1
|
Gasmi A, Kassym L, Menzel A, Anzar W, Dadar M, Semenova Y, Arshad M, Bihunyak T, Meguid NA, Peana M, Bekbergenova Z, Bjørklund G. Genetic and Epigenetic Determinants of COVID-19 Susceptibility: A Systematic Review. Curr Med Chem 2025; 32:753-770. [PMID: 38251695 DOI: 10.2174/0109298673267890231221100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/04/2023] [Accepted: 11/14/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND The molecular mechanisms regulating coronavirus pathogenesis are complex, including virus-host interactions associated with replication and innate immune control. However, some genetic and epigenetic conditions associated with comorbidities increase the risk of hospitalization and can prove fatal in infected patients. This systematic review will provide insight into host genetic and epigenetic factors that interfere with COVID-19 expression in light of available evidence. METHODS This study conducted a systematic review to examine the genetic and epigenetic susceptibility to COVID-19 using a comprehensive approach. Through systematic searches and applying relevant keywords across prominent online databases, including Scopus, PubMed, Web of Science, and Science Direct, we compiled all pertinent papers and reports published in English between December 2019 and June 2023. RESULTS The findings reveal that the host's HLA genotype plays a substantial role in determining how viral protein antigens are showcased and the subsequent immune system reaction to these antigens. Within females, genes responsible for immune system regulation are found on the X chromosome, resulting in reduced viral load and inflammation levels when contrasted with males. Possessing blood group A may contribute to an increased susceptibility to contracting COVID-19 as well as a heightened risk of mortality associated with the disease. The capacity of SARS-CoV-2 involves inhibiting the antiviral interferon (IFN) reactions, resulting in uncontrolled viral multiplication. CONCLUSION There is a notable absence of research into the gender-related predisposition to infection, necessitating a thorough examination. According to the available literature, a significant portion of individuals affected by the ailment or displaying severe ramifications already had suppressed immune systems, categorizing them as a group with elevated risk.
Collapse
Affiliation(s)
- Amin Gasmi
- Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Laura Kassym
- Department of Research, Astana Medical University, Astana, Kazakhstan
| | - Alain Menzel
- Department of Research, Laboratoires Réunis, Junglinster, Luxembourg
| | - Wajiha Anzar
- Department of Research, Dow University of Health Sciences, Karachi, Pakistan
| | - Maryam Dadar
- Department of Research, CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Yuliya Semenova
- Department of Research, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Mehreen Arshad
- Department of Research, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tetyana Bihunyak
- Department of Research, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Nagwa Abdel Meguid
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | | | - Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
2
|
Bertollo AG, Dalazen JB, Cassol JV, Hellmann MB, Mota TL, Ignácio ZM, Bagatini MD. Melatonin's Impact on Cytokine Storm and Modulation of Purinergic Receptors for COVID-19 Prognosis: A Mental Health Perspective. J Mol Neurosci 2024; 74:113. [PMID: 39636363 DOI: 10.1007/s12031-024-02292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
In 2019, coronavirus disease 2019 (COVID-19) started a global health crisis and was associated with high rates of depression and anxiety. Both mental disorders and COVID-19 exhibit similarities in pathophysiology, characterized by immune system overactivation, involvement of the purinergic system, and oxidative stress, besides additional factors and systems likely contributing to the complexities of these conditions. The purinergic system contributes to the disease-influenced immune response, an essential strategy for controlling pathophysiological effects. In this context, the hormone melatonin emerges as a substance that can modulate the purinergic system and contribute positively to the pathophysiology of SARS-CoV-2 infection and associated mental disorders. Melatonin is a hormone that regulates the body's circadian rhythms, plays an essential role in regulating sleep and mood, and modulates the purinergic system. Recent studies suggest melatonin's anti-inflammatory and antioxidant properties may benefit COVID-19. This review explores melatonin's impact on inflammatory cytokine storm in COVID-19 through purinergic system modulation.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Joana Bortolanza Dalazen
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Joana Vitória Cassol
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Mariélly Braun Hellmann
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Tiago Libério Mota
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Zuleide Maria Ignácio
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
3
|
Smail SW, Hirmiz SM, Ahmed AA, Albarzinji N, Awla HK, Amin K, Janson C. Decoding the intricacies: a comprehensive analysis of microRNAs in the pathogenesis, diagnosis, prognosis and therapeutic strategies for COVID-19. Front Med (Lausanne) 2024; 11:1430974. [PMID: 39434774 PMCID: PMC11492531 DOI: 10.3389/fmed.2024.1430974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
The pandemic of coronavirus disease-19 (COVID-19), provoked by the appearance of a novel coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), required a worldwide healthcare emergency. This has elicited an immediate need for accelerated research into its mechanisms of disease, criteria for diagnosis, methods for forecasting outcomes, and treatment approaches. microRNAs (miRNAs), are diminutive RNA molecules, that are non-coding and participate in gene expression regulation post-transcriptionally, having an important participation in regulating immune processes. miRNAs have granted substantial interest in their impact on viral replication, cell proliferation, and modulation of how the host's immune system responds. This narrative review delves into host miRNAs' multifaceted roles within the COVID-19 context, highlighting their involvement in disease progression, diagnostics, and prognostics aspects, given their stability in biological fluids and varied expression profiles when responding to an infection. Additionally, we discuss complicated interactions between SARS-CoV-2 and host cellular machinery facilitated by host miRNAs revealing how dysregulation of host miRNA expression profiles advances viral replication, immune evasion, and inflammatory responses. Furthermore, it investigates the potential of host miRNAs as therapeutic agents, whether synthetic or naturally occurring, which could be harnessed to either mitigate harmful inflammation or enhance antiviral responses. However, searching more deeply is needed to clarify how host's miRNAs are involved in pathogenesis of COVID-19, its diagnosis processes, prognostic assessments, and treatment approaches for patients.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- College of Pharmacy, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Sarah Mousa Hirmiz
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Akhter Ahmed Ahmed
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Niaz Albarzinji
- Department of Medicine, Hawler Medical University, Erbil, Iraq
| | - Harem Khdir Awla
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Kawa Amin
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Chen X, Xu D, Yu J, Song XJ, Li X, Cui YL. Tryptophan Metabolism Disorder-Triggered Diseases, Mechanisms, and Therapeutic Strategies: A Scientometric Review. Nutrients 2024; 16:3380. [PMID: 39408347 PMCID: PMC11478743 DOI: 10.3390/nu16193380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Tryptophan is widely present in foods such as peanuts, milk, and bananas, playing a crucial role in maintaining metabolic homeostasis in health and disease. Tryptophan metabolism is involved in the development and progression of immune, nervous, and digestive system diseases. Although some excellent reviews on tryptophan metabolism exist, there has been no systematic scientometric study as of yet. METHODS This review provides and summarizes research hotspots and potential future directions by analyzing annual publications, topics, keywords, and highly cited papers sourced from Web of Science spanning 1964 to 2022. RESULTS This review provides a scientometric overview of tryptophan metabolism disorder-triggered diseases, mechanisms, and therapeutic strategies. CONCLUSIONS The gut microbiota regulates gut permeability, inflammation, and host immunity by directly converting tryptophan to indole and its derivatives. Gut microbial metabolites regulate tryptophan metabolism by activating specific receptors or enzymes. Additionally, the kynurenine (KYN) pathway, activated by indoleamine-2, 3-dioxygenase (IDO) and tryptophan 2, 3-dioxygenase, affects the migration and invasion of glioma cells and the development of COVID-19 and depression. The research and development of IDO inhibitors help to improve the effectiveness of immunotherapy. Tryptophan metabolites as potential markers are used for disease therapy, guiding clinical decision-making. Tryptophan metabolites serve as targets to provide a new promising strategy for neuroprotective/neurotoxic imbalance affecting brain structure and function. In summary, this review provides valuable guidance for the basic research and clinical application of tryptophan metabolism.
Collapse
Affiliation(s)
- Xue Chen
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dong Xu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Yu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu-Jiao Song
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuan-Lu Cui
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
5
|
Yarmahmoodi F, Samimi S, Zeinali-Rafsanjani B, Razavinejad SM, Saeedi-Moghadam M. Determining the frequency of thyroid involvement in chest CT scans of COVID-19 patients and its correlation with the severity of lung involvement and survival of patients in 2020. Front Endocrinol (Lausanne) 2024; 15:1345008. [PMID: 39045269 PMCID: PMC11263004 DOI: 10.3389/fendo.2024.1345008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction This study aimed to determine the frequency of thyroid gland involvement in chest CT scans of patients with COVID-19 admitted to university-affiliated hospitals and assess its relationship with the severity of lung involvement and patient survival in 2020. Material and methods In this retrospective cross-sectional study, 1000 PCR-positive patients with COVID-19 who were referred to University-affiliated Hospital in 2020 and had chest CT performed within 72 hours of admission to the hospital were examined. The data was collected by patient file information and CT findings recorded in the PACS system, including thyroid involvement, the severity of lung involvement, and findings related to the death and recovery of patients. Results The mean age of the examined patients was 56 years. 525 people (52.5%) were men, and 475 (47.5%) were women. 14% had severe pulmonary involvement, and 9.3% had very severe involvement. Moreover, 15.9 percent of them had deceased. 19.7% had focal thyroid involvement, 14% had diffuse involvement, and 66.3% were healthy subjects. Male gender and older age showed a significant relationship with thyroid gland involvement. The severity of lung involvement, the death rate in patients, and hospitalization in ICU were also significantly related to thyroid gland involvement in patients with COVID. Discussion and conclusion This study highlights the importance of considering thyroid-gland involvement in the comprehensive management of COVID-19 patients. Routine screening and monitoring of thyroid-function may facilitate earlier detection and appropriate management of thyroid-related complications, potentially improving clinical outcomes. This study suggests that in COVID-19 infection the monitoring of thyroid function is prudent, particularly in cases of more serious disease.
Collapse
Affiliation(s)
- Fatemeh Yarmahmoodi
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Shoayb Samimi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Mahdi Saeedi-Moghadam
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
6
|
Yoshihara E, Nabil A, Iijima M, Ebara M. A Comparative Study of "Grafting to" and "Grafting from" Conjugation Methods for the Preparation of Antibody-Temperature-Responsive Polymer Conjugates. ACS OMEGA 2024; 9:22043-22050. [PMID: 38799371 PMCID: PMC11112704 DOI: 10.1021/acsomega.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 05/29/2024]
Abstract
Early diagnosis of infectious diseases is still challenging particularly in a nonlaboratory environment or limited resources areas. Thus, sensitive, inexpensive, and easily handled diagnostic approaches are required. The lateral flow immunoassay (LFIA) is commonly used in the screening of infectious diseases despite its poor sensitivity, especially with low pathogenic loads (early stages of infection). This article introduces a novel polymeric material that might help in the enrichment and concentration of pathogens to overcome the LFIA misdiagnosis. To achieve this, we evaluated the efficiency of introducing poly(N-isopropylacrylamide) (PNIPAAm) into immunoglobulin G (IgG) as a model antibody using two different conjugation methods: grafting to (GT) and grafting from (GF). The IgG-PNIPAAm conjugates were characterized using SDS-PAGE, DLS, and temperature-responsive phase transition behavior. SDS-PAGE analysis revealed that the GF method was more efficient in introducing the polymer than the GT method, with calculated polymer introduction ratios of 61% and 34%, respectively. The GF method proved to be less susceptible to steric hindrance and more efficient in introducing high-molecular-weight polymers into proteins. These results are consistent with previous studies comparing the GT and GF methods in similar systems. This study represents an important step toward understanding how the choice of polymer incorporation method affects the properties of IgG-PNIPAAm conjugates. The synthesized polymer allowed binding and enrichment of mouse IgG that was used as a model antigen with a clear LFIA band. On the basis of our findings, this system might help in improving the sensitivity of simple diagnostics.
Collapse
Affiliation(s)
- Erika Yoshihara
- Research
Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Ahmed Nabil
- Research
Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Biotechnology
and Life Sciences Department, Faculty of Postgraduate Studies for
Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
- Egyptian
Liver Research Institute and Hospital (ELRIAH), El Mansoura 35511, Egypt
| | - Michihiro Iijima
- Department
of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College (NIT, Oyama College), 771 Nakakuki, Oyama 323-0806, Japan
| | - Mitsuhiro Ebara
- Research
Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
- Graduate
School of Industrial Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-0825, Japan
| |
Collapse
|
7
|
Kalinin RE, Suchkov IA, Raitsev SN, Zvyagina VI, Bel'skikh ES. Role of Hypoxia-Inducible Factor 1α in Adaptation to Hypoxia in the Pathogenesis of Novel Coronavirus Disease 2019. I.P. PAVLOV RUSSIAN MEDICAL BIOLOGICAL HERALD 2024; 32:133-144. [DOI: 10.17816/pavlovj165536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
INTRODUCTION: A novel coronavirus (severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)) emerged in December 2019 and rapidly spread over the world having provoked a pandemic of respiratory disease. This highly pathogenic virus can attack the lung tissue and derange gas exchange leading to acute respiratory distress syndrome and systemic hypoxia. Hypoxic conditions trigger activation of adaptation mechanisms including hypoxia-inducible factor-1á (HIF-1á) which is involved in the regulation of the key processes, e. g, proliferation and metabolism of cells and angiogenesis. Besides, the level of HIF-1á expression is associated with the intensity of the immune response of an organism including that of the innate immunity mediating inflammatory reaction. Therefore, understanding the peculiarities of the mechanisms underlying the pathogenesis of this disease is of great importance for effective therapy of coronavirus disease 2019 (COVID-19).
AIM: Analysis of the current data on HIF-1á and its effect on the pathogenesis and progression of COVID-19.
The analysis of the relevant domestic and international literature sources was performed in the following sections: HIF-1á as a key factor of adaptation to hypoxia, targets for HIF-1á in the aspect of the pathogenesis of COVID-19, disorders in HIF-1á-mediated adaptation to hypoxia as an element of the pathogenesis of hyperactivation of the immune cells.
CONCLUSION: HIF-1á prevents penetration of SARS-CoV-2 virus into a cell and primarily acts as the main regulator of the proinflammatory activity at the inflammation site surrounded by hypoxia. In the conditions of the deranged metabolic flexibility, a high level of HIF-1á evokes an excessive inflammatory response of the immune cells. A high HIF-1á level in cells of the inflammation focus is associated with enhanced production of the factors of angiogenesis mediating vascular permeability and capillary leakage process. This is accompanied by tissue damage and organ failure. At the same time, HIF-1á can mediate the anti-inflammatory effect through activation of adenosine receptor-dependent pathway, which is considered as a probable protection of cells and organs against damage by hyperactive immune cells.
Collapse
|
8
|
Kosyreva A, Vishnyakova P, Tsvetkov I, Kiseleva V, Dzhalilova DS, Miroshnichenko E, Lokhonina A, Makarova O, Fatkhudinov T. Advantages and disadvantages of treatment of experimental ARDS by M2-polarized RAW 264.7 macrophages. Heliyon 2023; 9:e21880. [PMID: 38027880 PMCID: PMC10658332 DOI: 10.1016/j.heliyon.2023.e21880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/20/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Innate immunity reactions are core to any immunological process, including systemic inflammation and such extremes as acute respiratory distress syndrome (ARDS) and cytokine storm. Macrophages, the key cells of innate immunity, show high phenotypic plasticity: depending on microenvironmental cues, they can polarize into M1 (classically activated, pro-inflammatory) or M2 (alternatively activated, anti-inflammatory). The anti-inflammatory M2 macrophage polarization-based cell therapies constitute a novel prospective modality. Systemic administration of 'educated' macrophages is intended at their homing in lungs in order to mitigate the pro-inflammatory cytokine production and reduce the risks of 'cytokine storm' and related severe complications. Acute respiratory distress syndrome (ARDS) is the main mortality factor in pneumonia including SARS-CoV-associated cases. This study aimed to evaluate the influence of infusions of RAW 264.7 murine macrophage cell line polarized towards M2 phenotype on the development of LPS-induced ARDS in mouse model. The results indicate that the M2-polarized RAW 264.7 macrophage infusions in the studied model of ARDS promote relocation of lymphocytes from their depots in immune organs to the lungs. In addition, the treatment facilitates expression of M2-polarization markers Arg1, Vegfa and Tgfb and decreases of M1-polarization marker Cd38 in lung tissues, which can indicate the anti-inflammatory response activation. However, treatment of ARDS with M2-polarized macrophages didn't change the neutrophil numbers in the lungs. Moreover, the level of the Arg1 protein in lungs decreased throughtout the treatment with M2 macrophages, which is probably because of the pro-inflammatory microenvironment influence on the polarization of macrophages towards M1. Thus, the chemical polarization of macrophages is unstable and depends on the microenvironment. This adverse effect can be reduced through the use of primary autologous macrophages or some alternative methods of M2 polarization, notably siRNA-mediated.
Collapse
Affiliation(s)
- A.M. Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - P.A. Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997, Moscow, Russia
| | - I.S. Tsvetkov
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - V.V. Kiseleva
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997, Moscow, Russia
| | - D. Sh. Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - E.A. Miroshnichenko
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - A.V. Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997, Moscow, Russia
| | - O.V. Makarova
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - T.H. Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| |
Collapse
|
9
|
Liu YJ, Lu XJ, Hauton C, Yang GJ, Chen J. Editorial: Emerging talents in comparative immunology: 2022. Front Immunol 2023; 14:1318852. [PMID: 37965318 PMCID: PMC10641830 DOI: 10.3389/fimmu.2023.1318852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
| | - Xin-Jiang Lu
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chris Hauton
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, United Kingdom
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Suhana PA, Kusum L, Shruti JV, Sreekanth GP, Bijukumar D, Shaji Kumar RT, Muraleedharan KC, Kaushik S. Immunological Responses of Arsenicum album 30CH to Combat COVID-19: Protocol for a Double-Blind, Randomized, Placebo-Controlled Clinical Trial in the Pathanamthitta District of Kerala. JMIR Res Protoc 2023; 12:e48479. [PMID: 37843912 PMCID: PMC10616730 DOI: 10.2196/48479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND COVID-19 is a recent major public health concern caused by the SARS-CoV-2 virus, with approximately 44.6 million COVID-19-positive cases and 530,000 deaths in India (as of February 1, 2023). The COVID-19 vaccination drive in India was initiated in January 2021; however, an effective preventive strategy with high efficacy and immunological safety remains elusive. OBJECTIVE The aim of this study is to assess the immunogenic responses of Arsenicum album 30CH (AA30CH) as COVID-19 prophylaxis, including assessment of immunological markers, innate and acquired immune responses, COVID-19 symptoms, and its associated antibody responses. METHODS This randomized controlled clinical trial (RCT) will include two parallel comparator groups of AA30CH and placebo with an allocation ratio of 1:1 conducted in the Pathanamthitta district of Kerala, India. The placebo or AA30CH will be administered in three intervention schedules and blood samples will be collected before and after each of the intervention schedules. Based on the inclusion and exclusion criteria, 112 participants per arm (with an expected dropout of 20%) will be screened. Immunogenic responses will be evaluated by determining the antigen density and modulation in immunological markers and lymphocyte subsets CD3, CD4, CD8, CD24, CD27, CD38, CD4 interferon-γ, CD4 CD17, CD4 CD25 (activated T lymphocytes), T cells, B cells, dendritic cells (mature and immature), and natural killer cells on days 1, 5, 23,27, 45, 49, and 66. The innate and acquired immune responses will also be evaluated by a real-time reverse-transcriptase polymerase chain reaction (RT-PCR) array profiler (84-gene set) before and after the study interventions. The toxicity status of AA30CH in study participants will be evaluated through hepatic, renal, and hematological parameters and peripheral smears on days 1, 5, 23, 27, 45, 49, and 66. The number of participants developing COVID-19-like symptoms per National Centre for Disease Control guidelines and the number of participants testing positive for COVID-19 in RT-PCR during follow-ups in any of the three intervention schedules will be identified. Moreover, a subgroup analysis will be used to assess the COVID-19 antibody responses between vaccinated and unvaccinated participants. RESULTS This RCT protocol has been approved by various committees and funded by the Central Council for Research in Homoeopathy, Ministry of Ayush, Government of India. The project has been implemented in collaboration with the Department of Homoeopathy, Government of Kerala. The RCT was rolled out on January 25, 2023, and enrollment was completed April 3, 2023. The immunological assays will be conducted at the Department of Biotechnology-Translational Health Science and Technology Institute, Faridabad, India. CONCLUSIONS This study will represent the first evaluation of the immunological efficacy and safety of AA30CH in an RCT, which may significantly impact the use of homeopathy as an evidence-based medicine approach. TRIAL REGISTRATION Clinical Trials Registry-India CTRI/2022/08/045089; https://tinyurl.com/mryrpkvk. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/48479.
Collapse
Affiliation(s)
| | - Lata Kusum
- Department of Clinical Research, Central Council for Research in Homoeopathy, New Delhi, India
| | - Jain Vij Shruti
- Department of Clinical Research, Central Council for Research in Homoeopathy, New Delhi, India
| | - Gopinathan Pillai Sreekanth
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology, Hyderabad, India
| | - Damodaran Bijukumar
- District Medical Office (Pathanamthitta), Directorate of Homoeopathy, Government of Kerala, Pathanamthitta, India
| | - R T Shaji Kumar
- Department of Clinical Research, Central Council for Research in Homoeopathy, New Delhi, India
| | - K C Muraleedharan
- National Homoeopathy Research Institute Mental Health, Central Council for Research in Homoeopathy, Government of India, Kottayam, India
| | - Subhash Kaushik
- Department of Clinical Research, Central Council for Research in Homoeopathy, New Delhi, India
| |
Collapse
|
11
|
Kosyreva AM, Miroshnichenko EA, Tsvetkov IS, Lokhonina AV, Sentyabreva AV, Dzhalilova DS, Fatkhudinov TK, Makarova OV. Morphofunctional Characteristics of Lung Macrophages in Rats with Acute Respiratory Distress Syndrome. Bull Exp Biol Med 2023; 175:822-827. [PMID: 37979023 DOI: 10.1007/s10517-023-05954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 11/19/2023]
Abstract
A comprehensive morphofunctional study of the lungs and alveolar macrophages was carried out in Sprague-Dawley rats with acute respiratory distress syndrome (n=10) induced by intratracheal administration of E. coli LPS 0111:B4 in a dose of 15 mg/kg. On the first day after LPS administration, bronchopneumonia was observed in the lungs, the number of macrophages of the bone marrow origin and the number of M1 macrophages with the proinflammatory phenotype in the bronchoalveolar lavage increased, the expression of proinflammatory cytokines increased and the expression of anti-inflammatory cytokines decreased, which was accompanied by an increase in LPS and C-reactive protein in the blood serum. The revealed changes correspond to the development of acute respiratory distress syndrome in humans, and the decrease in the number of macrophages in the lungs and their predominant polarization to the M1-proinflammatory phenotype substantiate the use of cell therapy with reprogrammed M2 macrophages.
Collapse
Affiliation(s)
- A M Kosyreva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia.
| | - E A Miroshnichenko
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - I S Tsvetkov
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - A V Lokhonina
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - A V Sentyabreva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - D Sh Dzhalilova
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - T Kh Fatkhudinov
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| | - O V Makarova
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Pet-rovsky Russian Research Center of Surgery, Moscow, Russia
| |
Collapse
|
12
|
Bilge N, Kesmez Can F, Yevgi R. Immune responses following COVID-19 infection in multiple sclerosis patients using immunomodulatory therapy. Acta Neurol Belg 2023; 123:1885-1892. [PMID: 36331727 PMCID: PMC9638386 DOI: 10.1007/s13760-022-02125-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2), has quickly become a global pandemic. Most multiple sclerosis (MS) patients use disease-modifying treatments (DMTs), such as immunomodulators or immunosuppressants. By targeting different types of immune cells, DMTs affect cellular and/or humoral immunity. The potential effects of DMTs on the long-term immune response to COVID-19 is not fully known. Between 16.04.2020 and 15.07.2020, a total of 34 people, 17 of whom were diagnosed with MS according to the 2010 McDonald diagnostic criteria and a control group of 17 individuals who did not have a known systemic disease who were matched according to age, gender, and COVID-19 disease severity, where all received COVID-19 diagnosis with SARS-CoV-2 PCR positivity in nasopharyngeal swab test and immune responses were measured (SARS-CoV-2 IgM and IgG antibody levels COVID 19 ELISA kit), were included in our study. Demographic data of MS patients and the control group, SARS-CoV-2 immune responses, antibody titers and disease year of MS patients, EDSS scores, disease type, and disease duration were determined. All patients were symptomatic for COVID-19. COVID-19 disease severity was divided into three groups as mild, moderate, and severe according to the clinical condition of the patient. Demographic data of MS patients and the control group, SARS-CoV-2 immune responses, antibody titers and disease year of MS patients, EDSS scores, disease type, and disease duration were determined. All patients were symptomatic for COVID-19. COVID-19 disease severity was divided into three groups as mild, moderate, and severe according to the clinical condition of the patient. According to our study results, IgG-type long-term immune responses were lower in MS patients using DMTs than in the healthy population. We hope that our study will provide insight into the COVID-19 vaccine immune responses.
Collapse
Affiliation(s)
- Nuray Bilge
- Faculty of Medicine, Department of Neurology, Atatürk University, Erzurum, Turkey
| | - Fatma Kesmez Can
- Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Atatürk University, Erzurum, Turkey
| | - Recep Yevgi
- Faculty of Medicine, Department of Neurology, Atatürk University, Erzurum, Turkey
| |
Collapse
|
13
|
Silva MDJ, de Andrade CM, Fiuza BSD, Pinheiro GP, Nova Santana CV, Costa RDS, Barnes K, Cruz ÁA, Figueiredo CA. Genetic variants associated with SARS-CoV-2 infection also affect lung function and asthma severity. Heliyon 2023; 9:e19235. [PMID: 37662742 PMCID: PMC10474403 DOI: 10.1016/j.heliyon.2023.e19235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/10/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Background Host genetic factors may be associated with COVID-19 unfavourable outcomes. The first genome-wide association study (GWAS) conducted in individuals with respiratory failure due to COVID-19 revealed susceptibility loci close to six genes (SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6 and XCR1) and the ABO blood-group gene. We aimed to investigate how polymorphisms in those genes could relate to lung function and severe asthma in a Brazilian population. Methods DNA samples of 784 individuals following the ProAR (Programa para Controle da Asma e Rinite Alérgica da Bahia) were genotyped by the Multi-Ethnic Global Array panel with ∼2 million polymorphisms (Illumina). Polymorphisms in SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, XCR1 and the ABO blood-group gene were evaluated. Logistic regression for severe asthma, airway obstruction and lack of FEV1 reversibility was performed using PLINK software 1.9, in the additive model and was adjusted for sex, age and PCA-1. Pairwise Linkage disequilibrium analyses were performed using Haploview 4.2. The haplotypes and gene score analyses were performed in the SNPstat tool. In silico functions of polymorphisms were analysed using rSNPbase and RegulomeDB plataforms. Results We identified the rs8176733 (G allele) and rs8176725 (A allele) in the ABO blood-group gene as risk factors for severe asthma, lower pulmonary obstruction and lack of FEV1 reversibility. Polymorphisms in CCR9 are risk factors for both severe asthma (A allele of rs34338823) and airway obstruction (A allele of rs6806802). The markers rs13079478 (A allele) and rs75817942 (A allele) in FYCO1 are related to more severe asthma and a lack of FEV1 reversibility, respectively. We identified the A allele of both rs35731912 and rs34338823 in LZTFL1 as risk factors for severe asthma. The marker rs6806802 (C allele) was associated with airway obstruction and rs7614952 (A allele), rs7625839 (G allele) and rs112509260 (A allele) are related to a lack of FEV1 reversibility. The A allele of rs2531747 in the SLC6A20 gene is also associated with severe asthma. Conversely, polymorphisms in XCR1 play a protective role in relation to severe asthma (A allele of rs2036295) and airway obstruction (A allele of rs2036295). Additionally, we found that individuals with a higher number of risk alleles have a greater risk of severe asthma, airway obstruction and FEV1 reversibility. Conclusion Our study suggests that polymorphisms in genes associated with respiratory failure in SARS-CoV-2-infected individuals are associated with greater susceptibility to severe asthma and reduced lung function in subjects with asthma.
Collapse
Affiliation(s)
| | | | | | | | | | - Ryan dos S. Costa
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Kathleen Barnes
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Álvaro A. Cruz
- Fundação ProAR and Faculdade de Medicina da Universidade Federal da Bahia, Brazil
| | | |
Collapse
|
14
|
Zhang X, Ahn S, Qiu P, Datta S. Identification of shared biological features in four different lung cell lines infected with SARS-CoV-2 virus through RNA-seq analysis. Front Genet 2023; 14:1235927. [PMID: 37662846 PMCID: PMC10468990 DOI: 10.3389/fgene.2023.1235927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has resulted in millions of confirmed cases and deaths worldwide. Understanding the biological mechanisms of SARS-CoV-2 infection is crucial for the development of effective therapies. This study conducts differential expression (DE) analysis, pathway analysis, and differential network (DN) analysis on RNA-seq data of four lung cell lines, NHBE, A549, A549.ACE2, and Calu3, to identify their common and unique biological features in response to SARS-CoV-2 infection. DE analysis shows that cell line A549.ACE2 has the highest number of DE genes, while cell line NHBE has the lowest. Among the DE genes identified for the four cell lines, 12 genes are overlapped, associated with various health conditions. The most significant signaling pathways varied among the four cell lines. Only one pathway, "cytokine-cytokine receptor interaction", is found to be significant among all four cell lines and is related to inflammation and immune response. The DN analysis reveals considerable variation in the differential connectivity of the most significant pathway shared among the four lung cell lines. These findings help to elucidate the mechanisms of SARS-CoV-2 infection and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Seungjun Ahn
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peihua Qiu
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Somnath Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Nelson-Mora J, Rubio D, Ventura-Martínez A, González LA, Del-Rio D, Aranda-López Y, Jiménez-Díaz E, Zamarrón-Hernández D, Ríos-López DG, Aguirre S, Ruiz-Hernandez Y, Cruz-Ramírez A, Barjau JS, Jáurez MA, Lopez-Aparicio J, Campa-Higareda A, Fiordelisio T. New detection method of SARS-CoV-2 antibodies toward a point-of-care biosensor. Front Bioeng Biotechnol 2023; 11:1202126. [PMID: 37485316 PMCID: PMC10359622 DOI: 10.3389/fbioe.2023.1202126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
The outbreak of COVID-19, a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is regarded as the most severe of the documented coronavirus pandemics. The measurement and monitoring of SARS-CoV-2 antibody levels by serological tests are relevant for a better epidemiological and clinical understanding of COVID-19. The aim of this work was to design a method called the SARS-CoV-2 antibody detection method (SARS-CoV-2 AbDM) for fluorescence immunodetection of anti-SARS-CoV-2 IgG and IgM on both plate and microfluidic chip. For this purpose, a system with magnetic beads that immobilize the antigen (S protein and RBD) on its surface was used to determine the presence and quantity of antibodies in a sample in a single reaction. The SARS-CoV-2 AbDM led to several advantages in the performance of the tests, such as reduced cost, possibility of performing isolated or multiple samples, potential of multiplex detection, and capacity to detect whole blood samples without losing resolution. In addition, due to the microfluidic chip in conjunction with the motorized actuated platform, the time, sample quantity, and operator intervention during the process were reduced. All these advantages suggest that the SARS-CoV-2 AbDM has the potential to be developed as a PoC that can be used as a tool for seroprevalence monitoring, allowing a better understanding of the epidemiological and clinical characteristics of COVID-19 and contributing to more effective and ethical decision-making in strategies to fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Janikua Nelson-Mora
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Rubio
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Amairani Ventura-Martínez
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis A. González
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Del-Rio
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Neuroendocrinología Comparada-LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yuli Aranda-López
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar Jiménez-Díaz
- Laboratorio de Neuroendocrinología Comparada-LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Unidad de Imagenología Cuantitativa, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diego Zamarrón-Hernández
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana G. Ríos-López
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stephanie Aguirre
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yasab Ruiz-Hernandez
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aarón Cruz-Ramírez
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jonás S. Barjau
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel A. Jáurez
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jehú Lopez-Aparicio
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Andrea Campa-Higareda
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tatiana Fiordelisio
- Unidad de Biología Molecular y Diagnóstico, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Neuroendocrinología Comparada-LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Unidad de Imagenología Cuantitativa, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
16
|
Afewerki S, Stocco TD, Rosa da Silva AD, Aguiar Furtado AS, Fernandes de Sousa G, Ruiz-Esparza GU, Webster TJ, Marciano FR, Strømme M, Zhang YS, Lobo AO. In vitro high-content tissue models to address precision medicine challenges. Mol Aspects Med 2023; 91:101108. [PMID: 35987701 PMCID: PMC9384546 DOI: 10.1016/j.mam.2022.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023]
Abstract
The field of precision medicine allows for tailor-made treatments specific to a patient and thereby improve the efficiency and accuracy of disease prevention, diagnosis, and treatment and at the same time would reduce the cost, redundant treatment, and side effects of current treatments. Here, the combination of organ-on-a-chip and bioprinting into engineering high-content in vitro tissue models is envisioned to address some precision medicine challenges. This strategy could be employed to tackle the current coronavirus disease 2019 (COVID-19), which has made a significant impact and paradigm shift in our society. Nevertheless, despite that vaccines against COVID-19 have been successfully developed and vaccination programs are already being deployed worldwide, it will likely require some time before it is available to everyone. Furthermore, there are still some uncertainties and lack of a full understanding of the virus as demonstrated in the high number new mutations arising worldwide and reinfections of already vaccinated individuals. To this end, efficient diagnostic tools and treatments are still urgently needed. In this context, the convergence of bioprinting and organ-on-a-chip technologies, either used alone or in combination, could possibly function as a prominent tool in addressing the current pandemic. This could enable facile advances of important tools, diagnostics, and better physiologically representative in vitro models specific to individuals allowing for faster and more accurate screening of therapeutics evaluating their efficacy and toxicity. This review will cover such technological advances and highlight what is needed for the field to mature for tackling the various needs for current and future pandemics as well as their relevancy towards precision medicine.
Collapse
Affiliation(s)
- Samson Afewerki
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, BOX 35, 751 03, Uppsala, Sweden
| | - Thiago Domingues Stocco
- Bioengineering Program, Technological and Scientific Institute, Brazil University, 08230-030, São Paulo, SP, Brazil; Faculty of Medical Sciences, Unicamp - State University of Campinas, 13083-877, Campinas, SP, Brazil
| | | | - André Sales Aguiar Furtado
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo Fernandes de Sousa
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Division of Health Sciences and Technology, Harvard University ‑ Massachusetts Institute of Technology, Boston, MA, 02115, USA
| | - Thomas J Webster
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil; Hebei University of Technology, Tianjin, China
| | - Fernanda R Marciano
- Department of Physics, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, BOX 35, 751 03, Uppsala, Sweden
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Division of Health Sciences and Technology, Harvard University ‑ Massachusetts Institute of Technology, Boston, MA, 02115, USA.
| | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piauí (UFPI), Teresina, PI, Brazil.
| |
Collapse
|
17
|
Akter R, Rahman MR, Ahmed ZS, Afrose A. Plausibility of natural immunomodulators in the treatment of COVID-19-A comprehensive analysis and future recommendations. Heliyon 2023; 9:e17478. [PMID: 37366526 PMCID: PMC10284624 DOI: 10.1016/j.heliyon.2023.e17478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
The COVID-19 pandemic has inflicted millions of deaths worldwide. Despite the availability of several vaccines and some special drugs approved for emergency use to prevent or treat this disease still, there is a huge concern regarding their effectiveness, adverse effects, and most importantly, their efficacy against the new variants. A cascade of immune-inflammatory responses is involved with the pathogenesis and severe complications with COVID-19. People with dysfunctional and compromised immune systems display severe complications, including acute respiratory distress syndrome, sepsis, multiple organ failure etc., when they get infected with the SARS-CoV-2 virus. Plant-derived natural immune-suppressant compounds, such as resveratrol, quercetin, curcumin, berberine, luteolin, etc., have been reported to inhibit pro-inflammatory cytokines and chemokines. Therefore, natural products with immunomodulatory and anti-inflammatory potential could be plausible targets to treat this contagious disease. This review aims to delineate the clinical trials status and outcomes of natural compounds with immunomodulatory potential in COVID-19 patients along with the outcomes of their in-vivo studies. In clinical trials several natural immunomodulators resulted in significant improvement of COVID-19 patients by diminishing COVID-19 symptoms such as fever, cough, sore throat, and breathlessness. Most importantly, they reduced the duration of hospitalization and the need for supplemental oxygen therapy, improved clinical outcomes in patients with COVID-19, especially weakness, and eliminated acute lung injury and acute respiratory distress syndrome. This paper also discusses many potent natural immunomodulators yet to undergo clinical trials. In-vivo studies with natural immunomodulators demonstrated reduction of a wide range of proinflammatory cytokines. Natural immunomodulators that were found effective, safe, and well tolerated in small-scale clinical trials are warranted to undergo large-scale trials to be used as drugs to treat COVID-19 infections. Alongside, compounds yet to test clinically must undergo clinical trials to find their effectiveness and safety in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Md. Rashidur Rahman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zainab Syed Ahmed
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Afrina Afrose
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
18
|
Gupta A, Marzook H, Ahmad F. Comorbidities and clinical complications associated with SARS-CoV-2 infection: an overview. Clin Exp Med 2023; 23:313-331. [PMID: 35362771 PMCID: PMC8972750 DOI: 10.1007/s10238-022-00821-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/12/2022] [Indexed: 01/08/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes major challenges to the healthcare system. SARS-CoV-2 infection leads to millions of deaths worldwide and the mortality rate is found to be greatly associated with pre-existing clinical conditions. The existing dataset strongly suggests that cardiometabolic diseases including hypertension, coronary artery disease, diabetes and obesity serve as strong comorbidities in coronavirus disease (COVID-19). Studies have also shown the poor outcome of COVID-19 in patients associated with angiotensin-converting enzyme-2 polymorphism, cancer chemotherapy, chronic kidney disease, thyroid disorder, or coagulation dysfunction. A severe complication of COVID-19 is mostly seen in people with compromised medical history. SARS-CoV-2 appears to attack the respiratory system causing pneumonia, acute respiratory distress syndrome, which lead to induction of severe systemic inflammation, multi-organ dysfunction, and death mostly in the patients who are associated with pre-existing comorbidity factors. In this article, we highlighted the key comorbidities and a variety of clinical complications associated with COVID-19 for a better understanding of the etiopathogenesis of COVID-19.
Collapse
Affiliation(s)
- Anamika Gupta
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE
| | - Hezlin Marzook
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE
| | - Firdos Ahmad
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, UAE.
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE.
| |
Collapse
|
19
|
Moon Y. Gut distress and intervention via communications of SARS-CoV-2 with mucosal exposome. Front Public Health 2023; 11:1098774. [PMID: 37139365 PMCID: PMC10150023 DOI: 10.3389/fpubh.2023.1098774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Acute coronavirus disease 2019 (COVID-19) has been associated with prevalent gastrointestinal distress, characterized by fecal shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA or persistent antigen presence in the gut. Using a meta-analysis, the present review addressed gastrointestinal symptoms, such as nausea, vomiting, abdominal pain, and diarrhea. Despite limited data on the gut-lung axis, viral transmission to the gut and its influence on gut mucosa and microbial community were found to be associated by means of various biochemical mechanisms. Notably, the prolonged presence of viral antigens and disrupted mucosal immunity may increase gut microbial and inflammatory risks, leading to acute pathological outcomes or post-acute COVID-19 symptoms. Patients with COVID-19 exhibit lower bacterial diversity and a higher relative abundance of opportunistic pathogens in their gut microbiota than healthy controls. Considering the dysbiotic changes during infection, remodeling or supplementation with beneficial microbial communities may counteract adverse outcomes in the gut and other organs in patients with COVID-19. Moreover, nutritional status, such as vitamin D deficiency, has been associated with disease severity in patients with COVID-19 via the regulation of the gut microbial community and host immunity. The nutritional and microbiological interventions improve the gut exposome including the host immunity, gut microbiota, and nutritional status, contributing to defense against acute or post-acute COVID-19 in the gut-lung axis.
Collapse
Affiliation(s)
- Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan-si, Republic of Korea
- Biomedical Research Institute, Pusan National University, Busan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan-si, Republic of Korea
| |
Collapse
|
20
|
Ray M, Manjunath A, Halami PM. Effect of probiotics as an immune modulator for the management of COVID-19. Arch Microbiol 2023; 205:182. [PMID: 37031431 PMCID: PMC10098245 DOI: 10.1007/s00203-023-03504-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/10/2023]
Abstract
COVID-19, an acute respiratory viral infection conveyed by pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected millions of individuals globally, and is a public health emergency of international concern. Till now, there are no highly effective therapies for this infection without vaccination. As they can evolve quickly and cross the strain level easily, these viruses are causing epidemics or pandemics that are allied with more severe clinical diseases. A new approach is needed to improve immunity to confirm the protection against emerging viral infections. Probiotics can modify gut microbial dysbiosis, improve the host immune system, and stimulate immune signaling, increasing systemic immunity. Several probiotic bacterial therapies have been proven to decrease the period of bacterial or viral infections. Superinduction of inflammation, termed cytokine storm, has been directly linked with pneumonia and severe complications of viral respiratory infections. In this case, probiotics as potential immunomodulatory agents can be an appropriate candidate to improve the host's response to respiratory viral infections. During this COVID-19 pandemic, any approach that can induce mucosal and systemic immunity could be helpful. Here, we summarize contexts regarding the effectiveness of various probiotics for preventing virus-induced respiratory infectious diseases, especially those that could be employed for COVID-19 patients. In addition, the effects of probiotics, their mechanisms on different aspects of immune responses against respiratory viral infection, and their antiviral properties in clinical findings have been described in detail.
Collapse
Affiliation(s)
- Mousumi Ray
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Ashwini Manjunath
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Prakash M Halami
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India.
| |
Collapse
|
21
|
Alizadehmohajer N, Zahedifar S, Sohrabi E, Shaddel Basir S, Nourigheimasi S, Falak R, Nedaeinia R, A Ferns G, Emami Nejad A, Manian M. Using In Silico Bioinformatics Algorithms for the Accurate Prediction of the Impact of Spike Protein Mutations on the Pathogenicity, Stability, and Functionality of the SARS-CoV-2 Virus and Analysis of Potential Therapeutic Targets. Biochem Genet 2023; 61:778-808. [PMID: 36173498 PMCID: PMC9521556 DOI: 10.1007/s10528-022-10282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
Coronavirus disease 2019 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have used bioinformatics to investigate seventeen mutations in the spike protein of SARS-CoV-2, as this mediates infection of human cells and is the target of most vaccine strategies and antibody-based therapies. Two mutations, H146Y and S221W, were identified as being most pathogenic. Mutations at positions D614G, A829T, and P1263L might also have deleterious effects on protein function. We hypothesized that candidate small molecules may be repurposed to combat viral infection. We investigated changes in binding energies of the ligands and the mutant proteins by assessing molecular docking. For an understanding of cellular function and organization, protein-protein interactions are also critical. Protein-protein docking for naïve and mutated structures of SARS-CoV-2 S protein was evaluated for their binding energy with the angiotensin-converting enzyme 2 (ACE2). These interactions might limit the binding of the SARS-CoV-2 spike protein to the ACE2 receptor or may have a deleterious effect on protein function that may limit infection. These results may have important implications for the transmission of SARS-CoV-2, its pathogenesis, and the potential for drug repurposing and immune therapies.
Collapse
Affiliation(s)
- Negin Alizadehmohajer
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133, Milan, Italy
| | - Shahrzad Zahedifar
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Sohrabi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sedighe Shaddel Basir
- Department of Microbiology, Faculty of New Sciences and Technologies Branch, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Asieh Emami Nejad
- Department of Biology, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran.
| | - Mostafa Manian
- Department of Medical Laboratory Science, Faculty of Medical Science, Kermanshah Branch, Imam Khomeini Campus, Islamic Azad University, Farhikhtegan Bld., Shahid J'afari St., 6718997551, Kermanshah, Iran.
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
22
|
Sh Y, Dong J, Chen Z, Yuan M, Lyu L, Zhang X. Active regression model for clinical grading of COVID-19. Front Immunol 2023; 14:1141996. [PMID: 37026015 PMCID: PMC10071017 DOI: 10.3389/fimmu.2023.1141996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Background In the therapeutic process of COVID-19, the majority of indicators that physicians have for assisting treatment have come from clinical tests represented by proteins, metabolites, and immune levels in patients' blood. Therefore, this study constructs an individualized treatment model based on deep learning methods, aiming to realize timely intervention based on clinical test indicator data of COVID-19 patients and provide an important theoretical basis for optimizing medical resource allocation. Methods This study collected clinical data from a total of 1,799 individuals, including 560 controls for non-respiratory infectious diseases (Negative), 681 controls for other respiratory virus infections (Other), and 558 coronavirus infections (Positive) for COVID-19. We first used the Student T-test to screen for statistically significant differences (Pvalue<0.05); we then used the Adaptive-Lasso method stepwise regression to screen the characteristic variables and filter the features with low importance; we then used analysis of covariance to calculate the correlation between variables and filter the highly correlated features; and finally, we analyzed the feature contribution and screened the best combination of features. Results Feature engineering reduced the feature set to 13 feature combinations. The correlation coefficient between the projected results of the artificial intelligence-based individualized diagnostic model and the fitted curve of the actual values in the test group was 0.9449 which could be applied to the clinical prognosis of COVID-19. In addition, the depletion of platelets in patients with COVID-19 is an important factor affecting their severe deterioration. With the progression of COVID-19, there is a slight decrease in the total number of platelets in the patient's body, particularly as the volume of larger platelets sharply decreases. The importance of plateletCV (count*mean platelet volume) in evaluating the severity of COVID-19 patients is higher than the count of platelets and mean platelet volume. Conclusion In general, we found that for patients with COVID-19, the increase in mean platelet volume was a predictor for SARS-Cov-2. The rapid decrease of platelet volume and the decrease of total platelet volume are dangerous signals for the aggravation of SARS-Cov-2 infection. The analysis and modeling results of this study provide a new perspective for individualized accurate diagnosis and treatment of clinical COVID-19 patients.
Collapse
Affiliation(s)
- Yuan Sh
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- The Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, The Chinese Academy of Sciences (CAS) Key Laboratory of Standardization and Measurement for Nanotechnology, The Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Jierong Dong
- The Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, The Chinese Academy of Sciences (CAS) Key Laboratory of Standardization and Measurement for Nanotechnology, The Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Zhongqing Chen
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Meiqing Yuan
- Key Laboratory of Forensic Genetics, Institute of Forensic Sciences, Ministry of Public Security, Beijing, China
| | - Lingna Lyu
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Xiuli Zhang
- The Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, The Chinese Academy of Sciences (CAS) Key Laboratory of Standardization and Measurement for Nanotechnology, The Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| |
Collapse
|
23
|
Gharred N, Ali LMA, Bettache N, Dridi-Dhaouadi S, Morere A, Menut C. In Vitro Anti-inflammatory Activity of Three Inula Species Essential Oils in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. CHEMISTRY AFRICA 2023. [PMCID: PMC10018620 DOI: 10.1007/s42250-023-00641-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
In the face of the undesirable effects induced by anti-inflammatory drugs, there has been a return, nowadays, to the search for active ingredients based on plants. Herein, for the first time we study the anti-inflammatory activity of essential oils of three species of the genus Inula: Inula viscosa, Inula graveolens and Inula crithmoides in lipopolysaccharide (LPS)-activated macrophages. Essential oils have shown excellent preventive anti-inflammatory potential by causing inhibition of nitric oxide (NO) production in LPSactivated RAW264.7 macrophages with IC50s ranging between 15 and 35 µg mL− 1. On the other hand, the major acidic compounds, more precisely α- and β-costic acids, have been isolated from Inula viscosa and Inula graveolens essential oils and evaluated for their anti-inflammatory effect. These compounds appear to have a moderate preventive inhibitory effect on NO production relative to the significant effect generated by the neutral minority components present in the oils such as borneol, bornyl acetate, (E)-nerolidol, caryophyllene oxide, T-cadinol and eugenol. Therefore, we can deduce that the studied essential oils could be used as anti-inflammatory agents for the treatment of various inflammatory pathologies.
Collapse
Affiliation(s)
- Nawres Gharred
- Laboratory of Environmental Chemistry and Cleaner Process LR21ES04, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Lamiaa M. A. Ali
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Nadir Bettache
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Sonia Dridi-Dhaouadi
- Laboratory of Environmental Chemistry and Cleaner Process LR21ES04, Faculty of Sciences, University of Monastir, Monastir, Tunisia
- Chemistry Department, Preparatory Institute for Engineering Studies, University of Monastir, Monastir, Tunisia
| | - Alain Morere
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Chantal Menut
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
24
|
Galán-Huerta KA, Zamora-Márquez MA, Flores-Pérez RO, Bocanegra-Ibarias P, Salas-Treviño D, Rivas-Estilla AMG, Flores-Treviño S, Lozano-Sepúlveda SA, Martínez-Acuña N, Camacho-Ortiz A, Pérez Alba E, Arellanos-Soto D, Nuzzolo-Shihadeh L, Garza-González E. Association of the Interleukin 1B-31*C Proinflammatory Allele with the Severity of COVID-19 Patients: A Preliminary Report. Viral Immunol 2023; 36:241-249. [PMID: 36800236 DOI: 10.1089/vim.2022.0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Individuals with no known comorbidities or risk factors may develop severe coronavirus disease 2019 (COVID-19). The present study assessed the effect of certain host polymorphisms and viral lineage on the severity of COVID-19 among hospitalized patients with no known comorbidities in Mexico. The analysis included 117 unrelated hospitalized patients with COVID-19. Patients were stratified by whether they required intensive care unit (ICU) admission: the ICU group (n = 40) and non-ICU group (n = 77). COVID-19 was diagnosed on the basis of a positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcription-polymerase chain reaction (RT-PCR) assay and clinical and radiographic criteria. The presence of the IL1B-31 (T/C) polymorphism was determined for all patients using PCR and nucleotide sequencing. Genotyping of the IL-4 (-590, T/C) and IL-8 (-251, T/A) polymorphisms was performed by the amplification refractory mutation system-PCR method. Genotyping of IL1-RN was performed using PCR. Viral genome sequencing was performed using the ARTIC Network amplicon sequencing protocol using a MinION. Logistic regression analysis identified the carriage of IL-1 B*-31 *C as an independent potential risk factor (odds ratio [OR] = 3.1736, 95% confidence interval [CI] = 1.0748-9.3705, p = 0.0366) for ICU admission and the presence of IL-RN*2 as a protective factor (OR = 0.4371, 95% CI = 0.1935-0.9871, p = 0.0465) against ICU admission. Under the codominant model, the CC genotype of IL1B-31 significantly increased the risk of ICU admission (OR: 6.38, 95% CI: 11.57-25.86, p < 0.024). The IL1B-31 *C-IL-4-590 *T haplotype increased the risk of ICU admission (OR = 2.53, 95% CI = 1.02-6.25, p = 0.047). The 42 SARS-CoV-2 genomes sequenced belonged to four clades, 20A-20D. No association was detected between SARS-CoV-2 clades and ICU admission or death. Thus, in patients with no known comorbidities or risk factors, the IL1B-31*C proinflammatory allele was observed to be associated with the risk of ICU admission owing to COVID-19.
Collapse
Affiliation(s)
- Kame Alberto Galán-Huerta
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Myriam Aseret Zamora-Márquez
- Servicio de Infectología, Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Rómulo Omar Flores-Pérez
- Servicio de Infectología, Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Paola Bocanegra-Ibarias
- Servicio de Infectología, Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Daniel Salas-Treviño
- Servicio de Infectología, Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | - Samantha Flores-Treviño
- Servicio de Infectología, Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Sonia Amelia Lozano-Sepúlveda
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Natalia Martínez-Acuña
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Adrián Camacho-Ortiz
- Servicio de Infectología, Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Eduardo Pérez Alba
- Servicio de Infectología, Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Daniel Arellanos-Soto
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Laura Nuzzolo-Shihadeh
- Servicio de Infectología, Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elvira Garza-González
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| |
Collapse
|
25
|
Kim HE, Yang J, Park JE, Baek JC, Jo HC. Thyroid storm in a pregnant woman with COVID-19 infection: A case report and review of literatures. World J Clin Cases 2023; 11:888-895. [PMID: 36818620 PMCID: PMC9928696 DOI: 10.12998/wjcc.v11.i4.888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 01/05/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been found to be responsible for the recent global pandemic known as coronavirus disease 2019 (COVID-19). SARS-CoV-2 infections not only result in significant respiratory symptoms but also cause several extrapulmonary manifestations, such as thrombotic complications, myocardial dysfunction and arrhythmia, thyroid dysfunction, acute kidney injury, gastrointestinal symptoms, neurological symptoms, ocular symptoms, and dermatological complications. We present the first documented case of thyroid storm in a pregnant woman precipitated by SARS-CoV-2.
CASE SUMMARY A 42-year-old multiparous woman at 35 + 2 wk of gestation visited the emergency room (ER) with altered mentation, seizures, tachycardia, and high fever. The patient showed no remarkable events in the prenatal examination, and the nasopharyngeal COVID-19 polymerase chain reaction (PCR) test was positive two days before the ER visit. The results of laboratory tests, such as liver function test, serum electrolytes, blood glucose, blood urea nitrogen, and creatinine, were all within the normal ranges. However, the thyroid function test showed hyperthyroidism, and the nasopharyngeal COVID-19 PCR test was positive, as expected. No specific findings were observed on the brain computed tomography, and there were no signs of lateralization on neurological examination. Fetal heartbeat and movement were good, and there were no significant uterine contractions. The initial impression was atypical eclampsia. However, the patient's condition worsened, and a cesarean section was performed under general anesthesia; a healthy boy was delivered, and 12 h after delivery, the patient's seizures disappeared and consciousness was restored. The patient was referred to an endocrinologist for hyperthyroidism, and a thyroid storm with Graves' disease was diagnosed. Here, SARS-CoV-2 was believed to be the trigger for the thyroid storm, considering that the patient tested positive for COVID-19 two days before the seizures.
CONCLUSION In pregnant women presenting with seizures or changes in consciousness, the possibility of a thyroid storm should be considered. There are various causes for a thyroid storm, but given the recent pandemic, it is necessary to bear in mind that the thyroid storm may be precipitated by COVID-19.
Collapse
Affiliation(s)
- Hyo-Eun Kim
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, Changwon 51472, South Korea
| | - Juseok Yang
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, Changwon 51472, South Korea
| | - Ji-Eun Park
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, Changwon 51472, South Korea
| | - Jong-Chul Baek
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, Changwon 51472, South Korea
| | - Hyen-Chul Jo
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, Changwon 51472, South Korea
| |
Collapse
|
26
|
Traina L, Mucignat M, Rizzo R, Gafà R, Bortolotti D, Passaro A, Zamboni P. COVID-19 induced aorto duodenal fistula following evar in the so called "negative" patient. Vascular 2023; 31:189-195. [PMID: 34919005 DOI: 10.1177/17085381211053695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Since October 2019, SARS-CoV-2 pandemic represents a challenge for the international healthcare system and for the treatment and survival of patients. We normally focus on symptomatic patients, and symptoms can range from the respiratory to the gastrointestinal system. In addition, we consider patients without fever and respiratory symptoms, with both a negative RT nasopharyngeal swab and lung CT, as a "Covid-19 negative patient." In this article, we present a so called Covid-19 "negative" patient, with an unsuspected vascular clinical onset of the viral infection. METHODS An 80 y.o. man, who previously underwent endovascular aortic repair for an infrarenal abdominal aortic aneurysm, presented to our department with an atypical presentation of an aorto-enteric fistula during the pandemic. While in hospital, weekly nasopharyngeal swab tests were always negative for SARS-CoV-2. However, the absence of aortic endograft complications, the gross anatomy of duodenal ischemic injury, and the recent history of the patient who lived the last months in Bergamo, the Italian city with the highest number of COVID-19 deaths, lead the senior Author to suspect an occult SARS-CoV-2 infection. The patient underwent to resection of the fourth portion of the duodenum and the first jejunal loop, with subsequent duodenum-jejunal latero-lateral anastomosis and the direct suture of the aortic wall. The intestinal specimen was investigated as suspected SARS-CoV-2 bowel infection by the means of immune-histochemistry (IHC). An ileum sample obtained in the pre-COVID-19 era was used as a control tissue. RESULTS The histological analysis of the bowel revealed sustained wall ischemia and liponecrosis of the duodenal wall, with intramural blood vessels thrombosis. Blood vessel endotheliitis and neo-angiogenesis were also observed. Finally, the IHC was strongly positive for SARS-CoV-2 RNA and for HLA-G presence, with a particular concentration both in blood vessels and in the intestinal villi. The control tissue sample was not positive for both SARS-CoV-2 and HLA-G. CONCLUSIONS Coronavirus pandemic continues to be an international challenge and more studies and trials must be done to learn its pathogenesis and its complications. As for thromboembolic events caused by SARS-COV-2, vascular surgeons are involved in treatment and prevention of the complications of this syndrome and must be ready with general surgeons to investigate atypical and particular cases such as the one discussed in this article.
Collapse
Affiliation(s)
- Luca Traina
- Unit of Vascular and Endovascular Surgery, 18560Azienda Ospedaliero Universitaria di Ferrara - Arcispedale S.Anna, Ferrara, Italy
| | - Marianna Mucignat
- Unit of Vascular and Endovascular Surgery, 18560Azienda Ospedaliero Universitaria di Ferrara - Arcispedale S.Anna, Ferrara, Italy.,Department of Translational Medicine for Romagna, and Vascular Diseases Center, University of Ferrara, Ferrara, Italy
| | - Roberta Rizzo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Gafà
- Department of Translational Medicine for Romagna, and Vascular Diseases Center, University of Ferrara, Ferrara, Italy
| | - Daria Bortolotti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine for Romagna, and Vascular Diseases Center, University of Ferrara, Ferrara, Italy
| | - Paolo Zamboni
- Department of Translational Medicine for Romagna, and Vascular Diseases Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
27
|
Almendro-Vázquez P, Laguna-Goya R, Paz-Artal E. Defending against SARS-CoV-2: The T cell perspective. Front Immunol 2023; 14:1107803. [PMID: 36776863 PMCID: PMC9911802 DOI: 10.3389/fimmu.2023.1107803] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
SARS-CoV-2-specific T cell response has been proven essential for viral clearance, COVID-19 outcome and long-term memory. Impaired early T cell-driven immunity leads to a severe form of the disease associated with lymphopenia, hyperinflammation and imbalanced humoral response. Analyses of acute SARS-CoV-2 infection have revealed that mild COVID-19 course is characterized by an early induction of specific T cells within the first 7 days of symptoms, coordinately followed by antibody production for an effective control of viral infection. In contrast, patients who do not develop an early specific cellular response and initiate a humoral immune response with subsequent production of high levels of antibodies, develop severe symptoms. Yet, delayed and persistent bystander CD8+ T cell activation has been also reported in hospitalized patients and could be a driver of lung pathology. Literature supports that long-term maintenance of T cell response appears more stable than antibody titters. Up to date, virus-specific T cell memory has been detected 22 months post-symptom onset, with a predominant IL-2 memory response compared to IFN-γ. Furthermore, T cell responses are conserved against the emerging variants of concern (VoCs) while these variants are mostly able to evade humoral responses. This could be partly explained by the high HLA polymorphism whereby the viral epitope repertoire recognized could differ among individuals, greatly decreasing the likelihood of immune escape. Current COVID-19-vaccination has been shown to elicit Th1-driven spike-specific T cell response, as does natural infection, which provides substantial protection against severe COVID-19 and death. In addition, mucosal vaccination has been reported to induce strong adaptive responses both locally and systemically and to protect against VoCs in animal models. The optimization of vaccine formulations by including a variety of viral regions, innovative adjuvants or diverse administration routes could result in a desirable enhanced cellular response and memory, and help to prevent breakthrough infections. In summary, the increasing evidence highlights the relevance of monitoring SARS-CoV-2-specific cellular immune response, and not only antibody levels, as a correlate for protection after infection and/or vaccination. Moreover, it may help to better identify target populations that could benefit most from booster doses and to personalize vaccination strategies.
Collapse
Affiliation(s)
- Patricia Almendro-Vázquez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Laguna-Goya
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
28
|
Cheng C, Ying W. A meta-analytic review of the associations between dimensions of religious coping and psychological symptoms during the first wave of the COVID-19 pandemic. Front Psychiatry 2023; 14:1097598. [PMID: 36741121 PMCID: PMC9894651 DOI: 10.3389/fpsyt.2023.1097598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Introduction In the first wave of the COVID-19 pandemic, the unknown etiology and treatment of the highly transmissible coronavirus posed considerable threats to public mental health. Many people around the globe turned to religion as an attempt to mitigate their heightened psychological distress, but mixed findings have been obtained regarding the association between the use of religious coping and two psychological symptoms-anxiety and depressive symptoms-widely reported in the initial wave. Objective The present meta-analysis was conducted to resolve the empirical inconsistency by synthesizing this body of studies and identifying both individual and national-level factors that accounted for the inconsistent findings. Methods Following PRISMA guidelines, the literature search and data screening procedures yielded 42 eligible studies, with 25,438 participants (58% females, average age = 36.50 years) from 24 countries spanning seven world regions. Results Overall, the results showed that only negative religious coping was positively associated with psychological symptoms (r = 0.2886, p < 0.0001). Although the associations of both general and positive religious coping with psychological symptoms were non-significant (rs = 0.0425 and -0.0240, ps > 0.39), the moderation analysis revealed significant positive associations between positive religious coping and psychological symptoms in two demographic groups who experienced greater pandemic distress than their counterparts: younger participants and female participants. Discussion This meta-analysis provides a nuanced understanding of the complex nature of religious coping in the initial wave of the COVID-19 pandemic when the levels of public anxiety and stress were heightened. The exclusive use of religious coping may not be associated with low levels of psychological symptoms, implying the importance of supplementing the deployment of this strategy with an array of other strategies. Therapists of mental health interventions should show their clients how to make good use of positive religious coping together with other strategies, and how to avoid the use of negative religious coping, to handle their psychological problems. Systematic review registration https://osf.io/shb32/.
Collapse
Affiliation(s)
- Cecilia Cheng
- Social and Health Psychology Laboratory, Department of Psychology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Weijun Ying
- Department of Education, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
29
|
Schwenk GR, Glass AM, Ji HF, Ehrlich GD, Navas-Martin S, Król JE, Hall DC. Surfactant-Impregnated MOF-Coated Fabric for Antimicrobial Applications. ACS APPLIED BIO MATERIALS 2023; 6:238-245. [PMID: 36595712 DOI: 10.1021/acsabm.2c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the onset of the SARS-CoV-2 pandemic, the world has witnessed over 617 million confirmed cases and more than 6.54 million confirmed deaths, but the actual totals are likely much higher. The virus has mutated at a significantly faster rate than initially projected, and positive cases continue to surge with the emergence of ever more transmissible variants. According to the CDC, and at the time of this manuscript submission, more than 77% of all current US cases are a result of the B.5 (omicron). The continued emergence of highly transmissible variants makes clear the need for more effective methods of mitigating disease spread. Herein, we have developed an antimicrobial fabric capable of destroying a myriad of microbes including betacoronaviruses. We have demonstrated the capability of this highly porous and nontoxic metal organic framework (MOF), γ-CD-MOF-1, to serve as a host for varied-length benzalkonium chlorides (BACs; active ingredient in Lysol). Molecular docking simulations predicted a binding affinity of up to -4.12 kcal·mol-1, which is comparable to that of other reported guest molecules for this MOF. Similar Raman spectra and powder X-ray diffraction patterns between the unloaded and loaded MOFs, accompanied by a decrease in the Brunauer-Emmett-Teller surface area from 616.20 and 155.55 m2 g-1 respectively, corroborate the suggested potential for pore occupation with BAC. The MOF was grown on polypropylene fabric, exposed to a BAC-loading bath, washed to remove excess BAC from the external surface, and evaluated for its microbicidal activity against various bacterial and viral classes. Significant antimicrobial character was observed against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, bacteriophage, and betacoronavirus. This study shows that a common mask material (polypropylene) can be coated with BAC-loaded γ-CD-MOF-1 while maintaining the guest molecule's antimicrobial effects.
Collapse
Affiliation(s)
- Gregory R Schwenk
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Adam M Glass
- Department of Microbiology & Immunology, Philadelphia, Pennsylvania 19102, United States.,Center for Molecular Virology & Translational Neuroscience, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States.,Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Hai-Feng Ji
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Garth D Ehrlich
- Center for Advanced Microbial Processing, Center for Surgical Infections and Biofilms, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States.,Department of Microbiology & Immunology, Philadelphia, Pennsylvania 19102, United States
| | - Sonia Navas-Martin
- Department of Microbiology & Immunology, Philadelphia, Pennsylvania 19102, United States.,Center for Molecular Virology & Translational Neuroscience, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States.,Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Jarosław E Król
- Center for Advanced Microbial Processing, Center for Surgical Infections and Biofilms, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States.,Department of Microbiology & Immunology, Philadelphia, Pennsylvania 19102, United States.,Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Donald C Hall
- Center for Advanced Microbial Processing, Center for Surgical Infections and Biofilms, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States.,Department of Microbiology & Immunology, Philadelphia, Pennsylvania 19102, United States.,Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
30
|
Tiwari V, Agarwal J, Pathak AK, Singh S. Dynamic Changes in Circulatory Cytokines and Chemokines Levels in Mild to Severe COVID-19 Patients. Indian J Clin Biochem 2023; 38:212-219. [PMID: 36619967 PMCID: PMC9810247 DOI: 10.1007/s12291-022-01108-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023]
Abstract
Immune dysregulation is a key feature of the coronavirus disease-2019 (COVID-19). However, disparities in responses across ethnic groups are underappreciated. This study aimed to determine the relationship between chemokines and cytokines and the severity of COVID-19. Multiplex magnetic bead-based Luminex-100 was used to assess chemokine and cytokine levels in COVID-19 patients at admission (day-1) and after 4 days. The mean age of the patients recruited was 54.3 years, with 19 (63.3%) males. COVID-19 patients had significantly lower lymphocyte, monocyte, hemoglobin and eosinophil levels than controls (p < 0.05). COVID-19 patients showed significantly higher neutrophil levels than controls (p < 0.05). The baseline levels of IL-2, IL-6, IL-8, IL-10, and IFN-α/γ significantly increased in COVID-19 patients (p < 0.05). Chemokine levels (IP-10, MCP-1, MIG, and CCL-5) were significantly in COVID-19 patients. IL-8, IP-10, and MIG levels were significantly higher in the patients with severe COVID-19 (p < 0.05). Individuals with mild COVID-19 showed significantly higher levels of INF-α, IL-2, IL-6, and IL-8, whereas IL-10 levels were significantly lower (p < 0.05). TNF-levels decreased significantly in individuals with severe COVID-19, whereas IL-6, IL-8, and MIG levels increased (p < 0.05). After 4 days, INFα-, IL-2, IL-6, IL-8, IP-10, and MIG levels were significantly higher in patients with mild disease, whereas IL-6, MIG, and TNF-αlevels were significantly higher in patients with severe disease (p < 0.05). Thus, we conclude that COVID-19 is characterized by INF-α/γ, IL-6, IL-10, IP-10, MCP-1, MIG, and CCL5 dysregulation. IL-8, MIG, and IP-10 levels distinguish between moderate and severe COVID-19. Changes in INF-α, IL-2, IL-6, IL-8, IP-10, and MIG levels can be used to monitor disease progression. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01108-x.
Collapse
Affiliation(s)
- Vandana Tiwari
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226010 India
| | - Jyotsna Agarwal
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226010 India
| | - Anumesh Kumar Pathak
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226010 India
| | - Shivani Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226010 India
| |
Collapse
|
31
|
Tiwari A, Bhattacharjee K, Pant M, Srivastava S, Snasel V. An AI-enabled research support tool for the classification system of COVID-19. Front Public Health 2023; 11:1124998. [PMID: 36935722 PMCID: PMC10020488 DOI: 10.3389/fpubh.2023.1124998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
The outbreak of COVID-19, a little more than 2 years ago, drastically affected all segments of society throughout the world. While at one end, the microbiologists, virologists, and medical practitioners were trying to find the cure for the infection; the Governments were laying emphasis on precautionary measures like lockdowns to lower the spread of the virus. This pandemic is perhaps also the first one of its kind in history that has research articles in all possible areas as like: medicine, sociology, psychology, supply chain management, mathematical modeling, etc. A lot of work is still continuing in this area, which is very important also for better preparedness if such a situation arises in future. The objective of the present study is to build a research support tool that will help the researchers swiftly identify the relevant literature on a specific field or topic regarding COVID-19 through a hierarchical classification system. The three main tasks done during this study are data preparation, data annotation and text data classification through bi-directional long short-term memory (bi-LSTM).
Collapse
Affiliation(s)
- Arti Tiwari
- Department of Applied Mathematics and Scientific Computing, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
- *Correspondence: Arti Tiwari
| | - Kamanasish Bhattacharjee
- Machine Intelligence in Medicine and Imaging (MI-2) Lab, Mayo Clinic, Phoenix, AZ, United States
- Kamanasish Bhattacharjee
| | - Millie Pant
- Department of Applied Mathematics and Scientific Computing, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
- Mehta Family School for Data Science and Artificial Intelligence, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
- Millie Pant
| | | | - Vaclav Snasel
- Department of Computer Science, VŠB-Technical University of Ostrava, Ostrava, Czechia
| |
Collapse
|
32
|
Jia FJ, Han J. Liver injury in COVID-19: Holds ferritinophagy-mediated ferroptosis accountable. World J Clin Cases 2022; 10:13148-13156. [PMID: 36683648 PMCID: PMC9850986 DOI: 10.12998/wjcc.v10.i36.13148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/20/2022] [Accepted: 12/08/2022] [Indexed: 12/26/2022] Open
Abstract
Even in patients without a history of liver disease, liver injury caused by coronavirus disease 2019 (COVID-19) is gradually becoming more common. However, the precise pathophysiological mechanisms behind COVID-19's liver pathogenicity are still not fully understood. We hypothesize that inflammation may become worse by cytokine storms caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Elevated ferritin levels can initiate ferritinophagy mediated by nuclear receptor coactivator 4 (NCOA4), which leads to iron elevation, and ferroptosis. In COVID-19 patients, ferroptosis can be restricted to reduce disease severity and liver damage by targeting NCOA4-mediated ferritinophagy. To confirm the role of ferritinophagy-mediated ferroptosis in SARS-CoV-2 infection, further research is required.
Collapse
Affiliation(s)
- Feng-Ju Jia
- School of Nursing, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jing Han
- School of Nursing, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
33
|
Devnath P, Karah N, Graham JP, Rose ES, Asaduzzaman M. Evidence of Antimicrobial Resistance in Bats and Its Planetary Health Impact for Surveillance of Zoonotic Spillover Events: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:243. [PMID: 36612565 PMCID: PMC9819402 DOI: 10.3390/ijerph20010243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/16/2023]
Abstract
As a result of the COVID-19 pandemic, as well as other outbreaks, such as SARS and Ebola, bats are recognized as a critical species for mediating zoonotic infectious disease spillover events. While there is a growing concern of increased antimicrobial resistance (AMR) globally during this pandemic, knowledge of AMR circulating between bats and humans is limited. In this paper, we have reviewed the evidence of AMR in bats and discussed the planetary health aspect of AMR to elucidate how this is associated with the emergence, spread, and persistence of AMR at the human-animal interface. The presence of clinically significant resistant bacteria in bats and wildlife has important implications for zoonotic pandemic surveillance, disease transmission, and treatment modalities. We searched MEDLINE through PubMed and Google Scholar to retrieve relevant studies (n = 38) that provided data on resistant bacteria in bats prior to 30 September 2022. There is substantial variability in the results from studies measuring the prevalence of AMR based on geographic location, bat types, and time. We found all major groups of Gram-positive and Gram-negative bacteria in bats, which are resistant to commonly used antibiotics. The most alarming issue is that recent studies have increasingly identified clinically significant multi-drug resistant bacteria such as Methicillin Resistant Staphylococcus aureus (MRSA), ESBL producing, and Colistin resistant Enterobacterales in samples from bats. This evidence of superbugs abundant in both humans and wild mammals, such as bats, could facilitate a greater understanding of which specific pathways of exposure should be targeted. We believe that these data will also facilitate future pandemic preparedness as well as global AMR containment during pandemic events and beyond.
Collapse
Affiliation(s)
- Popy Devnath
- College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Nabil Karah
- Department of Molecular Biology and Umeå Centre for Microbial Research, Umeå University, SE-901 87 Umeå, Sweden
| | - Jay P. Graham
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Elizabeth S. Rose
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Muhammad Asaduzzaman
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, 450 Oslo, Norway
- Planetary Health Alliance, Boston, MA 02115, USA
- Planetary Health Working Group, Be-Cause Health, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| |
Collapse
|
34
|
Shiri Aghbash P, Ebrahimzadeh Leylabadlo H, Fathi H, Bahmani M, Chegini R, Bannazadeh Baghi H. Hepatic Disorders and COVID-19: From Pathophysiology to Treatment Strategy. Can J Gastroenterol Hepatol 2022; 2022:4291758. [PMID: 36531832 PMCID: PMC9754839 DOI: 10.1155/2022/4291758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 12/13/2022] Open
Abstract
Following the SARS-CoV-2 outbreak and the subsequent development of the COVID-19 pandemic, organs such as the lungs, kidneys, liver, heart, and brain have been identified as priority organs. Liver diseases are considered a risk factor for high mortality from the COVID-19 pandemic. Besides, liver damage has been demonstrated in a substantial proportion of patients with COVID-19, especially those with severe clinical symptoms. Furthermore, antiviral medications, immunosuppressive drugs after liver transplantation, pre-existing hepatic diseases, and chronic liver diseases such as cirrhosis have also been implicated in SARS-CoV-2-induced liver injury. As a result, some precautions have been taken to prevent, monitor the virus, and avoid immunocompromised and susceptible individuals, such as liver and kidney transplant recipients, from being infected with SARS-CoV-2, thereby avoiding an increase in mortality. The purpose of this review was to examine the impairment caused by SARS-CoV-2 infection and the impact of drugs used during the pandemic on the mortality range and therefore the possibility of preventive measures in patients with liver disease.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamidreza Fathi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Mohaddeseh Bahmani
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rojin Chegini
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
da Cruz Freire JE, Júnior JEM, Pinheiro DP, da Cruz Paiva Lima GE, do Amaral CL, Veras VR, Madeira MP, Freire EBL, Ozório RG, Fernandes VO, Montenegro APDR, Montenegro RC, Colares JKB, Júnior RMM. Evaluation of the anti-diabetic drug sitagliptin as a novel attenuate to SARS-CoV-2 evidence-based in silico: molecular docking and molecular dynamics. 3 Biotech 2022; 12:344. [PMCID: PMC9640538 DOI: 10.1007/s13205-022-03406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
The current outbreak of COVID-19 cases worldwide has been responsible for a significant number of deaths, especially in hospitalized patients suffering from comorbidities, such as obesity, diabetes, hypertension. The disease not only has prompted an interest in the pathophysiology, but also it has propelled a massive race to find new anti-SARS-CoV-2 drugs. In this scenario, known drugs commonly used to treat other diseases have been suggested as alternative or complementary therapeutics. Herein we propose the use of sitagliptin, an inhibitor of dipeptidyl peptidase-4 (DPP4) used to treat type-II diabetes, as an agent to block and inhibit the activity of two proteases, 3CLpro and PLpro, related to the processing of SARS-CoV-2 structural proteins. Inhibition of these proteases may possibly reduce the viral load and infection on the host by hampering the synthesis of new viruses, thus promoting a better outcome. In silico assays consisting in the modeling of the ligand sitagliptin and evaluation of its capacity to interact with 3CLpro and PLpro through the prediction of the ligand bioactivity, molecular docking, overlapping of crystal structures, and molecular dynamic simulations were conducted. The experiments indicate that sitagliptin can interact and bind to both targets. However, this interaction seems to be stronger and more stable to 3CLpro (ΔG = −7.8 kcal mol−1), when compared to PLpro (ΔG = −7.5 kcal mol−1). This study suggests that sitagliptin may be suitable to treat COVID-19 patients, beyond its common use as an anti-diabetic medication. In vivo studies may further support this hypothesis.
Collapse
|
36
|
Vargas-Cortez T, Jacobo-Velázquez DA, Benavides J. Therapeutic Plants with Immunoregulatory Activity and Their Applications: A Scientific Vision of Traditional Medicine in Times of COVID-19. J Med Food 2022; 25:1074-1085. [PMID: 36067145 DOI: 10.1089/jmf.2022.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The progression of SARS-CoV-2 (COVID-19) in humans heavily depends on the patient's overall health status, especially on its immunoregulatory capacity. Different plants and plant-derived preparations (infusions, encapsulated, etc.) have been used as immunoregulators, several of them with scientific support. Nevertheless, due to the composition complexity of such plant-derived preparations, the molecular and physiological mechanisms involved in their beneficial effects remain, in some cases, unclear. In this review article, the most reported plants used in traditional medicine to enhance immunoregulatory capacity are presented, and their effect on the innate immune response is discussed and correlated with their respective phytochemical profile. Understanding how the plant phytochemical profile relates to the observed impact on the innate and adaptative immune response is fundamental to designing plant-derived co-treatments to lessen the symptoms and favor the recovery of COVID-19 patients. In this regard, we propose a prospective guideline for using plants and plant-derived preparations as co-treatments for COVID-19 (and similar viral infections), which could be helpful in the context of the worldwide effort to end the current SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Teresa Vargas-Cortez
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, México
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, México
| | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, The Institute for Obesity Research, Zapopan, México
- Tecnologico de Monterrey, School of Engineering and Sciences, Zapopan, México
| | - Jorge Benavides
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, México
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, México
| |
Collapse
|
37
|
Zhang X, Hong B, Wei P, Pei P, Xu H, Chen L, Tong Y, Chen J, Luo SZ, Fan H, He C. Pathogen-host adhesion between SARS-CoV-2 spike proteins from different variants and human ACE2 studied at single-molecule and single-cell levels. Emerg Microbes Infect 2022; 11:2658-2669. [PMID: 36153659 PMCID: PMC9639500 DOI: 10.1080/22221751.2022.2128887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022]
Abstract
The binding of the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein onto human angiotensin-converting enzyme 2 (ACE2) is considered as the first step for the virus to adhere onto the host cells during the infection. Here, we investigated the adhesion of spike proteins from different variants and ACE2 using single-molecule and single-cell force spectroscopy. We found that the unbinding force and binding probability of the spike protein from Delta variant to the ACE2 were the highest among the variants tested in our study at both single-molecule and single-cell levels. As the most popular variants, the Omicron variants have slightly higher unbinding force to the ACE2 than wild type. Molecular dynamics simulation showed that ACE2-RBD (Omicron BA.1) complex is destabilized by the E484A and Y505H mutations and stabilized by S477N and N501Y mutations, when compared with Delta variant. In addition, a neutralizing antibody, produced by immunization with wild type spike protein, could effectively inhibit the binding of spike proteins from wild type, Delta and Omicron variants (BA.1 and BA.5) onto ACE2. Our results provide new insight for the molecular mechanism of the adhesive interactions between spike protein and ACE2 and suggest that effective monoclonal antibody can be prepared using wild type spike protein against different variants.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Bixia Hong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Pengfei Pei
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Haifeng Xu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Long Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Jialin Chen
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, People’s Republic of China
| | - Shi-Zhong Luo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Huahao Fan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| |
Collapse
|
38
|
Yi Y, Fang J, Liu Y, Gao Y, Lin W, Hao D, Zhang X, Zhang M. Clinical Characteristics of 254 COVID-19 Inpatients in Yichang, Hubei, China, and Efficacy of Integrated Chinese and Western Medicine Treatment. Int J Gen Med 2022; 15:8191-8200. [PMID: 36411815 PMCID: PMC9675424 DOI: 10.2147/ijgm.s391024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction There is no effective treatment plan for coronavirus disease 2019 (COVID-19). We employed a combination of Chinese and Western medicine treatment for some COVID-19 inpatients. Methods This study was a prospective cohort study that observed non-critical COVID-19 inpatients. The differences will be observed in the time from admission to two consecutive 2019-nCoV nucleic acid test negatives and the Visual Analog Scale (VAS) score between the two groups. Results A total of 254 confirmed COVID-19 patients were included in this study. The median time from the admission to two consecutive negative nucleic acid tests was 14 days for the integrated Chinese and Western Medicine (ICWM) group, while the Western Medicine (WM) group was 16 days. Besides, the median VAS score of the ICWM group was 0, which was an average decrease of 2 points compared to the time of admission. Conclusion For non-critical COVID-19 patients, it was safe and have more benefits to add traditional Chinese medicine decoction based on WM treatment.
Collapse
Affiliation(s)
- Yongxin Yi
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| | - Jiayang Fang
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| | - Yunzhu Liu
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| | - Yidong Gao
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| | - Weizhi Lin
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
| | - Dongdong Hao
- Department of Outpatient, Lanzhou 7th Rest Center for Retired Cadre, Gansu Military Region, Lanzhou, People’s Republic of China
| | - Xing Zhang
- Department of Medicine, the State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, People’s Republic of China
- Department of Medicine, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, People’s Republic of China
| | - Min Zhang
- Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China
- Correspondence: Min Zhang, Department of Encephalopathy, the Third People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China, Email
| |
Collapse
|
39
|
Pacheco-Olvera DL, Saint Remy-Hernández S, García-Valeriano MG, Rivera-Hernández T, López-Macías C. Bioinformatic Analysis of B- and T-cell Epitopes from SARS-CoV-2 Structural Proteins and their Potential Cross-reactivity with Emerging Variants and other Human Coronaviruses. Arch Med Res 2022; 53:694-710. [PMID: 36336501 PMCID: PMC9633039 DOI: 10.1016/j.arcmed.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/23/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The mutations in SARS-CoV-2 variants of concern (VOC) facilitate the virus' escape from the neutralizing antibodies induced by vaccines. However, the protection from hospitalization and death is not significantly diminished. Both vaccine boosters and infection improve immune responses and provide protection, suggesting that conserved and/or cross-reactive epitopes could be involved. While several important T- and B-cell epitopes have been identified, mainly in the S protein, the M and N proteins and their potential cross-reactive epitopes with other coronaviruses remain largely unexplored. AIMS To identify and map new potential B- and T-cell epitopes within the SARS-CoV-2 S, M and N proteins, as well as cross-reactive epitopes with human coronaviruses. METHODS Different bioinformatics tools were used to: i) Identify new and compile previously-reported B-and T-cell epitopes from SARS-CoV-2 S, M and N proteins; ii) Determine the mutations in S protein from VOC that affect B- and T-cell epitopes, and; iii) Identify cross-reactive epitopes with coronaviruses relevant to human health. RESULTS New, potential B- and T-cell epitopes from S, M and N proteins as well as cross-reactive epitopes with other coronaviruses were found and mapped within the proteins' structures. CONCLUSION Numerous potential B- and T-cell epitopes were found in S, M and N proteins, some of which are conserved between coronaviruses. VOCs present mutations within important epitopes in the S protein; however, a significant number of other epitopes remain unchanged. The epitopes identified here may contribute to augmenting the protective response to SARS-CoV-2 and its variants induced by infection and/or vaccination, and may also be used for the rational design of novel broad-spectrum coronavirus vaccines.
Collapse
Affiliation(s)
- Diana Laura Pacheco-Olvera
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Stephanie Saint Remy-Hernández
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - María Guadalupe García-Valeriano
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Tania Rivera-Hernández
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| |
Collapse
|
40
|
Bakhtiyarova KS, Papoyan AO, Alekseev AV, Vishnyakov DS, Grazhdankin AA, Gilyazova IR, Nasibullina AK, Kislitsyna MV, Vakhitova AA, Zolotukhin KN, Kabirov IR, Pavlov VN. Early Changes in Clinical and Laboratory Parameters in Patients Died of COVID-19. MESSENGER OF ANESTHESIOLOGY AND RESUSCITATION 2022. [DOI: 10.21292/2078-5658-2022-19-5-55-62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
261,435,768 COVID-19 infections were detected worldwide, of them 5,207,634 deaths were registered. Identifying markers of the patient severity early in the course of the disease can facilitate the assessment of the risk of adverse outcome.The objective: To compare values of laboratory parameters and their changes during treatment of patients with a complicated course of COVID-19 infection.Subjects and Methods. 56 patients were included in the study, all of them were hospitalized to COVID Hospital of the Clinic of Bashkir State Medical University, Russian Ministry of Health, from September 30, 2021 to November 15, 2021, and their complicated course of the disease necessitated transfer to the intensive care unit (ICU). The laboratory evaluation included the following: a general blood and urine counts, blood chemistry including urea and creatinine, liver transaminases, and blood coagulogram (prothrombin time (PTT), prothrombin index (PTI), thrombin time, fibrinogen, and blood clotting time).Results. In the group of patients with a fatal outcome on the day of transfer to ICU, lymphocytopenia, eosinopenia, elevated values of creatinine, total bilirubin, transaminases, C-reactive protein, D-dimer, and ferritin were noted. Also on this day, microscopic hematuria, proteinuria and cylindruria were detected in the urine tests of most patients in this group during treatment.Conclusion. Critical deviations in the results of hematological and biochemical tests were revealed. Particular attention should be paid to such parameters as the level of erythrocytes, lymphocytes, eosinophils, glucose, urea, creatinine, total bilirubin, aspartate aminotransferase, alanine aminotransferase, creatine kinase, C-reactive protein, D-dimer, and ferritin.
Collapse
|
41
|
Gencer A, Caliskaner Ozturk B, Borekci S, Gemicioglu B. Bronchodilator Reversibility Testing in Long-Term Cough and Dyspnea after Covid-19 Viral Infection: A Trigger for Asthma? J Asthma 2022; 60:1221-1226. [PMID: 36279253 DOI: 10.1080/02770903.2022.2139719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Objective: This study aims to investigate the presence of underlying chronic airway disease in individuals with chronic cough and dyspnea lasting longer than eight weeks and who had previously Coronavirus disease 2019 (COVID-19) and had no known lung disease.Methods: A total of 151 patients admitted to the respiratory diseases outpatient room with the complaint of cough and/or dyspnea that persisted for at least eight weeks following COVID-19 infection were accrued to the study. Demographic characteristics, smoking history, the severity of lung involvement on chest computed tomography in the acute phase of Covid-19 infection, and bronchodilator reversibility test results were recorded. Smoking history and forced expiratory volume in the first second (FEV1) were compared.Results: FEV1 increase ≥ 200 ml was observed in 40 (26.5%) patients. In 24 (15.9%) patients, an increase in FEV1 was found to be 200 ml and above, and the percentage of FEV1 was 12% or more. While 14 (9.3%) patients were diagnosed with asthma, 13 (8.6%) patients were diagnosed with nonreversible airflow obstruction (NRAO), and 1 (0.7%) patient was diagnosed with chronic obstructive pulmonary disease (COPD).Conclusions: COVID-19 infection may play a vital role in initiating asthma pathogenesis. It should be kept in mind that viral infection-related asthma may be the underlying cause of prolonged cough and dyspnea after COVID-19 infection.
Collapse
Affiliation(s)
- Aysegul Gencer
- Istanbul Bakirkoy Dr. Sadi Konuk Trainig and Research Hospital, Istanbul, Turkey
| | - Buket Caliskaner Ozturk
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pulmonary Diseases, Istanbul, Turkey
| | - Sermin Borekci
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pulmonary Diseases, Istanbul, Turkey
| | - Bilun Gemicioglu
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pulmonary Diseases, Istanbul, Turkey
| |
Collapse
|
42
|
Mekky RY, Elemam NM, Eltahtawy O, Zeinelabdeen Y, Youness RA. Evaluating Risk: Benefit Ratio of Fat-Soluble Vitamin Supplementation to SARS-CoV-2-Infected Autoimmune and Cancer Patients: Do Vitamin-Drug Interactions Exist? Life (Basel) 2022; 12:1654. [PMID: 36295089 PMCID: PMC9604733 DOI: 10.3390/life12101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
COVID-19 is a recent pandemic that mandated the scientific society to provide effective evidence-based therapeutic approaches for the prevention and treatment for such a global threat, especially to those patients who hold a higher risk of infection and complications, such as patients with autoimmune diseases and cancer. Recent research has examined the role of various fat-soluble vitamins (vitamins A, D, E, and K) in reducing the severity of COVID-19 infection. Studies showed that deficiency in fat-soluble vitamins abrogates the immune system, thus rendering individuals more susceptible to COVID-19 infection. Moreover, another line of evidence showed that supplementation of fat-soluble vitamins during the course of infection enhances the viral clearance episode by promoting an adequate immune response. However, more thorough research is needed to define the adequate use of vitamin supplements in cancer and autoimmune patients infected with COVID-19. Moreover, it is crucial to highlight the vitamin-drug interactions of the COVID-19 therapeutic modalities and fat-soluble vitamins. With an emphasis on cancer and autoimmune patients, the current review aims to clarify the role of fat-soluble vitamins in SARS-CoV-2 infection and to estimate the risk-to-benefit ratio of a fat-soluble supplement administered to patients taking FDA-approved COVID-19 medications such as antivirals, anti-inflammatory, receptor blockers, and monoclonal antibodies.
Collapse
Affiliation(s)
- Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Noha M. Elemam
- Sharjah Institute for Medical Research (SIMR), College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Omar Eltahtawy
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 12622, Egypt
| | - Yousra Zeinelabdeen
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 12622, Egypt
- Faculty of Medical Sciences, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 12622, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 12622, Egypt
| |
Collapse
|
43
|
Silva MJA, Ribeiro LR, Lima KVB, Lima LNGC. Adaptive immunity to SARS-CoV-2 infection: A systematic review. Front Immunol 2022; 13:1001198. [PMID: 36300105 PMCID: PMC9589156 DOI: 10.3389/fimmu.2022.1001198] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/26/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND There is evidence that the adaptive or acquired immune system is one of the crucial variables in differentiating the course of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This work aimed to analyze the immunopathological aspects of adaptive immunity that are involved in the progression of this disease. METHODS This is a systematic review based on articles that included experimental evidence from in vitro assays, cohort studies, reviews, cross-sectional and case-control studies from PubMed, SciELO, MEDLINE, and Lilacs databases in English, Portuguese, or Spanish between January 2020 and July 2022. RESULTS Fifty-six articles were finalized for this review. CD4+ T cells were the most resolutive in the health-disease process compared with B cells and CD8+ T lymphocytes. The predominant subpopulations of T helper lymphocytes (Th) in critically ill patients are Th1, Th2, Th17 (without their main characteristics) and regulatory T cells (Treg), while in mild cases there is an influx of Th1, Th2, Th17 and follicular T helper cells (Tfh). These cells are responsible for the secretion of cytokines, including interleukin (IL) - 6, IL-4, IL-10, IL-7, IL-22, IL-21, IL-15, IL-1α, IL-23, IL-5, IL-13, IL-2, IL-17, tumor necrosis factor alpha (TNF-α), CXC motivating ligand (CXCL) 8, CXCL9 and tumor growth factor beta (TGF-β), with the abovementioned first 8 inflammatory mediators related to clinical benefits, while the others to a poor prognosis. Some CD8+ T lymphocyte markers are associated with the severity of the disease, such as human leukocyte antigen (HLA-DR) and programmed cell death protein 1 (PD-1). Among the antibodies produced by SARS-CoV-2, Immunoglobulin (Ig) A stood out due to its potent release associated with a more severe clinical form. CONCLUSIONS It is concluded that through this study it is possible to have a brief overview of the main immunological biomarkers and their function during SARS-CoV-2 infection in particular cell types. In critically ill individuals, adaptive immunity is varied, aberrantly compromised, and late. In particular, the T-cell response is also an essential and necessary component in immunological memory and therefore should be addressed in vaccine formulation strategies.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Graduate Program in Epidemiology and Health Surveillance (PPGEVS), Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Layana Rufino Ribeiro
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Luana Nepomuceno Gondim Costa Lima
- Graduate Program in Epidemiology and Health Surveillance (PPGEVS), Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| |
Collapse
|
44
|
Tanveer A, Akhtar B, Sharif A, Saleem U, Rasul A, Ahmad A, Jilani K. Pathogenic role of cytokines in COVID-19, its association with contributing co-morbidities and possible therapeutic regimens. Inflammopharmacology 2022; 30:1503-1516. [PMID: 35948809 PMCID: PMC9365214 DOI: 10.1007/s10787-022-01040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/15/2022]
Abstract
The Covid-19, a threatening pandemic, was originated from China in December 2019 and spread quickly to all over the world. The pathogenesis of coronavirus is linked with the disproportionate response of the immune system. This involves the systemic inflammatory reaction which is characterized by marked pro-inflammatory cytokine release commonly known as cytokine release storm (CRS). The pro inflammatory cytokines are involved in cascade of pulmonary inflammation, hyper coagulation and thrombosis which may be lethal for the individual. That's why, it is very important to have understanding of pro inflammatory cytokines and their pathological role in SARS-CoV-2. The pathogenesis of Covid is not the same in every individual, it can vary due to the presence of pre-existing comorbidities like suffering from already an inflammatory disease such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), chronic obstructive pulmonary disease (COPD), an immune-compromised patients suffering from Diabetes Mellitus (DM) and Tuberculosis (TB) are more vulnerable morbidity and complications following COVID-19. This review is particularly related to COVID-19 patients having comorbidity of other inflammatory diseases. We have discussed the brief pathogenesis of COVID-19 and cytokines release storm with reference to other co-morbidities including RA, IBD, COPD, DM and TB. The available therapeutic regimens for COVID-19 including cytokine inhibitors, anti-viral, anti-biotic, bronchodilators, JAK- inhibitors, immunomodulators and anti-fibrotic agents have also been discussed briefly. Moreover, newly emerging medicines in the clinical trials have also been discussed which are found to be effective in treating Covid-19.
Collapse
Affiliation(s)
- Ayesha Tanveer
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aftab Ahmad
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
- Center of Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Kashif Jilani
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
45
|
Çölkesen F, Kepenek Kurt E, Vatansev H, Korkmaz C, Çölkesen F, Yücel F, Yıldız E, Evcen R, Aykan FS, Kılınç M, Aytekin G, Feyzioğlu B, Doğan M, Arslan Ş, Teke T, Keleş S, Reisli İ. Memory B cells and serum immunoglobulins are associated with disease severity and mortality in patients with COVID-19. Postgrad Med J 2022; 98:765-771. [PMID: 37062997 PMCID: PMC8783971 DOI: 10.1136/postgradmedj-2021-140540] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE OF THE STUDY The aim of this study was to investigate the relationship of B cell-mediated immunity with disease severity and mortality in patients with COVID-19. STUDY DESIGN In this retrospective cohort and single-centre study, 208 patients with laboratory-confirmed COVID-19 were recruited. A COVID-19 severity score, ranging from 0 to 10, was used to evaluate associations between various factors. Serum immunoglobulin levels and the number of cells in B lymphocyte subsets were measured and their association with disease severity and mortality in patients with COVID-19 examined. RESULTS The median age of the patients was 50 (35-63) years and 88 (42%) were female. The number of deceased patients was 17. The median COVID-19 severity score was 8 (6-8) in deceased patients and 1 (0-2) in survivors. Deceased patients had significantly lower levels of total B lymphocytes, naive B cells, switched memory B cells, and serum IgA, IgG, IgG1 and IgG2 than recovered patients (all p<0.05). In addition, a significant negative correlation was found between the number of these parameters and COVID-19 severity scores. Decrease in the number of total B cells and switched memory B cells as well as lower serum IgA, IgG and IgG1 levels were independent risk factors for mortality in patients with COVID-19. CONCLUSION In the present study, the prognosis of patients with COVID-19 was shown to be associated with the B cell subset and serum immunoglobulin levels.
Collapse
Affiliation(s)
- Fatih Çölkesen
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Esma Kepenek Kurt
- Department of Infectious Diseases and Clinical Microbiology, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Hülya Vatansev
- Department of Chest Diseases, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Celalettin Korkmaz
- Department of Chest Diseases, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Fatma Çölkesen
- Department of Infectious Diseases and Clinical Microbiology, Konya Training and Research Hospital, Konya, Turkey
| | - Fatih Yücel
- Department of General Intensive Care Unit, Konya Training and Research Hospital, Konya, Turkey
| | - Eray Yıldız
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Recep Evcen
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Filiz Sadi Aykan
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Mehmet Kılınç
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Gökhan Aytekin
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Konya Training and Research Hospital, Konya, Turkey
| | - Bahadır Feyzioğlu
- Division of Medical Virology, Department of Medical Microbiology, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Metin Doğan
- Department of Medical Microbiology, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Şevket Arslan
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Turgut Teke
- Department of Chest Diseases, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - Sevgi Keleş
- Division of Pediatric Allergy and Immunology, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| | - İsmail Reisli
- Division of Pediatric Allergy and Immunology, Necmettin Erbakan University Meram Faculty of Medicine, Konya, Turkey
| |
Collapse
|
46
|
Ting KC, Lin HH, Chien JH, Tseng KC, Hsu CH. How can sports entrepreneurs achieve their corporate sustainable development goals under the COVID-19 epidemic? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72101-72116. [PMID: 34674122 PMCID: PMC8528939 DOI: 10.1007/s11356-021-16915-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
The present study aimed to explore the opportunities for the sustainable development of professional sports enterprises and events from the perspective of the public's awareness, attitude, and behavior, as well as the physical and mental health of the spectators of professional events in Taiwan. First, 1,129 valid questionnaires were collected and analyzed by statistical, t test, and ANOVA methods. In addition, 9 respondents were interviewed to provide their personal opinions on the questionnaire results, and finally, multivariate analysis was conducted. Sports entrepreneurs must follow the decision to prevent the epidemic, make good use of Internet technology, plan a complete process, and use accurate testing facilities to grasp the movements of participants. They will win public recognition to maintain professional sports companies and events in COVID-19 and normal operation under the epidemic and create a sustainable environment for professional sports companies and events.
Collapse
Affiliation(s)
- Kuo Chiang Ting
- Graduate Institute of Sport Coaching Science College of Kinesiology and Health, Chinese Culture University, Taipei, Taiwan, Republic of China
| | - Hsiao-Hsien Lin
- School of Physical Education, Jiaying University, Meizhou City, Guangdong Province, China.
| | - Jung-Hul Chien
- Department of Social Work, Toko University, Chiayi County, Taiwan, Republic of China
| | - Kuan-Chieh Tseng
- MA Program in Social Enterprise and Cultural Innovation Studies, College of Humanities & Social Sciences, Providence University, Taichung, Taiwan, Republic of China
- Department of Leisure Industry Management, National Chin-Yi University of Technology, Taichung, Taiwan, Republic of China
| | - Chin-Hsien Hsu
- Department of Social Work, Toko University, Chiayi County, Taiwan, Republic of China.
| |
Collapse
|
47
|
Islamuddin M, Mustfa SA, Ullah SNMN, Omer U, Kato K, Parveen S. Innate Immune Response and Inflammasome Activation During SARS-CoV-2 Infection. Inflammation 2022; 45:1849-1863. [PMID: 35953688 PMCID: PMC9371632 DOI: 10.1007/s10753-022-01651-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/05/2022]
Abstract
The novel coronavirus SARS-CoV-2, responsible for the COVID-19 outbreak, has become a pandemic threatening millions of lives worldwide. Recently, several vaccine candidates and drugs have shown promising effects in preventing or treating COVID-19, but due to the development of mutant strains through rapid viral evolution, urgent investigations are warranted in order to develop preventive measures and further improve current vaccine candidates. Positive-sense-single-stranded RNA viruses comprise many (re)emerging human pathogens that pose a public health problem. Our innate immune system and, in particular, the interferon response form an important first line of defense against these viruses. Flexibility in the genome aids the virus to develop multiple strategies to evade the innate immune response and efficiently promotes their replication and infective capacity. This review will focus on the innate immune response to SARS-CoV-2 infection and the virus' evasion of the innate immune system by escaping recognition or inhibiting the production of an antiviral state. Since interferons have been implicated in inflammatory diseases and immunopathology along with their protective role in infection, antagonizing the immune response may have an ambiguous effect on the clinical outcome of the viral disease. This pathology is characterized by intense, rapid stimulation of the innate immune response that triggers activation of the Nod-like receptor family, pyrin-domain-containing 3 (NLRP3) inflammasome pathway, and release of its products including the pro-inflammatory cytokines IL-6, IL-18, and IL-1β. This predictive view may aid in designing an immune intervention or preventive vaccine for COVID-19 in the near future.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan.
| | - Salman Ahmad Mustfa
- Centre for Craniofacial and Regenerative Biology, King's College London, Strand, London, UK
| | | | - Usmaan Omer
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Shama Parveen
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
48
|
Jonny J, Putranto TA, Irfon R, Sitepu EC. Developing dendritic cell for SARS-CoV-2 vaccine: Breakthrough in the pandemic. Front Immunol 2022; 13:989685. [PMID: 36148241 PMCID: PMC9485669 DOI: 10.3389/fimmu.2022.989685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Finding a vaccine that can last a long time and effective against viruses with high mutation rates such as SARS-CoV-2 is still a challenge today. The various vaccines that have been available have decreased in effectiveness and require booster administration. As the professional antigen presenting cell, Dendritic Cells can also activate the immune system, especially T cells. This ability makes dendritic cells have been developed as vaccines for some types of diseases. In SARS-CoV-2 infection, T cells play a vital role in eliminating the virus, and their presence can be detected in the long term. Hence, this condition shows that the formation of T cell immunity is essential to prevent and control the course of the disease. The construction of vaccines oriented to induce strong T cells response can be formed by utilizing dendritic cells. In this article, we discuss and illustrate the role of dendritic cells and T cells in the pathogenesis of SARS-CoV-2 infection and summarizing the crucial role of dendritic cells in the formation of T cell immunity. We arrange the basis concept of developing dendritic cells for SARS-CoV-2 vaccines. A dendritic cell-based vaccine for SARS-CoV-2 has the potential to be an effective vaccine that solves existing problems.
Collapse
|
49
|
Pandey A, Madan R, Singh S. Immunology to Immunotherapeutics of SARS-CoV-2: Identification of Immunogenic Epitopes for Vaccine Development. Curr Microbiol 2022; 79:306. [PMID: 36064873 PMCID: PMC9444117 DOI: 10.1007/s00284-022-03003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/16/2022] [Indexed: 11/21/2022]
Abstract
The emergence of COVID19 pandemic caused by SARS-CoV-2 virus has created a global public health and socio-economic crisis. Immunoinformatics-based approaches to investigate the potential antigens is the fastest way to move towards a multiepitope-based vaccine development. This review encompasses the underlying mechanisms of pathogenesis, innate and adaptive immune signaling along with evasion pathways of SARS-CoV-2. Furthermore, it compiles the promiscuous peptides from in silico studies which are subjected to prediction of cytokine milieu using web-based servers. Out of the 434 peptides retrieved from all studies, we have identified 33 most promising T cell vaccine candidates. This review presents a list of the most potential epitopes from several proteins of the virus based on their immunogenicity, homology, conservancy and population coverage studies. These epitopes can form a basis of second generation of vaccine development as the first generation vaccines in various stages of trials mostly focus only on Spike protein. We therefore, propose them as most potential candidates which can be taken up immediately for confirmation by experimental studies.
Collapse
Affiliation(s)
- Apoorva Pandey
- Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box No. 4911, New Delhi, 110029 India
| | - Riya Madan
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Sahibzada Ajit Singh Nagar, Punjab 140306 India
| | - Swati Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
50
|
SARS-CoV-2 infection: Pathogenesis, Immune Responses, Diagnosis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
COVID-19 has emerged as the most alarming infection of the present time instigated by the virus SARS-CoV-2. In spite of advanced research technologies, the exact pathophysiology and treatment of the condition still need to be explored. However, SARS-CoV-2 has several structural and functional similarities that resemble SARS-CoV and MERS-CoV which may be beneficial in exploring the possible treatment and diagnostic strategies for SARS-CoV-2. This review discusses the pathogen phenotype, genotype, replication, pathophysiology, elicited immune response and emerging variants of SARS-CoV-2 and their similarities with other similar viruses. SARS-CoV-2 infection is detected by a number of diagnostics techniques, their advantages and limitations are also discussed in detail. The review also focuses on nanotechnology-based easy and fast detection of SARS-CoV-2 infection. Various pathways which might play a vital role during SARS-CoV-2 infection have been elaborately discussed since immune response plays a major role during viral infections.
Collapse
|