1
|
Engelfriet ML, Guo Y, Arnold A, Valen E, Ciosk R. Reprograming gene expression in 'hibernating' C. elegans involves the IRE-1/XBP-1 pathway. eLife 2025; 13:RP101186. [PMID: 40326887 PMCID: PMC12055002 DOI: 10.7554/elife.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
In nature, many animals respond to cold by entering hibernation, while in clinical settings, controlled cooling is used in transplantation and emergency medicine. However, the molecular mechanisms that enable cells to survive severe cold are still not fully understood. One key aspect of cold adaptation is the global downregulation of protein synthesis. Studying it in the nematode Caenorhabditis elegans, we find that the translation of most mRNAs continues in the cold, albeit at a slower rate, and propose that cold-specific gene expression is regulated primarily at the transcription level. Supporting this idea, we found that the transcription of certain cold-induced genes is linked to the activation of unfolded protein response (UPR) through the conserved IRE-1/XBP-1 signaling pathway. Our findings suggest that this pathway is triggered by cold-induced perturbations in proteins and lipids within the endoplasmic reticulum, and that its activation is beneficial for cold survival.
Collapse
Affiliation(s)
- Melanie Lianne Engelfriet
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of OsloOsloNorway
| | - Yanwu Guo
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of OsloOsloNorway
| | - Andreas Arnold
- Division of Molecular Neuroscience, Department of Biomedicine, University of BaselBaselSwitzerland
- University Psychiatric Clinics, University of BaselBaselSwitzerland
| | - Eivind Valen
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of OsloOsloNorway
| | - Rafal Ciosk
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of OsloOsloNorway
| |
Collapse
|
2
|
Costa MD, Da Silva JD, Almeida D, Pereira-Sousa J, Vilasboas-Campos D, Fernandes JH, Teixeira-Castro A, Maciel P. Differential effects of lifespan-extending genetic manipulations in an animal model of MJD/SCA3. Mech Ageing Dev 2025; 225:112064. [PMID: 40287101 DOI: 10.1016/j.mad.2025.112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Aging is a natural biological process, but evidence suggests that some aspects of aging can be delayed and reduce the prevalence of neurodegenerative diseases, for which aging is a key risk factor. In a neuronal Caenorhabditis elegans model of a Polyglutamine disease-Spinocerebellar Ataxia Type 3 (SCA3), or Machado-Joseph disease (MJD)- we assessed the hypothesis that delaying aging is neuroprotective, investigating the effect of genetically manipulating multiple lifespan-determinant mechanisms. Lifespan-increasing mutations causing insulin/IGF-1 signaling downregulation, mitochondrial dysfunction, germline ablation and dietary restriction/innate immune activation had distinct impacts on MJD/SCA3 phenotypes, suggesting that not all genetic strategies of stalling aging are equally neuroprotective and challenging the idea that delaying aging is a guaranteed therapy for these diseases. Lifespan-extension improved the SCA3/MJD motor phenotype only when induced by altered nutrient-sensing pathways such as those mediated by insulin/IGF-1 and eat-2 signaling, but their effects on neuronal aggregation differed. These pathways exhibited differential proteostasis profiles, but both activated the heat shock response suggesting that they operate through partially independent mechanisms to confer neuroprotection. The therapeutic value of the insulin/IGF-1 downregulation was demonstrated through the chronic treatment of the SCA3/MJD model with an insulin/IGF-1 signaling inhibitor, underscoring the relevance of aging manipulations in guiding therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Marta Daniela Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Jorge Diogo Da Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Dulce Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Daniela Vilasboas-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Jorge Humberto Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
3
|
Yin X, Wang R, Thackeray A, Baehrecke EH, Alkema MJ. VPS13D mutations affect mitochondrial homeostasis and locomotion in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2025; 15:jkaf023. [PMID: 39957248 PMCID: PMC12005150 DOI: 10.1093/g3journal/jkaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
Mitochondria control cellular metabolism, serve as hubs for signaling and organelle communication, and are important for the health and survival of cells. VPS13D encodes a cytoplasmic lipid transfer protein that regulates mitochondrial morphology, mitochondria and endoplasmic reticulum contact, and quality control of mitochondria. VPS13D mutations have been reported in patients displaying ataxic and spastic gait disorders with variable age of onset. Here, we used CRISPR/Cas9 gene editing to create VPS13D-related spinocerebellar ataxia-4 missense mutations and C-terminal deletion in VPS13D's ortholog vps-13D in Caenorhabditis elegans. Consistent with SCAR4 patient movement disorders and mitochondrial dysfunction, vps-13D mutant worms exhibit locomotion defects and abnormal mitochondrial morphology. Importantly, animals with a vps-13D deletion or a N3017I missense mutation exhibited an increase in mitochondrial unfolded protein response. The cellular and behavioral changes caused by VPS13D mutations in C. elegans advance the development of animal models that are needed to study SCAR4 pathogenesis.
Collapse
Affiliation(s)
- Xiaomeng Yin
- Department of Neurobiology, University of Massachusetts Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruoxi Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Andrea Thackeray
- Department of Neurobiology, University of Massachusetts Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| |
Collapse
|
4
|
Di Pede A, Ko B, AlOkda A, Tamez González AA, Zhu S, Van Raamsdonk JM. Mild activation of the mitochondrial unfolded protein response increases lifespan without increasing resistance to stress. Open Biol 2025; 15:240358. [PMID: 40169016 PMCID: PMC11961262 DOI: 10.1098/rsob.240358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/06/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
The mitochondrial unfolded protein response (mitoUPR) is a stress response pathway that responds to mitochondrial insults by altering gene expression to recover mitochondrial homeostasis. The mitoUPR is mediated by the stress-activated transcription factor ATFS-1 (activating transcription factor associated with stress 1). Constitutive activation of ATFS-1 increases resistance to exogenous stressors but paradoxically decreases lifespan. In this work, we determined the optimal levels of expression of activated ATFS-1 with respect to lifespan and resistance to stress by treating constitutively active atfs-1(et17) worms with different concentrations of RNA interference (RNAi) bacteria targeting atfs-1. We observed the maximum lifespan of atfs-1(et17) worms at full-strength atfs-1 RNAi, which was significantly longer than wild-type lifespan. Under the conditions of maximum lifespan, atfs-1(et17) worms did not show enhanced resistance to stress, suggesting a trade-off between stress resistance and longevity. The maximum resistance to stress in atfs-1(et17) worms occurred on empty vector. Under these conditions, atfs-1(et17) worms are short-lived. This indicates that constitutive activation of ATFS-1 can increase lifespan or enhance resistance to stress but not both, at the same time. Overall, these results demonstrate that constitutively active ATFS-1 can extend lifespan when expressed at low levels and that this lifespan extension is not dependent on the ability of ATFS-1 to enhance resistance to stress.
Collapse
Affiliation(s)
- Alexa Di Pede
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Intergrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Bokang Ko
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Intergrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Abdelrahman AlOkda
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Intergrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Aura A. Tamez González
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Intergrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Shusen Zhu
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Intergrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jeremy M. Van Raamsdonk
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Intergrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Yang X, Wei R, Meng F, Liu D, Gong X, Ruvkun G, Wei W. Mitochondrial fission surveillance is coupled to Caenorhabditis elegans DNA and chromosome segregation integrity. PLoS Genet 2025; 21:e1011678. [PMID: 40279356 PMCID: PMC12064022 DOI: 10.1371/journal.pgen.1011678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 05/09/2025] [Accepted: 04/05/2025] [Indexed: 04/27/2025] Open
Abstract
Mitochondrial fission and fusion are tightly regulated to specify mitochondrial abundance, localization, and arrangement during cell division as well as in the diverse differentiated cell types and physiological states. However, the regulatory pathways for such mitochondrial dynamics are less explored than the mitochondrial fission and fusion components. Here we report a large-scale screen for genes that regulate mitochondrial fission. Mitochondrial fission defects cause a characteristic uneven fluorescent pattern in embryos carrying mitochondrial stress reporter genes. Using this uneven activation, we performed RNAi screens that identified 3 kinase genes from a ~ 500-kinase library and another 11 genes from 3,300 random genes that function in mitochondrial fission. Many of these identified genes play roles in chromosome segregation. We found that chromosome missegregation and genome instability lead to dysregulation of mitochondrial fission, possibly independent of DRP-1. ATL-1, the C. elegans ATR orthologue, plays a potentially protective role in alleviating the mitochondrial fission defect caused by chromosome missegregation. This establishes a screening paradigm for identifying mitochondrial fission regulators, which reveals the potential role of ATR in surveilling mitochondrial fission to mitigate dysregulation caused by improper chromosome segregation.
Collapse
Affiliation(s)
- Xiaomeng Yang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ruichen Wei
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Fanfan Meng
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Dianchen Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xuan Gong
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wei Wei
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
6
|
Torres AK, Mira RG, Pinto C, Inestrosa NC. Studying the mechanisms of neurodegeneration: C. elegans advantages and opportunities. Front Cell Neurosci 2025; 19:1559151. [PMID: 40207239 PMCID: PMC11979225 DOI: 10.3389/fncel.2025.1559151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Caenorhabditis elegans has been widely used as a model organism in neurodevelopment for several decades due to its simplicity, rapid growth, short life cycle, transparency, and rather simple genetics. It has been useful in modeling neurodegenerative diseases by the heterologous expression of the major proteins that form neurodegenerative-linked aggregates such as amyloid-β peptide, tau protein, and α-synuclein, among others. Furthermore, chemical treatments as well as the existence of several interference RNA libraries, transgenic worm lines, and the possibility of generating new transgenic strains create a magnificent range of possible tools to study the signaling pathways that could confer protection against protein aggregates or, on the contrary, are playing a detrimental role. In this review, we summarize the different C. elegans models of neurodegenerative diseases with a focus on Alzheimer's and Parkinson's diseases and how genetic tools could be used to dissect the signaling pathways involved in their pathogenesis mentioning several examples. Finally, we discuss the use of pharmacological agents in C. elegans models that could help to study these disease-associated signaling pathways and the powerful combinations of experimental designs with genetic tools. This review highlights the advantages of C. elegans as a valuable intermediary between in vitro and mammalian in vivo models in the development of potential new therapies.
Collapse
Affiliation(s)
- Angie K. Torres
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo G. Mira
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Cristina Pinto
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C. Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Pitkänen M, Monteuuis G, Jackson CB, Matilainen O. Neopterin extends C. elegans lifespan in an ATFS-1-dependent manner. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001543. [PMID: 40191444 PMCID: PMC11971658 DOI: 10.17912/micropub.biology.001543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025]
Abstract
Neopterin, a byproduct of tetrahydrobiopterin synthesis, is commonly used as a biomarker for immune system activation. In addition to its role in immune responses, neopterin levels are known to increase with age. Its impact on longevity, however, remains unclear. Here, we demonstrate that neopterin supplementation extends lifespan in Caenorhabditis elegans . Additionally, neopterin shows moderate activation of the mitochondrial unfolded protein response (UPR mt ), and that the neopterin-mediated lifespan extension is dependent on ATFS-1 , the primary transcription factor regulating UPR mt . These findings highlight the need for further investigation into the biological functions and health-promoting effects of neopterin.
Collapse
Affiliation(s)
- Miina Pitkänen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Geoffray Monteuuis
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Christopher B. Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Uusimaa, Finland
| |
Collapse
|
8
|
Pohl F, Egan BM, Schneider DL, Mosley MC, Garcia MA, Hou S, Chiu CH, Kornfeld K. Environmental NaCl affects C. elegans development and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.641258. [PMID: 40161617 PMCID: PMC11952357 DOI: 10.1101/2025.03.09.641258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sodium is an essential nutrient, but is toxic in excess. In humans, excessive dietary sodium can cause high blood pressure, which contributes to age-related diseases including stroke and heart disease. We used C. elegans to elucidate how sodium levels influence animal aging. Most experiments on this animal are conducted in standard culture conditions: Nematode Growth Medium (NGM) agar with a lawn of E. coli. Here, we report that the supplemental NaCl in standard NGM, 50 mM, accelerates aging and decreases lifespan. For comparison, we prepared NGM with reduced NaCl or excess NaCl. Considering reduced NaCl as a baseline, wild-type worms on standard NGM displayed normal development and fertility but reduced lifespan and health span, indicating toxicity in old animals. The long-lived mutants daf-2, age-1, and nuo-6, cultured on standard NGM, also displayed reduced lifespan. Thus, NaCl in standard NGM accelerates aging in multiple genetic backgrounds. Wild-type worms on excess NaCl displayed delayed development and reduced fertility, and reduced lifespan and health span, indicating toxicity in both young and old animals. These results suggest that young animals are relatively resistant to NaCl toxicity, but that aging causes progressive sensitivity, such that old animals display toxicity to both standard and excess NaCl. We investigated pathways that respond to NaCl. Young animals cultured with excess NaCl activated gpdh-1, a specific response to NaCl stress. Old animals cultured with excess NaCl activated gpdh-1 and hsp-6, a reporter for the mitochondrial unfolded protein response. Thus, excess NaCl activates multiple stress response pathways in older animals.
Collapse
Affiliation(s)
- Franziska Pohl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- current affiliation: Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | - Brian M. Egan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- current affiliation: School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew C. Mosley
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Micklaus A. Garcia
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sydney Hou
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chen-Hao Chiu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Zhang J, Yan H, Wang Y, Yue X, Wang M, Liu L, Qiao P, Zhu Y, Li Z. Emerging insights into pulmonary hypertension: the potential role of mitochondrial dysfunction and redox homeostasis. Mol Cell Biochem 2025; 480:1407-1429. [PMID: 39254871 DOI: 10.1007/s11010-024-05096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Pulmonary hypertension (PH) is heterogeneous diseases that can lead to death due to progressive right heart failure. Emerging evidence suggests that, in addition to its role in ATP production, changes in mitochondrial play a central role in their pathogenesis, regulating integrated metabolic and signal transduction pathways. This review focuses on the basic principles of mitochondrial redox status in pulmonary vascular and right ventricular disorders, a series of dysfunctional processes including mitochondrial quality control (mitochondrial biogenesis, mitophagy, mitochondrial dynamics, mitochondrial unfolded protein response) and mitochondrial redox homeostasis. In addition, we will summarize how mitochondrial renewal and dynamic changes provide innovative insights for studying and evaluating PH. This will provide us with a clearer understanding of the initial signal transmission of mitochondria in PH, which would further improve our understanding of the pathogenesis of PH.
Collapse
Affiliation(s)
- Junming Zhang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Huimin Yan
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yan Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Xian Yue
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Meng Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Limin Liu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Pengfei Qiao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yixuan Zhu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Zhichao Li
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China.
| |
Collapse
|
10
|
Pender CL, Dishart JG, Gildea HK, Nauta KM, Page EM, Siddiqi TF, Cheung SS, Joe L, Burton NO, Dillin A. Perception of a pathogenic signature initiates intergenerational protection. Cell 2025; 188:594-605.e10. [PMID: 39721586 DOI: 10.1016/j.cell.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Transmission of immune responses from one generation to the next represents a powerful adaptive mechanism to protect an organism's descendants. Parental infection by the natural C. elegans pathogen Pseudomonas vranovensis induces a protective response in progeny, but the bacterial cues and intergenerational signal driving this response were previously unknown. Here, we find that animals activate a protective stress response program upon exposure to P. vranovensis-derived cyanide and that a metabolic byproduct of cyanide detoxification, β-cyanoalanine, acts as an intergenerational signal to protect progeny from infection. Remarkably, this mechanism does not require direct parental infection; rather, exposure to pathogen-derived volatiles is sufficient to enhance the survival of the next generation, indicating that parental surveillance of environmental cues can activate a protective intergenerational response. Therefore, the mere perception of a pathogen-derived toxin, in this case cyanide, can protect an animal's progeny from future pathogenic challenges.
Collapse
Affiliation(s)
- Corinne L Pender
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julian G Dishart
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Holly K Gildea
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kelsie M Nauta
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Emily M Page
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Talha F Siddiqi
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shannon S Cheung
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Larry Joe
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas O Burton
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
11
|
Thapa BV, Das M, Held JP, Patel MR. Loss of an uncharacterized mitochondrial methionine tRNA-synthetase induces mitochondrial unfolded protein response in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636310. [PMID: 39975410 PMCID: PMC11838591 DOI: 10.1101/2025.02.03.636310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential for translation, as they charge tRNA molecules with their corresponding amino acids. Alterations in aaRSs can significantly disrupt both cytosolic and mitochondrial translation. Through a forward genetic screen for mitochondrial unfolded protein response (UPRmt) activators in C. elegans, we identified a missense mutation (P447V) in the previously uncharacterized gene Y105E8A.20, which encodes a dually localized methionine tRNA synthetase (MetRS). Here, we characterize the UPRmt induction by Y105E8A.20, which we call mars-2, and demonstrate that the P447V allele is a loss-of-function mutation. Furthermore, we show impaired mars-2 activity in the mitochondria triggers UPRmt. This strain provides a valuable tool for studying mitochondrial translation and understanding how aaRSs are involved in mitochondrial homeostasis.
Collapse
Affiliation(s)
- Bharat Vivan Thapa
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Mohit Das
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James P Held
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Evolutionary Studies, Vanderbilt University, VU Box #34-1634, Nashville, TN, USA
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
12
|
Teixeira J, Harju AM, Othman A, Eriksson O, Battersby BJ, Garcia SMDA. Coenzyme Q improves mitochondrial and muscle dysfunction caused by CUG expanded repeats in Caenorhabditis elegans. Genetics 2025; 229:iyae208. [PMID: 39727349 DOI: 10.1093/genetics/iyae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Expansion of nucleotide repeat sequences is associated with more than 40 human neuromuscular disorders. The different pathogenic mechanisms associated with the expression of nucleotide repeats are not well understood. We use a Caenorhabditis elegans model that expresses expanded CUG repeats only in cells of the body wall muscle and recapitulate muscle dysfunction and impaired organismal motility to identify the basis by which expression of RNA repeats is toxic to muscle function. Here, we performed 2 consecutive RNA interference screens and uncovered coenzyme Q metabolism and mitochondrial dysfunction as critical genetic modifiers of the motility phenotype. Furthermore, coenzyme Q supplementation reduced the toxic phenotypes, ameliorating the motility impairment and mitochondrial phenotypes. Together our data show how the expression of expanded RNA repeats can be toxic to mitochondrial homeostasis.
Collapse
Affiliation(s)
- Joana Teixeira
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Anu-Mari Harju
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Alaa Othman
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Ove Eriksson
- Biochemistry/Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Brendan J Battersby
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Susana M D A Garcia
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| |
Collapse
|
13
|
Pfanner N, den Brave F, Becker T. Mitochondrial protein import stress. Nat Cell Biol 2025; 27:188-201. [PMID: 39843636 DOI: 10.1038/s41556-024-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025]
Abstract
Mitochondria have to import a large number of precursor proteins from the cytosol. Chaperones keep these proteins in a largely unfolded state and guide them to the mitochondrial import sites. Premature folding, mitochondrial stress and import defects can cause clogging of import sites and accumulation of non-imported precursors, representing a critical burden for cellular proteostasis. Here we discuss how cells respond to mitochondrial protein import stress by regenerating clogged import sites and inducing stress responses. The mitochondrial protein import machinery has a dual role by serving as sensor for detecting mitochondrial dysfunction and inducing stress-response pathways. The production of chaperones that fold or sequester precursor proteins in deposits is induced and the proteasomal activity is increased to remove the excess precursor proteins. Together, these pathways reveal how mitochondria are tightly integrated into a cellular proteostasis and stress response network to maintain cell viability.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMB, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
14
|
Yin X, Wang R, Thackeray A, Baehrecke EH, Alkema MJ. VPS13D mutations affect mitochondrial homeostasis and locomotion in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634397. [PMID: 39896501 PMCID: PMC11785166 DOI: 10.1101/2025.01.22.634397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Mitochondria control cellular metabolism, serve as hubs for signaling and organelle communication, and are important for the health and survival of cells. VPS13D encodes a cytoplasmic lipid transfer protein that regulates mitochondrial morphology, mitochondria and endoplasmic reticulum (ER) contact, quality control of mitochondria. VPS13D mutations have been reported in patients displaying ataxic and spastic gait disorders with variable age of onset. Here we used CRISPR/Cas9 gene editing to create VPS13D related-spinocerebellar ataxia-4 (SCAR4) missense mutations and C-terminal deletion in VPS13D 's orthologue vps-13D in C. elegans . Consistent with SCAR4 patient movement disorders and mitochondrial dysfunction, vps-13D mutant worms exhibit locomotion defects and abnormal mitochondrial morphology. Importantly, animals with a vps-13D deletion or a N3017I missense mutation exhibited an increase in mitochondrial unfolded protein response (UPR mt ). The cellular and behavioral changes caused by VPS13D mutations in C. elegans advance the development of animal models that are needed to study SCAR4 pathogenesis.
Collapse
|
15
|
Muthu S, Tran Z, Thilagavathi J, Bolarum T, Azzam EI, Suzuki CK, Sundararajan V. Aging triggers mitochondrial, endoplasmic reticulum, and metabolic stress responses in the heart. THE JOURNAL OF CARDIOVASCULAR AGING 2025; 5:4. [PMID: 40124955 PMCID: PMC11928159 DOI: 10.20517/jca.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Introduction Aging is a multifaceted biological process characterized by a progressive decline in cellular and tissue function. It significantly impacts the cardiovascular system and contributes to the onset of cardiovascular diseases. The mitochondria (mt) and the endoplasmic reticulum (ER) play synergistic roles in maintaining cellular homeostasis and energy production in the heart. Nevertheless, their response to cardiac aging is not well known. Aim This study explores mt and ER stress responses and their associated factors, such as metabolic, cellular, and autophagic stress, in cardiac aging. Methods and Results We utilized 10- and 25-month-old CBA/CaJ mice to evaluate mt, ER, and their associated factors, such as metabolic, cellular, and autophagic stress responses. We studied the gene expression for mitochondrial biogenesis, mt and ER stress response, autophagy and metabolic markers, and activating transcription factors that mediate cellular stress responses. We found no significant difference in mtDNA content and the mRNA expression of the mt transcription factor, Tfam; however, selective mtDNA genes, such as mt-Cytb and mt-Co2, showed significant induction in 25-month-aged compared to 10-month-young hearts. Interestingly, genes of several mitochondrial stress response proteases and their components, including Lonp1, Yme1l1, Afg3l2, and Spg7, were significantly induced, with a substantial induction of Clpp and Clpx. However, age-associated differences were not observed in the induction of mt chaperones (Hspa9 and Hspd1), but significant induction of Dnaja2, a mitochondrial co-chaperone, was observed. The ER stress transcription factors Xbp1 and Atf6 were markedly induced in aged hearts, accompanied by decreased expression of ER stress chaperone Hsp90b with no change in Hspa5 and Dnajb9 chaperones. However, induction of Dnm1l was significant, whereas Mfn1 and Fis1 were downregulated in contrast to Mfn2, suggesting dysregulated mitochondrial dynamics in the aged heart with no change in autophagy and metabolic stress regulators observed. Furthermore, aged hearts showed significantly increased oxidative damage as evidenced by elevated lipid peroxidation (4-HNE) levels. Conclusion These findings demonstrate that aging triggers mt, ER, and oxidative stress in the heart, which over time leads to the accumulation of oxidative damage, causing cellular impairment, highlighting these pathways as potential therapeutic targets for mitigating age-related cardiac dysfunction.
Collapse
Affiliation(s)
- Sakthijothi Muthu
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Zinnia Tran
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Jayapalraja Thilagavathi
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Tanvi Bolarum
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Edouard I. Azzam
- Department of Radiology, Rutgers New Jersey Medical School, Cancer Center, Newark, NJ 07101, USA
| | - Carolyn K. Suzuki
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Venkatesh Sundararajan
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
16
|
Zhou L, Zhuo H, Jin J, Pu A, Liu Q, Song J, Tong X, Tang H, Dai F. Temperature perception by ER UPR promotes preventive innate immunity and longevity. Cell Rep 2024; 43:115071. [PMID: 39675004 DOI: 10.1016/j.celrep.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Microbial infectivity increases with rising environmental temperature, heightening the risk of infection to host organisms. The host's basal immunity is activated accordingly to mitigate upcoming pathogenic threats; still, how animals sense temperature elevation to adjust their preventive immune response remains elusive. This study reports that high temperature enhances innate immunity differently from pathogen infection. Unlike pathogen invasion requiring the mitochondrial unfolded protein response (UPR), high temperature engages the endoplasmic reticulum (ER) UPR to trigger the innate immune response. Furthermore, chronic activation of the XBP-1 UPR branch represses nucleolar ribosome biogenesis, a highly energy-consuming process, leading to lipid accumulation. The subsequent increase in oleic acid promotes the activation of the PMK-1 immune pathway. Additionally, ribosome biogenesis was identified as a regulator of longevity, wherein its impact is dependent on lipid metabolism and innate immunity. Collectively, our findings reveal the crucial role of ER-nucleolus crosstalk in shaping preventive immune responses and lifespan regulation.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haoyu Zhuo
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiaqi Jin
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Anrui Pu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qin Liu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiangbo Song
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Lu B, Xing L, Zhu XY, Tang H, Lu B, Yuan F, Almasry Y, Krueger A, Barsom SH, Krier JD, Jordan KL, Lerman A, Eirin A, Lerman LO. Tumor necrosis factor-stimulated gene-6 inhibits endoplasmic reticulum stress in the ischemic mouse kidney. iScience 2024; 27:111454. [PMID: 39717095 PMCID: PMC11664141 DOI: 10.1016/j.isci.2024.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/20/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Kidney tissue injury in renal artery stenosis (RAS) involves inflammation, endoplasmic reticulum stress (ERS), and mitochondria damage. Tumor necrosis factor-stimulated gene-6 (TSG-6), an endogenous reparative molecule, may decrease ERS and improve renal function. To assess its impact on the stenotic murine kidney, we injected TSG-6 or vehicle for two weeks in mice with RAS. At completion, we assessed stenotic kidney function and oxygenation, inflammation, and expression of ERS-related genes. TSG-6 treatment reduced renal hypoxia, urinary protein and plasma creatinine levels, renal fibrosis, and apoptosis. TSG-6 also exhibited an anti-inflammatory effect, reflected in the downregulated expression of the Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB) pathway in murine kidneys in vivo and HK-2 cells in vitro. Moreover, ERS-related molecules were downregulated after TSG-6 treatment, while most indicators of mitochondrial unfolded protein response remained unaltered. Therefore, TSG-6 alleviates inflammation, ERS, apoptosis, and fibrosis in the post-stenotic mouse kidney. These observations position TSG-6 as a potential therapeutic tool in RAS.
Collapse
Affiliation(s)
- Bo Lu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai 200437, China
| | - Li Xing
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, China
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Brandon Lu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Fei Yuan
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Urology, National Children’s Medical Center, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yazan Almasry
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Alexander Krueger
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Samer H. Barsom
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - James D. Krier
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kyra L. Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Dutta N, Gerke JA, Odron SF, Morris JD, Hruby A, Kim J, Torres TC, Shemtov SJ, Clarke JG, Chang MC, Shaghasi H, Ray MN, Averbukh M, Hoang S, Oorloff M, Alcala A, Vega M, Mehta HH, Thorwald MA, Crews P, Vermulst M, Garcia G, Johnson TA, Higuchi-Sanabria R. Investigating impacts of the mycothiazole chemotype as a chemical probe for the study of mitochondrial function and aging. GeroScience 2024; 46:6009-6028. [PMID: 38570396 PMCID: PMC11493899 DOI: 10.1007/s11357-024-01144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/16/2024] [Indexed: 04/05/2024] Open
Abstract
Small molecule inhibitors of the mitochondrial electron transport chain (ETC) hold significant promise to provide valuable insights to the field of mitochondrial research and aging biology. In this study, we investigated two molecules: mycothiazole (MTZ) - from the marine sponge C. mycofijiensis and its more stable semisynthetic analog 8-O-acetylmycothiazole (8-OAc) as potent and selective chemical probes based on their high efficiency to inhibit ETC complex I function. Similar to rotenone (Rote), MTZ, a newly employed ETC complex I inhibitor, exhibited higher cytotoxicity against cancer cell lines compared to certain non-cancer cell lines. Interestingly, 8-OAc demonstrated greater selectivity for cancer cells when compared to both MTZ and Rote, which has promising potential for anticancer therapeutic development. Furthermore, in vivo experiments with these small molecules utilizing a C. elegans model demonstrate their unexplored potential to investigate aging studies. We observed that both molecules have the ability to induce a mitochondria-specific unfolded protein response (UPRMT) pathway, that extends lifespan of worms when applied in their adult stage. We also found that these two molecules employ different pathways to extend lifespan in worms. Whereas MTZ utilizes the transcription factors ATFS-1 and HSF1, which are involved in the UPRMT and heat shock response (HSR) pathways respectively, 8-OAc only required HSF1 and not ATFS-1 to mediate its effects. This observation underscores the value of applying stable, potent, and selective next generation chemical probes to elucidate an important insight into the functional roles of various protein subunits of ETC complexes and their regulatory mechanisms associated with aging.
Collapse
Affiliation(s)
- Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Joe A Gerke
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Sofia F Odron
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Joseph D Morris
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Adam Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Juri Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Toni Castro Torres
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sarah J Shemtov
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jacqueline G Clarke
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Michelle C Chang
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Hooriya Shaghasi
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Marissa N Ray
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sally Hoang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Maria Oorloff
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew Vega
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Phillip Crews
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Marc Vermulst
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tyler A Johnson
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA.
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
19
|
Sheng Y, Abreu A, Markovich Z, Ebea P, Davis L, Park E, Sheng P, Xie M, Han SM, Xiao R. A mitochondrial unfolded protein response-independent role of DVE-1 in longevity regulation. Cell Rep 2024; 43:114889. [PMID: 39423131 PMCID: PMC11648574 DOI: 10.1016/j.celrep.2024.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The special AT-rich sequence-binding (SATB) protein DVE-1 is widely recognized for its pivotal involvement in orchestrating the retrograde mitochondrial unfolded protein response (mitoUPR) in C. elegans. In our study of downstream factors contributing to lifespan extension in sensory ciliary mutants, we find that DVE-1 is crucial for this longevity effect independent of its canonical mitoUPR function. Additionally, DVE-1 also influences lifespan under conditions of dietary restriction and germline loss, again distinct from its role in mitoUPR. Mechanistically, while mitochondrial stress typically prompts nuclear accumulation of DVE-1 to initiate the transcriptional mitoUPR program, these long-lived mutants reduce DVE-1 nuclear accumulation, likely by enhancing its cytosolic translocation. This observation suggests a cytosolic role for DVE-1 in lifespan extension. Overall, our study implies that, in contrast to the more narrowly defined role of the mitoUPR-related transcription factor ATFS-1, DVE-1 may possess broader functions than previously recognized in modulating longevity and defending against stress.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Adriana Abreu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zachary Markovich
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pearl Ebea
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Leah Davis
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric Park
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rui Xiao
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Institute on Aging, University of Florida, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
20
|
Yu G, Huang Z, Guo C, Li J, Wang X, Wang Y, Wang X. Heat Shock Factor HSFA6b Mediates Mitochondrial Unfolded Protein Response in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:3116. [PMID: 39599325 PMCID: PMC11597222 DOI: 10.3390/plants13223116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024]
Abstract
Mitochondria are important organelles in eukaryotes and are involved in various metabolic processes. Mitochondrial proteotoxic stress triggers the mitochondrial unfolded protein response (UPRmt) to restore mitochondrial protein homeostasis and maintain normal life activities. However, the regulatory mechanism of plant UPRmt remains to be revealed in Arabidopsis. Based on the fact that UPRmt activates heat shock protein (HSP) genes, we identified the heat shock transcription factor HSFA6b as a key regulator mediating UPRmt through reverse genetics. HSFA6b responded to mitochondrial proteotoxic stress and regulated mitochondrial heat shock proteins' genes' (mtHSPs) expression. HSFA6b translocated to the nuclear after treatment with doxycycline (Dox)-a mitochondrial ribosome translation inhibitor. HSFA6b binds to the mtHSPs promoters and activates mtHSPs expression. The HSFA6b mutation blocked the UPRmt signals to promote root growth under mitochondrial proteotoxic stress and accelerated leaf senescence during development. Our study reveals a novel signal-regulating mechanism in the UPRmt pathways and provides new insights regarding the regulation of plant growth and development and stress resistance by the UPRmt pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Senese R, Petito G, Silvestri E, Ventriglia M, Mosca N, Potenza N, Russo A, Falvo S, Manfrevola F, Cobellis G, Chioccarelli T, Porreca V, Mele VG, Chianese R, de Lange P, Ricci G, Cioffi F, Lanni A. The impact of cannabinoid receptor 1 absence on mouse liver mitochondria homeostasis: insight into mitochondrial unfolded protein response. Front Cell Dev Biol 2024; 12:1464773. [PMID: 39512900 PMCID: PMC11541708 DOI: 10.3389/fcell.2024.1464773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction The contribution of Cannabinoid type 1 receptor (CB1) in mitochondrial energy transduction mechanisms and mitochondrial activities awaits deeper investigations. Our study aims to assess the impact of CB1 absence on the mitochondrial compartment in the liver, focusing on both functional aspects and remodeling processes. Methods We used CB1-/- and CB1+/+ male mice. Cytochrome C Oxidase activity was determined polarographically. The expression and the activities of separated mitochondrial complexes and supercomplexes were performed by using Blue-Native Page, Western blotting and histochemical staining for in-gel activity. Key players of Mitochondrial Quality Control processes were measured using RT-qPCR and Western blotting. Liver fine sub-cellular ultrastructural features were analyzed by TEM analysis. Results and discussion In the absence of CB1, several changes in the liver occur, including increased oxidative capacity, reduced complex I activity, enhanced complex IV activity, general upregulation of respiratory supercomplexes, as well as higher levels of oxidative stress. The mitochondria and cellular metabolism may be affected by these changes, increasing the risk of ROS-related damage. CB1-/- mice show upregulation of mitochondrial fusion, fission and biogenesis processes which suggests a dynamic response to the absence of CB1. Furthermore, oxidative stress disturbs mitochondrial proteostasis, initiating the mitochondrial unfolded protein response (UPRmt). We noted heightened levels of pivotal enzymes responsible for maintaining mitochondrial integrity, along with heightened expression of molecular chaperones and transcription factors associated with cellular stress reactions. Additionally, our discoveries demonstrate a synchronized reaction to cellular stress, involving both UPRmt and UPRER pathways.
Collapse
Affiliation(s)
- Rosalba Senese
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Giuseppe Petito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Elena Silvestri
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Maria Ventriglia
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Nicola Mosca
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Nicoletta Potenza
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Aniello Russo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Sara Falvo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Pieter de Lange
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| |
Collapse
|
22
|
Liu L, Shao M, Huang Y, Qian P, Huang H. Unraveling the roles and mechanisms of mitochondrial translation in normal and malignant hematopoiesis. J Hematol Oncol 2024; 17:95. [PMID: 39396039 PMCID: PMC11470598 DOI: 10.1186/s13045-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024] Open
Abstract
Due to spatial and genomic independence, mitochondria possess a translational mechanism distinct from that of cytoplasmic translation. Several regulators participate in the modulation of mitochondrial translation. Mitochondrial translation is coordinated with cytoplasmic translation through stress responses. Importantly, the inhibition of mitochondrial translation leads to the inhibition of cytoplasmic translation and metabolic disruption. Therefore, defects in mitochondrial translation are closely related to the functions of hematopoietic cells and various immune cells. Finally, the inhibition of mitochondrial translation is a potential therapeutic target for treating multiple hematologic malignancies. Collectively, more in-depth insights into mitochondrial translation not only facilitate our understanding of its functions in hematopoiesis, but also provide a basis for the discovery of new treatments for hematological malignancies and the modulation of immune cell function.
Collapse
Affiliation(s)
- Lianxuan Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Mi Shao
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yue Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
24
|
Mavillard F, Guerra-Castellano A, Guerrero-Gómez D, Rivas E, Cantero G, Servian-Morilla E, Folland C, Ravenscroft G, Martín MA, Miranda-Vizuete A, Cabrera-Serrano M, Diaz-Moreno I, Paradas C. A splice-altering homozygous variant in COX18 causes severe sensory-motor neuropathy with oculofacial apraxia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167330. [PMID: 38960055 DOI: 10.1016/j.bbadis.2024.167330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Affiliation(s)
- Fabiola Mavillard
- Neuromuscular Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla, Spain
| | | | - David Guerrero-Gómez
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Eloy Rivas
- Department of Neuropathology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Gloria Cantero
- Neuromuscular Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla, Spain
| | - Emilia Servian-Morilla
- Neuromuscular Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla, Spain
| | - Chiara Folland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Miguel A Martín
- Mitochondrial & Neuromuscular Disorders Group, Genetics Department, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Macarena Cabrera-Serrano
- Neuromuscular Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla, Spain
| | - Irene Diaz-Moreno
- Instituto de Investigaciones Químicas, Universidad de Sevilla-CSIC, Sevilla, Spain.
| | - Carmen Paradas
- Neuromuscular Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla, Spain.
| |
Collapse
|
25
|
Ruan M, Xu F, Li N, Yu J, Teng F, Tang J, Huang C, Zhu H. Free long-chain fatty acids trigger early postembryonic development in starved Caenorhabditis elegans by suppressing mTORC1. PLoS Biol 2024; 22:e3002841. [PMID: 39436954 PMCID: PMC11530034 DOI: 10.1371/journal.pbio.3002841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/01/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
Postembryonic development of animals has long been considered an internally predetermined program, while macronutrients were believed to be essential solely for providing biomatters and energy to support this process. However, in this study, by using a nematode Caenorhabditis elegans (abbreviated as C. elegans hereafter) model, we surprisingly discovered that dietary supplementation of palmitic acid alone, rather than other abundant essential nutrients such as glucose or amino acid mixture, was sufficient to initiate early postembryonic development even under complete macronutrient deprivation. Such a development was evidenced by changes in morphology, cellular markers in multiple tissues, behaviors, and the global transcription pattern and it occurred earlier than the well-known early L1 nutrient checkpoint. Mechanistically, palmitic acid did not function as a biomatter/energy provider, but rather as a ligand to activate the nuclear hormone receptor NHR-49/80, leading to the production of an unknown peroxisome-derived secretive hormone in the intestine. This hormonal signal was received by chemosensory neurons in the head, regulating the insulin-like neuropeptide secretion and its downstream nuclear receptor to orchestrate global development. Additionally, the nutrient-sensing hub mTORC1 played a negative role in this process. In conclusion, our data indicate that free fatty acids act as a primary nutrient signal to launch the early development in C. elegans, which suggests that specific nutrients, rather than the internal genetic program, serve as the first impetus for postembryonic development.
Collapse
Affiliation(s)
- Meiyu Ruan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fan Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fukang Teng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiawei Tang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
26
|
Qi L, Liu S, Fang Q, Qian C, Peng C, Liu Y, Yang P, Wu P, Shan L, Cui Q, Hua Q, Yang S, Ye C, Yang W, Li P, Xu X. Ginsenoside Rg3 Restores Mitochondrial Cardiolipin Homeostasis via GRB2 to Prevent Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403058. [PMID: 39159293 PMCID: PMC11497058 DOI: 10.1002/advs.202403058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Indexed: 08/21/2024]
Abstract
Regulating cardiolipin to maintain mitochondrial homeostasis is a promising strategy for addressing Parkinson's disease (PD). Through a comprehensive screening and validation process involving multiple models, ginsenoside Rg3 (Rg3) as a compound capable of enhancing cardiolipin levels is identified. This augmentation in cardiolipin levels fosters mitochondrial homeostasis by bolstering mitochondrial unfolded protein response, promoting mitophagy, and enhancing mitochondrial oxidative phosphorylation. Consequently, this cascade enhances the survival of tyrosine hydroxylase positive (TH+) dopaminergic neurons, leading to an amelioration in motor performance within PD mouse models. Using limited proteolysis-small-molecule mapping combined with molecular docking analysis, it has confirmed Growth Factor Receptor-Bound Protein 2 (GRB2) as a molecular target for Rg3. Furthermore, these investigations reveal that Rg3 facilitates the interaction between GRB2 and TRKA (Neurotrophic Tyrosine Kinase, Receptor, Type 1), thus promotes EVI1 (Ecotropic Virus Integration Site 1 Protein Homolog) phosphorylation by ERK, subsequently increases CRLS1 (Cardiolipin Synthase 1) gene expression and boosts cardiolipin synthesis. The absence of GRB2 or CRLS1 significantly attenuates the beneficial effects of Rg3 on PD symptoms. Finally, Tenofovir Disoproxil Fumarate (TDF) that also promotes the binding between GRB2 and TRKA is further identified. The identified compounds, Rg3 and TDF, exhibit promising potential for the prevention of PD by bolstering cardiolipin expression and reinstating mitochondrial homeostasis.
Collapse
Affiliation(s)
- Li‐Feng‐Rong Qi
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Shuai Liu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
- Department of PharmacyThe Fourth Affiliated HospitalCenter for Innovative Traditional Chinese Medicine Target and New Drug ResearchInternational Institutes of MedicineZhejiang University School of MedicineYiwuZhejiang322000China
| | - Qiuyuan Fang
- Department of Biophysics and Department of Neurosurgery of the First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Cheng Qian
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Chao Peng
- National Facility for Protein Science in ShanghaiZhangjiang LabShanghai Advanced Research InstituteChinese Academy of ScienceShanghai201210China
- Shanghai Science Research CenterChinese Academy of SciencesShanghai201204China
| | - Yuci Liu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Peng Yang
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Ping Wu
- National Facility for Protein Science in ShanghaiZhangjiang LabShanghai Advanced Research InstituteChinese Academy of ScienceShanghai201210China
- Shanghai Science Research CenterChinese Academy of SciencesShanghai201204China
| | - Ling Shan
- Dept. Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesMeibergdreef 47Amsterdam1105BAthe Netherlands
| | - Qinghua Cui
- Department of Biomedical InformaticsSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Sciences of the Ministry of EducationCenter for Non‐Coding RNA MedicinePeking University Health Science Center BeijingBeijing100191China
| | - Qian Hua
- School of Life SciencesBeijing University of Chinese MedicineBeijing100029China
| | - Sen Yang
- Life Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Cunqi Ye
- Life Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Wei Yang
- Department of PharmacyThe Fourth Affiliated HospitalCenter for Innovative Traditional Chinese Medicine Target and New Drug ResearchInternational Institutes of MedicineZhejiang University School of MedicineYiwuZhejiang322000China
| | - Ping Li
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Xiaojun Xu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
- Department of PharmacyThe Fourth Affiliated HospitalCenter for Innovative Traditional Chinese Medicine Target and New Drug ResearchInternational Institutes of MedicineZhejiang University School of MedicineYiwuZhejiang322000China
| |
Collapse
|
27
|
Jozwik KM, Held JP, Hecht CA, Patel MR. A viable hypomorphic mutation in the mitochondrial ribosome subunit, MRPS-31, exhibits mitochondrial dysfunction in C. elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001344. [PMID: 39410965 PMCID: PMC11474418 DOI: 10.17912/micropub.biology.001344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
The mitochondrial ribosome (mitoribosome) translates mitochondrial genome encoded proteins essential for cellular energy production. Given this critical role, defects in the mitoribosome can cause mitochondrial stress and manifest as multisystemic diseases. In a screen for unique activators of the mitochondrial unfolded protein response (UPR mt ) in Caenorhabditis elegans , we recovered a strain harboring a missense mutation in the gene encoding mitochondrial ribosome protein S31 ( MRPS-31 )-a component of the mitoribosome small subunit. Herein, we confirm causality of the mrps-31 allele and characterize its induction of UPR mt and impact on organismal development, providing a valuable model for further study of the mitoribosome.
Collapse
Affiliation(s)
- Kylie M. Jozwik
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States
| | - James P. Held
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States
| | - Chloe A. Hecht
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States
| | - Maulik R. Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
- Evolutionary Studies, Vanderbilt University, Nashville, Tennessee, United States
- Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
28
|
Ojha R, Tantray I, Banerjee S, Rimal S, Thirunavukkarasu S, Srikrishna S, Chiu W, Mete U, Sharma A, Kakkar N, Lu B. Translation stalling induced mitochondrial entrapment of ribosomal quality control related proteins offers cancer cell vulnerability. RESEARCH SQUARE 2024:rs.3.rs-4899860. [PMID: 39315278 PMCID: PMC11419255 DOI: 10.21203/rs.3.rs-4899860/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Ribosome-associated quality control (RQC) monitors ribosomes for aberrant translation. While the role of RQC in neurodegenerative disease is beginning to be appreciated, its involvement in cancer is understudied. Here, we show a positive correlation between RQC proteins ABCE1 and ZNF598 and high-grade muscle-invasive bladder cancer. Translational stalling by the inhibitor emetine (EME) leads to increased mitochondrial localization of RQC factors including ABCE1, ZNF598, and NEMF, which are continuously imported into mitochondria facilitated by increased mitochondrial membrane potential caused by EME. This reduces the availability of these factors in the cytosol, compromising the effectiveness of RQC in handling stalled ribosomes in the cytosol and those associated with the mitochondrial outer membrane (MOM). Imported RQC factors form aggregates inside the mitochondria in a process we term stalling-induced mitochondrial stress (SIMS). ABCE1 plays a crucial role in maintaining mitochondrial health during SIMS. Notably, cancer stem cells (CSCs) exhibit increased expression of ABCE1 and consequently are more resistant to EME-induced mitochondrial dysfunction. This points to a potential mechanism of drug resistance by CSCs. Our study highlights the significance of mitochondrial entrapment of RQC factors such as ABCE1 in determining the fate of cancer cells versus CSCs. Targeting ABCE1 or other RQC factors in translational inhibition cancer therapy may help overcome drug resistance.
Collapse
Affiliation(s)
- Rani Ojha
- Post Graduate Institute of Medical Education and Research
| | | | | | | | | | | | | | - Uttam Mete
- Post Graduate Institute of Medical Education and Research
| | - Aditya Sharma
- Post Graduate Institute of Medical Education and Research
| | - Nandita Kakkar
- Post Graduate Institute of Medical Education and Research
| | | |
Collapse
|
29
|
Oorloff M, Hruby A, Averbukh M, Alcala A, Dutta N, Minor C, Castro Torres T, Moaddeli D, Vega M, Kim J, Bong A, Coakley AJ, Hicks D, Wang J, Wang T, Hoang S, Tharp KM, Garcia G, Higuchi-Sanabria R. Growth on stiffer substrates impacts animal health and longevity in C. elegans. PLoS One 2024; 19:e0302673. [PMID: 39264947 PMCID: PMC11392421 DOI: 10.1371/journal.pone.0302673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/09/2024] [Indexed: 09/14/2024] Open
Abstract
Mechanical stress is a measure of internal resistance exhibited by a body or material when external forces, such as compression, tension, bending, etc. are applied. The study of mechanical stress on health and aging is a continuously growing field, as major changes to the extracellular matrix and cell-to-cell adhesions can result in dramatic changes to tissue stiffness during aging and diseased conditions. For example, during normal aging, many tissues including the ovaries, skin, blood vessels, and heart exhibit increased stiffness, which can result in a significant reduction in function of that organ. As such, numerous model systems have recently emerged to study the impact of mechanical and physical stress on cell and tissue health, including cell-culture conditions with matrigels and other surfaces that alter substrate stiffness and ex vivo tissue models that can apply stress directly to organs like muscle or tendons. Here, we sought to develop a novel method in an in vivo model organism setting to study the impact of altering substrate stiffness on aging by changing the stiffness of solid agar medium used for growth of C. elegans. We found that greater substrate stiffness had limited effects on cellular health, gene expression, organismal health, stress resilience, and longevity. Overall, our study reveals that altering substrate stiffness of growth medium for C. elegans has only mild impact on animal health and longevity; however, these impacts were not nominal and open up important considerations for C. elegans biologists in standardizing agar medium choice for experimental assays.
Collapse
Affiliation(s)
- Maria Oorloff
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Adam Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Cray Minor
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States of America
| | - Toni Castro Torres
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Darius Moaddeli
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Matthew Vega
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Juri Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Andrew Bong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Aeowynn J. Coakley
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Daniel Hicks
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Jing Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Tiffany Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Sally Hoang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Kevin M. Tharp
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States of America
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
30
|
Liu P, Liu X, Qi B. UPR ER-immunity axis acts as physiological food evaluation system that promotes aversion behavior in sensing low-quality food. eLife 2024; 13:RP94181. [PMID: 39235964 PMCID: PMC11377039 DOI: 10.7554/elife.94181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
To survive in challenging environments, animals must develop a system to assess food quality and adjust their feeding behavior accordingly. However, the mechanisms that regulate this chronic physiological food evaluation system, which monitors specific nutrients from ingested food and influences food-response behavior, are still not fully understood. Here, we established a low-quality food evaluation assay system and found that heat-killed E. coli (HK-E. coli), a low-sugar food, triggers cellular UPRER and immune response. This encourages animals to avoid low-quality food. The physiological system for evaluating low-quality food depends on the UPRER (IRE-1/XBP-1) - Innate immunity (PMK-1/p38 MAPK) axis, particularly its neuronal function, which subsequently regulates feeding behaviors. Moreover, animals can adapt to a low-quality food environment through sugar supplementation, which inhibits the UPRER -PMK-1 regulated stress response by increasing vitamin C biosynthesis. This study reveals the role of the cellular stress response pathway as physiological food evaluation system for assessing nutritional deficiencies in food, thereby enhancing survival in natural environments.
Collapse
Affiliation(s)
- Pengfei Liu
- Southwest United Graduate School,Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xinyi Liu
- Southwest United Graduate School,Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bin Qi
- Southwest United Graduate School,Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
31
|
Cornell R, Cao W, Harradine B, Godini R, Handley A, Pocock R. Neuro-intestinal acetylcholine signalling regulates the mitochondrial stress response in Caenorhabditis elegans. Nat Commun 2024; 15:6594. [PMID: 39097618 PMCID: PMC11297972 DOI: 10.1038/s41467-024-50973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024] Open
Abstract
Neurons coordinate inter-tissue protein homeostasis to systemically manage cytotoxic stress. In response to neuronal mitochondrial stress, specific neuronal signals coordinate the systemic mitochondrial unfolded protein response (UPRmt) to promote organismal survival. Yet, whether chemical neurotransmitters are sufficient to control the UPRmt in physiological conditions is not well understood. Here, we show that gamma-aminobutyric acid (GABA) inhibits, and acetylcholine (ACh) promotes the UPRmt in the Caenorhabditis elegans intestine. GABA controls the UPRmt by regulating extra-synaptic ACh release through metabotropic GABAB receptors GBB-1/2. We find that elevated ACh levels in animals that are GABA-deficient or lack ACh-degradative enzymes induce the UPRmt through ACR-11, an intestinal nicotinic α7 receptor. This neuro-intestinal circuit is critical for non-autonomously regulating organismal survival of oxidative stress. These findings establish chemical neurotransmission as a crucial regulatory layer for nervous system control of systemic protein homeostasis and stress responses.
Collapse
Affiliation(s)
- Rebecca Cornell
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Wei Cao
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Bernie Harradine
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Rasoul Godini
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
32
|
Da Costa RT, Urquiza P, Perez MM, Du Y, Khong ML, Zheng H, Guitart-Mampel M, Elustondo PA, Scoma ER, Hambardikar V, Ueberheide B, Tanner JA, Cohen A, Pavlov EV, Haynes CM, Solesio ME. Mitochondrial inorganic polyphosphate is required to maintain proteostasis within the organelle. Front Cell Dev Biol 2024; 12:1423208. [PMID: 39050895 PMCID: PMC11266304 DOI: 10.3389/fcell.2024.1423208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
The existing literature points towards the presence of robust mitochondrial mechanisms aimed at mitigating protein dyshomeostasis within the organelle. However, the precise molecular composition of these mechanisms remains unclear. Our data show that inorganic polyphosphate (polyP), a polymer well-conserved throughout evolution, is a component of these mechanisms. In mammals, mitochondria exhibit a significant abundance of polyP, and both our research and that of others have already highlighted its potent regulatory effect on bioenergetics. Given the intimate connection between energy metabolism and protein homeostasis, the involvement of polyP in proteostasis has also been demonstrated in several organisms. For example, polyP is a bacterial primordial chaperone, and its role in amyloidogenesis has already been established. Here, using mammalian models, our study reveals that the depletion of mitochondrial polyP leads to increased protein aggregation within the organelle, following stress exposure. Furthermore, mitochondrial polyP is able to bind to proteins, and these proteins differ under control and stress conditions. The depletion of mitochondrial polyP significantly affects the proteome under both control and stress conditions, while also exerting regulatory control over gene expression. Our findings suggest that mitochondrial polyP is a previously unrecognized, and potent component of mitochondrial proteostasis.
Collapse
Affiliation(s)
- Renata T. Da Costa
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Pedro Urquiza
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Matheus M. Perez
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - YunGuang Du
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Amherst, MA, United States
| | - Mei Li Khong
- School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, United States
| | - Mariona Guitart-Mampel
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Pia A. Elustondo
- Biological Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ernest R. Scoma
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Vedangi Hambardikar
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University-Grossman School of Medicine, New York City, NY, United States
| | - Julian A. Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China
| | - Alejandro Cohen
- Biological Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Evgeny V. Pavlov
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York City, NY, United States
| | - Cole M. Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Amherst, MA, United States
| | - Maria E. Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| |
Collapse
|
33
|
Charmpilas N, Sotiriou A, Axarlis K, Tavernarakis N, Hoppe T. Reproductive regulation of the mitochondrial stress response in Caenorhabditis elegans. Cell Rep 2024; 43:114336. [PMID: 38852157 DOI: 10.1016/j.celrep.2024.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
Proteome integrity is fundamental for cellular and organismal homeostasis. The mitochondrial unfolded protein response (UPRmt), a key component of the proteostasis network, is activated in a non-cell-autonomous manner in response to mitochondrial stress in distal tissues. However, the importance of inter-tissue communication for UPRmt inducibility under physiological conditions remains elusive. Here, we show that an intact germline is essential for robust UPRmt induction in the Caenorhabditis elegans somatic tissues. A series of nematode mutants with germline defects are unable to respond to genetic or chemical UPRmt inducers. Our genetic analysis suggests that reproductive signals, rather than germline stem cells, are responsible for somatic UPRmt induction. Consistent with this observation, we show that UPRmt is sexually dimorphic, as male nematodes are inherently unresponsive to mitochondrial stress. Our findings highlight a paradigm of germline-somatic communication and suggest that reproductive cessation is a primary cause of age-related UPRmt decline.
Collapse
Affiliation(s)
- Nikolaos Charmpilas
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Aggeliki Sotiriou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantinos Axarlis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece.
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
34
|
Dishart JG, Pender CL, Shen K, Zhang H, Ly M, Webb MB, Dillin A. Olfaction regulates peripheral mitophagy and mitochondrial function. SCIENCE ADVANCES 2024; 10:eadn0014. [PMID: 38905346 PMCID: PMC11192085 DOI: 10.1126/sciadv.adn0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
The central nervous system coordinates peripheral cellular stress responses, including the unfolded protein response of the mitochondria (UPRMT); however, the contexts for which this regulatory capability evolved are unknown. UPRMT is up-regulated upon pathogenic infection and in metabolic flux, and the olfactory nervous system has been shown to regulate pathogen resistance and peripheral metabolic activity. Therefore, we asked whether the olfactory nervous system in Caenorhabditis elegans controls the UPRMT cell nonautonomously. We found that silencing a single inhibitory olfactory neuron pair, AWC, led to robust induction of UPRMT and reduction of oxidative phosphorylation dependent on serotonin signaling and parkin-mediated mitophagy. Further, AWC ablation confers resistance to the pathogenic bacteria Pseudomonas aeruginosa partially dependent on the UPRMT transcription factor atfs-1 and fully dependent on mitophagy machinery. These data illustrate a role for the olfactory nervous system in regulating whole-organism mitochondrial dynamics, perhaps in preparation for postprandial metabolic stress or pathogenic infection.
Collapse
Affiliation(s)
- Julian G. Dishart
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Corinne L. Pender
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Koning Shen
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hanlin Zhang
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Megan Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Madison B. Webb
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
35
|
Torres AK, Fleischhart V, Inestrosa NC. Mitochondrial unfolded protein response (UPR mt): what we know thus far. Front Cell Dev Biol 2024; 12:1405393. [PMID: 38882057 PMCID: PMC11176431 DOI: 10.3389/fcell.2024.1405393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Mitochondria are key organelles for the optimal function of the cell. Among their many functions, they maintain protein homeostasis through their own proteostatic machinery, which involves proteases and chaperones that regulate protein import and folding inside mitochondria. In the early 2000s, the mitochondrial unfolded protein response (UPRmt) was first described in mammalian cells. This stress response is activated by the accumulation of unfolded/misfolded proteins within the mitochondrial matrix, which results in the transmission of a signal to the nucleus to increase the expression of proteases and chaperones to address the abnormal mitochondrial protein load. After its discovery, this retrograde signaling pathway has also been described in other organisms of different complexities, suggesting that it is a conserved stress response. Although there are some specific differences among organisms, the mechanism of this stress response is mostly similar and involves the transmission of a signal from mitochondria to the nucleus that induces chromatin remodeling to allow the binding of specific transcription factors to the promoters of chaperones and proteases. In the last decade, proteins and signaling pathways that could be involved in the regulation of the UPRmt, including the Wnt signaling pathway, have been described. This minireview aims to summarize what is known about the mechanism of the UPRmt and its regulation, specifically in mammals and C. elegans.
Collapse
Affiliation(s)
- Angie K Torres
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Veronika Fleischhart
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
36
|
Giovannetti M, Rodríguez-Palero MJ, Fabrizio P, Nicolle O, Bedet C, Michaux G, Witting M, Artal-Sanz M, Palladino F. SIN-3 transcriptional coregulator maintains mitochondrial homeostasis and polyamine flux. iScience 2024; 27:109789. [PMID: 38746662 PMCID: PMC11091686 DOI: 10.1016/j.isci.2024.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
Mitochondrial function relies on the coordinated transcription of mitochondrial and nuclear genomes to assemble respiratory chain complexes. Across species, the SIN3 coregulator influences mitochondrial functions, but how its loss impacts mitochondrial homeostasis and metabolism in the context of a whole organism is unknown. Exploring this link is important because SIN3 haploinsufficiency causes intellectual disability/autism syndromes and SIN3 plays a role in tumor biology. Here we show that loss of C. elegans SIN-3 results in transcriptional deregulation of mitochondrial- and nuclear-encoded mitochondrial genes, potentially leading to mito-nuclear imbalance. Consistent with impaired mitochondrial function, sin-3 mutants show extensive mitochondrial fragmentation by transmission electron microscopy (TEM) and in vivo imaging, and altered oxygen consumption. Metabolomic analysis of sin-3 mutant animals revealed a mitochondria stress signature and deregulation of methionine flux, resulting in decreased S-adenosyl methionine (SAM) and increased polyamine levels. Our results identify SIN3 as a key regulator of mitochondrial dynamics and metabolic flux, with important implications for human pathologies.
Collapse
Affiliation(s)
- Marina Giovannetti
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - María-Jesús Rodríguez-Palero
- Andalusian Centre for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide and Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Paola Fabrizio
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Ophélie Nicolle
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Cécile Bedet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Grégoire Michaux
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 2, 85354 Freising, Weihenstephan, Germany
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide and Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| |
Collapse
|
37
|
Hafiz Rothi M, Sarkar GC, Haddad JA, Mitchell W, Ying K, Pohl N, Sotomayor-Mena RG, Natale J, Dellacono S, Gladyshev VN, Lieberman Greer E. The 18S rRNA Methyltransferase DIMT-1 Regulates Lifespan in the Germline Later in Life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594211. [PMID: 38798397 PMCID: PMC11118296 DOI: 10.1101/2024.05.14.594211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Ribosome heterogeneity has emerged as an important regulatory control feature for determining which proteins are synthesized, however, the influence of age on ribosome heterogeneity is not fully understood. Whether mRNA transcripts are selectively translated in young versus old cells and whether dysregulation of this process drives organismal aging is unknown. Here we examined the role of ribosomal RNA (rRNA) methylation in maintaining appropriate translation as organisms age. In a directed RNAi screen, we identified the 18S rRNA N6'-dimethyl adenosine (m6,2A) methyltransferase, dimt-1, as a regulator of C. elegans lifespan and stress resistance. Lifespan extension induced by dimt-1 deficiency required a functional germline and was dependent on the known regulator of protein translation, the Rag GTPase, raga-1, which links amino acid sensing to the mechanistic target of rapamycin complex (mTORC)1. Using an auxin-inducible degron tagged version of dimt-1, we demonstrate that DIMT-1 functions in the germline after mid-life to regulate lifespan. We further found that knock-down of dimt-1 leads to selective translation of transcripts important for stress resistance and lifespan regulation in the C. elegans germline in mid-life including the cytochrome P450 daf-9, which synthesizes a steroid that signals from the germline to the soma to regulate lifespan. We found that dimt-1 induced lifespan extension was dependent on the daf-9 signaling pathway. This finding reveals a new layer of proteome dysfunction, beyond protein synthesis and degradation, as an important regulator of aging. Our findings highlight a new role for ribosome heterogeneity, and specific rRNA modifications, in maintaining appropriate translation later in life to promote healthy aging.
Collapse
Affiliation(s)
- M. Hafiz Rothi
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Gautam Chandra Sarkar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Al Haddad
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Wayne Mitchell
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Kejun Ying
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Nancy Pohl
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Roberto G. Sotomayor-Mena
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Julia Natale
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Scarlett Dellacono
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Eric Lieberman Greer
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
38
|
Flis Ł, Malewski T, Dobosz R. Temperature Effects on Expression Levels of hsp Genes in Eggs and Second-Stage Juveniles of Meloidogyne hapla Chitwood, 1949. Int J Mol Sci 2024; 25:4867. [PMID: 38732085 PMCID: PMC11084963 DOI: 10.3390/ijms25094867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Meloidogyne hapla is one of the most important nematode pathogens. It is a sedentary, biotrophic parasite of plants that overwinters in the soil or in diseased roots. The development of M. hapla is temperature dependent. Numerous studies have been performed on the effect of temperature on the development of M. hapla, but only a few of them analyzed the heat shock protein (hsp) genes. The aim of the study was to perform expression profiling of eight hsp genes (Mh-hsp90, Mh-hsp1, Mh-hsp4, Mh-hsp6, Mh-hsp60, Mh-dnj19, Mh-hsp43, and Mh-hsp12.2) at two development stages of M. hapla, i.e., in eggs and second-stage juveniles (J2). The eggs and J2 were incubated under cold stress (5 °C), heat stress (35 °C, 40 °C), and non-stress (10 °C, 20 °C, and 30 °C) conditions. Expression profiling was performed by qPCR. It was demonstrated that only two genes, Mh-hsp60 and Mh-dnj19, have been upregulated by heat and cold stress at both development stages. Heat stress upregulated the expression of more hsp genes than cold stress did. The level of upregulation of most hsp genes was more marked in J2 than in eggs. The obtained results suggest that the Mh-hsp90 and Mh-hsp1 genes can be used as bioindicators of environmental impacts on nematodes of the Meloidogyne genus.
Collapse
Affiliation(s)
- Łukasz Flis
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland;
| | - Tadeusz Malewski
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland;
| | - Renata Dobosz
- Department of Entomology and Animal Pests, Institute of Plant Protection-National Research Institute, Węgorka 20, 60-318 Poznan, Poland;
| |
Collapse
|
39
|
Oorloff M, Hruby A, Averbukh M, Alcala A, Dutta N, Torres TC, Moaddeli D, Vega M, Kim J, Bong A, Coakley AJ, Hicks D, Wang J, Wang T, Hoang S, Tharp KM, Garcia G, Higuchi-Sanabria R. Mechanical stress through growth on stiffer substrates impacts animal health and longevity in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589121. [PMID: 38645203 PMCID: PMC11030433 DOI: 10.1101/2024.04.11.589121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Mechanical stress is a measure of internal resistance exhibited by a body or material when external forces, such as compression, tension, bending, etc. are applied. The study of mechanical stress on health and aging is a continuously growing field, as major changes to the extracellular matrix and cell-to-cell adhesions can result in dramatic changes to tissue stiffness during aging and diseased conditions. For example, during normal aging, many tissues including the ovaries, skin, blood vessels, and heart exhibit increased stiffness, which can result in a significant reduction in function of that organ. As such, numerous model systems have recently emerged to study the impact of mechanical and physical stress on cell and tissue health, including cell-culture conditions with matrigels and other surfaces that alter substrate stiffness and ex vivo tissue models that can apply stress directly to organs like muscle or tendons. Here, we sought to develop a novel method in an in vivo, model organism setting to study the impact of mechanical stress on aging, by increasing substrate stiffness in solid agar medium of C. elegans. To our surprise, we found shockingly limited impact of growth of C. elegans on stiffer substrates, including limited effects on cellular health, gene expression, organismal health, stress resilience, and longevity. Overall, our studies reveal that altering substrate stiffness of growth medium for C. elegans have only mild impact on animal health and longevity; however, these impacts were not nominal and open up important considerations for C. elegans biologists in standardizing agar medium choice for experimental assays.
Collapse
Affiliation(s)
- Maria Oorloff
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Adam Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Toni Castro Torres
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Darius Moaddeli
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Matthew Vega
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Juri Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Andrew Bong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Aeowynn J. Coakley
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Daniel Hicks
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Jing Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Tiffany Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Sally Hoang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Kevin M. Tharp
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, 92037
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
40
|
Xu J, Sabatino B, Yan J, Ermakova G, Doering KRS, Taubert S. The unfolded protein response of the endoplasmic reticulum protects Caenorhabditis elegans against DNA damage caused by stalled replication forks. G3 (BETHESDA, MD.) 2024; 14:jkae017. [PMID: 38267027 PMCID: PMC10989892 DOI: 10.1093/g3journal/jkae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
All animals must maintain genome and proteome integrity, especially when experiencing endogenous or exogenous stress. To cope, organisms have evolved sophisticated and conserved response systems: unfolded protein responses (UPRs) ensure proteostasis, while DNA damage responses (DDRs) maintain genome integrity. Emerging evidence suggests that UPRs and DDRs crosstalk, but this remains poorly understood. Here, we demonstrate that depletion of the DNA primases pri-1 or pri-2, which synthesize RNA primers at replication forks and whose inactivation causes DNA damage, activates the UPR of the endoplasmic reticulum (UPR-ER) in Caenorhabditis elegans, with especially strong activation in the germline. We observed activation of both the inositol-requiring-enzyme 1 (ire-1) and the protein kinase RNA-like endoplasmic reticulum kinase (pek-1) branches of the (UPR-ER). Interestingly, activation of the (UPR-ER) output gene heat shock protein 4 (hsp-4) was partially independent of its canonical activators, ire-1 and X-box binding protein (xbp-1), and instead required the third branch of the (UPR-ER), activating transcription factor 6 (atf-6), suggesting functional redundancy. We further found that primase depletion specifically induces the (UPR-ER), but not the distinct cytosolic or mitochondrial UPRs, suggesting that primase inactivation causes compartment-specific rather than global stress. Functionally, loss of ire-1 or pek-1 sensitizes animals to replication stress caused by hydroxyurea. Finally, transcriptome analysis of pri-1 embryos revealed several deregulated processes that could cause (UPR-ER) activation, including protein glycosylation, calcium signaling, and fatty acid desaturation. Together, our data show that the (UPR-ER), but not other UPRs, responds to replication fork stress and that the (UPR-ER) is required to alleviate this stress.
Collapse
Affiliation(s)
- Jiaming Xu
- Graduate Program in Cell & Developmental Biology, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Brendil Sabatino
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Junran Yan
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Glafira Ermakova
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Kelsie R S Doering
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Stefan Taubert
- Graduate Program in Cell & Developmental Biology, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
41
|
Rathor L, Curry S, Park Y, McElroy T, Robles B, Sheng Y, Chen WW, Min K, Xiao R, Lee MH, Han SM. Mitochondrial stress in GABAergic neurons non-cell autonomously regulates organismal health and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585932. [PMID: 38585797 PMCID: PMC10996468 DOI: 10.1101/2024.03.20.585932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Mitochondrial stress within the nervous system can trigger non-cell autonomous responses in peripheral tissues. However, the specific neurons involved and their impact on organismal aging and health have remained incompletely understood. Here, we demonstrate that mitochondrial stress in γ-aminobutyric acid-producing (GABAergic) neurons in Caenorhabditis elegans ( C. elegans ) is sufficient to significantly alter organismal lifespan, stress tolerance, and reproductive capabilities. This mitochondrial stress also leads to significant changes in mitochondrial mass, energy production, and levels of reactive oxygen species (ROS). DAF-16/FoxO activity is enhanced by GABAergic neuronal mitochondrial stress and mediates the induction of these non-cell-autonomous effects. Moreover, our findings indicate that GABA signaling operates within the same pathway as mitochondrial stress in GABAergic neurons, resulting in non-cell-autonomous alterations in organismal stress tolerance and longevity. In summary, these data suggest the crucial role of GABAergic neurons in detecting mitochondrial stress and orchestrating non-cell-autonomous changes throughout the organism.
Collapse
|
42
|
Cinone M, Albrizio M, Guaricci AC, Lacitignola L, Desantis S. Testicular expression of heat SHOCK proteins 60, 70, and 90 in cryptorchid horses. Theriogenology 2024; 217:83-91. [PMID: 38262223 DOI: 10.1016/j.theriogenology.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Heat shock proteins are the most evolutionarily conserved protein families induced by stressors including hyperthermia. In the context of pathologies of the male reproductive tract, cryptorchidism is the most common genital defect that compromises the reproductive potential of the male because it induces an increase in intratesticular temperature. In equine species, cryptorchidism affects almost 9 % of newborns and few studies have been carried out on the molecular aspects of the retained testis. In this study, the expression pattern of HSP60, 70, and 90 in abdominal and inguinal testes, in their contralateral descended normally testes, and in testes of normal horses were investigated by Western blot and immunohistochemistry. The histomorphological investigation of retained and scrotal testes was also investigated. The seminiferous epithelium of the retained testes showed a vacuolized appearance and displayed a completely blocked spermatogenesis for lacking meiotic and spermiogenetic cells. On the contrary, the contralateral scrotal testes did not show morphological damage and the seminiferous epithelium displayed all phases of the spermatogenetic cycle as in the normal testes. The morphology of Leydig cells was not affected by the cryptorchid state. Western blot and immunohistochemistry evidenced that equine testis (both scrotal and retained) expresses the three investigated HSPs. More in detail, the Western blot evidenced that HSP70 is the more expressed chaperone and that together with HSP90 it is highly expressed in the retained gonad (P < 0.05). The immunohistochemistry revealed the presence of the three HSPs in the spermatogonia of normal and cryptorchid testes. Spermatogonia of retained testes showed the lowest expression of HSP60 and the highest expression of HSP90. Spermatocytes, spermatids of scrotal testes, and the Sertoli cells of retained and scrotal testes did not display HSP60 whereas expressed HSP70 and HSP90. These two proteins were also localized in the nucleus of the premeiotic cells. The Leydig cells displayed the three HSPs with the higher immunostaining of HSP70 and 90 in the cryptorchid testes. The results indicate that the heat stress condition occurring in the cryptorchid testis influences the expression of HSPs.
Collapse
Affiliation(s)
- Mario Cinone
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 Km 3, 70010, Valenzano, (BA), Italy
| | - Maria Albrizio
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 Km 3, 70010, Valenzano, (BA), Italy
| | - Antonio Ciro Guaricci
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 Km 3, 70010, Valenzano, (BA), Italy
| | - Luca Lacitignola
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 Km 3, 70010, Valenzano, (BA), Italy
| | - Salvatore Desantis
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 Km 3, 70010, Valenzano, (BA), Italy.
| |
Collapse
|
43
|
Emerson FJ, Chiu C, Lin LY, Riedel CG, Zhu M, Lee SS. The chromatin factors SET-26 and HCF-1 oppose the histone deacetylase HDA-1 in longevity and gene regulation in C. elegans. Nat Commun 2024; 15:2320. [PMID: 38485937 PMCID: PMC10940595 DOI: 10.1038/s41467-024-46510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
SET-26, HCF-1, and HDA-1 are highly conserved chromatin factors with key roles in development and aging. Here we present mechanistic insights into how these factors regulate gene expression and modulate longevity in C. elegans. We show that SET-26 and HCF-1 cooperate to regulate a common set of genes, and both antagonize the histone deacetylase HDA-1 to limit longevity. HCF-1 localization at chromatin is largely dependent on functional SET-26, whereas SET-26 is only minorly affected by loss of HCF-1, suggesting that SET-26 could recruit HCF-1 to chromatin. HDA-1 opposes SET-26 and HCF-1 on the regulation of a subset of their common target genes and in longevity. Our findings suggest that SET-26, HCF-1, and HDA-1 comprise a mechanism to fine-tune gene expression and longevity and likely have important implications for the mechanistic understanding of how these factors function in diverse organisms, particularly in aging biology.
Collapse
Affiliation(s)
- Felicity J Emerson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Caitlin Chiu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Laura Y Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Christian G Riedel
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ming Zhu
- National Institute of Biological Sciences, Beijing, China
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
44
|
Michaeli L, Spector E, Haeussler S, Carvalho CA, Grobe H, Abu-Shach UB, Zinger H, Conradt B, Broday L. ULP-2 SUMO protease regulates UPR mt and mitochondrial homeostasis in Caenorhabditis elegans. Free Radic Biol Med 2024; 214:19-27. [PMID: 38301974 PMCID: PMC10929073 DOI: 10.1016/j.freeradbiomed.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Mitochondria are the powerhouses of cells, responsible for energy production and regulation of cellular homeostasis. When mitochondrial function is impaired, a stress response termed mitochondrial unfolded protein response (UPRmt) is initiated to restore mitochondrial function. Since mitochondria and UPRmt are implicated in many diseases, it is important to understand UPRmt regulation. In this study, we show that the SUMO protease ULP-2 has a key role in regulating mitochondrial function and UPRmt. Specifically, down-regulation of ulp-2 suppresses UPRmt and reduces mitochondrial membrane potential without significantly affecting cellular ROS. Mitochondrial networks are expanded in ulp-2 null mutants with larger mitochondrial area and increased branching. Moreover, the amount of mitochondrial DNA is increased in ulp-2 mutants. Downregulation of ULP-2 also leads to alterations in expression levels of mitochondrial genes involved in protein import and mtDNA replication, however, mitophagy remains unaltered. In summary, this study demonstrates that ULP-2 is required for mitochondrial homeostasis and the UPRmt.
Collapse
Affiliation(s)
- Lirin Michaeli
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eyal Spector
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Cátia A Carvalho
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hanna Grobe
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ulrike Bening Abu-Shach
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hen Zinger
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Limor Broday
- Department of Cell and Developmental Biology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
45
|
Muñoz-Juan A, Benseny-Cases N, Guha S, Barba I, Caldwell KA, Caldwell GA, Agulló L, Yuste VJ, Laromaine A, Dalfó E. Caenorhabditis elegans RAC1/ced-10 mutants as a new animal model to study very early stages of Parkinson's disease. Prog Neurobiol 2024; 234:102572. [PMID: 38253120 DOI: 10.1016/j.pneurobio.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Patients with Parkinson's disease (PD) display non-motor symptoms arising prior to the appearance of motor signs and before a clear diagnosis. Motor and non-motor symptoms correlate with progressive deposition of the protein alpha-synuclein (Asyn) both within and outside of the central nervous system, and its accumulation parallels neurodegeneration. The genome of Caenorhabditis elegans does not encode a homolog of Asyn, thus rendering this nematode an invaluable system with which to investigate PD-related mechanisms in the absence of interference from endogenous Asyn aggregation. CED-10 is the nematode homolog of human RAC1, a small GTPase needed to maintain the function and survival of dopaminergic neurons against human Asyn-induced toxicity in C. elegans. Here, we introduce C. elegans RAC1/ced-10 mutants as a predictive tool to investigate early PD symptoms before neurodegeneration occurs. Deep phenotyping of these animals reveals that, early in development, they displayed altered defecation cycles, GABAergic abnormalities and an increased oxidation index. Moreover, they exhibited altered lipid metabolism evidenced by the accumulation of lipid droplets. Lipidomic fingerprinting indicates that phosphatidylcholine and sphingomyelin, but not phosphatidylethanolamine or phosphatidylserine, were elevated in RAC1/ced-10 mutant nematodes. These collective characteristics reflect the non-motor dysfunction, GABAergic neurotransmission defects, upregulation of stress response mechanisms, and metabolic changes associated with early-onset PD. Thus, we put forward an easy-to-manipulate preclinical animal model to deepen our understanding of early-stage PD and accelerate the translational path for therapeutic target discovery.
Collapse
Affiliation(s)
- A Muñoz-Juan
- Group of Nanoparticles and Nanocomposites, Institut Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - N Benseny-Cases
- Biophysics Unit. Department of Biochemistry and Molecular Biology. Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - S Guha
- Nautilus Biotechnology, 835 Industrial Rd, San Carlos, CA 94070, USA
| | - I Barba
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Can Baumann, 08500 Vic, Spain
| | - K A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA; Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - G A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA; Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - L Agulló
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Can Baumann, 08500 Vic, Spain
| | - V J Yuste
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain
| | - A Laromaine
- Group of Nanoparticles and Nanocomposites, Institut Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - E Dalfó
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Can Baumann, 08500 Vic, Spain; Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain; Institute of Neurosciences, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
46
|
Gao B, Wang Z, Dai K, Wang Y, Li L, Li G, Niu X, Li X, Yu Z, Wang Z, Chen G. Acetylation of mtHSP70 at Lys595/653 affecting its interaction between GrpEL1 regulates glioblastoma progression via UPRmt. Free Radic Biol Med 2024; 213:394-408. [PMID: 38281626 DOI: 10.1016/j.freeradbiomed.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/01/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND The mitochondrial unfolded protein response (UPRmt) is a vital biological process that regulates mitochondrial protein homeostasis and enables glioblastoma cells to cope with mitochondrial oxidative stress in the tumor microenvironment. We previously reported that the binding of mitochondrial stress-70 protein (mtHSP70) to GrpE protein homolog 1 (GrpEL1) is involved in the regulation of the UPRmt. However, the mechanisms regulating their binding remain unclear. Herein, we examined the UPRmt in glioblastoma and explored whether modulating the interaction between mtHSP70 and GrpEL1 affects the UPRmt. METHODS Western blot analysis, aggresome staining, and transmission electron microscopy were used to detect the activation of the UPRmt and protein aggregates within mitochondria. Molecular dynamics simulations were performed to investigate the impact of different mutations in mtHSP70 on its binding to GrpEL1. Endogenous site-specific mutations were introduced into mtHSP70 in glioblastoma cells using CRISPR/Cas9. In vitro and in vivo experiments were conducted to assess mitochondrial function and glioblastoma progression. RESULTS The UPRmt was activated in glioblastoma cells in response to oxidative stress. mtHSP70 regulated mitochondrial protein homeostasis by facilitating UPRmt-progress protein import into the mitochondria. Acetylation of mtHSP70 at Lys595/653 enhanced its binding to GrpEL1. Missense mutations at Lys595/653 increased mitochondrial protein aggregates and inhibited glioblastoma progression in vitro and in vivo. CONCLUSIONS We identified an innovative mechanism in glioblastoma progression by which acetylation of mtHSP70 at Lys595/653 influences its interaction with GrpEL1 to regulate the UPRmt. Mutations at Lys595/653 in mtHSP70 could potentially serve as therapeutic targets and prognostic indicators of glioblastoma.
Collapse
Affiliation(s)
- Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Yunjiang Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China; Department of Neurosurgery, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Guangzhao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China; Department of Neurosurgery, Hefei First People's Hospital, Hefei, 230031, China
| | - Xiaowang Niu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China; Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China; Department of Neurosurgery, Xinghua People's Hospital, Xinghua, 225700, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| |
Collapse
|
47
|
Sharifi S, Chaudhari P, Martirosyan A, Eberhardt AO, Witt F, Gollowitzer A, Lange L, Woitzat Y, Okoli EM, Li H, Rahnis N, Kirkpatrick J, Werz O, Ori A, Koeberle A, Bierhoff H, Ermolaeva M. Reducing the metabolic burden of rRNA synthesis promotes healthy longevity in Caenorhabditis elegans. Nat Commun 2024; 15:1702. [PMID: 38402241 PMCID: PMC10894287 DOI: 10.1038/s41467-024-46037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Ribosome biogenesis is initiated by RNA polymerase I (Pol I)-mediated synthesis of pre-ribosomal RNA (pre-rRNA). Pol I activity was previously linked to longevity, but the underlying mechanisms were not studied beyond effects on nucleolar structure and protein translation. Here we use multi-omics and functional tests to show that curtailment of Pol I activity remodels the lipidome and preserves mitochondrial function to promote longevity in Caenorhabditis elegans. Reduced pre-rRNA synthesis improves energy homeostasis and metabolic plasticity also in human primary cells. Conversely, the enhancement of pre-rRNA synthesis boosts growth and neuromuscular performance of young nematodes at the cost of accelerated metabolic decline, mitochondrial stress and premature aging. Moreover, restriction of Pol I activity extends lifespan more potently than direct repression of protein synthesis, and confers geroprotection even when initiated late in life, showcasing this intervention as an effective longevity and metabolic health treatment not limited by aging.
Collapse
Affiliation(s)
- Samim Sharifi
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Matter Bio, Inc., Brooklyn, NY, 11237, USA
| | - Prerana Chaudhari
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Asya Martirosyan
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Alexander Otto Eberhardt
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
| | - Finja Witt
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Lisa Lange
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Yvonne Woitzat
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | | | - Huahui Li
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, PR China
| | - Norman Rahnis
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany.
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
| | - Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
48
|
Chen PX, Zhang L, Chen D, Tian Y. Mitochondrial stress and aging: Lessons from C. elegans. Semin Cell Dev Biol 2024; 154:69-76. [PMID: 36863917 DOI: 10.1016/j.semcdb.2023.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Aging is accompanied by a progressive decline in mitochondrial function, which in turn contributes to a variety of age-related diseases. Counterintuitively, a growing number of studies have found that disruption of mitochondrial function often leads to increased lifespan. This seemingly contradictory observation has inspired extensive research into genetic pathways underlying the mitochondrial basis of aging, particularly within the model organism Caenorhabditis elegans. The complex and antagonistic roles of mitochondria in the aging process have altered the view of mitochondria, which not only serve as simple bioenergetic factories but also as signaling platforms for the maintenance of cellular homeostasis and organismal health. Here, we review the contributions of C. elegans to our understanding of mitochondrial function in the aging process over the past decades. In addition, we explore how these insights may promote future research of mitochondrial-targeted strategies in higher organisms to potentially slow aging and delay age-related disease progression.
Collapse
Affiliation(s)
- Peng X Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Leyuan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Di Chen
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China.
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
49
|
Dodge JD, Browder NJ, Pellegrino MW. Mitochondrial recovery by the UPR mt: Insights from C. elegans. Semin Cell Dev Biol 2024; 154:59-68. [PMID: 36792440 PMCID: PMC11684877 DOI: 10.1016/j.semcdb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Mitochondria are multifaceted organelles, with such functions as the production of cellular energy to the regulation of cell death. However, mitochondria incur various sources of damage from the accumulation of reactive oxygen species and DNA mutations that can impact the protein folding environment and impair their function. Since mitochondrial dysfunction is often associated with reductions in organismal fitness and possibly disease, cells must have safeguards in place to protect mitochondrial function and promote recovery during times of stress. The mitochondrial unfolded protein response (UPRmt) is a transcriptional adaptation that promotes mitochondrial repair to aid in cell survival during stress. While the earlier discoveries into the regulation of the UPRmt stemmed from studies using mammalian cell culture, much of our understanding about this stress response has been bestowed to us by the model organism Caenorhabditis elegans. Indeed, the facile but powerful genetics of this relatively simple nematode has uncovered multiple regulators of the UPRmt, as well as several physiological roles of this stress response. In this review, we will summarize these major advancements originating from studies using C. elegans.
Collapse
Affiliation(s)
- Joshua D Dodge
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA
| | - Nicholas J Browder
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA
| | - Mark W Pellegrino
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA.
| |
Collapse
|
50
|
Wang P, Chen L, Wang N, Miao L, Zhao Y. Mitochondrial defects triggered by amg-1 mutation elicit UPRmt and phagocytic clearance during spermatogenesis in C. elegans. Development 2024; 151:dev202165. [PMID: 38224006 DOI: 10.1242/dev.202165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Mitochondria are the powerhouses of many biological processes. During spermatogenesis, post-transcriptional regulation of mitochondrial gene expression is mediated by nuclear-encoded mitochondrial RNA-binding proteins (mtRBPs). We identified AMG-1 as an mtRBP required for reproductive success in Caenorhabditis elegans. amg-1 mutation led to defects in mitochondrial structure and sperm budding, resulting in mitochondria being discarded into residual bodies, which ultimately delayed spermatogenesis in the proximal gonad. In addition, mitochondrial defects triggered the gonadal mitochondrial unfolded protein response and phagocytic clearance to ensure spermatogenesis but ultimately failed to rescue hermaphroditic fertility. These findings reveal a previously undiscovered role for AMG-1 in regulating C. elegans spermatogenesis, in which mitochondrial-damaged sperm prevented the transmission of defective mitochondria to mature sperm by budding and phagocytic clearance, a process which may also exist in the reproductive systems of higher organisms.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianwan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Biological Imaging , Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- MOE Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanmei Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|