1
|
Sun Y, Huang D, Zhang Y. The bone-vascular axis: the link between osteoporosis and vascular calcification. Mol Cell Biochem 2025; 480:3413-3427. [PMID: 39849210 DOI: 10.1007/s11010-025-05210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025]
Abstract
Osteoporosis and vascular calcification are chronic metabolic diseases threatening the health of aging people. The incidence of osteoporosis and vascular calcification increases year by year, and has drawn much attention from the scientific and clinical area. Many studies have found that osteoporosis and vascular calcification are not completely independent, but there are close correlations between them in the pathogenesis and underlying mechanisms. The underlying mechanisms of osteoporosis and vascular calcification include aging, oxidative stress, inflammatory response, lipid metabolism, calcium and phosphorus metabolism, vitamins, autophagy, and extracellular vesicles. This review updates the current understanding of the correlation and underlying mechanisms of osteoporosis and vascular calcification, and highlights the complexity of the bone-vascular axis, aiming to provide novel ideas for the prevention and treatment of osteoporosis and vascular calcification.
Collapse
Affiliation(s)
- Yue Sun
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Dageng Huang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Yan Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
2
|
Sacramento CM, Casati MZ, Sallum EA, Casarin RCV, Silvério KG. Cholecystokinin-antagonist lorglumide inhibits osteogenic differentiation in human bone marrow stem cells. Differentiation 2025; 143:100867. [PMID: 40381499 DOI: 10.1016/j.diff.2025.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND The relationship between gastrointestinal hormones and bone metabolism has gained significant attention, but the specific role of cholecystokinin (CCK) in bone homeostasis remains largely unexplored. This study aimed to evaluate the role of the CCK pathway in osteogenic differentiation by blocking its mechanisms in human bone marrow stem cells (hBMSCs). METHODS hBMSCs were exposed to Lorglumide, a CCK signaling pathway inhibitor, under osteogenic conditions. Cell viability, osteogenic differentiation, RT-qPCR analysis of CCK, FOS, OCN, and RUNX2, IP3 receptor phosphorylation, alkaline phosphatase (ALP) activity, and calcium concentration (Ca2) were assessed to elucidate Lorglumide's effects on osteogenesis and related mechanisms. RESULTS Lorglumide reduced hBMSC viability at concentrations ≥30 μM over 14 days. Mineralization assays revealed dose-dependent inhibition, with 20 μM maintaining mineralization comparable to controls. RT-qPCR showed that Lorglumide suppressed CCK expression and altered osteogenic gene expression (FOS, RUNX2, OCN). Lorglumide decreased Ca2 concentration compared to osteogenic medium (OM) and reduced ALP activity, indicating its inhibitory effect on key osteogenic mechanisms. CONCLUSION Lorglumide inhibits hBMSC osteoblastic differentiation, suggesting a possible role for the CCK signaling pathway in bone metabolism. These findings emphasize the involvement of gastrointestinal hormones in bone homeostasis, suggesting new therapeutic opportunities targeting hormonal regulation to promote bone health. Further studies are needed to explore the underlying mechanisms and potential clinical applications of modulating CCK pathways in bone-related disorders.
Collapse
Affiliation(s)
- Catharina Marques Sacramento
- Departamento de Prótese e Periodontia, Divisão de Periodontia, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas - UNICAMP, Piracicaba, São Paulo, Brazil.
| | - Márcio Zaffalon Casati
- Departamento de Prótese e Periodontia, Divisão de Periodontia, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Enilson Antonio Sallum
- Departamento de Prótese e Periodontia, Divisão de Periodontia, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Renato Corrêa Viana Casarin
- Departamento de Prótese e Periodontia, Divisão de Periodontia, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Karina Gonzales Silvério
- Departamento de Prótese e Periodontia, Divisão de Periodontia, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| |
Collapse
|
3
|
Ellur G, Govindappa PK, Subrahmanian S, Romero GF, Gonzales DA, Margolis DS, Elfar JC. 4-Aminopyridine Promotes BMP2 Expression and Accelerates Tibial Fracture Healing in Mice. J Bone Joint Surg Am 2025; 107:936-947. [PMID: 40120116 PMCID: PMC12058417 DOI: 10.2106/jbjs.24.00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
BACKGROUND Delayed bone healing is common in orthopaedic clinical care. Agents that alter cell function to enhance healing would change treatment paradigms. 4-aminopyridine (4-AP) is a U.S. Food and Drug Administration (FDA)-approved drug shown to improve walking in patients with chronic neurological disorders. We recently showed 4-AP's positive effects in the setting of nerve, wound, and even combined multi-tissue limb injury. Here, we directly investigated the effects of 4-AP on bone fracture healing, where differentiation of mesenchymal stem cells into osteoblasts is crucial. METHODS All animal experiments conformed to the protocols approved by the Institutional Animal Care and Use Committee at the University of Arizona and Pennsylvania State University. Ten-week-old C57BL/6J male mice (22 to 28 g), following midshaft tibial fracture, were assigned to 4-AP (1.6 mg/kg/day, intraperitoneal [IP]) and saline solution (0.1 mL/mouse/day, IP) treatment groups. Tibiae were harvested on day 21 for micro-computed tomography (CT), 3-point bending tests, and histomorphological analyses. 4-AP's effect on human bone marrow mesenchymal stem cell (hBMSC) and human osteoblast (hOB) cell viability, migration, and proliferation; collagen deposition; matrix mineralization; and bone-forming gene/protein expression analyses was assessed. RESULTS 4-AP significantly upregulated BMP2 gene and protein expression and gene expression of RUNX2, OSX, BSP, OCN, and OPN in hBMSCs and hOBs. 4-AP significantly enhanced osteoblast migration and proliferation, collagen deposition, and matrix mineralization. Radiographic and micro-CT imaging confirmed 4-AP's benefit versus saline solution treatment in mouse tibial fracture healing (bone mineral density, 687.12 versus 488.29 mg hydroxyapatite/cm 3 [p ≤ 0.0021]; bone volume/tissue volume, 0.87 versus 0.72 [p ≤ 0.05]; trabecular number, 7.50 versus 5.78/mm [p ≤ 0.05]; and trabecular thickness, 0.08 versus 0.06 mm [p ≤ 0.05]). Three-point bending tests demonstrated 4-AP's improvement of tibial fracture biomechanical properties versus saline solution (stiffness, 27.93 versus 14.30 N/mm; p ≤ 0.05). 4-AP also increased endogenous BMP2 expression and matrix components in healing callus. CONCLUSIONS 4-AP increased the healing rate, biomechanical properties, and endogenous BMP2 expression of tibiae following fracture. LEVEL OF EVIDENCE Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Govindaraj Ellur
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Prem Kumar Govindappa
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | | | - Gerardo Figueroa Romero
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona
| | - David A Gonzales
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona
| | - David S Margolis
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, Arizona
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona
| | - John C Elfar
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
4
|
Li Z, Liu Y, Zhao X, Xu G. Bone marrow mesenchymal stem cells (BMSCs)-derived exosomal METTL3 regulates the m6A methylation of SMAD5 to promote osteogenic differentiation of osteoblasts. Connect Tissue Res 2025:1-12. [PMID: 40298375 DOI: 10.1080/03008207.2025.2496832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Methyltransferase-like 3 (METTL3) is implicated in human diseases, including osteoporosis (OP). In this study, we aimed to explore the functions and mechanisms of METTL3 in OP using bone marrow mesenchymal stem cells (BMSCs). METHODS The identification of BMSCs-derived exosomes was conducted by transmission electron microscope (TEM), Nanoparticle Tracking Analysis (NTA) and western blot. The osteogenic differentiation of osteoblasts (hFOB1.19) was analyzed by Alizarin red staining assay, Alkaline phosphatase (ALP) staining assay and western blot. The relationship between METTL3 and SMAD family member 5 (SMAD5) was analyzed by Methylated RNA Immunoprecipitation (MeRIP) assay and dual-luciferase reporter assay. RESULTS BMSCs-derived exosomes (BMSC-Exos) promoted the osteogenic differentiation and elevated METTL3 expression in hFOB1.19 cells. Exosomal METTL3 knockdown repressed the osteogenic differentiation in hFOB1.19 cells. METTL3 could stabilize and regulate SMAD5 expression by N6-methyladenosine (m6A) modification. Moreover, SMAD5 overexpression restored exosomal METTL3 knockdown-mediated effect on the osteogenic differentiation in hFOB1.19 cells. CONCLUSION BMSCs-derived exosomal METTL3 mediated the m6A methylation of SMAD5 to facilitate osteogenic differentiation of hFOB1.19 cells.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Outpatient, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yifei Liu
- Department of spine surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiulan Zhao
- Department of Outpatient, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Guohua Xu
- Department of spine surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Jiang J, Li D, Cui D, Wan Y, Zhou P, Cui X, Yu H. Identification of a Novel Mitochondrial-Related Gene Signature for BMSCs in Osteoporosis Combining Single-Cell and Bulk Transcriptome Data. Biochem Genet 2025:10.1007/s10528-025-11099-y. [PMID: 40221950 DOI: 10.1007/s10528-025-11099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
Osteoporosis (OS) is a prevalent skeletal disorder characterized by reduced bone mass and increased fracture risk, often linked to compromised functions of bone mesenchymal stem cells (BMSCs). Mitochondrial dysfunction and aberrant mitophagy are implicated in OS pathogenesis. This study aimed to identify a novel mitochondrial-related gene signature in BMSCs from OS patients by integrating single-cell and bulk transcriptome data. We analyzed single-cell RNA sequencing data from GSE147287 and bulk transcriptome data from GSE35956 to identify differentially expressed mitochondrial-related genes (MRGs) in BMSCs between healthy individuals and OS patients. Key genes were identified using LASSO logistic regression and random forest algorithms, and their differential expression was validated by RT-qPCR, Western blot, and immunofluorescence. Functional assays, including osteogenic differentiation and β-galactosidase staining, were conducted following siRNA-mediated knockdown of DUT. We identified 28 differentially expressed MRGs, with four key genes (DUT, UQCR10, DNAJC4, and MRPL33) further confirmed. Electron microscopy scanning showed damage to BMSCs mitochondria and decreased osteogenic differentiation ability in OS. Silencing DUT significantly impairs the mitochondrial function and osteogenic differentiation ability of BMSCs, indicating its potential role in OS development. This study identifies a mitochondrial gene signature in BMSCs linked to osteoporosis, with DUT emerging as a key regulator. DUT silencing impairs mitochondrial function and osteogenic differentiation, suggesting it as a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Jishi Jiang
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China
| | - Dan Li
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China
| | - Di Cui
- Fuyang Medical College, Fuyang Normal University, Fuyang, Anhui, China
| | - Yunpeng Wan
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China
| | - Pinghui Zhou
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu University College, Bengbu, Anhui, China.
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
| | - Xilong Cui
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China.
| | - Haiyang Yu
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China.
| |
Collapse
|
6
|
Bhattarai G, An JH, Rijal S, Lee J, Kim J, Kook SH, Lee JC, Cho ES. Supplemental magnesium gluconate recovers osteoblastic Wntless ablation-induced degenerative bone complications. J Bone Miner Metab 2025:10.1007/s00774-025-01599-7. [PMID: 40186045 DOI: 10.1007/s00774-025-01599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
INTRODUCTION Although numerous studies have highlighted the involvement of Wnt-mediated signaling in Mg ion-enhanced bone healing, whether Wnt-stimulated signaling is essential for the Mg ion-triggered bone repair and mass accrual is not yet completely understood. MATERIALS AND METHODS We generated Wlsfl/fl wild-type (WT) control and their corresponding mutant (MT), Col2.3-Cre;Wlsfl/fl mice of osteoblastic Wntless (Wls) ablation and explored how supplemental magnesium gluconate (MgG) affects bone mass accrual and defected bone healing in relation to the Wls ablation. RESULTS Osteoblastic Wls ablation impaired bone mass accrual and bone healing along with age-related degenerative complications in bone marrow (BM) and BM cells. Oral supplementation of WT mice with MgG did not change natural bone mass accrual, but enhanced regenerative bone healing in femoral defects and the functionalities of BM cells. Supplemental MgG suppressed the Wls ablation-related bone loss and also stimulated new bone formation in the defects of MT mice. The MgG-induced beneficial effects in the MT mice were orchestrated with its potencies to ameliorate senescence, oxidative damage, and functional loss of BM and BM adherent cells, as well as to stimulate osteogenic activity. CONCLUSION This study demonstrates that supplemental MgG is able to improve bone homeostatic maintenance by recovering age-related degenerative complications even at the lack of osteoblastic Wnt-stimulated signaling.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Ju-Hyeon An
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Shankar Rijal
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Junil Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Junhyeok Kim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Sung-Ho Kook
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea.
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
7
|
Bastos AR, Maia FR, Oliveira JM, Reis RL, Correlo VM. In vitro Bone Tissue Engineering Strategies: The Relevance of Cells and Culturing Methods in Bone Formation and Remodeling. Macromol Biosci 2025; 25:e2400453. [PMID: 39932135 DOI: 10.1002/mabi.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/06/2024] [Indexed: 04/15/2025]
Abstract
The most recent advances in bone tissue engineering (BTE) approaches step forward in the field of three-dimensional (3D) tissue models, enabling the development of more realistic tools to study bone disorders, such as osteoporosis. BTE field aims to mimic native bone tissue more truthfully, providing an appropriate environment for tissue regeneration and repair through the combination of 3D porous scaffolds, specific growth factors, and cells. Currently, the scientific community is focused on developing and improving new biomaterials that in combination with growth factors and specific cell types, that can accurately emulate the native bone microenvironment. However, most of the reported studies in the BTE field are focused on bone formation, disregarding the entire bone remodeling steps, which also involve bone resorption. In this review, the currently available mono and co-culturing methods, types of biomaterials used in several strategies that combine scaffolds and relevant cells (e.g., osteoblasts (OBs), osteoclasts (OCs), and osteocytes (OCys)), envisioning a healthy bone formation and remodeling process, the gold-standard drug delivery systems, and bioengineered-based systems to tackle bone diseases are described.
Collapse
Affiliation(s)
- Ana Raquel Bastos
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia Rua Ave 1, Edifício 1 (Sede), Barco, 4805-694, GMR - Portugal
- ICVS/3B's - PT Government Associated Laboratory, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Fátima Raquel Maia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia Rua Ave 1, Edifício 1 (Sede), Barco, 4805-694, GMR - Portugal
- ICVS/3B's - PT Government Associated Laboratory, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia Rua Ave 1, Edifício 1 (Sede), Barco, 4805-694, GMR - Portugal
- ICVS/3B's - PT Government Associated Laboratory, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Rui Luís Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia Rua Ave 1, Edifício 1 (Sede), Barco, 4805-694, GMR - Portugal
- ICVS/3B's - PT Government Associated Laboratory, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Vítor Manuel Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia Rua Ave 1, Edifício 1 (Sede), Barco, 4805-694, GMR - Portugal
- ICVS/3B's - PT Government Associated Laboratory, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
8
|
Li Z, Zhang J, Xu T, Hao Z, Li Y. Mechanism of histone demethylase KDM5A in osteoporotic fracture healing through epigenetic regulation of the miR-495/SKP2/Runx2 axis. Mol Med 2025; 31:65. [PMID: 39972431 PMCID: PMC11837617 DOI: 10.1186/s10020-025-01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Osteoporosis represents a salient metabolic bone disorder. Histone demethylase plays a vital role in bone development and homeostasis. This study explored the mechanism of histone demethylase KDM5A affecting osteoporotic fracture healing via the miR-495/SKP2/Runx2 axis. METHODS The murine model of osteoporotic fracture was established. The bone mineral density, maximum elastic stress, and maximum load were tested. The relative trabecular bone volume, bone trabecular thickness, and trabecular number at the proximal end of tibia were detected. The histopathological changes of femur tissues and bone microstructure were observed. Expressions of KDM5A and osteogenic factors were detected. The cell proliferation, alkaline phosphatase activity, and calcified nodules were measured. The binding relationships between KDM5A and miR-495 promoter, and miR-495 and SKP2 were verified. The interaction between SKP2 and Runx2 was detected. The ubiquitination level of Runx2 and the stability of Runx2 protein were detected. RESULTS KDM5A was highly expressed in the murine model of osteoporotic fracture. Interference of KDM5A expression facilitated fracture healing in osteoporotic mice. KDM5A downregulated miR-495 expression by promoting the H3K4me3 methylation of the miR-495 promoter. Inhibition of miR-495 reversed the effect of KDM5A silencing on osteoblast proliferation, differentiation, and mineralization. miR-495 facilitated osteoblast proliferation, differentiation, and mineralization by targeting SKP2. SKP2 suppressed Runx2 expression through ubiquitination degradation. Inhibition of Runx2 reversed the promoting effect of SKP2 silencing on osteogenic differentiation. CONCLUSION KDM5A attenuated the inhibition of miR-495 on SKP2 and promoted the ubiquitination degradation of Runx2 protein by SKP2, thereby repressing osteoblast differentiation and retarding osteoporotic fracture healing.
Collapse
Affiliation(s)
- Zhuoran Li
- School of Medicine, University of Nottingham, Nottingham, NG7 2NR, UK
| | - Junyan Zhang
- Department of Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Tingting Xu
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhiying Hao
- Department of Pharmacy, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No. 3, ZhiGong New Street, Xinghualing District, Taiyuan, Shanxi Province, 030013, China.
| | - Yadong Li
- Department of Emergency, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Xinghualing District, Taiyuan, Shanxi Province, 030001, China.
| |
Collapse
|
9
|
Bai Y, Wu Z, Leary SC, Fang C, Yu M, Genth H, Xie Y, Shi J, Xiang J. Focal Adhesion Kinase Alleviates Simulated Microgravity-Induced Inhibition of Osteoblast Differentiation by Activating Transcriptional Wnt/β-Catenin-BMP2-COL1 and Metabolic SIRT1-PGC-1α-CPT1A Pathways. Int J Mol Sci 2025; 26:1669. [PMID: 40004131 PMCID: PMC11855299 DOI: 10.3390/ijms26041669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The metabolic poise, or balance, between glycolysis and fatty acid oxidation (FAO) has recently been found to play a critical role in osteogenic differentiation and homeostasis. While simulated microgravity (SMG) is known to impede osteoblast differentiation (OBD) by inhibiting the Wnt/β-catenin pathway, how it affects osteoblast metabolism in this context remains unclear. We previously analyzed the effect of SMG on the differentiation of pre-osteoblast MC3T3-E1 cells and found that it reduced focal adhesion kinase (FAK) activity. This, in turn, downregulated Wnt/β-catenin and two of its downstream targets critical for OBD bone morphogenic protein-2 (BMP2) and type-1 collagen (COL1) formation, leading to a reduction in alkaline phosphatase (ALP) activity and cell matrix mineralization. In this study, we further analyzed how SMG-induced alterations in energy metabolism contribute to the inhibition of OBD in MC3T3-E1 cells. Consistent with our earlier findings, we demonstrated that SMG inhibits OBD by downregulating the collective activity of FAK and the Wnt/β-catenin-BMP2-COL1 transcriptional pathway. Interestingly, we observed that SMG also reduces the abundance of sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and carnitine palmitoyl transferase-1α (CPT1A), which are all key metabolic factors regulating mitochondrial number and FAO capacity. Accordingly, we found that the mitochondrial content and FAO potential of MC3T3-E1 cells were lower upon exposure to SMG but were both rescued upon administration of the FAK activator cytotoxic necrotizing factor-1 (CNF1), thereby allowing cells to overcome SMG-induced inhibition of OBD. Taken together, our study indicates that the metabolic regulator SIRT1 may be a new target for reversing SMG-induced bone loss.
Collapse
Affiliation(s)
- Yiling Bai
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada; (Y.B.); (Z.W.); (C.F.); (M.Y.)
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Zhaojia Wu
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada; (Y.B.); (Z.W.); (C.F.); (M.Y.)
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Scot C. Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Chen Fang
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada; (Y.B.); (Z.W.); (C.F.); (M.Y.)
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Michelle Yu
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada; (Y.B.); (Z.W.); (C.F.); (M.Y.)
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Harald Genth
- Institute of Toxicology, Hannover Medical School, D-30625 Hannover, Germany;
| | - Yufeng Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China;
| | - Jinhui Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jim Xiang
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada; (Y.B.); (Z.W.); (C.F.); (M.Y.)
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
10
|
Hu X, Lei X, Lin W, Li X, Zhong W, Luo B, Xie J, Liang Z, Li Y, Qiu J, Wang P, Zhu X, Zhang R, Yang L. Quercetin promotes osteogenic differentiation of bone marrow mesenchymal stem cells by modulating the miR-214-3p/Wnt3a/β-catenin signaling pathway. Exp Cell Res 2025; 444:114386. [PMID: 39694404 DOI: 10.1016/j.yexcr.2024.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Postmenopausal osteoporosis, primarily driven by estrogen deficiency, is predominantly mediated through estrogen receptors such as ERα. However, the underlying mechanisms necessitate further investigation. In this study, we established an ERα-deficient model in rBMSCs to elucidate the role of ERα in osteogenic differentiation and miRNA expression profiles. Our findings demonstrate that knockdown of ERα inhibits osteogenic differentiation in rBMSCs, resulting in upregulation of 25 miRNAs and downregulation of 184 miRNAs, including a significant increase in the expression of miR-214-3p. Validation using qPCR, Western blotting, and bioinformatics analysis revealed that miR-214-3p negatively regulates osteogenic differentiation via the Wnt/β-catenin signaling pathway. Furthermore, we explored the potential therapeutic effects of quercetin (QUE) on rBMSCs. CCK8, alkaline phosphatase activity assays, and Alizarin Red staining demonstrated that QUE dose-dependently enhances rBMSCs proliferation, alkaline phosphatase activity, and mineralization within the concentration range of 0.1-1 μM. Importantly, QUE was found to downregulate miR-214-3p expression and activate the Wnt3a/β-catenin signaling pathway. Rescue experiments confirmed that QUE could counteract the inhibitory effects of miR-214-3p on the Wnt3a/β-catenin signaling pathway. Collectively, our study provides compelling evidence that knockdown of ERα inhibits the osteogenic differentiation of rBMSCs by affecting the miRNA expression profile, while QUE can reverse the inhibitory effect exerted by miR-214-3p on the Wnt3a/β-catenin signaling pathway, thereby offering novel insights into diagnosis, prevention, and treatment strategies for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Xueling Hu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510632, China
| | - Xiaotong Lei
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510632, China
| | - Weiwen Lin
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510632, China
| | - Xiaoyun Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510632, China
| | - Wenqiang Zhong
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510632, China
| | - Bingjie Luo
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510632, China
| | - Ji Xie
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510632, China
| | - Ziwen Liang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510632, China
| | - Yunchuan Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510632, China
| | - Jingli Qiu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510632, China
| | - Panpan Wang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510632, China; College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaofeng Zhu
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510632, China; College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Ronghua Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510632, China.
| | - Li Yang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, 510632, China.
| |
Collapse
|
11
|
Rai D, Sardar A, Raj A, Maji B, Verma S, Tripathi AK, Gupta S, Sharma A, Dhar YV, Trivedi R. miR4352b a cross-species modulator of SOSTDC1, targets dual pathway to regulate bone health and fracture healing. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167514. [PMID: 39326466 DOI: 10.1016/j.bbadis.2024.167514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Mutations in SOST can lead to various monogenic bone diseases. Its paralog, SOSTDC1, shares 55 % protein sequence homology and belongs to the BMP antagonist class. Sostdc1-/- mice exhibit distinct effects on cortical and trabecular bone. Genetic polymorphisms in SOSTDC1 impacting peak bone mass makes SOSTDC1 gene, a candidate for influencing BMD variation in humans. SOSTDC1 is upregulated in bone loss conditions, altering BMP-responsive genes and signaling modulators, suggesting its dual BMP/Wnt antagonist role may enhance both pathways. Overexpression of SOSTDC1 confirmed its role as an osteogenic antagonist. Glycine max (Soy)-derived miR4352b, identified for cross-kingdom applications, precisely targets SOSTDC1, a key regulator of bone. SOSTDC1 competitively binds to BMP2 receptor, BMPR1A. Gma-miR4352b suppresses SOSTDC1 expression, enhancing osteogenesis and countering SOSTDC1's inhibition of osteogenic potential. Modeling estrogen deficiency to mimic elevated SOSTDC1 levels, we observed an inverse correlation with SOSTDC1 expression, while serum BMP2 and PINP levels increased following gma-miR4352b supplementation. In fracture healing, SOSTDC1's crucial role becomes evident in conditions of delayed fracture healing. As healing progresses, SOSTDC1 expression decreases. Gma-miR4352b, compared to scrambled miRNA, remarkably promotes callus formation, achieving 68 % healing by day 10, surpassing the scrambled group at 44 %. By the day 13, the treatment group exhibits advanced healing, challenging to find the callus, while the scrambled group maintains a healing rate similar to day10. The accelerated healing in the treatment group underscores the importance of SOSTDC1 in influencing early fracture healing, potentially through the activation of both BMP2 and Wnt signaling pathways.
Collapse
Affiliation(s)
- Divya Rai
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anirban Sardar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anuj Raj
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhaskar Maji
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shikha Verma
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Sanchita Gupta
- Computational Biology lab, CSIR-National Botanical Research Institute, 226001, India
| | - Ashish Sharma
- CSIR- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yogeshwar Vikram Dhar
- Computational Biology lab, CSIR-National Botanical Research Institute, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Zhou J, Wang J, Qu M, Wang Q, Wang L, Liu S, Liu J, Sun G, Zhong P, Huang X, Liu D, Yin L, He C. Protective effects of electroacupuncture on senile osteoporosis in rats. Acupunct Med 2024; 42:334-341. [PMID: 39460675 DOI: 10.1177/09645284241280089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
OBJECTIVES The objectives were to explore the protective effects of electroacupuncture (EA) on senile osteoporosis in aged rats and investigate the underlying mechanisms. METHODS This study included aged (24-month-old; n = 16) and young (3-month-old; n = 8) male Sprague-Dawley rats. Aged rats were further randomized 1:1 to an aged control group (Aged; n = 8) and an EA treatment group (EA; n = 8). The 3-month-old rats served as young controls (Young). EA rats received EA at ST36, SP6, GB34 and SP10 bilaterally for 30 min a day, 5 days a week, for 8 weeks. RESULTS EA significantly increased serum markers of bone formation in Aged rats. There were no significant differences in serum markers of bone resorption between EA and Aged rats. Deterioration of bone mineral density (BMD) and trabecular bone architecture was observed in the Aged group, while EA significantly increased BMD of the left femur and L5 vertebral body in aged rats. Aging-induced deterioration of trabecular bone architecture was partially reversed in EA rats. Runx2 and Osterix mRNA and protein levels were significantly increased and peroxisome proliferator-activated receptor (PPAR)γ was significantly decreased in bone marrow cells in EA compared with Aged groups. The mRNA and protein levels of core constituents of the Wnt/β-catenin signaling pathway (Wnt3a, low-density lipoprotein receptor-related protein (LRP)5 and β-catenin) were significantly increased and Dickkopf 1 was significantly decreased in bone marrow cells in EA compared with Aged groups. CONCLUSION EA may prevent bone loss and deterioration in aged rats by promoting osteogenesis via a mechanism that may involve activation of the Wnt/β-catenin signaling pathway. EA may represent a therapeutic option for senile osteoporosis.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinling Wang
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Mengjian Qu
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Qian Wang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Liqiong Wang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Sijia Liu
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Liu
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Guanghua Sun
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Peirui Zhong
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiarong Huang
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Danni Liu
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Linwei Yin
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Wang Y, Yu W, E Y, Rui L, Jia C, Zhu W. Qianggu Decoction Alleviated Osteoporosis by Promoting Osteogenesis of BMSCs through Mettl3-Mediated m 6A Methylation. Adv Biol (Weinh) 2024; 8:e2400341. [PMID: 39051421 DOI: 10.1002/adbi.202400341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Osteoporosis development is linked to abnormal bone marrow mesenchymal stem cells (BMSCs) differentiation. N6-methyladenosine (m6A), a prevalent mRNA modification, is known to influence BMSCs' osteogenic capacity. Qianggu decoction (QGD), a traditional Chinese medicine for osteoporosis, has unknown effects on BMSCs differentiation. This study investigates QGD's impact on BMSCs and its potential to ameliorate osteoporosis through m6A regulation. Using Sprague-Dawley (SD) rats with ovariectomy-induced osteoporosis, it is evaluated QGD's antiosteoporotic effects through micro-CT, histology, Western blotting, and osteoblastogenesis markers. QGD is found to enhance bone tissue growth and upregulate osteogenic markers Runx2, OPN, and OCN. It also promoted BMSCs osteogenic differentiation, as shown by increased calcium nodules and ALP activity. QGD treatment significantly increased m6A RNA levels and Mettl3 expression in BMSCs. Silencing Mettl3 with siRNA negated QGD's osteogenic effects. Collectively, QGD may improve BMSCs differentiation and mitigate osteoporosis, potentially through Mettl3-mediated m6A modification.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| | - Weizhong Yu
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| | - Yuan E
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| | - Lining Rui
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| | - Chuan Jia
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| | - Wenke Zhu
- Department of Orthopedics, Wujin TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, 213161, China
| |
Collapse
|
14
|
Tan YL, Ju SH, Wang Q, Zhong R, Gao JH, Wang MJ, Kang YL, Xu MZ. Shuanglongjiegu pill promoted bone marrow mesenchymal stem cell osteogenic differentiation by regulating the miR-217/RUNX2 axis to activate Wnt/β-catenin pathway. J Orthop Surg Res 2024; 19:617. [PMID: 39350234 PMCID: PMC11443779 DOI: 10.1186/s13018-024-05085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
This study aimed to investigate the effects of Shuanglongjiegu pill (SLJGP) on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and explore its mechanism based on miR-217/RUNX2 axis. Results found that drug-containing serum of SLJGP promoted BMSCs viability with a dose-dependent effect. Under osteogenic differentiation conditions, SLJGP promoted the expression of ALP, OPN, BMP2, RUNX2, and the osteogenic differentiation ability of BMSCs. In addition, SLJGP significantly reduced miR-217 expression, and miR-217 directly targeted RUNX2. After treatment with miR-217 mimic, the promoting effects of SLJGP on proliferation and osteogenic differentiation of BMSCs were significantly inhibited. MiR-217 mimic co-treated with pcDNA-RUNX2 further confirmed that the miR-217/RUNX2 axis was involved in SLJGP to promote osteogenic differentiation of BMSCs. In addition, analysis of Wnt/β-catenin pathway protein expression showed that SLJGP activated the Wnt/β-catenin pathway through miR-217/RUNX2. In conclusion, SLJGP promoted osteogenic differentiation of BMSCs by regulating miR-217/RUNX2 axis and activating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- You-Li Tan
- Department of Pharmacy, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, 610041, China.
| | - Shao-Hua Ju
- Department of Pharmacy, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, 610041, China
| | - Qiang Wang
- Department of Rehabilitation of sports medicine, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, 610041, China
| | - Rui Zhong
- Department of Orthopedics, Affiliated Sports Hospital of Chengdu Sport University, Chengdu, 610041, China
| | - Ji-Hai Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ming-Jian Wang
- Department of Pharmacy, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, 610041, China
| | - Ya-Lan Kang
- Department of Pharmacy, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, 610041, China
| | - Meng-Zhang Xu
- Department of Neck, Shoulder, Waist, and Leg Pain, Sichuan Province Orthopedic Hospital, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Rodríguez-Eguren A, Bueno-Fernandez C, Gómez-Álvarez M, Francés-Herrero E, Pellicer A, Bellver J, Seli E, Cervelló I. Evolution of biotechnological advances and regenerative therapies for endometrial disorders: a systematic review. Hum Reprod Update 2024; 30:584-613. [PMID: 38796750 PMCID: PMC11369227 DOI: 10.1093/humupd/dmae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/12/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND The establishment and maintenance of pregnancy depend on endometrial competence. Asherman syndrome (AS) and intrauterine adhesions (IUA), or endometrial atrophy (EA) and thin endometrium (TE), can either originate autonomously or arise as a result from conditions (i.e. endometritis or congenital hypoplasia), or medical interventions (e.g. surgeries, hormonal therapies, uterine curettage or radiotherapy). Affected patients may present an altered or inadequate endometrial lining that hinders embryo implantation and increases the risk of poor pregnancy outcomes and miscarriage. In humans, AS/IUA and EA/TE are mainly treated with surgeries or pharmacotherapy, however the reported efficacy of these therapeutic approaches remains unclear. Thus, novel regenerative techniques utilizing stem cells, growth factors, or tissue engineering have emerged to improve reproductive outcomes. OBJECTIVE AND RATIONALE This review comprehensively summarizes the methodologies and outcomes of emerging biotechnologies (cellular, acellular, and bioengineering approaches) to treat human endometrial pathologies. Regenerative therapies derived from human tissues or blood which were studied in preclinical models (in vitro and in vivo) and clinical trials are discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase was conducted to identify original peer-reviewed studies published in English between January 2000 and September 2023. The search terms included: human, uterus, endometrium, Asherman syndrome, intrauterine adhesions, endometrial atrophy, thin endometrium, endometritis, congenital hypoplasia, curettage, radiotherapy, regenerative therapy, bioengineering, stem cells, vesicles, platelet-rich plasma, biomaterials, microfluidic, bioprinting, organoids, hydrogel, scaffold, sheet, miRNA, sildenafil, nitroglycerine, aspirin, growth hormone, progesterone, and estrogen. Preclinical and clinical studies on cellular, acellular, and bioengineering strategies to repair or regenerate the human endometrium were included. Additional studies were identified through manual searches. OUTCOMES From a total of 4366 records identified, 164 studies (3.8%) were included for systematic review. Due to heterogeneity in the study design and measured outcome parameters in both preclinical and clinical studies, the findings were evaluated qualitatively and quantitatively without meta-analysis. Groups using stem cell-based treatments for endometrial pathologies commonly employed mesenchymal stem cells (MSCs) derived from the human bone marrow or umbilical cord. Alternatively, acellular therapies based on platelet-rich plasma (PRP) or extracellular vesicles are gaining popularity. These are accompanied by the emergence of bioengineering strategies based on extracellular matrix (ECM)-derived hydrogels or synthetic biosimilars that sustain local delivery of cells and growth factors, reporting promising results. Combined therapies that target multiple aspects of tissue repair and regeneration remain in preclinical testing but have shown translational value. This review highlights the myriad of therapeutic material sources, administration methods, and carriers that have been tested. WIDER IMPLICATIONS Therapies that promote endometrial proliferation, vascular development, and tissue repair may help restore endometrial function and, ultimately, fertility. Based on the existing evidence, cost, accessibility, and availability of the therapies, we propose the development of triple-hit regenerative strategies, potentially combining high-yield MSCs (e.g. from bone marrow or umbilical cord) with acellular treatments (PRP), possibly integrated in ECM hydrogels. Advances in biotechnologies together with insights from preclinical models will pave the way for developing personalized treatment regimens for patients with infertility-causing endometrial disorders such as AS/IUA, EA/TE, and endometritis. REGISTRATION NUMBER https://osf.io/th8yf/.
Collapse
Affiliation(s)
- Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Clara Bueno-Fernandez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - María Gómez-Álvarez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Emilio Francés-Herrero
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Antonio Pellicer
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Rome, Rome, Italy
| | - José Bellver
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Valencia, Valencia, Spain
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| |
Collapse
|
16
|
Sun L, Chen J, Li LJ, Li L. Similarity-based metric analysis approach for predicting osteogenic differentiation correlation coefficients and discovering the novel osteogenic-related gene FOXA1 in BMSCs. PeerJ 2024; 12:e18068. [PMID: 39308804 PMCID: PMC11416762 DOI: 10.7717/peerj.18068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Background As a powerful tool, bioinformatics analysis is playing an increasingly important role in many fields. Osteogenic differentiation is a complex biological process involving the fine regulation of numerous genes and signaling pathways. Method Osteogenic differentiation-related genes are collected from the online databases. Then, we proposed two indexes Jaccard similarity and Sorensen-Dice similarity to measure the topological relevance of genes in the human PPI network. Furthermore, we selected three pathways involving osteoblast-related transcription factors, osteoblast differentiation, and RUNX2 regulation of osteoblast differentiation for investigation. Subsequently, we performed functional a enrichment analysis of these top-ranked genes to check whether these candidate genes identified by similarity-based metrics are enriched in some specific biological functions and states. we performed a permutation test to investigate the similarity score with four well-known osteogenic differentiation-related pathways including hedgehog signaling pathway, BMP signaling, ERK pathway, and Wnt signaling pathway to check whether these osteogenic differentiation-related pathways can be regulated by FOXA1. Lentiviral transfection was used to knockdown and overexpress gene FOXA1 in human bone mesenchymal stem cells (hBMSCs). Alkaline phosphatase (ALP) staining and Alizarin Red staining (ARS) were employed to investigate osteogenic differentiation of hBMSCs. Result After data collection, human PPI network involving 19,344 genes is included in our analysis. After simplifying, we used Jaccard and Sorensen-Dice similarity to identify osteogenic differentiation-related genes and integrated into a final similarity matrix. Furthermore, we calculated the sum of similarity scores with these osteogenic differentiation-related genes for each gene and found 337 osteogenic differentiation-related genes are involved in our analysis. We selected three pathways involving osteoblast-related transcription factors, osteoblast differentiation, and RUNX2 regulation of osteoblast differentiation for investigation and performed functional enrichment analysis of these top-ranked 50 genes. The results collectively demonstrate that these candidate genes can indeed capture osteogenic differentiation-related features of hBSMCs. According to the novel analyzing method, we found that these four pathways have significantly higher similarity with FOXA1 than random noise. Moreover, knockdown FOXA1 significantly increased the ALP activity and mineral deposits. Furthermore, overexpression of FOXA1 dramatically decreased the ALP activity and mineral deposits. Conclusion In summary, this study showed that FOXA1 is a novel significant osteogenic differentiation-related transcription factor. Moreover, our study has tightly integrated bioinformatics analysis with biological knowledge, and developed a novel method for analyzing the osteogenic differentiation regulatory network.
Collapse
Affiliation(s)
- Lingtong Sun
- Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Juan Chen
- Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Li Jun Li
- Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lingdi Li
- Department of Medical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Wang K. The potential therapeutic role of curcumin in osteoporosis treatment: based on multiple signaling pathways. Front Pharmacol 2024; 15:1446536. [PMID: 39175539 PMCID: PMC11338871 DOI: 10.3389/fphar.2024.1446536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Osteoporosis is a common chronic metabolic bone disease caused by disturbances in normal bone metabolism and an imbalance between osteoblasts and osteoclasts. Osteoporosis is characterized by a decrease in bone mass and bone density, leading to increased bone fragility. Osteoporosis is usually treated with medications and surgical methods, but these methods often produce certain side effects. Therefore, the use of traditional herbal ingredients for the treatment of osteoporosis has become a focus of attention and a hot topic in recent years. Curcumin, widely distributed among herbs such as turmeric, tulip, and curcuma longa, contains phenolic, terpenoid, and flavonoid components. Modern pharmacological studies have confirmed that curcumin has a variety of functions including antioxidant and anti-inflammatory properties. In addition, curcumin positively regulates the differentiation and promotes the proliferation of osteoblasts, which play a crucial role in bone formation. Multiple studies have shown that curcumin is effective in the treatment of osteoporosis as it interacts with a variety of signaling pathway targets, thereby interfering with the formation of osteoblasts and osteoclasts and regulating the development of osteoporosis. This review summarized the key signaling pathways and their mechanisms of action of curcumin in the prevention and treatment of osteoporosis and analyzed their characteristics and their relationship with osteoporosis and curcumin. This not only proves the medicinal value of curcumin as a traditional herbal ingredient but also further elucidates the molecular mechanism of curcumin's anti-osteoporosis effect, providing new perspectives for the prevention and treatment of osteoporosis through multiple pathways.
Collapse
Affiliation(s)
- Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
18
|
Wei Y, Kang J, Ma Z, Liao T, Wu P, Wang P, Huang Z. Protective effects of emodin on subchondral bone and articular cartilage in osteoporotic osteoarthritis rats: A preclinical study. Exp Gerontol 2024; 190:112413. [PMID: 38570055 DOI: 10.1016/j.exger.2024.112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Osteoporotic osteoarthritis (OP-OA) is a severe pathological form of OA, urgently requiring precise management strategies and more efficient interventions. Emodin (Emo), an effective ingredient found in the traditional Chinese medicine rhubarb, has been dEmonstrated to promote osteogenesis and inhibit extracellular matrix degradation. In this study, we aimed to investigate the interventional effects of Emo on the subchondral bone and cartilage of the knee joints in OP-OA model rats. METHODS Thirty-two SD rats were randomly and equally divided into sham, OP-OA, Emo low-dose, and Emo high-dose groups. Micro-CT scanning was conducted to examine the bone microstructure of the rat knee joints. H&E and Safranin O and Fast Green staining (SO&FG) were performed for the pathomorphological evaluation of the rat cartilage tissues. ELISA was used to estimate the rat serum expression levels of inflammatory factors, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Additionally, the CCK-8 assay was utilized for determining the viability of Emo-treated BMSCs. Western blot and real-time PCR analyses were also employed to measure the bone formation indexes and cartilage synthesis and decomposition indexes. Lastly, the osteogenic and chondrogenic differentiation efficiency of the BMSCs was investigated via Alizarin Red and Alcian Blue staining. RESULTS Emo intervention alleviated the bone microstructural disruption of the subchondral bone and articular cartilage in the OP-OA rats and up-regulated the expression of bone and cartilage anabolic metabolism indicators, decreased the expression of cartilage catabolism indicators, and diminished the expression of inflammatory factors in the rat serum (P<0.05). Furthermore, Emo reversed the decline in the osteogenic and chondrogenic differentiation ability of the BMSCs (P<0.05). CONCLUSION Emo intervention mitigates bone loss and cartilage damage in OP-OA rats and promotes the osteogenic and chondrogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Yibao Wei
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, China; Jiangsu Province Hospital of Chinese Medicine, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, China
| | - Junfeng Kang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, China; Jiangsu Province Hospital of Chinese Medicine, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, China; Department of Orthopedics, Affiliated Hospital of Shanxi University of Chinese Medicine, China
| | - Zhenyuan Ma
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, China; Jiangsu Province Hospital of Chinese Medicine, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, China
| | - Taiyang Liao
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, China; Jiangsu Province Hospital of Chinese Medicine, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, China
| | - Peng Wu
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, China; Jiangsu Province Hospital of Chinese Medicine, China
| | - Peimin Wang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, China; Jiangsu Province Hospital of Chinese Medicine, China.
| | - Zhengquan Huang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, China; Jiangsu Province Hospital of Chinese Medicine, China.
| |
Collapse
|
19
|
Zhang Y, Zheng L, Cheng D, Lei C, Li H, Zhou J, Zhang C, Song F, Zeng T, Zhao X. Chronic di(2-ethylhexyl) phthalate exposure at environmental-relevant doses induces osteoporosis by disturbing the differentiation of bone marrow mesenchymal stem cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169918. [PMID: 38190899 DOI: 10.1016/j.scitotenv.2024.169918] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widely used plastic additive with persistent characteristics in the environment. This study was designed to investigate the detrimental effects of chronic DEHP exposure at environmental-relevant doses on bone metabolism and the underlying mechanisms. It was found that exposure to 25 μg/kg bw and 50 μg/kg bw DEHP for 29 weeks led to a reduction of whole-body bone mineral density (BMD), femur microstructure damage, decreased femur new bone formation, and increased femur bone marrow adipogenesis in C57BL/6 female mice, which was not observed in mice exposed to 5000 μg/kg bw DEHP. Further in vitro study showed that DEHP treatment robustly promoted adipogenic differentiation and suppressed osteogenic differentiation of the bone marrow mesenchymal stem cells (BMSCs). Mechanistically, DEHP exposure resulted in elevated expressions of DYRK1B, CDK5, PPARγ, and p-PPARγSer273 in both bone tissue and BMSCs. Interestingly, co-IP analysis showed potential interactions among DYRK1B, PPARγ, and CDK5. Lastly, antagonists of DYRK1B and CDK5 effectively alleviated the BMSCs differentiation disturbance induced by DEHP. These results suggest that DEHP may disturb the BMSCs differentiation by upregulating the PPARγ signaling which may be associated with the activation of DYRK1B and CDK5.
Collapse
Affiliation(s)
- Yifan Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Liugen Zheng
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Dong Cheng
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Changting Lei
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hui Li
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Jun Zhou
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Cuili Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fuyong Song
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
20
|
罗 彩, 陈 金, 张 群, 于 学, 张 书. [A polylactic acid/hydroxyapatite/scholzite composite scaffold for promoting healing of osteoporotic bone defects in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:370-380. [PMID: 38501423 PMCID: PMC10954527 DOI: 10.12122/j.issn.1673-4254.2024.02.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To investigate the release kinetics of Zn2+ from nZCP-loaded polylactic acid/hydroxyapatite (PLA/HA) composite scaffold (PHZ) and determine the optimal nZCP content in the scaffold. METHODS The particle size of nZCP was measured by DLS measurement, and PXRD, FTIR, and SEM were used to characterize the scaffolds and nZCP distribution; EDS was used to analyze element composition of the scaffold. Compression strength of the scaffold was determined, and ion release profile was investigated using ICP-MS. The biocompatibility of the materials was evaluated by CCK-8 assay and dead/alive staining of rat bone marrow stem cells (BMSCs) incubated with their aqueous extracts. ALP staining, alizarin red staining, RT-qPCR, and Western blotting were used to assess the osteogenic potential of the treated cells. In a rat model of bilateral ovariectomy (OVX) with femoral condylar bone defect, PHZ-1, PHZ-2, PHZ-3 or PLA/HA scaffold was implanted into the bone defect, and bone repair was observed using a microCT scanner and histological staining at 6 and 12 weeks. RESULTS DLS, PXRD, SEM, FTIR, and EDS confirmed successful synthesis of 10-nm ZCP and efficient nZCP loading in the scaffold. PHZ-2 and PHZ-3 had significantly greater compression strength than PLA/HA. ICP-MS showed that Zn2+ release from PHZ-1, PHZ-2 and PHZ-3 were all optimal for promoting osteogenesis. In rat BMSCs, all the 4 scaffolds showed good biocompatibility, and their extracts enhanced ALP activity and extracellular matrix mineralization and promoted expressions of ALP, RUNX2, and OCN in the cells. In the rat models, nZCP in the implants improved bone graft integration at 6 weeks, and PHZ-2 and PHZ-3 more effectively induced new bone formation at 12 weeks (P < 0.05). CONCLUSION PHZ scaffold is capable of stable Zn2+ release to promote osteoporotic bone defect healing, and PHZ-2 and PHZ-3 scaffolds with nZCP mass fraction of 4.5%-7.5% have better osteogenic activity.
Collapse
Affiliation(s)
- 彩珠 罗
- 南方医科大学第三附属医院//广东省骨与关节退行性疾病重点实验室,广东 广州 510630Third Affiliated Hospital of Southern Medical University//Guangdong Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou 510630, China
| | - 金香 陈
- 南方医科大学药学院//国家药监局药物代谢研究与评价重点实验室,广东 广州 510515School of Pharmacy, Southern Medical University// NMPA Key Laboratory of Drug Metabolism Research and Evaluation, Guangzhou 510515, China
| | - 群 张
- 南方医科大学第三附属医院//广东省骨与关节退行性疾病重点实验室,广东 广州 510630Third Affiliated Hospital of Southern Medical University//Guangdong Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou 510630, China
| | - 学钊 于
- 南方医科大学第三附属医院//广东省骨与关节退行性疾病重点实验室,广东 广州 510630Third Affiliated Hospital of Southern Medical University//Guangdong Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou 510630, China
| | - 书勤 张
- 南方医科大学第三附属医院//广东省骨与关节退行性疾病重点实验室,广东 广州 510630Third Affiliated Hospital of Southern Medical University//Guangdong Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou 510630, China
| |
Collapse
|
21
|
Wilson BJ, Owston HE, Iqbal N, Giannoudis PV, McGonagle D, Pandit H, Philipose Pampadykandathil L, Jones E, Ganguly P. In Vitro Osteogenesis Study of Shell Nacre Cement with Older and Young Donor Bone Marrow Mesenchymal Stem/Stromal Cells. Bioengineering (Basel) 2024; 11:143. [PMID: 38391629 PMCID: PMC10886325 DOI: 10.3390/bioengineering11020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Bone void-filling cements are one of the preferred materials for managing irregular bone voids, particularly in the geriatric population who undergo many orthopedic surgeries. However, bone marrow mesenchymal stem/stromal cells (BM-MSCs) of older-age donors often exhibit reduced osteogenic capacity. Hence, it is crucial to evaluate candidate bone substitute materials with BM-MSCs from the geriatric population to determine the true osteogenic potential, thus simulating the clinical situation. With this concept, we investigated the osteogenic potential of shell nacre cement (SNC), a bone void-filling cement based on shell nacre powder and ladder-structured siloxane methacrylate, using older donor BM-MSCs (age > 55 years) and young donor BM-MSCs (age < 30 years). Direct and indirect cytotoxicity studies conducted with human BM-MSCs confirmed the non-cytotoxic nature of SNC. The standard colony-forming unit-fibroblast (CFU-F) assay and population doubling (PD) time assays revealed a significant reduction in the proliferation potential (p < 0.0001, p < 0.05) in older donor BM-MSCs compared to young donor BM-MSCs. Correspondingly, older donor BM-MSCs contained higher proportions of senescent, β-galactosidase (SA-β gal)-positive cells (nearly 2-fold, p < 0.001). In contrast, the proliferation capacity of older donor BM-MSCs, measured as the area density of CellTrackerTM green positive cells, was similar to that of young donor BM-MSCs following a 7-day culture on SNC. Furthermore, after 14 days of osteoinduction on SNC, scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) showed that the amount of calcium and phosphorus deposited by young and older donor BM-MSCs on SNC was comparable. A similar trend was observed in the expression of the osteogenesis-related genes BMP2, RUNX2, ALP, COL1A1, OMD and SPARC. Overall, the results of this study indicated that SNC would be a promising candidate for managing bone voids in all age groups.
Collapse
Affiliation(s)
- Bridget Jeyatha Wilson
- Division of Dental Products, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012, India
| | - Heather Elizabeth Owston
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
| | - Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Peter V. Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
- Leeds Orthopaedic & Trauma Sciences, Leeds General Infirmary, University of Leeds, Leeds LS2 9JT, UK
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Lizymol Philipose Pampadykandathil
- Division of Dental Products, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012, India
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
| |
Collapse
|
22
|
Yang J, Sun HM, Yang H, Hu L, Niu JL. The quantitative parameters derived from IDEAL-IQ in the lumbar vertebrae of healthy children: a pilot study of bone development. Quant Imaging Med Surg 2024; 14:136-143. [PMID: 38223122 PMCID: PMC10784005 DOI: 10.21037/qims-23-696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/17/2023] [Indexed: 01/16/2024]
Abstract
Background Early childhood bone development affects that of bone disease in adolescence and adulthood. Many diseases can affect the cancellous bone or bone marrow. Therefore, it is of great significance to quantify the bone development of healthy children. The evaluation methods of bone development include bone age (BA) assessment and dual-energy X-ray bone mineral densitometry (DXA), both of which have strong subjectivity. The present study was conducted to improve our understanding of the bone development of healthy children using the quantitative parameters derived from iterative decomposition of water and fat with echo asymmetry and least squares estimation quantification (IDEAL-IQ) sequence. Methods Our study enrolled healthy children between January 2022 to December 2022 consecutively in Children's Hospital of Shanxi. The inclusion criteria were as follows: (I) age ≤18 years; (II) no contraindications (surgical and interventional devices for ferromagnetic materials, cardiac implantable electronic devices, cochlear implants, insulin pumps, dental implants containing metal or alloy) to magnetic resonance imaging (MRI) scan. The exclusion criteria were as follows: (I) previous malignant disease, (II) previous chemoradiotherapy, (III) previous spine surgery, (IV) previous or acute vertebral compression fracture, (V) artifacts present in images. Participants underwent MRI scans using IDEAL-IQ sequence in the lumbar vertebrae. The IDEAL-IQ parameters [proton density fat fraction (PDFF), 1/T2* (R2*)] were obtained. The factor analysis of variance was applied to compare the differences of PDFF and R2* in different lumbar vertebral groups. The Kruskal-Wallis H test or Mann-Whitney U test was applied to compare the differences of quantitative data among different gender or age groups. Spearman correlation analysis was applied to study the relationship among the age, PDFF, and R2*. Results A total of 145 participants (76 males, 69 females) were evaluated. There were no significant differences in PDFF and R2* of different lumbar vertebrae (PPDFF=0.338, PR2*=0.868). The average age was 36 [13-72] months. They were assigned into 4 groups (0-11, 12-35, 36-71, and 72-144 months). As the age increased, the average PDFF and R2* both increased significantly (rPDFF=0.659, rR2*=0.359, P<0.001). There were significant statistical differences in PDFF and R2* between the 4 age groups (ZPDFF=46.651, ZR2*=27.537, P<0.001). Moreover, the PDFF was also positively correlated with R2* (r=0.576, P<0.001). No association was found between the gender and PDFF, R2* (PPDFF=0.949, PR2*=0.177). Conclusions The quantitative parameters derived from IDEAL-IQ in the lumbar vertebrae of healthy children will improve our understanding of bone development and provide a basis for further exploring the diseases that affect children's bone development.
Collapse
Affiliation(s)
- Jie Yang
- Department of Magnetic Resonance Imaging, The Affiliated Children’s Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui-Miao Sun
- Department of Magnetic Resonance Imaging, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, China
| | - Hong Yang
- Department of Magnetic Resonance Imaging, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, China
| | - Lei Hu
- Department of Magnetic Resonance Imaging, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, China
| | - Jin-Liang Niu
- Department of Magnetic Resonance Imaging, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
23
|
Han L, Wang C, Wang T, Hu Y, Wang H. Total flavonoids of Rhizoma drynariae improves tendon-bone healing for anterior cruciate ligament reconstruction in mice and promotes the osteogenic differentiation of bone mesenchymal stem cells by the ERR1/2-Gga1-TGF-β/MAPK pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:106-119. [PMID: 37665165 DOI: 10.1002/tox.23955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Total flavonoids of Rhizoma drynariae (TFRD) is broadly used in the treatment of orthopedic diseases. Nevertheless, the effects and underlying mechanism of TFRD on tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) remain unclear. METHODS The ACLR mouse model was established. Hematoxylin and Eosin (HE) staining was used for histological analysis of tendon-bone healing. Western blot was utilized to detect the levels of osteogenic related factors (ALP, OCN, RUNX2). The viability and alkaline phosphatase (ALP) activity of bone mesenchymal stem cells (BMSCs) were determined by Cell Counting Kit-8 (CCK-8) and ALP assays. The interaction of estrogen related receptor alpha (ESRRA), estrogen related receptor beta (ESRRB), and golgi-localized γ-ear containing ADP ribosylation factor-binding protein 1 (Gga1) was detected by luciferase reporter assays. The levels of important proteins on the TGF-β/MAPK pathway were measured by western blot. RESULTS TFRD improved tendon-bone healing, restored biomechanics of ACLR mice and activated the TGF-β/MAPK pathway. TFRD treatment also enhanced the viability and osteogenic differentiation of BMSCs in vitro. Then, we demonstrated that TFRD targeted ESRRA and ESRRB to transcriptionally activate Gga1 expression. Knockdown of ESRRA, ESRRB, or Gga1 suppressed the viability and osteogenic differentiation of TFRD-induced BMSCs, which was revealed to be restored by Gga1 overexpression. The overexpression of ESRRA, ESRRB, or Gga1 was demonstrated to promote the BMSC viability and osteogenic differentiation. TGF-β1 treatment can reverse the impact of Gga1 inhibition on osteogenic differentiation in TFRD-induced BMSCs. CONCLUSION TFRD improves tendon-bone healing in ACLR mouse models and facilitates the osteogenic differentiation of BMSCs through the ERR1/2-Gga1-TGF-β/MAPK pathway, which might deepen our understanding of the underlying mechanism of TFRD in tendon-bone healing.
Collapse
Affiliation(s)
- Lei Han
- Department of Orthopaedics Institute, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Canfeng Wang
- Department of Orthopaedics Institute, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Tuo Wang
- Department of Orthopaedics Institute, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Yungeng Hu
- Department of Orthopaedics Institute, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Hongshun Wang
- Department of Orthopaedics Institute, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| |
Collapse
|
24
|
Tang X, Huang Y, Fang X, Tong X, Yu Q, Zheng W, Fu F. Cornus officinalis: a potential herb for treatment of osteoporosis. Front Med (Lausanne) 2023; 10:1289144. [PMID: 38111697 PMCID: PMC10725965 DOI: 10.3389/fmed.2023.1289144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disorder characterized by a decline in bone mass, bone mineral density, and deterioration of bone microstructure. It is prevalent among the elderly, particularly postmenopausal women, and poses a substantial burden to patients and society due to the high incidence of fragility fractures. Kidney-tonifying Traditional Chinese medicine (TCM) has long been utilized for OP prevention and treatment. In contrast to conventional approaches such as hormone replacement therapy, TCM offers distinct advantages such as minimal side effects, low toxicity, excellent tolerability, and suitability for long-term administration. Extensive experimental evidence supports the efficacy of kidney-tonifying TCM, exemplified by formulations based on the renowned herb Cornus officinalis and its bioactive constituents, including morroniside, sweroside, flavonol kaempferol, Cornuside I, in OP treatment. In this review, we provide a comprehensive elucidation of the underlying pathological principles governing OP, with particular emphasis on bone marrow mesenchymal stem cells, the homeostasis of osteogenic and osteoclastic, and the regulation of vascular and immune systems, all of which critically influence bone homeostasis. Furthermore, the therapeutic mechanisms of Cornus officinalis-based TCM formulations and Cornus officinalis-derived active constituents are discussed. In conclusion, this review aims to enhance understanding of the pharmacological mechanisms responsible for the anti-OP effects of kidney-tonifying TCM, specifically focusing on Cornus officinalis, and seeks to explore more efficacious and safer treatment strategies for OP.
Collapse
Affiliation(s)
- Xinyun Tang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yuxin Huang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuliang Fang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuanying Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Qian Yu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Wenbiao Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
25
|
Da Silva D, Crous A, Abrahamse H. Enhancing osteogenic differentiation in adipose-derived mesenchymal stem cells with Near Infra-Red and Green Photobiomodulation. Regen Ther 2023; 24:602-616. [PMID: 38034860 PMCID: PMC10682681 DOI: 10.1016/j.reth.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/15/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Worldwide, osteoporosis is the utmost predominant degenerative bone condition. Stem cell regenerative therapy using adipose-derived mesenchymal stem cells (ADMSCs) is a promising therapeutic route for osteoporosis. Photobiomodulation (PBM) has sparked considerable international appeal due to its' ability to augment stem cell proliferation and differentiation properties. Furthermore, the differentiation of ADMSCs into osteoblast cells and cellular proliferation effects have been established using a combination of osteogenic differentiation inducers and PBM. This in vitro study applied dexamethasone, β-glycerophosphate disodium, and ascorbic acid as differentiation inducers for osteogenic induction differentiation media. In addition, PBM at a near-infrared (NIR) wavelength of 825 nm, a green (G) wavelength of 525 nm, and the novel combination of both these wavelengths using a single fluence of 5 J/cm2 had been applied to stimulate proliferation and differentiation effectivity of immortalised ADMSCs into early osteoblasts. Flow cytometry and ELISA were used to identify osteoblast antigens using early and late osteoblast protein markers. Alizarin red Stain was employed to identify calcium-rich deposits by cells within culture. The morphology of the cells was examined, and biochemical assays such as an EdU proliferation assay, MTT proliferation and viability assay, Mitochondrial Membrane Potential assay, and Reactive Oxygen Species assay were performed. The Central Scratch Test determined the cells' motility potential. The investigative outcomes revealed that a combination of PBM treatment and osteogenic differentiation inducers stimulated promising early osteogenic differentiation of immortalised ADMSCs. The NIR-Green PBM combination did appear to offer great potential for immortalised ADMSC differentiation into early osteoblasts amongst selected assays, however, further investigations will be required to establish the effectivity of this novel wavelength combination. This research contributes to the body of knowledge and assists in the establishment of a standard for osteogenic differentiation in vitro utilising PBM.
Collapse
Affiliation(s)
- Daniella Da Silva
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
26
|
Anastasilaki E, Paccou J, Gkastaris K, Anastasilakis AD. Glucocorticoid-induced osteoporosis: an overview with focus on its prevention and management. Hormones (Athens) 2023; 22:611-622. [PMID: 37755658 DOI: 10.1007/s42000-023-00491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
The widespread use of glucocorticoids (GCs) contributes to the effective management of several diseases and conditions. However, it comes at a price in the case of the bones causing glucocorticoid-induced osteoporosis (GIOP), the most common cause of secondary osteoporosis and fractures. Several scientific societies have issued comprehensive guidelines on the optimal management of patients receiving GCs with the aim of providing answers to three fundamental questions, namely, whom to treat, when to treat, and how to treat. Both common ground and different approaches exist among them. General preventive measures should start along with GC initiation, and the duration of GC therapy should be limited to the minimal effective range. A pre-existing fracture, age, gender, menopausal status, dose, and duration of GC treatment are key factors in the decision to initiate antiosteoporotic medication. Oral bisphosphonates are typically regarded as the first-line treatment choice for GIOP partly due to their cost-effectiveness. Denosumab is another valid option, but an "exit strategy" should be considered before its initiation due to the risk of rebound-associated vertebral fractures upon its discontinuation. Since impaired bone formation represents the main mechanism by which GCs negatively affect skeletal health, osteoanabolic therapies appear to be pathophysiologically the more appropriate and appealing option, although cost considerations currently limit their use to selected severe cases. Regardless of the agent selected to mitigate the impact of GCs on the skeleton, what is most crucial is that the treating physician correctly stratifies the risk and intervenes at the right time.
Collapse
Affiliation(s)
| | - Julien Paccou
- Univ. Lille, CHU Lille, MABlab ULR 4490, Department of Rheumatology, 59000, Lille, France
| | | | - Athanasios D Anastasilakis
- Department of Endocrinology, 424 Military General Hospital, Ring Road, 564 29 N. Efkarpia, Thessaloniki, Greece.
| |
Collapse
|
27
|
Ning T, Guo H, Ma M, Zha Z. BRD4 facilitates osteogenic differentiation of human bone marrow mesenchymal stem cells through WNT4/NF-κB pathway. J Orthop Surg Res 2023; 18:876. [PMID: 37980502 PMCID: PMC10656925 DOI: 10.1186/s13018-023-04335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Human bone marrow mesenchymal stem cells (hBMSCs) are a major source of osteoblast precursor cells and are directly involved in osteoporosis (OP) progression. Bromodomain-containing protein 4 (BRD4) is an important regulator for osteogenic differentiation. Therefore, its role and mechanism in osteogenic differentiation process deserve further investigation. METHODS hBMSCs osteogenic differentiation was evaluated by flow cytometry, alkaline phosphatase assay and alizarin red staining. Western blot was used to test osteogenic differentiation-related proteins, BRD4 protein, WNT family members-4 (WNT4)/NF-κB-related proteins, and glycolysis-related proteins. Metabolomics techniques were used to detect metabolite changes and metabolic pathways. BRD4 and WNT4 mRNA levels were determined using quantitative real-time PCR. Dual-luciferase reporter assay and chromatin immunoprecipitation assay were performed to detect BRD4 and WNT4 interaction. Glycolysis ability was assessed by testing glucose uptake, lactic acid production, and ATP levels. RESULTS After successful induction of osteogenic differentiation, the expression of BRD4 was increased significantly. BRD4 knockdown inhibited hBMSCs osteogenic differentiation. Metabolomics analysis showed that BRD4 expression was related to glucose metabolism in osteogenic differentiation. Moreover, BRD4 could directly bind to the promoter of the WNT4 gene. Further experiments confirmed that recombinant WNT4 reversed the inhibition effect of BRD4 knockdown on glycolysis, and NF-κB inhibitors (Bardoxolone Methyl) overturned the suppressive effect of BRD4 knockdown on hBMSCs osteogenic differentiation. CONCLUSION BRD4 promoted hBMSCs osteogenic differentiation by inhibiting NF-κB pathway via enhancing WNT4 expression.
Collapse
Affiliation(s)
- Tao Ning
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou City, 510630, Guangdong Province, People's Republic of China
- Department of Orthopedics, Fuyang People's Hospital, No.501 Sanqing Road, Fuyang City, 236000, Anhui Province, People's Republic of China
| | - Huihui Guo
- Department of Orthopedics, Fuyang People's Hospital, No.501 Sanqing Road, Fuyang City, 236000, Anhui Province, People's Republic of China
| | - Mingming Ma
- Department of Orthopedics, Fuyang People's Hospital, No.501 Sanqing Road, Fuyang City, 236000, Anhui Province, People's Republic of China
| | - Zhengang Zha
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou City, 510630, Guangdong Province, People's Republic of China.
| |
Collapse
|
28
|
Gholami Farashah MS, Mohammadi A, Javadi M, Soleimani Rad J, Shakouri SK, Meshgi S, Roshangar L. Bone marrow mesenchymal stem cells' osteogenic potential: superiority or non-superiority to other sources of mesenchymal stem cells? Cell Tissue Bank 2023; 24:663-681. [PMID: 36622494 DOI: 10.1007/s10561-022-10066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
Skeletal problems are an increasing issue due to the increase in the global aging population. Different statistics reports show that today, the global population is aging that results in skeletal problems, increased health system costs, and even higher mortality associated with skeletal problems. Common treatments such as surgery and bone grafts are not always effective and in some cases, they can even cause secondary problems such as infections or improper repair. Cell therapy is a method that can be utilized along with common treatments independently. Mesenchymal stem cells (MSCs) are a very important and efficient source in terms of different diseases, especially bone problems. These cells are present in different tissues such as bone marrow, adipose tissue, umbilical cord, placenta, dental pulp, peripheral blood, amniotic fluid and others. Among the types of MSCs, bone marrow mesenchymal stem cells (BMMSCs) are the most widely used source of these cells, which have appeared to be very effective and promising in terms of skeletal diseases, especially compared to the other sources of MSCs. This study focuses on the specific potential and content of BMMSCs from which the specific capacity of these cells originates, and compares their osteogenic potential with other types of MSCs, and also the future directions in the application of BMMSCs as a source for cell therapy.
Collapse
Affiliation(s)
- Mohammad Sadegh Gholami Farashah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Meshgi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Wang X, Liu Y, Lei P. LncRNA HOTAIRM1 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting miR-152-3p/ETS1 axis. Mol Biol Rep 2023:10.1007/s11033-023-08466-6. [PMID: 37171551 DOI: 10.1007/s11033-023-08466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteoblasts and thus present a tremendous therapeutic potential in osteoporosis. Here, we elucidated the involvement of long non-coding RNAs (lncRNAs) HOXA transcript antisense RNA, myeloid-specific 1 (HOTAIRM1) in the osteogenic differentiation of BMSCs. METHODS AND RESULTS The expression levels of HOTAIRM1, miR-152-3p, ETS proto-oncogene 1 (ETS1), runt-related transcription factor 2 (RUNX2), Osterix, and osteocalcin (OCN) were determined by a quantitative real-time polymerase chain reaction (qRT-PCR) or western blot method. Targeted relationship between miR-152-3p and HOTAIRM1 or ETS1 was confirmed by dual-luciferase reporter and RNA pull-down assays. The activity of alkaline phosphatase (ALP) was measured by the ALP Activity Assay Kit. The extent of the calcium deposition was assessed by Alizarin Red Staining. Our data showed that HOTAIRM1 and ETS1 levels were up-regulated and miR-152-3p expression was down-regulated during osteogenic differentiation of human BMSCs (HBMSCs). HOTAIRM1 overexpression enhanced osteogenic differentiation of HBMSCs, and decreased level of HOTAIRM1 suppressed osteogenic differentiation of HBMSCs. HOTAIRM1 directly targeted miR-152-3p. ETS1 was identified as a direct and functional target of miR-152-3p. Furthermore, HOTAIRM1 functioned as a post-transcriptional regulator of ETS1 expression by miR-152-3p. CONCLUSION The findings in this paper identify HOTAIRM1 as a novel regulator of osteogenic differentiation of BMSCs by the regulation of miR-152-3p/ETS1 axis, uncovering HOTAIRM1 as a promising therapeutic strategy for osteoporosis.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin City, 300052, China
| | - Yan Liu
- Department of Orthopedics, Tianjin Union Medical Center, Tianjin City, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin City, 300052, China.
| |
Collapse
|
30
|
Sedik AS, Kawana KY, Koura AS, Mehanna RA. Biological effect of bone marrow mesenchymal stem cell- derived extracellular vesicles on the structure of alveolar bone in rats with glucocorticoid-induced osteoporosis. BMC Musculoskelet Disord 2023; 24:205. [PMID: 36932362 PMCID: PMC10022145 DOI: 10.1186/s12891-023-06276-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Glucocorticoids are used for the treatment of autoimmune disorders; however, they can elicit several side effects such as osteoporosis. Several approaches can be made to treat glucocorticoid-induced osteoporosis, including the use of stem cells. However, the therapeutic effect of mesenchymal stem cells depends on its released factors, including extracellular vesicles. Extracellular vesicles have been recognized as important mediators of intercellular communication as they participate in many physiological processes. The present study was designed to investigate the effect of bone marrow mesenchymal stem cells derived extracellular vesicles on the structure of alveolar bone in rats with glucocorticoid-induced osteoporosis. METHODS Thirty adult albino male rats were divided into 3 groups: control group (CG), glucocorticoid-induced osteoporosis (GOG) and extracellular vesicles treated group (ExTG). Rats in the GOG and ExTG groups were injected with methylprednisolone acetate (40 mg/kg) intramuscularly in the quadriceps muscle 3 times per week for three weeks in the early morning. Afterwards, the rats in GOG group received a single vehicle injection (PBS) while each rat in the ExTG group received a single injection of extracellular vesicles (400 μg/kg suspended in 0.2 ml PBS) in the tail vein. Rats were euthanized 1 month after injection. Mandibles were dissected and the molar segments were prepared for histological preparation, scanning electron microscopy (SEM), and energy dispersive x-ray (EDX). RESULTS Histology and scanning electron microscopyof bone tissue showed alveolar bone loss and bone resorption in the GOG group. while in the ExTG group, alveolar bone demostrated normal bone architecture. EDX showed that calcium percentage in GOG group was lower than ExTG group,which showed no statistically significant difference from the control group. CONCLUSIONS Extracellular vesicles may be a promising treatment modality in the treatment of bone diseases and in bone regeneration. However, further research is needed before stating that extracellular vesicles s can be used to treat bone disorders especially when translating to humans.
Collapse
Affiliation(s)
- Aya S. Sedik
- Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Khadiga Y. Kawana
- Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Azza S. Koura
- Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Radwa A. Mehanna
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
31
|
Zhou S, Zhang G, Wang K, Yang Z, Tan Y. miR-141-3p Targeted SIRT1 to Inhibit Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2023; 2023:9094092. [PMID: 36777717 PMCID: PMC9918357 DOI: 10.1155/2023/9094092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 02/05/2023] Open
Abstract
Purpose To explore the expression of miR-141-3p during the osteogenic differentiation of human bone marrow mesenchymal stem cells (BMSCs) and its regulatory effect. Methods Differentiation of BMSCs was induced by dexamethasone. The mRNA expression of miR-141-3p, ALP, RUNX2, and OCN was measured using RT-qPCR. The protein expression was detected via western blot. The target of miR-141-3p was predicted through the TargetScan website and confirmed using luciferase reporter assay. Results miR-141-3p expression declined during osteogenic differentiation. The relative ALP activities and the mRNA expression of ALP, RUNX2, and OCN were markedly reduced in the miR-141-3p mimic group while increased in the inhibitor group. Cell viability was suppressed in the miR-141-3p mimic group and promoted in the inhibitor group. SIRT1 was predicted to be a downstream gene of miR-141-3p, and this prediction was confirmed via the luciferase reporter assay. The results of the western blot assay demonstrated that SIRT1 expression was decreased in the miR-141-3p mimic group. SIRT1 reversed the inhibitory influence of miR-141-3p on the osteogenic differentiation ability of BMSCs. Conclusion miR-141-3p targeted SIRT1 to inhibit osteogenic differentiation of BMSCs via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shuzuo Zhou
- Department of Stomatology, Second Affiliated Hospital of Army Military Medical University (Xin Qiao Hospital), Chongqing City 400038, China
| | - Gang Zhang
- Department of Stomatology, Second Affiliated Hospital of Army Military Medical University (Xin Qiao Hospital), Chongqing City 400038, China
| | - Kun Wang
- Department of Stomatology, Second Affiliated Hospital of Army Military Medical University (Xin Qiao Hospital), Chongqing City 400038, China
| | - Zhong Yang
- Department of Stomatology, Second Affiliated Hospital of Army Military Medical University (Xin Qiao Hospital), Chongqing City 400038, China
| | - Yinghui Tan
- Department of Stomatology, Second Affiliated Hospital of Army Military Medical University (Xin Qiao Hospital), Chongqing City 400038, China
| |
Collapse
|
32
|
Conde-González A, Glinka M, Dutta D, Wallace R, Callanan A, Oreffo ROC, Bradley M. Rapid fabrication and screening of tailored functional 3D biomaterials: Validation in bone tissue repair - Part II. BIOMATERIALS ADVANCES 2023; 145:213250. [PMID: 36563509 DOI: 10.1016/j.bioadv.2022.213250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Regenerative medicine strategies place increasingly sophisticated demands on 3D biomaterials to promote tissue formation at sites where tissue would otherwise not form. Ideally, the discovery/fabrication of the 3D scaffolds needs to be high-throughput and uniform to ensure quick and in-depth analysis in order to pinpoint appropriate chemical and mechanical properties of a biomaterial. Herein we present a versatile technique to screen new potential biocompatible acrylate-based 3D scaffolds with the ultimate aim of application in tissue repair. As part of this process, we identified an acrylate-based 3D porous scaffold that promoted cell proliferation followed by accelerated tissue formation, pre-requisites for tissue repair. Scaffolds were fabricated by a facile freeze-casting and an in-situ photo-polymerization route, embracing a high-throughput synthesis, screening and characterization protocol. The current studies demonstrate the dependence of cellular growth and vascularization on the porosity and intrinsic chemical nature of the scaffolds, with tuneable 3D scaffolds generated with large, interconnected pores suitable for cellular growth applied to skeletal reparation. Our studies showed increased cell proliferation, collagen and ALP expression, while chorioallantoic membrane assays indicated biocompatibility and demonstrated the angiogenic nature of the scaffolds. VEGRF2 expression in vivo observed throughout the 3D scaffolds in the absence of growth factor supplementation demonstrates a potential for angiogenesis. This novel platform provides an innovative approach to 3D scanning of synthetic biomaterials for tissue regeneration.
Collapse
Affiliation(s)
| | - Michael Glinka
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Deepanjalee Dutta
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Robert Wallace
- Orthopaedics and Trauma, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Anthony Callanan
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
33
|
Zhou Y, Jia H, Hu A, Liu R, Zeng X, Wang H. Nanoparticles Targeting Delivery Antagomir-483-5p to Bone Marrow Mesenchymal Stem Cells Treat Osteoporosis by Increasing Bone Formation. Curr Stem Cell Res Ther 2023; 18:115-126. [PMID: 35473519 DOI: 10.2174/1574888x17666220426120850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Promoting bone marrow mesenchymal stem cell (BMSC) osteoblastic differentiation is a promising therapeutic strategy for osteoporosis (OP). The present study demonstrates that miR- 483-5p inhibits the osteogenic differentiation of BMSCs. Therefore, selectively delivering the nanoparticles carrying antagomir-483-5p (miR-483-5p inhibitor) to BMSCs is expected to become an effective treatment drug for OP. METHODS Real-time PCR assays were used to analyze miR-483-5p, ALP and Bglap levels in BMSCs of ovariectomized and aged osteoporotic mice. Immunoglobulin G and poloxamer-188 encapsulated the functional small molecules, and a BMSC-targeting aptamer was employed to confirm the direction of the nanoparticles to selectively and efficiently deliver antagomir-483-5p to BMSCs in vivo. Luciferase assays were used to determine the target genes of miR-483-5p. Western blot assays and immunohistochemistry staining were used to detect the targets in vitro and in vivo. RESULTS miR-483-5p levels were increased in BMSCs of ovariectomized and aged osteoporotic mice. Inhibiting miR-483-5p levels in BMSCs by antagomir-483-5p in vitro promoted the expression of bone formation markers, such as ALP and Bglap. The FAM-BMSC-aptamer-nanoparticles carrying antagomir- 483-5p were taken up by BMSCs, resulting in stimulation of BMSC osteoblastic differentiation in vitro and osteoporosis prevention in vivo. Furthermore, our research demonstrated that mitogen-activated protein kinase 1 (MAPK1) and SMAD family member 5 (Smad5) were direct targets of miR-483-5p in regulating BMSC osteoblastic differentiation and osteoporosis pathological processes. CONCLUSIONS The important therapeutic role of FAM-BMSC-aptamer-nanoparticles carrying antagomir- 483-5p in osteoporosis was established in our study. These nanoparticles are a novel candidate for the clinical prevention and treatment of osteoporosis. The optimized, targeted drug delivery platform for small molecules will provide new ideas for treating clinical diseases.
Collapse
Affiliation(s)
- Yue Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Hao Jia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Aihua Hu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Rangru Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China.,Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Xiangzhou Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Hua Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| |
Collapse
|
34
|
Wu M, Dai M, Liu X, Zeng Q, Lu Y. lncRNA SERPINB9P1 Regulates SIRT6 Mediated Osteogenic Differentiation of BMSCs via miR-545-3p. Calcif Tissue Int 2023; 112:92-102. [PMID: 36348062 DOI: 10.1007/s00223-022-01034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Evidence has shown that the altered osteogenic differentiation of human bone marrow stromal cells (BMSCs) under pathological conditions, such as osteoporosis, lead to the imbalance of bone tissue generation and destruction. Recent studies have indicated that long noncoding RNAs may play a role in regulating BMSCs osteogenic differentiation. This contributed to our impetus to move forward with the investigation of the function of lncRNA SERPINB9P1 in osteogenic differentiation of BMSCs and the potential mechanisms involved. Osteogenic differentiation of BMSCs was induced by osteogenic medium. Relative expression of lncRNA SERPINB9P1 and miR-545-3p were tested by qRT-PCR. Osteogenic mineralization was examined by Alizarin S Red staining, ALP staining, and ALP activity assay. Expression of osteoblastic markers were detected by Western blot. RNA-binding protein immunoprecipitation and dual-luciferase reporter assays were performed to test the interaction between lncRNA SERPINB9P1 and miR-545-3p. BMSCs osteogenic differentiation resulted in LncRNA SERPINB9P1 overexpression while miR-545-3p inhibition. Functional assays suggest that knockdown of lncRNA SERPINB9P1 or overexpression of miR-545-3p both inhibit BMSC osteogenic differentiation. lncRNA SERPINB9P1 was proven to regulate the osteogenic differentiation of BMSCs by altering SIRT6 expression through its suppressive effects on miR-545-3p. lncRNA SERPINB9P1 promotes osteogenic differentiation of BMSCs through the miR-545-3p/SIRT6 pathway.
Collapse
Affiliation(s)
- Min Wu
- Department of Orthopedics, The Affiliated Children's Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- Department of Orthopedics, Jiangxi Provincial Children's Hospital, Nanchang, 330006, People's Republic of China
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Qunqun Zeng
- Department of Orthopedics, The Affiliated Children's Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- Department of Orthopedics, Jiangxi Provincial Children's Hospital, Nanchang, 330006, People's Republic of China
| | - Yingjie Lu
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
35
|
Karadeniz F, Oh JH, Jang MS, Seo Y, Kong CS. Libanoridin Isolated from Corydalis heterocarpa Inhibits Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2022; 24:ijms24010254. [PMID: 36613696 PMCID: PMC9820566 DOI: 10.3390/ijms24010254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Bone marrow adiposity is a complication in osteoporotic patients. It is a result of the imbalance between adipogenic and osteogenic differentiation of bone marrow cells. Phytochemicals can alleviate osteoporotic complications by hindering bone loss and decreasing bone marrow adiposity. Corydalis heterocarpa is a biennial halophyte with reported bioactivities, and it is a source of different coumarin derivatives. Libanoridin is a coumarin isolated from C. heterocarpa, and the effect of libanoridin on adipogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) was evaluated in the present study. Cells were induced to undergo adipogenesis, and their intracellular lipid accumulation and expression of adipogenic markers were observed under libanoridin treatment. Results showed that 10 μM libanoridin-treated adipocytes accumulated 44.94% less lipid compared to untreated adipocytes. In addition, mRNA levels of PPARγ, C/EBPα, and SREBP1c were dose-dependently suppressed with libanoridin treatment, whereas only protein levels of PPARγ were decreased in the presence of libanoridin. Fluorescence staining of adipocytes also revealed that cells treated with 10 μM libanoridin expressed less PPARγ compared to untreated adipocytes. Protein levels of perilipin and leptin, markers of mature adipocytes, were also suppressed in adipocytes treated with 10 μM libanoridin. Analysis of MAPK phosphorylation levels showed that treatment with libanoridin inhibited the activation of p38 and JNK MAPKs observed by decreased levels of phosphorylated p38 and JNK protein. It was suggested that libanoridin inhibited adipogenic differentiation of hBM-MSCs via suppressing MAPK-mediated PPARγ signaling. Future studies revealing the anti-adipogenic effects of libanoridin in vivo and elucidating its action mechanism will pave the way for libanoridin to be utilized as a nutraceutical with anti-osteoporotic properties.
Collapse
Affiliation(s)
- Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
- Nutritional Education, Graduate School of Education, Silla University, Busan 46958, Republic of Korea
| | - Mi Soon Jang
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Youngwan Seo
- Division of Convergence on Marine Science, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
- Correspondence: ; Tel.: +82-51-999-5429
| |
Collapse
|
36
|
Mu J, Zhang Z, Zhou F, Zheng J, Bo P, You B. Experimental study on co-culture of DiI-labeled rat bone marrow mesenchymal stem cells and neonatal rat cardiomyocytes to induce differentiation into cardiomyocyte-like cells. Biomed Mater Eng 2022:BME221429. [DOI: 10.3233/bme-221429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND: Myocardial infarction is a serious clinical disease with high mortality and poor prognosis. Cardiomyocytes (CMs) have limited regeneration abilities after ischemic injury. Their growth and differentiation can be enhanced by contact co-culture with stem cells. OBJECTIVE: The aim was to study the contact co-culture of Dil-labeled bone marrow mesenchymal stem cells (BMSCs) and CMs for inducing differentiation of CMs from stem cells for treating myocardial infarction. METHODS: After contact co-culture, the differentiation of BMSCs into CMs was analyzed qualitatively by detecting myocardial markers (cardiac troponin T and α-smooth muscle actin) using immunofluorescence and quantitatively using flow cytometry. To examine the mechanism, possible gap junctions between BMSCs and CMs were analyzed by detecting gap junction protein connexin 43 (C×43) expression in BMSCs using immunofluorescence. The functionality of gap junctions was analyzed using dye transfer experiments. RESULTS: The results revealed that BMSCs in contact with CMs exhibited myocardial markers and a significant increase in differentiation rate (P < 0.05); they also proved the existence and function of gap junctions between BMSCs and CMs. CONCLUSIONS: It was shown that contact co-culture can induce Dil-labeled BMSCs to differentiate into CM-like cells and examined the principle of gap junction-mediated signaling pathways involved in inducing stem cells to differentiate into cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | | | - Ping Bo
- , , Capital Medical University, , , China
| | - Bin You
- , , Capital Medical University, , , China
| |
Collapse
|
37
|
Santilli F, Fabrizi J, Pulcini F, Santacroce C, Sorice M, Delle Monache S, Mattei V. Gangliosides and Their Role in Multilineage Differentiation of Mesenchymal Stem Cells. Biomedicines 2022; 10:biomedicines10123112. [PMID: 36551867 PMCID: PMC9775755 DOI: 10.3390/biomedicines10123112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Gangliosides (GGs) are a glycolipid class present on Mesenchymal Stem Cells (MSCs) surfaces with a critical appearance role in stem cell differentiation, even though their mechanistic role in signaling and differentiation remains largely unknown. This review aims to carry out a critical analysis of the predictive role of gangliosides as specific markers of the cellular state of undifferentiated and differentiated MSCs, towards the osteogenic, chondrogenic, neurogenic, and adipogenic lineage. For this reason, we analyzed the role of GGs during multilineage differentiation processes of several types of MSCs such as Umbilical Cord-derived MSCs (UC-MSCs), Bone Marrow-derived MSCs (BM-MSCs), Dental Pulp derived MSCs (DPSCs), and Adipose derived MSCs (ADSCs). Moreover, we examined the possible role of GGs as specific cell surface markers to identify or isolate specific stem cell isotypes and their potential use as additional markers for quality control of cell-based therapies.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Jessica Fabrizi
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
- Correspondence: (S.D.M.); (V.M.)
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Correspondence: (S.D.M.); (V.M.)
| |
Collapse
|
38
|
Zhang D, Su Y, He Q, Zhang Y, Gu N, Zhang X, Yan K, Yao N, Qian W. Icariin Exerts Estrogen-Like Actions on Proliferation of Osteoblasts in Vitro via Membrane Estrogen Receptors-Mediated Non-nuclear Effects. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e127000. [PMID: 36942079 PMCID: PMC10024316 DOI: 10.5812/ijpr-127000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND According to reports, icariin (ICA) is a bone anabolic agent able to prevent osteoporosis in both ovariectomized rats and postmenopausal women. However, its effect on osteoblast proliferation remains to be determined, and the underlying mechanism remains to be elucidated. METHODS Icariin-bovine serum albumin (BSA) conjugates were purified by Sephadex G-25 gel chromatography technology. Primary osteoblasts from neonatal rats were used to evaluate the effects of ICA, ICA-BSA, ICA-BSA + ICI182780, and ICA-BSA + PD98059. 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and propidium iodide (PI)-staining assays were used to detect the proliferation of osteoblasts after drug exposure. The intracellular calcium ions were detected using a confocal microscope with Fluo-3/AM as the fluorescent indicator. Western blot was capitalized on to measure the relative content of phospho-extracellular signal-regulated kinase (p-ERK). RESULTS Primary osteoblasts in culture were detected by histochemical staining of alkaline phosphatase, and calcified nodules were obtained by sequential digestion. Icariin and bovine serum albumin could form conjugate, which could be purified by Sephadex G-25 gel chromatography technology. MTT and flow cytometry results show that ICA-BSA conjugate significantly facilitated the proliferation of osteoblasts (P < 0.05). The intracellular calcium ions also ascended vastly in the cells treated with ICA-BSA conjugate (P < 0.01). Icariin-bovine serum albumin exposure rapidly activated the extracellular signal-regulated kinase (ERK) signaling. Furthermore, ICA- and ICA-BSA-mediated actions on osteoblasts were signally alleviated after dealing with ERK inhibitor PD98059 or estrogen receptor (ER) antagonist ICI182780, which might have a relation to the repression of ERK phosphorylation. CONCLUSIONS Icariin could serve as estrogen in osteoblast cells by the rapid nongenomic ER signaling pathway independent of ligand and estrogen response element (ERE) and mediated by mitogen-activated protein kinase (MAPK).
Collapse
Affiliation(s)
- Dapeng Zhang
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P.R. China
| | - Yan Su
- Reproductive Center, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu, P.R. China
| | - Qiang He
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P.R. China
| | - Yajie Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
| | - Ning Gu
- Department of Cardiovascular Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
| | - Xu Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P.R. China
| | - Kun Yan
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P.R. China
| | - Nianwei Yao
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
| | - Weiqing Qian
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
| |
Collapse
|
39
|
Gholami Farashah MS, Javadi M, Mohammadi A, Soleimani Rad J, Shakouri SK, Roshangar L. Bone marrow mesenchymal stem cell's exosomes as key nanoparticles in osteogenesis and bone regeneration: specific capacity based on cell type. Mol Biol Rep 2022; 49:12203-12218. [PMID: 36224447 DOI: 10.1007/s11033-022-07807-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/19/2022] [Indexed: 10/17/2022]
Abstract
Today, communities and their health systems are facing with several challenges associated with the population ageing. Growing number of bone disorders is one of the most serious consequences of aging. According to the reports bone disorders won't just affect the elderly population. Mesenchymal stem cells (MSCs) are multipotent cells that could be derived from a variety of tissues including bone marrow, Wharton's Jelly, adipose tissue, and others. MSCs have been utilized in different researches in the field of regenerative medicine because of their immunosuppression and anti-inflammatory mechanisms (like: inhibiting the activity of antigen presenting cells, and suppressing the activity of T lymphocyte cells, macrophages, and so on.), migration to injured areas, and participation in healing processes. Bone marrow mesenchymal stem cells (BMMSCs) are a type of these cells which can be commonly used in bone research with the promising results. These cells function by releasing a large number of extracellular vesicles (EVs). Exosomes are the most major EVs products produced by BMMSCs. They have the same contents and properties as their parent cells; however, these structures don't have the defects of cell therapy. Proteins (annexins, tetraspannins, etc.), lipids (cholesterol, phosphoglycerides, etc.), nucleic acids (micro-RNAs, and etc.) and other substances are found in exosomes. Exosomes affect target cells, causing them to change their function. The features of BMMSC exosomes' mechanism in osteogenesis and bone regeneration (like: effects on other MSCs, osteoblasts, osteoclasts, and angiogenesis) and also the effects of their micro-RNAs on osteogenesis are the subject of the present review.
Collapse
Affiliation(s)
- Mohammad Sadegh Gholami Farashah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mohammadi
- Stem cell and regenerative medicine research center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Jansen van Rensburg M, Crous A, Abrahamse H. Promoting Immortalized Adipose-Derived Stem Cell Transdifferentiation and Proliferation into Neuronal-Like Cells through Consecutive 525 nm and 825 nm Photobiomodulation. Stem Cells Int 2022; 2022:2744789. [PMID: 36106176 PMCID: PMC9467736 DOI: 10.1155/2022/2744789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Neuronal cells can be generated from adipose-derived stem cells (ADSCs) through biological or chemical inducers. Research has shown that this process may be optimized by the introduction of laser irradiation in the form of photobiomodulation (PBM) to cells. This in vitro study is aimed at generating neuronal-like cells with inducers, chemical or biological, and at furthermore treating these transdifferentiating cells with consecutive PBM of a 525 nm green (G) laser and 825 nm near-infrared (NIR) laser light with a fluence of 10 J/cm2. Cells were exposed to induction type 1 (IT1): 3-isobutyl-1-methylxanthine (IBMX) (0.5 mM)+indomethacin (200 μM)+insulin (5 μg/ml) for 14 days, preinduced with β-mercaptoethanol (BME) (1 mM) for two days, and then incubated with IT2: β-hydroxyanisole (BHA) (100 μM)+retinoic acid (RA) (10-6 M)+epidermal growth factor (EGF) (10 ng/ml)+basic fibroblast growth factor (bFGF) (10 ng/ml) for 14 days and preinduced with β-mercaptoethanol (BME) (1 mM) for two days and then incubated with indomethacin (200 μM)+RA (1 μM)+forskolin (10 μM) for 14 days. The results were evaluated through morphological observations, viability, proliferation, and migration studies, 24 h, 48 h, and 7 days post-PBM. The protein detection of an early neuronal marker, neuron-specific enolase (NSE), and late, ciliary neurotrophic factor (CNTF), was determined with enzyme-linked immunosorbent assays (ELISAs). The genetic expression was also explored through real-time PCR. Results indicated differentiation in all experimental groups; however, cells that were preinduced showed higher proliferation and a higher differentiation rate than the group that was not preinduced. Within the preinduced groups, results indicated that cells treated with IT2 and consecutive PBM upregulated differentiation the most morphologically and physiologically.
Collapse
Affiliation(s)
- Madeleen Jansen van Rensburg
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| |
Collapse
|
41
|
程 明, 向 桃, 吴 杨, 贾 龙, 苏 悦, 冯 均. [Effect of Bone Marrow Mesenchymal Stem Cells on Mechanical Dynamics and BALP/CTX-1 Expression in Rats with Osteoporotic Vertebral Fracture]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:815-820. [PMID: 36224683 PMCID: PMC10408791 DOI: 10.12182/20220960506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 06/16/2023]
Abstract
Objective To analyze the effects of bone marrow mesenchyml stem cells (BMSCs) on bone alkaline phosphatase (BALP)/C-terminal telopeptide of type-Ⅰ collagen (CTX-1) expression and mechanical dynamics in rats with osteoporotic (OP) vertebral fracture. Methods A total of 60 female Sprague-Dawley rats were evenly divided into three groups, a control group that received sham operation (sham group), a group consisting of rats with OP vertebral fracture (OP group), and the last group consisting of OP vertebral fracture rats given BMSCs treatment (BMSCs group). Comparison of the three groups of animals was made in terms of bone dynamic change, bone quantitative broadband ultrasound attenuation (BUA) measurement, and bone mineral density (BMD). HE staining was done to examine the bone histological morphological parameters of the vertebral body. Serum CTX-1 and BALP levels were determined by ELISA. Results Mechanical comparison showed that there were significant differences in mechanical changes of L 5 vertebra body and right femur among the three experimental groups ( P<0.05). The elastic modulus and maximum load of the OP group significantly decreased compared with those of the sham group ( P<0.05). After the intervention, the maximum load and elastic modulus of the BMSCs group were significantly higher than those of the OP group ( P<0.05). Compared with the sham group, BUA and BMD values in the OP group were significantly downregulated ( P<0.05). After intervention, BUA and BMD of the BMSCs group were significantly higher than those of the OP group and were comparable to those of the sham group ( P<0.05). Compared with the sham group, the number of trabeculae in the OP group was significantly fewer, and the distribution of trabeculae was disorderly and lacked regularity. Compared with the OP group, there were more trabeculae in the BMSCs group, and their distribution was more regular. Compared with sham group, bone histological morphological parameters of the vertebral body of rats in the OP group were significantly changed--mean trabecular plate thickness (MTPT) and trabecular bone volume (TBV) parameters were significantly decreased, while mineral apposition rate (MAR) and trabecula bone surface (TRS) parameters were significantly upregulated (all P<0.05). After the experimental intervention, bone histological morphological parameters of the vertebral body in the BMSCs group showed significant improvement compared with those of the OP group ( P<0.05). Compared with the sham group, serum BALP content in the OP group was greatly decreased, while the CTX-1 level was upregulated ( P<0.05). After the intervention, the BMSCs group had higher serum BALP content than that of the OP group and substantially lower CTX-1 content than that of the OP group ( P<0.05). Conclusion BMSCs can improve the mechanical changes in rats with OP vertebral fracture, and can increase the maximum load and elastic modulus of bone tissue. In addition, BMSCs can upregulate the expression of BALP in serum and downregulate the expression of CTX-1, thus helping rats with OP vertebral fracture heal early.
Collapse
Affiliation(s)
- 明 程
- 成都市金牛区人民医院 康复科 (成都 610036)Department of Rehabilitation, Jinniu District People's Hospital, Chengdu 610036, China
- 四川省医学科学院·四川省人民医院 骨科 (成都 610072)Department of Orthopaedics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - 桃 向
- 成都市金牛区人民医院 康复科 (成都 610036)Department of Rehabilitation, Jinniu District People's Hospital, Chengdu 610036, China
| | - 杨玲 吴
- 成都市金牛区人民医院 康复科 (成都 610036)Department of Rehabilitation, Jinniu District People's Hospital, Chengdu 610036, China
| | - 龙 贾
- 成都市金牛区人民医院 康复科 (成都 610036)Department of Rehabilitation, Jinniu District People's Hospital, Chengdu 610036, China
| | - 悦 苏
- 成都市金牛区人民医院 康复科 (成都 610036)Department of Rehabilitation, Jinniu District People's Hospital, Chengdu 610036, China
| | - 均伟 冯
- 成都市金牛区人民医院 康复科 (成都 610036)Department of Rehabilitation, Jinniu District People's Hospital, Chengdu 610036, China
| |
Collapse
|
42
|
Pei W, Deng J, Wang P, Wang X, Zheng L, Zhang Y, Huang C. Sustainable lignin and lignin-derived compounds as potential therapeutic agents for degenerative orthopaedic diseases: A systemic review. Int J Biol Macromol 2022; 212:547-560. [PMID: 35643155 DOI: 10.1016/j.ijbiomac.2022.05.152] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
Abstract
Lignin, the most abundant natural and sustainable phenolic compound in biomass, has exhibited medicinal values due to its biological activities decided by physicochemical properties. Recently, the lignin and its derivatives (such as lignosulfonates and lignosulfonate) have been proven efficient in regulating cellular process and the extracellular microenvironment, which has been regarded as the key factor in disease progression. In orthopaedic diseases, especially the degenerative diseases represented by osteoarthritis and osteoporosis, excessive activated inflammation has been proven as a key stage in the pathological process. Due to the excellent biocompatibility, antibacterial and antioxidative activities of lignin and its derivatives, they have been applied to stimulate cells and restore the uncoupling bone remodeling in the degenerative orthopaedic diseases. However, there is a lack of a systemic review to state the current research actuality of lignin and lignin-derived compounds in treating degenerative orthopaedic diseases. Herein, we summarized the current application of lignin and lignin-derived compounds in orthopaedic diseases and proposed their possible therapeutic mechanism in treating degenerative orthopaedic diseases. It is hoped this work could guide the future preparation of lignin/lignin-derived drugs and implants as available therapeutic strategies for clinically degenerative orthopaedic diseases.
Collapse
Affiliation(s)
- Wenhui Pei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Junping Deng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xucai Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Liming Zheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
43
|
Chen Q, Shen P, Zhang B, Chen Y, Zheng C. circ_0062582 Promotes Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells in vitro by Elevating SMAD5 Expression through Sponging miR-197-3p. Cells Tissues Organs 2022; 214:14-25. [PMID: 35764065 DOI: 10.1159/000525703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Circular RNAs (circRNAs) play crucial roles in many human diseases. However, the functions of circRNAs in osteoporosis (OP) are barely reported. In this study, we aimed to explore the function of circ_0062582 in osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in vitro. circ_0062582 and SMAD5 were downregulated and miR-197-3p was upregulated in OP patients and increased in osteoblast medium (OM)-induced hBMSCs in vitro. circ_0062582 knockdown inhibited the viability and osteogenic differentiation of hBMSCs. circ_0062582 directly targeted miR-197-3p, and miR-197-3p inhibition reversed the effects of circ_0062582 on hBMSC viability and osteogenic differentiation. SMAD5 was the target gene of miR-197-3p. SMAD5 overexpression promoted the viability and osteogenic differentiation of hBMSCs and attenuated miR-197-3p-mediated suppressive roles in hBMSC viability and osteogenic differentiation. In conclusion, circ_0062582 sponged miR-197-3p to elevate SMAD5 expression, thereby inducing hBMSC proliferation and osteogenic differentiation in vitro.
Collapse
Affiliation(s)
- Qiaojie Chen
- Department of Orthopedics, Ningbo No.2 Hospital, Ningbo, China
| | - Pingping Shen
- Department of Gastroenterology, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Bo Zhang
- Department of Orthopedics, Ningbo No.2 Hospital, Ningbo, China
| | - Yang Chen
- Department of Orthopedics, Ningbo No.2 Hospital, Ningbo, China
| | - Chunli Zheng
- Department of Rehabilitation, Ningbo No.2 Hospital, Ningbo, China
| |
Collapse
|
44
|
Shi Z, Zhong Q, Chen Y, Luo X. Long noncoding RNA ZBTB40-IT1 regulates bone mass by directing the differentiation of human bone marrow mesenchymal stromal cells via the microRNA-514a-3p/FOXO4 axis. Hum Cell 2022; 35:1408-1423. [PMID: 35676609 DOI: 10.1007/s13577-022-00730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
This study intended to clarify the mechanism of long noncoding RNA ZBTB40-IT1 in directing human bone marrow-derived mesenchymal stromal cell (hBMSC) differentiation. hBMSCs underwent osteogenic and adipogenic induction, and an osteoporosis mouse model was established via ovariectomy (OVX). Gain- and loss-of-function approaches were utilized in hBMSCs and mice to investigate the function of ZBTB40-IT1, microRNA (miR)-514a-3p, and forkhead box O4 (FOXO4). Dual-luciferase reporter and RNA pulldown assays were applied to evaluate the binding of miR-514a-3p to ZBTB40-IT1 or FOXO4. The femur of the OVX mice had upregulated ZBTB40-IT1 and FOXO4 expression and downregulated miR-514a-3p expression. The bone mass was increased in OVX mice through ZBTB40-IT1 or FOXO4 knockdown. ZBTB40-IT1 and FOXO4 were downregulated, whereas miR-514a-3p was upregulated in osteogenesis-induced hBMSCs, which was the opposite in adipogenesis-induced hBMSCs. ZBTB40-IT1 or FOXO4 knockdown or miR-514a-3p overexpression increased ARS/ALP absorbance and RUNX2 and OCN levels but decreased fat density and PPARγ and FABP4 levels in hBMSCs. Mechanistically, ZBTB40-IT1 elevated FOXO4 expression by binding to miR-514a-3p. miR-514a-3p inhibition annulled the effects of ZBTB40-IT1 downregulation on hBMSC osteogenesis and adipogenesis, and FOXO4 overexpression abolished the impacts of miR-514a-3p upregulation on hBMSC osteogenesis and adipogenesis. Conclusively, ZBTB40-IT1 inhibition promotes the osteogenic differentiation of hBMSCs via the miR-514a-3p/FOXO4 axis, thereby increasing bone mass.
Collapse
Affiliation(s)
- Zhe Shi
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Street, Baiyun District, Guangzhou, 510515, Guangdong, China.
| | - Qiang Zhong
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Street, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Yuhang Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Street, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Xin Luo
- Rehabilitation Medical School, Guangzhou International Economics College, Guangzhou, 510540, Guangdong, China
| |
Collapse
|
45
|
Zhang Z, Zhou F, Zhang J, Mu J, Bo P, You B. Preparation of myocardial patches from DiI-labeled rat bone marrow mesenchymal stem cells and neonatal rat cardiomyocytes contact co-cultured on polycaprolactone film. Biomed Mater 2022; 17. [PMID: 35551116 DOI: 10.1088/1748-605x/ac6f38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/12/2022] [Indexed: 11/11/2022]
Abstract
DiI-labeled BMSCs were contact co-cultured with CMs on PCL film to prepare myocardial patches. BMSCs were labeled with DiI dye. DiI-labeled BMSCs were co-cultured with CMs on PCL film in the experimental group, while CMs were replaced with the same amount of unlabeled BMSCs in the control group. After 24 h, cell growth was observed by light microscopy and cells were fixed for scanning electron microscopy. After 7 days of co-culture, cells were stained for immunofluorescence detection of myocardial markers cardiac troponin T (cTnT) and α-actin. Differentiation of BMSCs on PCL was observed by fluorescence microscopy. The efficiency of BMSC differentiation into CMs was analyzed by flow cytometry on the first and seventh days of co-culture. CMs were stained with calcein alone and contact co-cultured with DiI-labeled BMSCs on PCL film to observe intercellular dye transfer. Finally, cells were stained for immunofluorescence detection of connexin 43 (Cx43) expression and to observe the relationship between gap junctions and contact co-culture. After co-culture for 24 h, cells were observed to have attached to PCL by light microscopy. Upon appropriate excitation, DiI-labeled BMSCs exhibited red fluorescence, while unlabeled CMs did not. Scanning electron microscopy revealed a large number of cells on the PCL membrane and their cell state appeared normal. On the seventh day, some DiI-labeled BMSCs expressed cTnT and α-actin. Flow cytometry showed that the rate of stem cell differentiation in the experimental group was significantly higher than the control group on the seven day (20.12% > 3.49%, P < 0.05). From the second day of co-culture, immunofluorescence staining for Cx43 revealed green fluorescent puncta in some BMSCs; from the third day of co-culture, a portion of BMSCs exhibited green fluorescence in dye transfer tests. Contact co-culture of DiI-labeled BMSCs and CMs on PCL film successfully generated myocardial patches.
Collapse
Affiliation(s)
- Zichang Zhang
- Beijing An Zhen Hospital, Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China., Chaoyang-qu, Beijing, 100029, CHINA
| | - Fan Zhou
- The Third Medical Center of PLA General Hospital, Department of Ultrasound, The Third Medical Center of PLA General Hospital, Beijing 100039, China, beijing , 100039, CHINA
| | - Jianwei Zhang
- sunshine union hospital, Heart center of sunshine union hospital, Weifang 261205, China, weifang, 261205, CHINA
| | - Junsheng Mu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China, beijing, 100029, CHINA
| | - Ping Bo
- Beijing An Zhen Hospital, Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, Chaoyang-qu, Beijing, 100029, CHINA
| | - Bin You
- Beijing An Zhen Hospital, Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China., Chaoyang-qu, Beijing, 100029, CHINA
| |
Collapse
|
46
|
Wang M, Lin S, Mequanint K. Electrospun Biodegradable α-Amino Acid-Substituted Poly(organophosphazene) Fiber Mats for Stem Cell Differentiation towards Vascular Smooth Muscle Cells. Polymers (Basel) 2022; 14:polym14081555. [PMID: 35458303 PMCID: PMC9025042 DOI: 10.3390/polym14081555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stem cells, derived from human-induced pluripotent stem cells (iPSC), are valuable for generating smooth muscle cells (SMCs) for vascular tissue engineering applications. In this study, we synthesized biodegradable α-amino acid-substituted poly(organophosphazene) polymers and electrospun nano-fibrous scaffolds (~200 nm diameter) to evaluate their suitability as a matrix for differentiation of iPSC-derived mesenchymal stem cells (iMSC) into mature contractile SMCs. Both the polymer synthesis approach and the electrospinning parameters were optimized. Three types of cells, namely iMSC, bone marrow derived mesenchymal stem cells (BM-MSC), and primary human coronary artery SMC, attached and spread on the materials. Although L-ascorbic acid (AA) and transforming growth factor-beta 1 (TGF-β1) were able to differentiate iMSC along the smooth muscle lineage, we showed that the electrospun fibrous mats provided material cues for the enhanced differentiation of iMSCs. Differentiation of iMSC to SMC was characterized by increased transcriptional levels of early to late-stage smooth muscle marker proteins on electrospun fibrous mats. Our findings provide a feasible strategy for engineering functional vascular tissues.
Collapse
|
47
|
Yin J, Xiao W, Zhao Q, Sun J, Zhou W, Zhao W. MicroRNA-582-3p regulates osteoporosis through regulating homeobox A10 and osteoblast differentiation. Immunopharmacol Immunotoxicol 2022; 44:421-428. [PMID: 35285389 DOI: 10.1080/08923973.2022.2052895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jian Yin
- Department of Orthopedic, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, 830001, PR. China
| | - Wei Xiao
- Department of Orthopedic, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, 830001, PR. China
| | - Qingbin Zhao
- Department of Orthopedic, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, 830001, PR. China
| | - Jungang Sun
- Department of Orthopedic, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, 830001, PR. China
| | - Wenzheng Zhou
- Department of Orthopedic, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, 830001, PR. China
| | - Wei Zhao
- Department of Orthopedic, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, 830001, PR. China
| |
Collapse
|
48
|
Malekpour K, Hazrati A, Zahar M, Markov A, Zekiy AO, Navashenaq JG, Roshangar L, Ahmadi M. The Potential Use of Mesenchymal Stem Cells and Their Derived Exosomes for Orthopedic Diseases Treatment. Stem Cell Rev Rep 2022; 18:933-951. [PMID: 34169411 PMCID: PMC8224994 DOI: 10.1007/s12015-021-10185-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Musculoskeletal disorders (MSDs) are conditions that can affect muscles, bones, and joints. These disorders are very painful and severely limit patients' mobility and are more common in the elderly. MSCs are multipotent stem cells isolated from embryonic (such as the umbilical cord) and mature sources (such as adipose tissue and bone marrow). These cells can differentiate into various cells such as osteoblasts, adipocytes, chondrocytes, NP-like cells, Etc. Due to MSC characteristics such as immunomodulatory properties, ability to migrate to the site of injury, recruitment of cells involved in repair, production of growth factors, and large amount production of extracellular vesicles, these cells have been used in many regenerative-related medicine studies. Also, MSCs produce different types of EVs, such as exosomes, to the extracellular environment. Exosomes reflect MSCs' characteristics and do not have cell therapy-associated problems because they are cell-free. These vesicles carry proteins, nucleic acids, and lipids to the host cell and change their function. This review focuses on MSCs and MSCs exosomes' role in repairing dense connective tissues such as tendons, cartilage, invertebrate disc, bone fracture, and osteoporosis treatment.
Collapse
Affiliation(s)
- Kosar Malekpour
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marziah Zahar
- Social Security Centre of Excellence, School of Business Management, College of Business, Universiti Utara Malaysia, Sintok Kedah, Malaysia
| | | | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
49
|
Xu T, Zhou P, Li H, Ding Q, Hua F. MicroRNA-577 aggravates bone loss and bone remodeling by targeting thyroid stimulating hormone receptor in hyperthyroid-associated osteoporosis. ENVIRONMENTAL TOXICOLOGY 2022; 37:539-548. [PMID: 34821002 DOI: 10.1002/tox.23419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/09/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, hyperthyroid-associated osteoporosis has been considered to be the result of increased thyroid hormone levels. The pathogenesis of hyperthyroid-associated osteoporosis remains unclear. Thyroid stimulating hormone receptor (TSHR) is closely associated with osteoporosis. Our study aimed to explore the role of TSHR and its upstream microRNA (miRNA) in hyperthyroid-associated osteoporosis. Bioinformatics analysis (starBase and Targetscan) and a wide range of experiments including reverse-transcription quantitative polymerase chain reaction, luciferase reporter, western blot analysis of osteogenic differentiation markers including OSX, OCN, ALP, OPN, and COL1, hematoxylin and eosin staining, Alizarin Red staining assays were used to explore the function and mechanism of TSHR in hyperthyroid-associated osteoporosis. First, we observed that TSHR was downregulated in bone marrow mesenchymal stem cells (BMSCs) isolated from rats after culture in osteogenic medium for 7 days. Functionally, overexpression of TSHR accelerates BMSC osteogenic differentiation. Mechanistically, we predicted four potential miRNAs for TSHR. MiR-577 was validated to bind with TSHR. Rescue assays showed that miR-577 overexpression inhibited BMSC osteogenic differentiation via targeting TSHR. In vivo experiments showed that miR-577 aggravated bone loss and bone remodeling and our data showed that it is achieved by targeting TSHR in hyperthyroid-associated osteoporosis. This finding may deep our understanding of the pathogenesis of hyperthyroid-associated osteoporosis.
Collapse
Affiliation(s)
- Tongdao Xu
- Department of Endocrine, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou, China
- Department of Endocrine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Ping Zhou
- Department of Endocrine, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou, China
- Department of Endocrine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Huihua Li
- Department of Endocrine, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou, China
- Department of Endocrine, Tong Ren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun Ding
- Department of Endocrine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Fei Hua
- Department of Endocrine, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou, China
| |
Collapse
|
50
|
Lu Y, Liu YK, Wan FY, Shi S, Tao R. CircSmg5 stimulates the osteogenic differentiation of bone marrow mesenchymal stem cells by targeting the miR-194-5p/Fzd6 axis and beta-catenin signaling. ENVIRONMENTAL TOXICOLOGY 2022; 37:593-602. [PMID: 34850997 DOI: 10.1002/tox.23425] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is closely associated with bone diseases. Circular RNAs are reported to be involved in BMSC differentiation. CircSmg5 (circ_0001145) has been identified to be downregulated in an osteoporosis mouse model. In this study, we aimed to explore the function and regulatory mechanism of circSmg5 in BMSC osteogenic differentiation. METHODS The Alizarin Red staining and alkaline phosphatase staining assays were performed to explore the osteogenic differentiation of BMSCs. The interaction between circ_0001145, miR-194-5p, and frizzled class receptor 6 (Fzd6) was analyzed by luciferase reporter assay. The nuclear translocation of β-catenin was assessed using immunofluorescence staining. RESULTS CircSmg5 is in stable circular structure. CircSmg5 expression was elevated in the process of BMSC osteogenic differentiation. CircSmg5 overexpression promoted the osteogenic differentiation of BMSCs. CircSmg5 bound with miR-194-5p, whose expression was decreased in the osteogenic differentiation of BMSCs. MiR-194-5p directly targeted the 3'UTR of Fzd6. The mRNA and protein levels of Fzd6 were positively modulated by circSmg5 and negatively regulated by miR-194-5p in BMSCs. CONCLUSION CircSmg5 was demonstrated to promote the BMSC osteogenic differentiation by targeting the miR-194-5p/Fzd6 axis to activate the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yue Lu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ya Ke Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Fu Yin Wan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Song Shi
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ran Tao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|