent a significant biological artefact for certain studies such as those addressing protein transmissions in prion diseases.
Collapse
Affiliation(s)
- Christoph Gerdes
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, D-37073 Göttingen, Germany; Hannover Medical School, Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - F Buket Basmanav
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, D-37073 Göttingen, Germany; Campus Laboratory for Advanced Imaging, Microscopy and Spectroscopy, University of Göttingen, D-37073 Göttingen, Germany; Institute of X-ray Physics, University of Göttingen, 37073 Göttingen, Germany; Institute of Human Genetics, University of Bonn, Medical Faculty & University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
18
|
Qadeer A, Wajid A, Rafey HA, Nawaz S, Khan S, Rahman SU, Alzahrani KJ, Khan MZ, Alsabi MNS, Ullah H, Safi SZ, Xia Z, Zahoor M. Exploring extracellular vesicles in zoonotic helminth biology: implications for diagnosis, therapeutic and delivery. Front Cell Infect Microbiol 2024; 14:1424838. [PMID: 39165921 PMCID: PMC11333462 DOI: 10.3389/fcimb.2024.1424838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key intercellular communication and pathogenesis mediators. Parasitic organisms' helminths, cause widespread infections with significant health impacts worldwide. Recent research has shed light on the role of EVs in the lifecycle, immune evasion, and disease progression of these parasitic organisms. These tiny membrane-bound organelles including microvesicles and exosomes, facilitate the transfer of proteins, lipids, mRNAs, and microRNAs between cells. EVs have been isolated from various bodily fluids, offering a potential diagnostic and therapeutic avenue for combating infectious agents. According to recent research, EVs from helminths hold great promise in the diagnosis of parasitic infections due to their specificity, early detection capabilities, accessibility, and the potential for staging and monitoring infections, promote intercellular communication, and are a viable therapeutic tool for the treatment of infectious agents. Exploring host-parasite interactions has identified promising new targets for diagnostic, therapy, and vaccine development against helminths. This literature review delves into EVS's origin, nature, biogenesis, and composition in these parasitic organisms. It also highlights the proteins and miRNAs involved in EV release, providing a comprehensive summary of the latest findings on the significance of EVs in the biology of helminths, promising targets for therapeutic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Hafiz Abdul Rafey
- Shifa College of Pharmaceutical Sciences, Faculty of Pharmaceutical and Allied Health Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sajid Ur Rahman
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Muhammad Zahoor Khan
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Mohammad Nafi Solaiman Alsabi
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Dainiak N. Biology of Exfoliation of Plasma Membrane-Derived Vesicles and the Radiation Response: Historical Background, Applications in Biodosimetry and Cell-Free Therapeutics, and Quantal Mechanisms for Their Release and Function with Implications for Space Travel. Radiat Res 2024; 202:328-354. [PMID: 38981604 DOI: 10.1667/rade-24-00078.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/09/2024] [Indexed: 07/11/2024]
Abstract
This historical review of extracellular vesicles in the setting of exposure to ionizing radiation (IR) traces our understanding of how vesicles were initially examined and reported in the literature in the late 1970s (for secreted exosomes) and early 1980s (for plasma membrane-derived, exfoliated vesicles) to where we are now and where we may be headed in the next decade. An emphasis is placed on biophysical properties of extracellular vesicles, energy consumption and the role of vesiculation as an essential component of membrane turnover. The impact of intercellular signal trafficking by vesicle surface and intra-vesicular lipids, proteins, nucleic acids and metabolites is reviewed in the context of biomarkers for estimating individual radiation dose after exposure to radiation, pathogenesis of disease and development of cell-free therapeutics. Since vesicles express both growth stimulatory and inhibitory molecules, a hypothesis is proposed to consider superposition in a shared space and entanglement of molecules by energy sources that are external to human cells. Implications of this approach for travel in deep space are briefly discussed in the context of clinical disorders that have been observed after space travel.
Collapse
Affiliation(s)
- Nicholas Dainiak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
20
|
Röszer T. MicroRNA Profile of Mouse Adipocyte-Derived Extracellular Vesicles. Cells 2024; 13:1298. [PMID: 39120327 PMCID: PMC11311276 DOI: 10.3390/cells13151298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
The post-transcriptional control of gene expression is a complex and evolving field in adipocyte biology, with the premise that the delivery of microRNA (miRNA) species to the obese adipose tissue may facilitate weight loss. Cells shed extracellular vesicles (EVs) that may deliver miRNAs as intercellular messengers. However, we know little about the miRNA profile of EVs secreted by adipocytes during postnatal development. Here, we defined the miRNA cargo of EVs secreted by mouse adipocytes in two distinct phases of development: on postnatal day 6, when adipocytes are lipolytic and thermogenic, and on postnatal day 56, when adipocytes have active lipogenesis. EVs were collected from cell culture supernatants, and their miRNA profile was defined by small RNA sequencing. The most abundant miRNA of mouse adipocyte-derived EVs was mmu-miR-148a-3p. Adipocyte EVs on postnatal day 6 were hallmarked with mmu-miR-98-5p, and some miRNAs were specific to this developmental stage, such as mmu-miR-466i-5p and 12 novel miRNAs. Adipocytes on postnatal day 56 secreted mmu-miR-365-3p, and 16 miRNAs were specific to this developmental stage. The miRNA cargo of adipocyte EVs targeted gene networks of cell proliferation, insulin signaling, interferon response, thermogenesis, and lipogenesis. We provided here a database of miRNAs secreted by developing mouse adipocytes, which may be a tool for further studies on the regulation of gene networks that control mouse adipocyte development.
Collapse
Affiliation(s)
- Tamás Röszer
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
21
|
Ashique S, Kumar N, Mishra N, Muthu S, Rajendran RL, Chandrasekaran B, Obeng BF, Hong CM, Krishnan A, Ahn BC, Gangadaran P. Unveiling the role of exosomes as cellular messengers in neurodegenerative diseases and their potential therapeutic implications. Pathol Res Pract 2024; 260:155451. [PMID: 39002435 DOI: 10.1016/j.prp.2024.155451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Exosomes are a subgroup of extracellular vesicles that function as transmitters, allowing cells to communicate more effectively with each other. However, exosomes may have both beneficial and harmful impacts on central nervous system disorders. Hence, the fundamental molecular mechanisms of the origin of illness and its progression are currently being investigated. The involvement of exosomes in the origin and propagation of neurodegenerative illness has been demonstrated recently. Exosomes provide a representation of the intracellular environment since they include various essential bioactive chemicals. The latest studies have demonstrated that exosomes transport several proteins. Additionally, these physiological vesicles are important in the regeneration of nervous tissue and the healing of neuronal lesions. They also offer a microenvironment to stimulate the conformational variation of concerning proteins for aggregation, resulting in neurodegenerative diseases. The biosynthesis, composition, and significance of exosomes as extracellular biomarkers in neurodegenerative disorders are discussed in this article, with a particular emphasis on their neuroprotective effects.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal 713212, India; Research Scholar, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, Madhya Pradesh 474005, India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore, Tamil Nadu 641045, India; Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
| | | | - Brenya Francis Obeng
- Faculty of Science, College of Health and Allied Sciences, School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, the Republic of Korea
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, the Republic of Korea.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea.
| |
Collapse
|
22
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
23
|
Kim M, Song CY, Lee JS, Ahn YR, Choi J, Lee SH, Shin S, Na HJ, Kim HO. Exosome Isolation Using Chitosan Oligosaccharide Lactate-1-Pyrenecarboxylic Acid-Based Self-Assembled Magnetic Nanoclusters. Adv Healthc Mater 2024; 13:e2303782. [PMID: 38430208 DOI: 10.1002/adhm.202303782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/30/2024] [Indexed: 03/03/2024]
Abstract
Exosomes are small extracellular vesicles that play a crucial role in intercellular communication and offer significant potential for a wide range of biomedical applications. However, conventional methods for exosome isolation have limitations in terms of purity, scalability, and preservation of exosome structural integrity. To address these challenges, an exosome isolation platform using chitosan oligosaccharide lactate conjugated 1-pyrenecarboxylic acid (COL-Py) based self-assembled magnetic nanoclusters (CMNCs), is presented. CMNCs are characterized to optimize their size, stability, and interaction dynamics with exosomes. The efficiency of CMNCs in isolating exosomes is systematically evaluated using various analytical methods to demonstrate their ability to capture exosomes based on amphiphilic lipid bilayers. CMNC-based exosome isolation consistently yields exosomes with structural integrity and purity similar to those obtained using traditional methods. The reusability of CMNCs over multiple exosome isolation cycles underscores their scalability and offers an efficient solution for biomedical applications. These results are supported by western blot analysis, which demonstrated the superiority of CMNC-based isolation in terms of purity compared to conventional methods. By providing a scalable and efficient exosome isolation process that preserves both structural integrity and purity, CMNCs can constitute a new platform that can contribute to the field of exosome studies.
Collapse
Affiliation(s)
- Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Chi-Yeon Song
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Jin Sil Lee
- Hauulbio, 32, Soyanggang-ro, Chuncheon-si, Gangwon-do, 24232, Republic of Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Sang Hoon Lee
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - SoJin Shin
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hee Jun Na
- Hauulbio, 32, Soyanggang-ro, Chuncheon-si, Gangwon-do, 24232, Republic of Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| |
Collapse
|
24
|
Pizzella A, Penna E, Abate N, Frenna E, Canafoglia L, Ragona F, Russo R, Chambery A, Perrone-Capano C, Cappello S, Crispino M, Di Giaimo R. Pathological Deficit of Cystatin B Impairs Synaptic Plasticity in EPM1 Human Cerebral Organoids. Mol Neurobiol 2024; 61:4318-4334. [PMID: 38087165 PMCID: PMC11236866 DOI: 10.1007/s12035-023-03812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 07/11/2024]
Abstract
Cystatin B (CSTB) is a small protease inhibitor protein being involved in cell proliferation and neuronal differentiation. Loss-of-function mutations in CSTB gene cause progressive myoclonic epilepsy 1 (EPM1). We previously demonstrated that CSTB is locally synthesized in synaptic nerve terminals from rat brain and secreted into the media, indicating its role in synaptic plasticity. In this work, we have further investigated the involvement of CSTB in synaptic plasticity, using synaptosomes from human cerebral organoids (hCOs) as well as from rodents' brain. Our data demonstrate that CSTB is released from synaptosomes in two ways: (i) as a soluble protein and (ii) in extracellular vesicles-mediated pathway. Synaptosomes isolated from hCOs are enriched in pre-synaptic proteins and contain CSTB at all developmental stages analyzed. CSTB presence in the synaptic territories was also confirmed by immunostaining on human neurons in vitro. To investigate if the depletion of CSTB affects synaptic plasticity, we characterized the synaptosomes from EPM1 hCOs. We found that the levels of presynaptic proteins and of an initiation factor linked to local protein synthesis were both reduced in EPM1 hCOs and that the extracellular vesicles trafficking pathway was impaired. Moreover, EPM1 neurons displayed anomalous morphology with longer and more branched neurites bearing higher number of intersections and nodes, suggesting connectivity alterations. In conclusion, our data strengthen the idea that CSTB plays a critical role in the synapse physiology and reveal that pathologically low levels of CSTB may affect synaptic plasticity, leading to synaptopathy and altered neuronal morphology.
Collapse
Affiliation(s)
- Amelia Pizzella
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, Naples, Italy
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Natalia Abate
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Elisa Frenna
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli, Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli, Caserta, Italy
| | | | - Silvia Cappello
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
- Biomedical Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Rossella Di Giaimo
- Department of Biology, University of Naples Federico II, Naples, Italy.
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
25
|
Chen T, Ellman DG, Fang S, Bak ST, Nørgård MØ, Svenningsen P, Andersen DC. Transfer of cardiomyocyte-derived extracellular vesicles to neighboring cardiac cells requires tunneling nanotubes during heart development. Theranostics 2024; 14:3843-3858. [PMID: 38994028 PMCID: PMC11234280 DOI: 10.7150/thno.91604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/26/2024] [Indexed: 07/13/2024] Open
Abstract
Rationale: Extracellular vesicles (EVs) are thought to mediate intercellular communication during development and disease. Yet, biological insight to intercellular EV transfer remains elusive, also in the heart, and is technically challenging to demonstrate. Here, we aimed to investigate biological transfer of cardiomyocyte-derived EVs in the neonatal heart. Methods: We exploited CD9 as a marker of EVs, and generated two lines of cardiomyocyte specific EV reporter mice: Tnnt2-Cre; double-floxed inverted CD9/EGFP and αMHC-MerCreMer; double-floxed inverted CD9/EGFP. The two mouse lines were utilized to determine whether developing cardiomyocytes transfer EVs to other cardiac cells (non-myocytes and cardiomyocytes) in vitro and in vivo and investigate the intercellular transport pathway of cardiomyocyte-derived EVs. Results: Genetic tagging of cardiomyocytes was confirmed in both reporter mouse lines and proof of concept in the postnatal heart showed that, a fraction of EGFP+/MYH1- non-myocytes exist firmly demonstrating in vivo cardiomyocyte-derived EV transfer. However, two sets of direct and indirect EGFP +/- cardiac cell co-cultures showed that cardiomyocyte-derived EGFP+ EV transfer requires cell-cell contact and that uptake of EGFP+ EVs from the medium is limited. The same was observed when co-cultiring with mouse macrophages. Further mechanistic insight showed that cardiomyocyte EV transfer occurs through type I tunneling nanotubes. Conclusion: While the current notion assumes that EVs are transferred through secretion to the surroundings, our data show that cardiomyocyte-derived EV transfer in the developing heart occurs through nanotubes between neighboring cells. Whether these data are fundamental and relate to adult hearts and other organs remains to be determined, but they imply that the normal developmental process of EV transfer goes through cell-cell contact rather than through the extracellular compartment.
Collapse
Affiliation(s)
- Ting Chen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ditte Gry Ellman
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Shu Fang
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Sara Thornby Bak
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mikkel Ørnfeldt Nørgård
- Department of Molecular Medicine, Unit of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Per Svenningsen
- Department of Molecular Medicine, Unit of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Ditte Caroline Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
26
|
Wardhani K, Levina A, Sun B, Zou H, Grau GER, Keene FR, Collins JG, Lay PA. Tetranuclear Polypyridylruthenium(II) Complexes as Selective Nucleic Acid Stains for Flow Cytometric Analysis of Monocytic and Epithelial Lung Carcinoma Large Extracellular Vesicles. Biomolecules 2024; 14:664. [PMID: 38927067 PMCID: PMC11202172 DOI: 10.3390/biom14060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Selective staining of extracellular vesicles (EVs) is a major challenge for diagnostic and therapeutic applications. Herein, the EV labeling properties of a new class of tetranuclear polypyridylruthenium(II) complexes, Rubb7-TNL and Rubb7-TL, as phosphorescent stains are described. These new stains have many advantages over standard stains to detect and characterize EVs, including: high specificity for EV staining versus cell staining; high phosphorescence yields; photostability; and a lack of leaching from EVs until incorporation with target cells. As an example of their utility, large EVs released from control (basal) or lipopolysaccharide (LPS)-stimulated THP-1 monocytic leukemia cells were studied as a model of immune system EVs released during bacterial infection. Key findings from EV staining combined with flow cytometry were as follows: (i) LPS-stimulated THP-1 cells generated significantly larger and more numerous large EVs, as compared with those from unstimulated cells; (ii) EVs retained native EV physical properties after staining; and (iii) the new stains selectively differentiated intact large EVs from artificial liposomes, which are models of cell membrane fragments or other lipid-containing debris, as well as distinguished two distinct subpopulations of monocytic EVs within the same experiment, as a result of biochemical differences between unstimulated and LPS-stimulated monocytes. Comparatively, the staining patterns of A549 epithelial lung carcinoma-derived EVs closely resembled those of THP-1 cell line-derived EVs, which highlighted similarities in their selective staining despite their distinct cellular origins. This is consistent with the hypothesis that these new phosphorescent stains target RNA within the EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; (K.W.); (H.Z.)
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; (K.W.); (H.Z.)
| | - Biyun Sun
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Haipei Zou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; (K.W.); (H.Z.)
| | - Georges E. R. Grau
- Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Cancer Network, The University of Sydney, Sydney, NSW 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - F. Richard Keene
- Discipline of Chemistry, School of Physics, Chemistry, and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Australian Institute of Tropical Health and Medicine/Centre for Molecular Therapeutics, James Cook University, Townsville, QLD 4811, Australia
| | - J. Grant Collins
- School of Science, The University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2612, Australia;
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; (K.W.); (H.Z.)
- Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Cancer Network, The University of Sydney, Sydney, NSW 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
27
|
Lin Q, He P, Tao J, Peng J. Role of Exosomes in Cardiovascular Diseases. Rev Cardiovasc Med 2024; 25:222. [PMID: 39076309 PMCID: PMC11270122 DOI: 10.31083/j.rcm2506222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 07/31/2024] Open
Abstract
Exosomes (EXOs) are a subgroup of extracellular vesicles (EVs) that contain numerous biologically active molecules. They exhibit an essential mode of cell communication, primarily between distinct cell populations, for the maintenance of tissue homeostasis and coordination of adaptive responses to various stresses. These intercellular communications are vital for the complex, multicellular cardiovascular system. In the last ten years, their potential role as effective tissue-to-tissue communicators has received increasing attention in cardiovascular physiology and pathology. There is growing evidence that repair of the heart and regeneration can be promoted by EXOs derived from cardiomyocytes or stem/progenitor cells. However, the underlying mechanisms remain unclear. EVs derived from different stem/progenitor cell populations have been used as cell-free therapies in different preclinical models involving cardiovascular diseases and have shown promising results. In this review, we have summarized the recent developments in EXOs research, the impact of EXOs derived from different cells on the cardiovascular system, their potential therapeutic roles as well as new diagnostic biomarkers, and the possible clinical translational outcomes.
Collapse
Affiliation(s)
- Qiumei Lin
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, 400014 Chongqing, China
| | - Pingfeng He
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, 400014 Chongqing, China
| | - Jing Tao
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, 400014 Chongqing, China
| | - Jing Peng
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, 400014 Chongqing, China
| |
Collapse
|
28
|
Miklavcic JJ, Paterson N, Hahn-Holbrook J, Glynn L. Impact of FADS genotype on polyunsaturated fatty acid content in human milk extracellular vesicles: A genetic association study. JPEN J Parenter Enteral Nutr 2024; 48:479-485. [PMID: 38566550 DOI: 10.1002/jpen.2628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Extracellular vesicles in human milk are critical in supporting newborn growth and development. Bioavailability of dietary extracellular vesicles may depend on the composition of membrane lipids. Single-nucleotide polymorphisms (SNPs) in the fatty acid desaturase gene cluster impact the content of long-chain polyunsaturated fatty acids in human milk phospholipids. This study investigated the relation between variation in FADS1 and FADS2 with the content of polyunsaturated fatty acids in extracellular vesicles from human milk. METHODS Milk was obtained from a cohort of mothers (N = 70) at 2-4 weeks of lactation. SNPs in the FADS gene locus were determined using pyrosequencing for rs174546 in FADS1 and rs174575 in FADS2. Quantitative lipidomic analysis of polyunsaturated fatty acids in human milk and extracellular vesicles from human milk was completed by gas chromatography-mass spectrometry. RESULTS The rs174546 and rs174575 genotypes were independent predictors of the arachidonic acid content in extracellular vesicles. The rs174546 genotype also predicted eicosapentaenoic acid and docosahexaenoic acid in extracellular vesicles. The reduced content of long-chain polyunsaturated fatty acids in extracellular vesicles in human milk may be due to lower fatty acid desaturase activity in mothers who are carriers of the A allele in rs174546 or the G allele in rs174575. CONCLUSION The polyunsaturated fatty acid composition of milk extracellular vesicles is predicted by the FADS genotype. These findings yield novel insights regarding extracellular vesicle content and composition that can inform the design of future research to explore how lipid metabolites impact the bioavailability of human milk extracellular vesicles.
Collapse
Affiliation(s)
- John J Miklavcic
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
- School of Pharmacy, Chapman University, Irvine, California, USA
| | - Natalie Paterson
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Jennifer Hahn-Holbrook
- Department of Psychological Services, University of California, Merced, Merced, California, USA
| | - Laura Glynn
- Crean College of Science, Chapman University, Orange, California, USA
| |
Collapse
|
29
|
Yue Y, Dai W, Wei Y, Cao S, Liao S, Li A, Liu P, Lin J, Zeng H. Unlocking the potential of exosomes: a breakthrough in the theranosis of degenerative orthopaedic diseases. Front Bioeng Biotechnol 2024; 12:1377142. [PMID: 38699435 PMCID: PMC11064847 DOI: 10.3389/fbioe.2024.1377142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Degenerative orthopaedic diseases pose a notable worldwide public health issue attributable to the global aging population. Conventional medical approaches, encompassing physical therapy, pharmaceutical interventions, and surgical methods, face obstacles in halting or reversing the degenerative process. In recent times, exosome-based therapy has gained widespread acceptance and popularity as an effective treatment for degenerative orthopaedic diseases. This therapeutic approach holds the potential for "cell-free" tissue regeneration. Exosomes, membranous vesicles resulting from the fusion of intracellular multivesicles with the cell membrane, are released into the extracellular matrix. Addressing challenges such as the rapid elimination of natural exosomes in vivo and the limitation of drug concentration can be effectively achieved through various strategies, including engineering modification, gene overexpression modification, and biomaterial binding. This review provides a concise overview of the source, classification, and preparation methods of exosomes, followed by an in-depth analysis of their functions and potential applications. Furthermore, the review explores various strategies for utilizing exosomes in the treatment of degenerative orthopaedic diseases, encompassing engineering modification, gene overexpression, and biomaterial binding. The primary objective is to provide a fresh viewpoint on the utilization of exosomes in addressing bone degenerative conditions and to support the practical application of exosomes in the theranosis of degenerative orthopaedic diseases.
Collapse
Affiliation(s)
- Yaohang Yue
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wei Dai
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yihao Wei
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Siyang Cao
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Shuai Liao
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Aikang Li
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Peng Liu
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jianjing Lin
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hui Zeng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
30
|
Heo J, Kang H. Platelet-derived growth factor-stimulated pulmonary artery smooth muscle cells regulate pulmonary artery endothelial cell dysfunction through extracellular vesicle miR-409-5p. Biol Chem 2024; 405:203-215. [PMID: 37903646 DOI: 10.1515/hsz-2023-0222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023]
Abstract
Platelet-derived growth factor (PDGF)-induced changes in vascular smooth muscle cells (VSMCs) stimulate vascular remodeling, resulting in vascular diseases such as pulmonary arterial hypertension. VSMCs communicate with endothelial cells through extracellular vesicles (EVs) carrying cargos, including microRNAs. To understand the molecular mechanisms through which PDGF-stimulated pulmonary artery smooth muscle cells (PASMCs) interact with pulmonary artery endothelial cells (PAECs) under pathological conditions, we investigated the crosstalk between PASMCs and PAECs via extracellular vesicle miR-409-5p under PDGF stimulation. miR-409-5p expression was upregulated in PASMCs upon PDGF signaling, and it was released into EVs. The elevated expression of miR-409-5p was transported to PAECs and led to their impaired function, including reduced NO release, which consequentially resulted in enhanced PASMC proliferation. We propose that the positive regulatory loop of PASMC-extracellular vesicle miR-409-5p-PAEC is a potential mechanism underlying the proliferation of PASMCs under PDGF stimulation. Therefore, miR-409-5p may be a novel therapeutic target for the treatment of vascular diseases, including pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jeongyeon Heo
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
31
|
McDonald J, Mohak S, Fabian Z. Stem Cell-Derived Extracellular Vesicles in the Treatment of Cardiovascular Diseases. Pharmaceutics 2024; 16:381. [PMID: 38543275 PMCID: PMC10974254 DOI: 10.3390/pharmaceutics16030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 01/03/2025] Open
Abstract
Cardiovascular disease constitutes a noteworthy public health challenge characterized by a pronounced incidence, frequency, and mortality rate, particularly impacting specific demographic groups, and imposing a substantial burden on the healthcare infrastructure. Certain risk factors, such as age, gender, and smoking, contribute to the prevalence of fatal cardiovascular disease, highlighting the need for targeted interventions. Current challenges in clinical practice involve medication complexities, the lack of a systematic decision-making approach, and prevalent drug therapy problems. Stem cell-derived extracellular vesicles stand as versatile entities with a unique molecular fingerprint, holding significant therapeutic potential across a spectrum of applications, particularly in the realm of cardio-protection. Their lipid, protein, and nucleic acid compositions, coupled with their multifaceted functions, underscore their role as promising mediators in regenerative medicine and pave the way for further exploration of their intricate contributions to cellular physiology and pathology. Here, we overview our current understanding of the possible role of stem cell-derived extracellular vesicles in the clinical management of human cardiovascular pathologies.
Collapse
Affiliation(s)
- Jennifer McDonald
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, UK;
| | - Sidhesh Mohak
- Department of Internal Medicine, South Texas Health System, McAllen, TX 78503, USA;
| | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, UK;
| |
Collapse
|
32
|
Civelek E, Kabatas S, Savrunlu EC, Diren F, Kaplan N, Ofluoğlu D, Karaöz E. Effects of exosomes from mesenchymal stem cells on functional recovery of a patient with total radial nerve injury: A pilot study. World J Stem Cells 2024; 16:19-32. [PMID: 38292440 PMCID: PMC10824039 DOI: 10.4252/wjsc.v16.i1.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses. Currently, there is a lack of effective pharmacological interventions for nerve damage, despite the existence of several small compounds, peptides, hormones, and growth factors that have been suggested as potential enhancers of neuron regeneration. Despite the objective of achieving full functional restoration by surgical intervention, the persistent challenge of inadequate functional recovery remains a significant concern in the context of peripheral nerve injuries. AIM To examine the impact of exosomes on the process of functional recovery following a complete radial nerve damage. METHODS A male individual, aged 24, who is right-hand dominant and an immigrant, arrived with an injury caused by a knife assault. The cut is located on the left arm, specifically below the elbow. The neurological examination and electrodiagnostic testing reveal evidence of left radial nerve damage. The sural autograft was utilized for repair, followed by the application of 1 mL of mesenchymal stem cell-derived exosome, comprising 5 billion microvesicles. This exosome was split into four equal volumes of 0.25 mL each and delivered microsurgically to both the proximal and distal stumps using the subepineural pathway. The patient was subjected to a period of 180 d during which they had neurological examination and electrodiagnostic testing. RESULTS The duration of the patient's follow-up period was 180 d. An increasing Tinel's sign and sensory-motor recovery were detected even at the 10th wk following nerve grafting. Upon the conclusion of the 6-mo post-treatment period, an evaluation was conducted to measure the extent of improvement in motor and sensory functions of the nerve. This assessment was based on the British Medical Research Council scale and the Mackinnon-Dellon scale. The results indicated that the level of improvement in motor function was classified as M5, denoting an excellent outcome. Additionally, the level of improvement in sensory function was classified as S3+, indicating a good outcome. It is noteworthy that these assessments were conducted in the absence of physical therapy. At the 10th wk post-injury, despite the persistence of substantial axonal damage, the nerve exhibited indications of nerve re-innervation as evidenced by control electromyography (EMG). In contrast to the preceding. EMG analysis revealed a significant electrophysiological enhancement in the EMG conducted at the 6th-mo follow-up, indicating ongoing regeneration. CONCLUSION Enhanced comprehension of the neurobiological ramifications associated with peripheral nerve damage, as well as the experimental and therapy approaches delineated in this investigation, holds the potential to catalyze future clinical progress.
Collapse
Affiliation(s)
- Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Gaziosmanpaşa 34255, Istanbul, Turkey.
| | - Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Gaziosmanpaşa 34255, Istanbul, Turkey
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences Turkey, Gaziosmanpaşa 34255, Istanbul, Turkey
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, Nevşehir State Hospital, Nevşehir 50300, Turkey
| | - Furkan Diren
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Gaziosmanpaşa 34255, Istanbul, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Çorlu 59860, Tekirdağ, Turkey
| | - Demet Ofluoğlu
- Department of Physical Medicine and Rehabilitation, Ofluoğlu Klinik, Göztepe 34728, Istanbul, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Beşiktaş 34340, Istanbul, Turkey
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, Zeytinburnu 34010, Istanbul, Turkey
- Istinye University, Center for Stem Cell and Tissue Engineering Research and Practice, Beşiktaş 34340, Istanbul, Turkey
| |
Collapse
|
33
|
Zhang N, Shu L, Liu Z, Shi A, Zhao L, Huang S, Sheng G, Yan Z, Song Y, Huang F, Tang Y, Zhang Z. The role of extracellular vesicles in cholangiocarcinoma tumor microenvironment. Front Pharmacol 2024; 14:1336685. [PMID: 38269274 PMCID: PMC10805838 DOI: 10.3389/fphar.2023.1336685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor that originates from the biliary system. With restricted treatment options at hand, the challenging aspect of early CCA diagnosis leads to a bleak prognosis. Besides the intrinsic characteristics of tumor cells, the generation and progression of CCA are profoundly influenced by the tumor microenvironment, which engages in intricate interactions with cholangiocarcinoma cells. Of notable significance is the role of extracellular vesicles as key carriers in enabling communication between cancer cells and the tumor microenvironment. This review aims to provide a comprehensive overview of current research examining the interplay between extracellular vesicles and the tumor microenvironment in the context of CCA. Specifically, we will emphasize the significant contributions of extracellular vesicles in molding the CCA microenvironment and explore their potential applications in the diagnosis, prognosis assessment, and therapeutic strategies for this aggressive malignancy.
Collapse
Affiliation(s)
- Nuoqi Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lizhuang Shu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of General Surgery, Qilu Hospital, Shandong University, Qingdao, Shandong, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Liming Zhao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shaohui Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Guoli Sheng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhangdi Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan Song
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Fan Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
34
|
Adnani L, Rak J. Intercellular Molecular Transfer Mediated by Extracellular Vesicles in Cancer. Results Probl Cell Differ 2024; 73:327-352. [PMID: 39242385 DOI: 10.1007/978-3-031-62036-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Among multiple pathways of intercellular communication operative in multicellular organisms, the trafficking of extracellular vesicles (EVs) and particles (EP) represents a unique mode of cellular information exchange with emerging roles in health and disease, including cancer. A distinctive feature of EV/EP-mediated cell-cell communication is that it involves simultaneous short- or long-range transfer of numerous molecular constituents (cargo) from donor to recipient cells. EV/EP uptake by donor cells elicits signalling or metabolic responses, or else leads to EV-re-emission or degradation. EVs are heterogeneous membranous structures released from cells via increasingly defined mechanisms involving either formation of multivesicular endosomes (exosomes) or budding from the plasma membrane (ectosomes). EPs (exomeres, supermeres) are membraneless complex particles, smaller than EVs and of less defined biogenesis and function. EVs/EPs carry complex assemblies of proteins, lipids and nucleic acids (RNA, DNA), which they shuttle into intercellular milieu, body fluids and recipient cells, via surface contact, fusion and different forms of internalization (endocytosis, micropinocytosis). While the physiological functions of EVs/EPs communication pathways continue to be investigated, their roles in cancer are increasingly well-defined. For example, EVs are involved in the transmission of cancer-specific molecular cargo, including mutant, oncogenic, transforming, or regulatory macromolecules to indolent, or normal cells, sometimes triggering their quasi-transformation-like states, or phenotypic alterations. Conversely, a reciprocal and avid uptake of stromal EVs by cancer cells may be responsible for modulating their oncogenic repertoire, as exemplified by the angiocrine effects of endothelial EVs influencing cancer cell stemness. EV exchanges during cancer progression have also been implicated in the formation of tumour stroma, angiogenesis and non-angiogenic neovascularization processes, immunosuppression, colonization of metastatic organ sites (premetastatic niche), paraneoplastic and systemic pathologies (thrombosis, diabetes, hepatotoxicity). Thus, an EV/EP-mediated horizontal transfer of cellular content emerges as a new dimension in cancer pathogenesis with functional, diagnostic, and therapeutic implications.
Collapse
Affiliation(s)
- Lata Adnani
- The Research Institute of the McGill University Health Centre, McGill University, QC, Canada
| | - Janusz Rak
- The Research Institute of the McGill University Health Centre, McGill University, QC, Canada.
| |
Collapse
|
35
|
Abstract
The landscape of exosome research has undergone a significant paradigm shift, with a departure from early conceptions of exosomes as vehicles for cellular waste disposal towards their recognition as integral components of cellular communication with therapeutic potential. This chapter presents an exhaustive elucidation of exosome biology, detailing the processes of exosome biogenesis, release, and uptake, and their pivotal roles in signal transduction, tissue repair, regeneration, and intercellular communication. Additionally, the chapter highlights recent innovations and anticipates future directions in exosome research, emphasizing their applicability in clinical settings. Exosomes have the unique ability to navigate through tissue spaces to enter the circulatory system, positioning them as key players in tissue repair. Their contributory role in various processes of tissue repair, although in the nascent stages of investigation, stands out as a promising area of research. These vesicles function as a complex signaling network for intracellular and organ-level communication, critical in both pathological and physiological contexts. The chapter further explores the tissue-specific functionality of exosomes and underscores the advancements in methodologies for their isolation and purification, which have been instrumental in expanding the scope of exosome research. The differential cargo profiles of exosomes, dependent on their cellular origin, position them as prospective diagnostic biomarkers for tissue damage and regenerative processes. Looking ahead, the trajectory of exosome research is anticipated to bring transformative changes to biomedical fields. This includes advancing diagnostic and prognostic techniques that utilize exosomes as non-invasive biomarkers for a plethora of diseases, such as cancer, neurodegenerative, and cardiovascular conditions. Additionally, engineering exosomes through alterations of their native content or surface properties presents a novel frontier, including the synthesis of artificial or hybrid variants with enhanced functional properties. Concurrently, the ethical and regulatory frameworks surrounding exosome research, particularly in clinical translation, will require thorough deliberation. In conclusion, the diverse aspects of exosome research are coalescing to redefine the frontiers of diagnostic and therapeutic methodologies, cementing its importance as a discipline of considerable consequence in the biomedical sciences.
Collapse
Affiliation(s)
- Anita Yadav
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aparajita Nandy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anu Sharma
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
36
|
Amina SJ, Azam T, Dagher F, Guo B. A review on the use of extracellular vesicles for the delivery of drugs and biological therapeutics. Expert Opin Drug Deliv 2024; 21:45-70. [PMID: 38226932 DOI: 10.1080/17425247.2024.2305115] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
INTRODUCTION Exosomes, a type of extracellular vesicles, are effective tools for delivering small-molecule drugs and biological therapeutics into cells and tissues. Surface modifications with targeting ligands ensure precise delivery to specific cells, minimizing accumulation in healthy organs and reducing the side effects. This is a rapidly growing area in drug delivery research and this review aims to comprehensively discuss the recent advances in the field. AREA COVERED Recent studies have presented compelling evidence supporting the application of exosomes as efficient delivery vehicles that escape endosome trapping, achieving effective in vivo delivery in animal models. This review provides a systemic discussion on the exosome-based delivery technology, with topics covering exosome purification, surface modification, and targeted delivery of various cargos ranging from siRNAs, miRNAs, and proteins, to small molecule drugs. EXPERT OPINION Exosome-based gene and drug delivery has low toxicity and low immunogenicity. Surface modifications of the exosomes can effectively avoid endosome trapping and increase delivery efficiency. This exciting technology can be applied to improve the treatments for a wide variety of diseases.
Collapse
Affiliation(s)
- Sundus Jabeen Amina
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Tasmia Azam
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Fatima Dagher
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| |
Collapse
|
37
|
Bolumar D, Moncayo-Arlandi J, Gonzalez-Fernandez J, Ochando A, Moreno I, Monteagudo-Sanchez A, Marin C, Diez A, Fabra P, Checa MA, Espinos JJ, Gardner DK, Simon C, Vilella F. Vertical transmission of maternal DNA through extracellular vesicles associates with altered embryo bioenergetics during the periconception period. eLife 2023; 12:RP88008. [PMID: 38149847 PMCID: PMC10752591 DOI: 10.7554/elife.88008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The transmission of DNA through extracellular vesicles (EVs) represents a novel genetic material transfer mechanism that may impact genome evolution and tumorigenesis. We aimed to investigate the potential for vertical DNA transmission within maternal endometrial EVs to the pre-implantation embryo and describe any effect on embryo bioenergetics. We discovered that the human endometrium secretes all three general subtypes of EV - apoptotic bodies (ABs), microvesicles (MVs), and exosomes (EXOs) - into the human endometrial fluid (EF) within the uterine cavity. EVs become uniformly secreted into the EF during the menstrual cycle, with the proportion of different EV populations remaining constant; however, MVs contain significantly higher levels of mitochondrial (mt)DNA than ABs or EXOs. During the window of implantation, MVs contain an eleven-fold higher level of mtDNA when compared to cells-of-origin within the receptive endometrium, which possesses a lower mtDNA content and displays the upregulated expression of mitophagy-related genes. Furthermore, we demonstrate the internalization of EV-derived nuclear-encoded (n)DNA/mtDNA by trophoblast cells of murine embryos, which associates with a reduction in mitochondrial respiration and ATP production. These findings suggest that the maternal endometrium suffers a reduction in mtDNA content during the preconceptional period, that nDNA/mtDNA become packaged into secreted EVs that the embryo uptakes, and that the transfer of DNA to the embryo within EVs occurs alongside the modulation of bioenergetics during implantation.
Collapse
Affiliation(s)
- David Bolumar
- Igenomix Foundation, INCLIVA Health Research InstituteValenciaSpain
| | | | | | - Ana Ochando
- Carlos Simon Foundation, INCLIVA Health Research InstituteValenciaSpain
| | - Inmaculada Moreno
- Carlos Simon Foundation, INCLIVA Health Research InstituteValenciaSpain
| | | | - Carlos Marin
- Igenomix Foundation, INCLIVA Health Research InstituteValenciaSpain
| | - Antonio Diez
- Igenomix Foundation, INCLIVA Health Research InstituteValenciaSpain
| | | | - Miguel Angel Checa
- Clinica FerttyBarcelonaSpain
- Department of Medicine and Life Sciences, University Pompeu FabraBarcelonaSpain
| | - Juan Jose Espinos
- Clinica FerttyBarcelonaSpain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, UABBellaterraSpain
| | - David K Gardner
- School of Biosciences, University of MelbourneParkvilleAustralia
- Melbourne IVFEast MelbourneAustralia
| | - Carlos Simon
- Carlos Simon Foundation, INCLIVA Health Research InstituteValenciaSpain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of ValenciaValenciaSpain
- Department of Obstetrics and Gynecology, BIDMC, Harvard UniversityBostonUnited States
| | - Felipe Vilella
- Carlos Simon Foundation, INCLIVA Health Research InstituteValenciaSpain
| |
Collapse
|
38
|
Hou Y, Lin S, Xia J, Zhang Y, Yin Y, Huang M, Xu Y, Yang W, Zhu Y. Alleviation of ischemia-reperfusion induced renal injury by chemically modified SOD2 mRNA delivered via lipid nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102067. [PMID: 38028193 PMCID: PMC10652142 DOI: 10.1016/j.omtn.2023.102067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury, which is a serious clinical condition with no effective pharmacological treatment. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) significantly alleviate kidney IRI; however, the underlying mechanisms and key molecules conferring renoprotection remain elusive. In this study, we characterized the protein composition of MSC-EVs using a proteomics approach and found that mitochondrial protein superoxide dismutase 2 (SOD2) was enriched in MSC-EVs. Using lipid nanoparticles (LNP), we successfully delivered chemically modified SOD2 mRNA into kidney cells and mice with kidney IRI. We demonstrated that SOD2 mRNA-LNP treatment decreased cellular reactive oxygen species (ROS) in cultured cells and ameliorated renal damage in IRI mice, as indicated by reduced levels of serum creatinine and restored tissue integrity compared with the control mRNA-LNP-injected group. Thus, the modulation of mitochondrial ROS levels through SOD2 upregulation by SOD2 mRNA-LNP delivery could be a novel therapeutic method for ischemia-reperfusion-induced acute kidney injury.
Collapse
Affiliation(s)
- Yutong Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Sihao Lin
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, P.R. China
| | - Jia Xia
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yanan Yin
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- RNAcure Biopharma, Shanghai, P.R. China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai, P.R. China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, P.R. China
| | - Yingjian Zhu
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, P.R. China
| |
Collapse
|
39
|
Smalheiser NR. Mobile circular DNAs regulating memory and communication in CNS neurons. Front Mol Neurosci 2023; 16:1304667. [PMID: 38125007 PMCID: PMC10730651 DOI: 10.3389/fnmol.2023.1304667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Stimuli that stimulate neurons elicit transcription of immediate-early genes, a process which requires local sites of chromosomal DNA to form double-strand breaks (DSBs) generated by topoisomerase IIb within a few minutes, followed by repair within a few hours. Wakefulness, exploring a novel environment, and contextual fear conditioning also elicit turn-on of synaptic genes requiring DSBs and repair. It has been reported (in non-neuronal cells) that extrachromosomal circular DNA can form at DSBs as the sites are repaired. I propose that activated neurons may generate extrachromosomal circular DNAs during repair at DSB sites, thus creating long-lasting "markers" of that activity pattern which contain sequences from their sites of origin and which regulate long-term gene expression. Although the population of extrachromosomal DNAs is diverse and overall associated with pathology, a subclass of small circular DNAs ("microDNAs," ∼100-400 bases long), largely derives from unique genomic sequences and has attractive features to act as stable, mobile circular DNAs to regulate gene expression in a sequence-specific manner. Circular DNAs can be templates for the transcription of RNAs, particularly small inhibitory siRNAs, circular RNAs and other non-coding RNAs that interact with microRNAs. These may regulate translation and transcription of other genes involved in synaptic plasticity, learning and memory. Another possible fate for mobile DNAs is to be inserted stably into chromosomes after new DSB sites are generated in response to subsequent activation events. Thus, the insertions of mobile DNAs into activity-induced genes may tend to inactivate them and aid in homeostatic regulation to avoid over-excitation, as well as providing a "counter" for a neuron's activation history. Moreover, activated neurons release secretory exosomes that can be transferred to recipient cells to regulate their gene expression. Mobile DNAs may be packaged into exosomes, released in an activity-dependent manner, and transferred to recipient cells, where they may be templates for regulatory RNAs and possibly incorporated into chromosomes. Finally, aging and neurodegenerative diseases (including Alzheimer's disease) are also associated with an increase in DSBs in neurons. It will become important in the future to assess how pathology-associated DSBs may relate to activity-induced mobile DNAs, and whether the latter may potentially contribute to pathogenesis.
Collapse
Affiliation(s)
- Neil R. Smalheiser
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, United States
| |
Collapse
|
40
|
Bronkhorst AJ, Holdenrieder S. The changing face of circulating tumor DNA (ctDNA) profiling: Factors that shape the landscape of methodologies, technologies, and commercialization. MED GENET-BERLIN 2023; 35:201-235. [PMID: 38835739 PMCID: PMC11006350 DOI: 10.1515/medgen-2023-2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Liquid biopsies, in particular the profiling of circulating tumor DNA (ctDNA), have long held promise as transformative tools in cancer precision medicine. Despite a prolonged incubation phase, ctDNA profiling has recently experienced a strong wave of development and innovation, indicating its imminent integration into the cancer management toolbox. Various advancements in mutation-based ctDNA analysis methodologies and technologies have greatly improved sensitivity and specificity of ctDNA assays, such as optimized preanalytics, size-based pre-enrichment strategies, targeted sequencing, enhanced library preparation methods, sequencing error suppression, integrated bioinformatics and machine learning. Moreover, research breakthroughs have expanded the scope of ctDNA analysis beyond hotspot mutational profiling of plasma-derived apoptotic, mono-nucleosomal ctDNA fragments. This broader perspective considers alternative genetic features of cancer, genome-wide characterization, classical and newly discovered epigenetic modifications, structural variations, diverse cellular and mechanistic ctDNA origins, and alternative biospecimen types. These developments have maximized the utility of ctDNA, facilitating landmark research, clinical trials, and the commercialization of ctDNA assays, technologies, and products. Consequently, ctDNA tests are increasingly recognized as an important part of patient guidance and are being implemented in clinical practice. Although reimbursement for ctDNA tests by healthcare providers still lags behind, it is gaining greater acceptance. In this work, we provide a comprehensive exploration of the extensive landscape of ctDNA profiling methodologies, considering the multitude of factors that influence its development and evolution. By illuminating the broader aspects of ctDNA profiling, the aim is to provide multiple entry points for understanding and navigating the vast and rapidly evolving landscape of ctDNA methodologies, applications, and technologies.
Collapse
Affiliation(s)
- Abel J Bronkhorst
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| | - Stefan Holdenrieder
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| |
Collapse
|
41
|
Xu Y, Wan W, Zeng H, Xiang Z, Li M, Yao Y, Li Y, Bortolanza M, Wu J. Exosomes and their derivatives as biomarkers and therapeutic delivery agents for cardiovascular diseases: Situations and challenges. J Transl Int Med 2023; 11:341-354. [PMID: 38130647 PMCID: PMC10732499 DOI: 10.2478/jtim-2023-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Microvesicles known as exosomes have a diameter of 40 to 160 nm and are derived from small endosomal membranes. Exosomes have attracted increasing attention over the past ten years in part because they are functional vehicles that can deliver a variety of lipids, proteins, and nucleic acids to the target cells they encounter. Because of this function, exosomes may be used for the diagnosis, prognosis and treatment of many diseases. All throughout the world, cardiovascular diseases (CVDs) continue to be a significant cause of death. Because exosomes are mediators of communication between cells, which contribute to many physiological and pathological aspects, they may aid in improving CVD therapies as biomarkers for diagnosing and predicting CVDs. Many studies demonstrated that exosomes are associated with CVDs, such as coronary artery disease, heart failure, cardiomyopathy and atrial fibrillation. Exosomes participate in the progression or inhibition of these diseases mainly through the contents they deliver. However, the application of exosomes in diferent CVDs is not very mature. So further research is needed in this field.
Collapse
Affiliation(s)
- Yunyang Xu
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Huixuan Zeng
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Mo Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| | - Mariza Bortolanza
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66424Homburg, Germany
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou215008, Jiangsu Province, China
| |
Collapse
|
42
|
Szatmári T, Balázs K, Csordás IB, Sáfrány G, Lumniczky K. Effect of radiotherapy on the DNA cargo and cellular uptake mechanisms of extracellular vesicles. Strahlenther Onkol 2023; 199:1191-1213. [PMID: 37347291 DOI: 10.1007/s00066-023-02098-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/01/2023] [Indexed: 06/23/2023]
Abstract
In the past decades, plenty of evidence has gathered pointing to the role of extracellular vesicles (EVs) secreted by irradiated cells in the development of radiation-induced non-targeted effects. EVs are complex natural structures composed of a phospholipid bilayer which are secreted by virtually all cells and carry bioactive molecules. They can travel certain distances in the body before being taken up by recipient cells. In this review we discuss the role and fate of EVs in tumor cells and highlight the importance of DNA specimens in EVs cargo in the context of radiotherapy. The effect of EVs depends on their cargo, which reflects physiological and pathological conditions of donor cell types, but also depends on the mode of EV uptake and mechanisms involved in the route of EV internalization. While the secretion and cargo of EVs from irradiated cells has been extensively studied in recent years, their uptake is much less understood. In this review, we will focus on recent knowledge regarding the EV uptake of cancer cells and the effect of radiation in this process.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary.
| | - Katalin Balázs
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Ilona Barbara Csordás
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Géza Sáfrány
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| | - Katalin Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, 1097, Budapest, Hungary
| |
Collapse
|
43
|
Neves KB, Rios FJ, Sevilla‐Montero J, Montezano AC, Touyz RM. Exosomes and the cardiovascular system: role in cardiovascular health and disease. J Physiol 2023; 601:4923-4936. [PMID: 35306667 PMCID: PMC10953460 DOI: 10.1113/jp282054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/15/2022] [Indexed: 11/16/2023] Open
Abstract
Exosomes, which are membrane-bound extracellular vesicles (EVs), are generated in the endosomal compartment of almost all eukaryotic cells. They are formed upon the fusion of multivesicular bodies and the plasma membrane and carry proteins, nucleic acids, lipids and other cellular constituents from their parent cells. Multiple factors influence their production including cell stress and injury, humoral factors, circulating toxins, and oxidative stress. They play an important role in intercellular communication, through their ability to transfer their cargo (proteins, lipids, RNAs) from one cell to another. Exosomes have been implicated in the pathophysiology of various diseases including cardiovascular disease (CVD), cancer, kidney disease, and inflammatory conditions. In addition, circulating exosomes may act as biomarkers for diagnostic and prognostic strategies for several pathological processes. In particular exosome-containing miRNAs have been suggested as biomarkers for the diagnosis and prognosis of myocardial injury, stroke and endothelial dysfunction. They may also have therapeutic potential, acting as vectors to deliver therapies in a targeted manner, such as the delivery of protective miRNAs. Transfection techniques are in development to load exosomes with desired cargo, such as proteins or miRNAs, to achieve up-regulation in the host cell or tissue. These advances in the field have the potential to assist in the detection and monitoring progress of a disease in patients during its early clinical stages, as well as targeted drug delivery.
Collapse
Affiliation(s)
- Karla B. Neves
- Institute of Cardiovascular and Medical SciencesUniversity of GlasgowUK
| | - Francisco J. Rios
- Institute of Cardiovascular and Medical SciencesUniversity of GlasgowUK
| | - Javier Sevilla‐Montero
- Biomedical Research Institute La Princesa Hospital (IIS‐IP)Department of MedicineSchool of MedicineUniversidad Autónoma of Madrid (UAM)MadridSpain
| | | | - Rhian M. Touyz
- Institute of Cardiovascular and Medical SciencesUniversity of GlasgowUK
- Research Institute of the McGill University Health Centre (RI‐MUHC)McGill UniversityMontrealCanada
| |
Collapse
|
44
|
Lakey JRT, Wang Y, Alexander M, Chan MKS, Wong MBF, Casazza K, Jenkins I. Exosomes; a Potential Source of Biomarkers, Therapy, and Cure for Type-1 Diabetes. Int J Mol Sci 2023; 24:15713. [PMID: 37958696 PMCID: PMC10647572 DOI: 10.3390/ijms242115713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The scourge of type-1 diabetes (T1D) is the morbidity and mortality it and its complications cause at a younger age. This propels the constant search for better diagnostic, treatment, and management strategies, with the ultimate quest being a cure for T1D. Recently, the therapeutic potential of exosomes has generated a lot of interest. Among the characteristics of exosomes of particular interest are (a) their regenerative capacity, which depends on their "origin", and (b) their "content", which determines the cell communication and crosstalk they influence. Other functional capacities, including paracrine and endocrine homeostatic regulation, pathogenic response ability resulting in insulin secretory defects or β-cell death under normal metabolic conditions, immunomodulation, and promotion of regeneration, have also garnered significant interest. Exosome "specificity" makes them suitable as biomarkers or predictors, and their "mobility" and "content" lend credence to drug delivery and therapeutic suitability. This review aims to highlight the functional capacities of exosomes and their established as well as novel contributions at various pathways in the onset and progression of T1D. The pathogenesis of T1D involves a complex crosstalk between insulin-secreting pancreatic β-cells and immune cells, which is partially mediated by exosomes. We also examine the potential implications for type 2 diabetes (T2D), as the link in T2D has guided T1D exploration. The collective landscape presented is expected to help identify how a deeper understanding of exosomes (and their cargo) can provide a framework for actionable solutions to prevent, halt, or change the very course of T1D and its complications.
Collapse
Affiliation(s)
- Jonathan R. T. Lakey
- Department of Surgery, University of California Irvine, Irvine, CA 92617, USA;
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92617, USA
| | - Yanmin Wang
- California Medical Innovations Institute, 11107 Roselle Street, San Diego, CA 92121, USA;
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92617, USA;
| | - Mike K. S. Chan
- Uropean Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany; (M.K.S.C.); (M.B.F.W.)
- Baden R&D Laboratories GmbH, z Hd.v. Sabine Conrad, Ferdinand-Lassalle-Strasse 40, 72770 Reutlingen, Germany
| | - Michelle B. F. Wong
- Uropean Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany; (M.K.S.C.); (M.B.F.W.)
- Baden R&D Laboratories GmbH, z Hd.v. Sabine Conrad, Ferdinand-Lassalle-Strasse 40, 72770 Reutlingen, Germany
| | - Krista Casazza
- GATC Health Inc., Suite 600, 2030 Main Street, Irvine, CA 92718, USA; (K.C.); (I.J.)
| | - Ian Jenkins
- GATC Health Inc., Suite 600, 2030 Main Street, Irvine, CA 92718, USA; (K.C.); (I.J.)
| |
Collapse
|
45
|
Wandrey M, Jablonska J, Stauber RH, Gül D. Exosomes in Cancer Progression and Therapy Resistance: Molecular Insights and Therapeutic Opportunities. Life (Basel) 2023; 13:2033. [PMID: 37895415 PMCID: PMC10608050 DOI: 10.3390/life13102033] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The development of therapy resistance still represents a major hurdle in treating cancers, leading to impaired treatment success and increased patient morbidity. The establishment of minimally invasive liquid biopsies is a promising approach to improving the early diagnosis, as well as therapy monitoring, of solid tumors. Because of their manifold functions in the tumor microenvironment, tumor-associated small extracellular vesicles, referred to as exosomes, have become a subject of intense research. Besides their important roles in cancer progression, metastasis, and the immune response, it has been proposed that exosomes also contribute to the acquisition and transfer of therapy resistance, mainly by delivering functional proteins and RNAs, as well as facilitating the export of active drugs or functioning as extracellular decoys. Extensive research has focused on understanding the molecular mechanisms underlying the occurrence of resistance and translating these into strategies for early detection. With this review, we want to provide an overview of the current knowledge about the (patho-)biology of exosomes, as well as state-of-the-art methods of isolation and analysis. Furthermore, we highlight the role of exosomes in tumorigenesis and cancer treatment, where they can function as therapeutic agents, biomarkers, and/or targets. By focusing on their roles in therapy resistance, we will reveal new paths of exploiting exosomes for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Madita Wandrey
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.W.); (R.H.S.)
| | - Jadwiga Jablonska
- Translational Oncology/ENT Department, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany;
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| | - Roland H. Stauber
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.W.); (R.H.S.)
| | - Désirée Gül
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.W.); (R.H.S.)
| |
Collapse
|
46
|
Fayyazpour P, Fayyazpour A, Abbasi K, Vaez-Gharamaleki Y, Zangbar MSS, Raeisi M, Mehdizadeh A. The role of exosomes in cancer biology by shedding light on their lipid contents. Pathol Res Pract 2023; 250:154813. [PMID: 37769395 DOI: 10.1016/j.prp.2023.154813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023]
Abstract
Exosomes are extracellular bilayer membrane nanovesicles released by cells after the fusion of multivesicular bodies (MVBs) with the plasma membrane. One of the interesting features of exosomes is their ability to carry and transfer various molecules, including lipids, proteins, nucleic acids, and therapeutic cargoes among cells. As intercellular signaling organelles, exosomes participate in various signaling processes such as tumor growth, metastasis, angiogenesis, epithelial-to-mesenchymal transition (EMT), and cell physiology such as cell-to-cell communication. Moreover, these particles are considered good vehicles to shuttle vaccines and drugs for therapeutic applications regarding cancers and tumor cells. These bioactive vesicles are also rich in various lipid molecules such as cholesterol, sphingomyelin (SM), glycosphingolipids, and phosphatidylserine (PS). These lipids play an important role in the formation, release, and function of the exosomes and interestingly, some lipids are used as biomarkers in cancer diagnosis. This review aimed to focus on exosomes lipid content and their role in cancer biology.
Collapse
Affiliation(s)
- Parisa Fayyazpour
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Fayyazpour
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yosra Vaez-Gharamaleki
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
47
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. The Diagnostic, Prognostic, and Therapeutic Potential of Cell-Free DNA with a Special Focus on COVID-19 and Other Viral Infections. Int J Mol Sci 2023; 24:14163. [PMID: 37762464 PMCID: PMC10532175 DOI: 10.3390/ijms241814163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-free DNA (cfDNA) in human blood serum, urine, and other body fluids recently became a commonly used diagnostic marker associated with various pathologies. This is because cfDNA enables a much higher sensitivity than standard biochemical parameters. The presence of and/or increased level of cfDNA has been reported for various diseases, including viral infections, including COVID-19. Here, we review cfDNA in general, how it has been identified, where it can derive from, its molecular features, and mechanisms of release and clearance. General suitability of cfDNA for diagnostic questions, possible shortcomings and future directions are discussed, with a special focus on coronavirus infection.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
48
|
Chen Q, Chen J, Liu YN, Qi SH, Huang LY. Exosome-based drug delivery systems for the treatment of diabetes and its complications: current opinion. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:502-517. [PMID: 39698026 PMCID: PMC11648477 DOI: 10.20517/evcna.2023.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 12/20/2024]
Abstract
Diabetes medication is based on controlling blood glucose and delaying the onset of related complications and is not a complete cure for diabetes. Conventional drug therapy fails to stop progressive islet β cell failure in diabetic patients. Recent studies have shown that "exosome-based therapy" holds great promise in treating diabetes and its complications. Exosomes are small vesicles that are stable in the bloodstream and can effectively deliver therapeutic drugs to specific tissues or organs through intercellular communication. Using exosomes as carriers for drug delivery offers several advantages. This review summarizes the benefits of exosomal drug delivery systems, drug loading methods, and their applications in treating diabetes and its complications. However, there are still challenges to overcome in using exosomal drug delivery systems, such as large-scale production, assessing the contents of exosomes, and monitoring the safety and effectiveness of the treatment in vivo. In conclusion, this review proposes the therapeutical potential of exosomes as drug carriers for developing novel drugs to provide new strategies for treating diabetes and its complications.
Collapse
Affiliation(s)
- Qi Chen
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Authors contributed equally
| | - Jie Chen
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Authors contributed equally
| | - Yi-Ning Liu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Su-Hua Qi
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Pharmacology College, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Authors contributed equally
| | - Lin-Yan Huang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Authors contributed equally
| |
Collapse
|
49
|
Suliman M, Al-Hawary SIS, Al-Dolaimy F, Hjazi A, Almalki SG, Alkhafaji AT, Alawadi AH, Alsaalamy A, Bijlwan S, Mustafa YF. Inflammatory diseases: Function of LncRNAs in their emergence and the role of mesenchymal stem cell secretome in their treatment. Pathol Res Pract 2023; 249:154758. [PMID: 37660657 DOI: 10.1016/j.prp.2023.154758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
One of the best treatments for inflammatory diseases such as COVID-19, respiratory diseases and brain diseases is treatment with stem cells. Here we investigate the effect of stem cell therapy in the treatment of brain diseases.Preclinical studies have shown promising results, including improved functional recovery and tissue repair in animal models of neurodegenerative diseases, strokes,and traumatic brain injuries. However,ethical implications, safety concerns, and regulatory frameworks necessitate thorough evaluation before transitioning to clinical applications. Additionally, the complex nature of the brain and its intricate cellular environment present unique obstacles that must be overcome to ensure the successful integration and functionality of genetically engineered MSCs. The careful navigation of this path will determine whether the application of genetically engineered MSCs in brain tissue regeneration ultimately lives up to the hype surrounding it.
Collapse
Affiliation(s)
- Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | | | - Ahmed Hussien Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| | - Sheela Bijlwan
- Uttaranchal School of Computing Sciences, Uttaranchal University, Dehradun, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
50
|
Ullah A, Huang Y, Zhao K, Hua Y, Ullah S, Rahman MU, Wang J, Wang Q, Hu X, Zheng L. Characteristics and potential clinical applications of the extracellular vesicles of human pathogenic Fungi. BMC Microbiol 2023; 23:227. [PMID: 37598156 PMCID: PMC10439556 DOI: 10.1186/s12866-023-02945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/14/2023] [Indexed: 08/21/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of lipid membrane-enclosed compartments that contain different biomolecules and are released by almost all living cells, including fungal genera. Fungal EVs contain multiple bioactive components that perform various biological functions, such as stimulation of the host immune system, transport of virulence factors, induction of biofilm formation, and mediation of host-pathogen interactions. In this review, we summarize the current knowledge on EVs of human pathogenic fungi, mainly focusing on their biogenesis, composition, and biological effects. We also discuss the potential markers and therapeutic applications of fungal EVs.
Collapse
Affiliation(s)
- Amir Ullah
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yiyi Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Kening Zhao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Yuneng Hua
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shafi Ullah
- Department of pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|