1
|
Poudineh M, Mohammadyari F, Parsamanesh N, Jamialahmadi T, Kesharwani P, Sahebkar A. Cell and gene therapeutic approaches in non-alcoholic fatty liver disease. Gene 2025; 956:149466. [PMID: 40189164 DOI: 10.1016/j.gene.2025.149466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) refers to a range of conditions marked by the buildup of triglycerides in liver cells, accompanied by inflammation, which contributes to liver damage, clinical symptoms, and histopathological alterations. Multiple molecular pathways contribute to NAFLD pathogenesis, including immune dysregulation, endoplasmic reticulum stress, and tissue injury. Both the innate and adaptive immune systems play crucial roles in disease progression, with intricate crosstalk between liver and immune cells driving NAFLD development. Among emerging therapeutic strategies, cell and gene-based therapies have shown promise. This study reviews the pathophysiological mechanisms of NAFLD and explores the therapeutic potential of cell-based interventions, highlighting their immunomodulatory effects, inhibition of hepatic stellate cells, promotion of hepatocyte regeneration, and potential for hepatocyte differentiation. Additionally, we examine gene delivery vectors designed to target NAFLD, focusing on their role in engineering hepatocytes through gene addition or editing to enhance therapeutic efficacy.
Collapse
Affiliation(s)
| | | | - Negin Parsamanesh
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tananz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Geng A, Yuan S, Yu QC, Zeng YA. The role of endothelial cells in pancreatic islet development, transplantation and culture. Front Cell Dev Biol 2025; 13:1558137. [PMID: 40330424 PMCID: PMC12052768 DOI: 10.3389/fcell.2025.1558137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/03/2025] [Indexed: 05/08/2025] Open
Abstract
Endothelial cells (ECs) play pivotal roles in the development and maintenance of tissue homeostasis. During development, vasculature actively involves in organ morphogenesis and functional maturation, through the secretion of angiocrine factors and extracellular matrix components. Islets of Langerhans, essential functional units of glucose homeostasis, are embedded in a dense endothelial capillary network. Islet vasculature not only supplies nutrients and oxygen to endocrine cells but also facilitate the rapid delivery of pancreatic hormones to target tissues, thereby ensuring precise glucose regulation. Diabetes mellitus is a major disease burden and is caused by islet dysfunction or depletion, often accompanied by vessel loss and dysregulation. Therefore, elucidating the regulatory mechanisms of ECs within islets hold profound implications for diabetes therapy. This review provides an overview of recent research advancements on the functional roles of ECs in islet biology, transplantation, and in vitro islet organoid culture.
Collapse
Affiliation(s)
- Ajun Geng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shubo Yuan
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing Cissy Yu
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Arial Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Ribezzi D, Català P, Pignatelli C, Citro A, Levato R. Bioprinting and synthetic biology approaches to engineer functional endocrine pancreatic constructs. Trends Biotechnol 2025:S0167-7799(25)00090-3. [PMID: 40185667 DOI: 10.1016/j.tibtech.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
Diabetes is a complex disease affecting over 500 million people worldwide. Traditional approaches, such as insulin delivery, are mainstay treatments, but do not cure the disease. Recent advances in biofabrication and synthetic biology offer new hope for the development of tissue constructs recapitulating salient organ functions. Here, we discuss recent progress in bioprinting a functional endocrine pancreas, ranging from cell sources to main advances in biomaterials. We review innovative areas for the development of this field, with a particular focus on the convergence of synthetic biology and cell engineering with bioprinting, which opens new avenues for developing advanced in vitro models and regenerative, transplantable grafts, with the potential to provide independence from exogenous insulin administration.
Collapse
Affiliation(s)
- Davide Ribezzi
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pere Català
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Chen S, Wang W, Shen L, Liu H, Luo J, Ren Y, Cui S, Ye Y, Shi G, Cheng F, Su X, Dai L, Gou M, Deng H. A 3D-printed microdevice encapsulates vascularized islets composed of iPSC-derived β-like cells and microvascular fragments for type 1 diabetes treatment. Biomaterials 2025; 315:122947. [PMID: 39547136 DOI: 10.1016/j.biomaterials.2024.122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Transplantation of insulin-secreting cells provides a promising method for re-establishing the autonomous blood glucose control ability of type 1 diabetes (T1D) patients, but the low survival of the transplanted cells hinder the therapeutic efficacy. In this study, we 3D-printed an encapsulation system containing β-like cells and microvascular fragments (MVF), to create a retrivable microdevice with vascularized islets in vivo for T1D therapy. The functional β-like cells were differentiated from the urine epithelial cell-derived induced pluripotent stem cells (UiPSCs). Single-cell RNA sequencing provided an integrative study and macroscopic developmental analyses of the entire process of differentiation, which revealed the developmental trajectory of differentiation in vitro follows the developmental pattern of embryonic pancreas in vivo. The MVF were isolated from the epididymal fat pad. The microdevice with a groove structure were rapidly fabricated by the digital light processing (DLP)-3D printing technology. The β-like cells and MVF were uniformly distributed in the device. After subcutaneous transplantation into C57BL/6 mice, the microdevice have less collagen accumulation and low immune cell infiltration. Moreover, the microdevice encapsulated vascularized islets reduced hyperglycemia in 33 % of the treated mice for up to 100 days without immunosuppressants, and the humanized C-peptide was also detected in the serum of the mice. In summary, we described the microdevice-protected vascularized islets for long-term treatment of T1D, with high safety and potential clinical transformative value, and may therefore provide a translatable solution to advance the research progress of β cell replacement therapy for T1D.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenshuang Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lanlin Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haofan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yushuang Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Susu Cui
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yixin Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fuyi Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaolan Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Breunig M, Hohwieler M, Haderspeck J, von Zweydorf F, Hauff N, Pasquini LP, Wiegreffe C, Zimmer E, Mulaw MA, Julier C, Simon E, Gloeckner CJ, Liebau S, Kleger A. PPDPF is not a key regulator of human pancreas development. PLoS Genet 2025; 21:e1011657. [PMID: 40193385 PMCID: PMC12037078 DOI: 10.1371/journal.pgen.1011657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 04/28/2025] [Accepted: 03/16/2025] [Indexed: 04/09/2025] Open
Abstract
Given their capability to differentiate into each cell type of the human body, human pluripotent stem cells (hPSCs) provide a unique platform for developmental studies. In the current study, we employed this cell system to understand the role of pancreatic progenitor differentiation and proliferation factor (PPDPF), a protein that has been little explored so far. While the zebrafish orthologue exdpf is essential for exocrine pancreas specification, its importance for mammalian and human development has not been studied yet. We implemented a four times CRISPR/Cas9 nicking approach to knockout PPDPF in human embryonic stem cells (hESCs) and differentiated PPDPFKO/KO and PPDPFWT/WT cells towards the pancreatic lineage. In contrast to data obtained from zebrafish, a very modest effect of the knockout was observed in the development of pancreatic progenitors in vitro, not affecting lineage specification upon orthotopic transplantation in vivo. The modest effect is in line with the finding that genetic variants near PPDPF are associated with random glucose levels in humans, but not with type 2 diabetes risk, supporting that dysregulation of this gene may only result in minor alterations of glycaemic balance in humans. In addition, PPDPF is less organ- and cell type specifically expressed in higher vertebrates and its so far reported functions appear highly context-dependent.
Collapse
Affiliation(s)
- Markus Breunig
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
| | - Meike Hohwieler
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
| | - Jasmin Haderspeck
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Natalie Hauff
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
| | - Lino-Pascal Pasquini
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
| | | | - Eleni Zimmer
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
| | - Medhanie A. Mulaw
- Central Unit Single Cell Sequencing, Medical Faculty, Ulm University, Ulm, Germany
| | - Cécile Julier
- Institut Cochin, Inserm U1016-CNRS UMR8104-Université Paris Descartes, Paris, France
| | - Eric Simon
- Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
- Computational Biology & Genomics, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Christian Johannes Gloeckner
- DZNE-German Center for Neurodegenerative Diseases, Tübingen, Germany
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
6
|
Sali S, Azzam L, Jaro T, Ali AAG, Mardini A, Al-Dajani O, Khattak S, Butler AE, Azeez JM, Nandakumar M. A perfect islet: reviewing recent protocol developments and proposing strategies for stem cell derived functional pancreatic islets. Stem Cell Res Ther 2025; 16:160. [PMID: 40165291 PMCID: PMC11959787 DOI: 10.1186/s13287-025-04293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
The search for an effective cell replacement therapy for diabetes has driven the development of "perfect" pancreatic islets from human pluripotent stem cells (hPSCs). These hPSC-derived pancreatic islet-like β cells can overcome the limitations for disease modelling, drug development and transplantation therapies in diabetes. Nevertheless, challenges remain in generating fully functional and mature β cells from hPSCs. This review underscores the significant efforts made by researchers to optimize various differentiation protocols aimed at enhancing the efficiency and quality of hPSC-derived pancreatic islets and proposes methods for their improvement. By emulating the natural developmental processes of pancreatic embryogenesis, specific growth factors, signaling molecules and culture conditions are employed to guide hPSCs towards the formation of mature β cells capable of secreting insulin in response to glucose. However, the efficiency of these protocols varies greatly among different human embryonic stem cell (hESC) and induced pluripotent stem cell (hiPSC) lines. This variability poses a particular challenge for generating patient-specific β cells. Despite recent advancements, the ultimate goal remains to develop a highly efficient directed differentiation protocol that is applicable across all genetic backgrounds of hPSCs. Although progress has been made, further research is required to optimize the protocols and characterization methods that could ensure the safety and efficacy of hPSC-derived pancreatic islets before they can be utilized in clinical settings.
Collapse
Affiliation(s)
- Sujitha Sali
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Leen Azzam
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Taraf Jaro
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ahmed Ali Gebril Ali
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ali Mardini
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Omar Al-Dajani
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Shahryar Khattak
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Alexandra E Butler
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain.
| | - Juberiya M Azeez
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Manjula Nandakumar
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| |
Collapse
|
7
|
Olaniru OE, Toczyska K, Guccio N, Giera S, Piao X, King AJF, Jones PM, Persaud SJ. Spatiotemporal profiling of adhesion G protein-coupled receptors in developing mouse and human pancreas reveals a role for GPR56 in islet development. Cell Mol Life Sci 2025; 82:129. [PMID: 40137991 PMCID: PMC11947406 DOI: 10.1007/s00018-025-05659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
INTRODUCTION G protein-coupled receptors (GPCRs) are cell-surface proteins that are targeted therapeutically for a range of disorders, including diabetes. Adhesion GPCRs (aGPCRs) are the second largest class of the GPCR superfamily and some members of this family have been implicated in appropriate organ development. However, the role of aGPCRs in endocrine pancreas specification is not yet known. METHODS Here, we systematically characterised expression of mRNAs encoding aGPCRs and their ligands in developing mouse and human pancreas using our own and publicly available single-cell RNA sequencing and spatial transcriptomics data, and we conducted qPCR analysis of aGPCR expression in human pancreas at different gestational stages. We then investigated the role of GPR56 (ADGRG1), the most abundant aGPCR in pancreatic endocrine progenitors, in islet development using Gpr56 null mice and their wildtype littermates. RESULTS We demonstrated that aGPCRs are dynamically expressed during mouse and human pancreas development, with specific aGPCR mRNAs expressed in distinct endocrine, endothelial, mesenchymal, acinar, ductal, and immune cell clusters. aGPCR ligand mRNAs were mostly expressed by non-endocrine cells, and the most highly expressed receptor-ligand interacting mRNA pairs were those encoding GPR56 and COL3A1. Deletion of Gpr56 in neonatal mice was associated with an altered α-/β-/δ-cell ratio and reduced β-cell proliferation. CONCLUSION Our data show that aGPCRs are expressed at key stages of human and mouse pancreas endocrine lineage decisions, and analysis of pancreases from Gpr56 knockout mice implicate this aGPCR in the development of a full complement of β-cells.
Collapse
Affiliation(s)
- Oladapo E Olaniru
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Klaudia Toczyska
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Nunzio Guccio
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Stefanie Giera
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xianhua Piao
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pediatrics, University of California at San Francisco, San Francisco, CA, USA
| | - Aileen J F King
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Peter M Jones
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
8
|
Thakur R, Rana S, Baltoo R. Exploring fluoride's role in diabetes development: A review. J Trace Elem Med Biol 2025; 89:127635. [PMID: 40132392 DOI: 10.1016/j.jtemb.2025.127635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
PURPOSE The element fluorine, which is never found in nature in a free state, is the source of the fluoride ion. When fluoride intake is excessive, it can cause various impairments in living organism. This review aims to assess the relationship between fluoride exposure and glucose metabolism, considering positive, negative, and null findings, with a focus on its potential role in insulin resistance and diabetes-related complications. METHODS Numerous studies that have demonstrated changes in blood glucose and insulin variations due to fluoride are included in our analysis on the bases of their relevance. Twenty significant research papers from Pubmed, Google Scholar, and Research Gate are included up to January 2025 using search terms such as "Fluoride," "Toxicity," "Diabetes," "Insulin resistance," "fluoride and diabetes," "fluoride and insulin," "fluoride and blood glucose" in this review. Of the 20 research papers, 14 involve normal organisms unaffected by diabetes or complications connected to the disease, serving as standard animal models, while 5 involve animals exposed to diabetes and 1 is a human population study. RESULTS The findings suggest a negative association between fluoride exposure and diabetes, as studies indicate fluoride's potential role in impairing glucose homeostasis and increasing insulin resistance. These research studies showed how fluoride affected the participants' blood sugar and diabetes-related complications. CONCLUSION This study highlights how important it is to comprehend how fluoride may contribute to diabetes or diabetes-related complications, and it makes recommendations for future research directions that might lead to the discovery of efficient treatment measures to avoid them.
Collapse
Affiliation(s)
- Ruhi Thakur
- School of Biological and Environmental Sciences, Shoolini University, Solan, India.
| | - Srishti Rana
- School of Biological and Environmental Sciences, Shoolini University, Solan, India
| | - Rashi Baltoo
- School of Biological and Environmental Sciences, Shoolini University, Solan, India
| |
Collapse
|
9
|
Wang ZC, Chen MQ, Li ZJ, Du JH, Sun T, Hu CJ, Li J. Ectopic pancreas located in the liver and omentum: a perspective from gross anatomy and microscopy. Surg Radiol Anat 2025; 47:88. [PMID: 40047979 DOI: 10.1007/s00276-025-03608-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
PURPOSE This case report is to present the anatomical variation of ectopic pancreas and discuss about its clinical significance. METHODS While dissecting an adult cadaver specimen, an ectopic pancreas specimen was found. RESULTS The ectopic pancreatic tissue was located in the left lobe of the liver and the mesentery. After HE staining and microscopic observation, it was found that the ectopic pancreatic tissue contained ducts, islets, and acini, thus it was classified as Type I according to Gaspar Fuentes' classification. CONCLUSION We report an atypical variation of ectopic pancreas, which is located in the left lobe of the liver and the mesentery. This may be associated with certain digestive system diseases such as dyspepsia. The findings of this study can provide insights for the clinical diagnosis of digestive system diseases.
Collapse
Affiliation(s)
- Ze-Cheng Wang
- Academy of Clinical Medicine, Jining Medical University, Jining, China
| | - Ming-Qing Chen
- Academy of Clinical Medicine, Jining Medical University, Jining, China
| | - Zi-Jian Li
- Academy of Clinical Medicine, Jining Medical University, Jining, China
| | - Jing-Han Du
- Academy of Clinical Medicine, Jining Medical University, Jining, China
| | - Tao Sun
- Academy of Basic Medicine, Jining Medical University, Jining, China
| | | | - Jing Li
- Academy of Basic Medicine, Jining Medical University, Jining, China.
- Academy of Basic Medicine, Jining Medical University, Hehua Road 133, Taibaihu District, Jining, Shandong, 272067, China.
| |
Collapse
|
10
|
Villalba A, Gitton Y, Aiello V, Toupin M, Mazaud-Guittot S, Chédotal A, Scharfmann R. Imaging Human Pancreatic Endocrinogenesis During Early Prenatal Life. Diabetes 2025; 74:368-375. [PMID: 39602451 PMCID: PMC11842602 DOI: 10.2337/db24-0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Murine pancreatic endocrinogenesis has been extensively studied, but human data remain scarce due to limited sample availability. Here, we first built a large collection of human embryonic and fetal pancreases covering the first trimester of pregnancy to explore human endocrinogenesis. Using an experimental pipeline combining in toto staining, tissue clearing, and light-sheet fluorescence microscopy, we show that insulin-, glucagon-, and somatostatin-positive cells appear simultaneously at Carnegie stage (CS) 16. This contrasts with rodents, in which glucagon-positive cells appear first, followed by insulin-positive and, finally, somatostatin-positive cells and highlights interspecies differences. We also detected bihormonal endocrine cells in 7 of 9 human pancreases between CS16 and CS18, which were no longer detected at later stages. We observed that cell distribution within human fetal islets resembles adult mouse islets, with a core of β-cells surrounded by α- and δ-cells, differing from a more complex arrangement in adult human islets. This, in connection with the small size of human fetal islets when compared with adult islets, suggests that adult human islets may form by fusion of preexisting islets, in contrast to the mouse fission model. Together, our study provides a detailed and comprehensive description of the spatiotemporal dynamics of human pancreatic endocrinogenesis. ARTICLE HIGHLIGHTS Data on human pancreas development are limited and derived from two-dimensional staining. We overcome this using in toto staining, tissue clearing, and light-sheet imaging. We sought to understand when and where endocrine cells first emerge and how they cluster. First, endocrine cell types appear simultaneously, and early pancreases contain bihormonal cells. There are morphometric differences between fetal and adult islets. We propose a mechanism of adult islet formation by fusion: a new base to reconstitute in vitro islet neogenesis.
Collapse
Affiliation(s)
- Adrian Villalba
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Yorick Gitton
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Virginie Aiello
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Maryne Toupin
- Inserm, EHESP, Institut de Recherche en Santé, Environnement et Travail, UMR_S 1085, Université Rennes, Rennes, France
| | - Séverine Mazaud-Guittot
- Inserm, EHESP, Institut de Recherche en Santé, Environnement et Travail, UMR_S 1085, Université Rennes, Rennes, France
| | - Alain Chédotal
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
- Institut de Pathologie, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France
- MeLiS (Mechanisms in Integrated Life Sciences), CNRS UMR5284, INSERM U1314, University Claude Bernard Lyon 1, Lyon, France
| | | |
Collapse
|
11
|
Ziojła NM, Socha M, Guerra MC, Kizewska D, Blaszczyk K, Urbaniak E, Henry S, Grabowska M, Niakan KK, Warmflash A, Borowiak M. ETVs dictate hPSC differentiation by tuning biophysical properties. Nat Commun 2025; 16:1999. [PMID: 40011454 PMCID: PMC11865489 DOI: 10.1038/s41467-025-56591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Stem cells maintain a dynamic dialog with their niche, integrating biochemical and biophysical cues to modulate cellular behavior. Yet, the transcriptional networks that regulate cellular biophysical properties remain poorly defined. Here, we leverage human pluripotent stem cells (hPSCs) and two morphogenesis models - gastruloids and pancreatic differentiation - to establish ETV transcription factors as critical regulators of biophysical parameters and lineage commitment. Genetic ablation of ETV1 or ETV1/ETV4/ETV5 in hPSCs enhances cell-cell and cell-ECM adhesion, leading to aberrant multilineage differentiation including disrupted germ-layer organization, ectoderm loss, and extraembryonic cell overgrowth in gastruloids. Furthermore, ETV1 loss abolishes pancreatic progenitor formation. Single-cell RNA sequencing and follow-up assays reveal dysregulated mechanotransduction via the PI3K/AKT signaling. Our findings highlight the importance of transcriptional control over cell biophysical properties and suggest that manipulating these properties may improve in vitro cell and tissue engineering strategies.
Collapse
Affiliation(s)
- Natalia M Ziojła
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Magdalena Socha
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | | | - Dorota Kizewska
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Blaszczyk
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Edyta Urbaniak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Sara Henry
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Malgorzata Grabowska
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Kathy K Niakan
- The Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
12
|
Hu C, Chen Y, Yin X, Xu R, Yin C, Wang C, Zhao Y. Pancreatic endocrine and exocrine signaling and crosstalk in physiological and pathological status. Signal Transduct Target Ther 2025; 10:39. [PMID: 39948335 PMCID: PMC11825823 DOI: 10.1038/s41392-024-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/16/2025] Open
Abstract
The pancreas, an organ with dual functions, regulates blood glucose levels through the endocrine system by secreting hormones such as insulin and glucagon. It also aids digestion through the exocrine system by secreting digestive enzymes. Complex interactions and signaling mechanisms between the endocrine and exocrine functions of the pancreas play a crucial role in maintaining metabolic homeostasis and overall health. Compelling evidence indicates direct and indirect crosstalk between the endocrine and exocrine parts, influencing the development of diseases affecting both. From a developmental perspective, the exocrine and endocrine parts share the same origin-the "tip-trunk" domain. In certain circumstances, pancreatic exocrine cells may transdifferentiate into endocrine-like cells, such as insulin-secreting cells. Additionally, several pancreatic diseases, including pancreatic cancer, pancreatitis, and diabetes, exhibit potential relevance to both endocrine and exocrine functions. Endocrine cells may communicate with exocrine cells directly through cytokines or indirectly by regulating the immune microenvironment. This crosstalk affects the onset and progression of these diseases. This review summarizes the history and milestones of findings related to the exocrine and endocrine pancreas, their embryonic development, phenotypic transformations, signaling roles in health and disease, the endocrine-exocrine crosstalk from the perspective of diseases, and potential therapeutic targets. Elucidating the regulatory mechanisms of pancreatic endocrine and exocrine signaling and provide novel insights for the understanding and treatment of diseases.
Collapse
Grants
- National High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
- cNational High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
Collapse
Affiliation(s)
- Chenglin Hu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chenxue Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
13
|
Bigliardi E, Shetty AV, Low WC, Steer CJ. Interspecies Blastocyst Complementation and the Genesis of Chimeric Solid Human Organs. Genes (Basel) 2025; 16:215. [PMID: 40004544 PMCID: PMC11854981 DOI: 10.3390/genes16020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Solid organ transplantation remains a life-saving treatment for patients worldwide. Unfortunately, the supply of donor organs cannot meet the current need, making the search for alternative sources even more essential. Xenotransplantation using sophisticated genetic engineering techniques to delete and overexpress specific genes in the donor animal has been investigated as a possible option. However, the use of exogenous tissue presents another host of obstacles, particularly regarding organ rejection. Given these limitations, interspecies blastocyst complementation in combination with precise gene knockouts presents a unique, promising pathway for the transplant organ shortage. In recent years, great advancements have been made in the field, with encouraging results in producing a donor-derived organ in a chimeric host. That said, one of the major barriers to successful interspecies chimerism is the mismatch in the developmental stages of the donor and the host cells in the chimeric embryo. Another major barrier to successful chimerism is the mismatch in the developmental speeds between the donor and host cells in the chimeric embryos. This review outlines 19 studies in which blastocyst complementation was used to generate solid organs. In particular, the genesis of the liver, lung, kidney, pancreas, heart, thyroid, thymus and parathyroids was investigated. Of the 19 studies, 7 included an interspecies model. Of the 7, one was completed using human donor cells in a pig host, and all others were rat-mouse chimeras. While very promising results have been demonstrated, with great advancements in the field, several challenges continue to persist. In particular, successful chimerism, organ generation and donor contribution, synchronized donor-host development, as well as ethical concerns regarding human-animal chimeras remain important aspects that will need to be addressed in future research.
Collapse
Affiliation(s)
- Elena Bigliardi
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Anala V. Shetty
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clifford J. Steer
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Li KR, Yu PL, Zheng QQ, Wang X, Fang X, Li LC, Xu CR. Spatiotemporal and genetic cell lineage tracing of endodermal organogenesis at single-cell resolution. Cell 2025; 188:796-813.e24. [PMID: 39824184 DOI: 10.1016/j.cell.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025]
Abstract
During early mammalian development, the endoderm germ layer forms the foundation of the respiratory and digestive systems through complex patterning. This intricate process, guided by a series of cell fate decisions, remains only partially understood. Our study introduces innovative genetic tracing codes for 14 distinct endodermal regions using novel mouse strains. By integrating high-throughput and high-precision single-cell RNA sequencing with sophisticated imaging, we detailed the spatiotemporal and genetic lineage differentiation of the endoderm at single-cell resolution. We discovered an unexpected multipotentiality within early endodermal regions, allowing differentiation into various organ primordia. This research illuminates the complex and underestimated phenomenon where endodermal organs develop from multiple origins, prompting a reevaluation of traditional differentiation models. Our findings advance understanding in developmental biology and have significant implications for regenerative medicine and the development of advanced organoid models, providing insights into the intricate mechanisms that guide organogenesis.
Collapse
Affiliation(s)
- Ke-Ran Li
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Pei-Long Yu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qi-Qi Zheng
- PKU-Tsinghua-NIBS Graduate Program, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xin Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuan Fang
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Lin-Chen Li
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Cheng-Ran Xu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Li Y, Zhu J, Yue C, Song S, Tian L, Wang Y. Recent advances in pancreatic α-cell transdifferentiation for diabetes therapy. Front Immunol 2025; 16:1551372. [PMID: 39911402 PMCID: PMC11794509 DOI: 10.3389/fimmu.2025.1551372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
As the global prevalence of diabetes mellitus rises, traditional treatments like insulin therapy and oral hypoglycemic agents often fail to achieve optimal glycemic control, leading to severe complications. Recent research has focused on replenishing pancreatic β-cells through the transdifferentiation of α-cells, offering a promising therapeutic avenue. This review explores the molecular mechanisms underlying α-cell to β-cell transdifferentiation, emphasizing key transcription factors such as Dnmt1, Arx, Pdx1, MafA, and Nkx6.1. The potential clinical applications, especially in type 1 and type 2 diabetes characterized by significant β-cell dysfunction, are addressed. Challenges, including low transdifferentiation efficiency, cell stability, and safety concerns, are also included. Future research directions include optimizing molecular pathways, enhancing transdifferentiation efficiency, and ensuring the long-term stability of β-cell identity. Overall, the ability to convert α-cells into β-cells represents a transformative strategy for diabetes treatment, offering hope for more effective and sustainable therapies for patients with severe β-cell loss.
Collapse
Affiliation(s)
- Yanjiao Li
- Department of Pharmacy, Qionglai Hospital of Traditional Chinese Medicine, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jinyu Zhu
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Congyang Yue
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Limin Tian
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Feng X, Zhang H, Yang S, Cui D, Wu Y, Qi X, Su Z. From stem cells to pancreatic β-cells: strategies, applications, and potential treatments for diabetes. Mol Cell Biochem 2025; 480:173-190. [PMID: 38642274 DOI: 10.1007/s11010-024-04999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 04/22/2024]
Abstract
Loss and functional failure of pancreatic β-cells results in disruption of glucose homeostasis and progression of diabetes. Although whole pancreas or pancreatic islet transplantation serves as a promising approach for β-cell replenishment and diabetes therapy, the severe scarcity of donor islets makes it unattainable for most diabetic patients. Stem cells, particularly induced pluripotent stem cells (iPSCs), are promising for the treatment of diabetes owing to their self-renewal capacity and ability to differentiate into functional β-cells. In this review, we first introduce the development of functional β-cells and their heterogeneity and then turn to highlight recent advances in the generation of β-cells from stem cells and their potential applications in disease modeling, drug discovery and clinical therapy. Finally, we have discussed the current challenges in developing stem cell-based therapeutic strategies for improving the treatment of diabetes. Although some significant technical hurdles remain, stem cells offer great hope for patients with diabetes and will certainly transform future clinical practice.
Collapse
Affiliation(s)
- Xingrong Feng
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Hongmei Zhang
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Daxin Cui
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Yanting Wu
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Xiaocun Qi
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China.
| |
Collapse
|
17
|
Liao Y, Lin Z, Li S, Yin X. Small molecules enhance the high-efficiency generation of pancreatic ductal organoids. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 40230288 DOI: 10.3724/abbs.2024218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Advancements in three-dimensional (3D) organoid cultures have created more physiologically relevant models for pancreatic disease research, but efficiently generating mature pancreatic ductal cells remains challenging. In this study, we develop a novel protocol to generate pancreatic ductal organoids (PDOs) with high initiation efficiency and an enrichment of pancreatic ductal cells. By utilizing a cocktail of small molecules, we optimize the culture conditions to improve organoid formation. Our findings demonstrate that this protocol facilitates the formation and expansion of PDOs derived from Sox9-positive ductal cells, including heterogeneous ductal cells and acinar cells. These organoid cultures exhibit remarkable stability, supporting long-term expansion. This system provides an efficient model with potential applications in high-throughput drug screening. Moreover, these organoids recapitulate the exocrine cell composition and may reflect the cellular plasticity between ductal and acinar cells, providing a valuable platform for investigating pancreatic diseases such as pancreatic ductal adenocarcinoma (PDAC). The model presents a promising tool for future research aimed at understanding disease mechanisms and potentially helping drug development for pancreatic disorders.
Collapse
|
18
|
Rohban R, Martins CP, Esni F. Advanced therapy to cure diabetes: mission impossible is now possible? Front Cell Dev Biol 2024; 12:1484859. [PMID: 39629270 PMCID: PMC11611888 DOI: 10.3389/fcell.2024.1484859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Cell and Gene therapy are referred to as advanced therapies that represent overlapping fields of regenerative medicine. They have similar therapeutic goals such as to modify cellular identity, improve cell function, or fight a disease. These two therapeutic avenues, however, possess major differences. While cell therapy involves introduction of new cells, gene therapy entails introduction or modification of genes. Furthermore, the aim of cell therapy is often to replace, or repair damaged tissue, whereas gene therapy is used typically as a preventive approach. Diabetes mellitus severely affects the quality of life of afflicted individuals and has various side effects including cardiovascular, ophthalmic disorders, and neuropathy while putting enormous economic pressure on both the healthcare system and the patient. In recent years, great effort has been made to develop cutting-edge therapeutic interventions for diabetes treatment, among which cell and gene therapies stand out. This review aims to highlight various cell- and gene-based therapeutic approaches leading to the generation of new insulin-producing cells as a topmost "panacea" for treating diabetes, while deliberately avoiding a detailed molecular description of these approaches. By doing so, we aim to target readers who are new to the field and wish to get a broad helicopter overview of the historical and current trends of cell- and gene-based approaches in β-cell regeneration.
Collapse
Affiliation(s)
- Rokhsareh Rohban
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Christina P. Martins
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Farzad Esni
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
- UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- McGowan Institute for regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Liu QR, Zhu M, Salekin F, McCoy BM, Kennedy V, Tian J, Mazucanti CH, Chia CW, Egan JM. An Insulin Upstream Open Reading Frame (INSU) Is Present in Skeletal Muscle Satellite Cells: Changes with Age. Cells 2024; 13:1903. [PMID: 39594651 PMCID: PMC11592829 DOI: 10.3390/cells13221903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Insulin resistance, stem cell dysfunction, and muscle fiber dystrophy are all age-related events in skeletal muscle (SKM). However, age-related changes in insulin isoforms and insulin receptors in myogenic progenitor satellite cells have not been studied. Since SKM is an extra-pancreatic tissue that does not express mature insulin, we investigated the levels of insulin receptors (INSRs) and a novel human insulin upstream open reading frame (INSU) at the mRNA, protein, and anatomical levels in Baltimore Longitudinal Study of Aging (BLSA) biopsied SKM samples of 27-89-year-old (yrs) participants. Using RT-qPCR and the MS-based selected reaction monitoring (SRM) assay, we found that the levels of INSR and INSU mRNAs and the proteins were positively correlated with the age of human SKM biopsies. We applied RNAscope fluorescence in situ hybridization (FISH) and immunofluorescence (IF) to SKM cryosections and found that INSR and INSU were co-localized with PAX7-labeled satellite cells, with enhanced expression in SKM sections from an 89 yrs old compared to a 27 yrs old. We hypothesized that the SKM aging process might induce compensatory upregulation of INSR and re-expression of INSU, which might be beneficial in early embryogenesis and have deleterious effects on proliferative and myogenic satellite cells with advanced age.
Collapse
Affiliation(s)
- Qing-Rong Liu
- Intramural Research Program, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA; (M.Z.); (B.M.M.); (J.T.); (C.H.M.); (C.W.C.); (J.M.E.)
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bandral M, Sussel L, Lorberbaum DS. Retinoid signaling in pancreas development, islet function, and disease. Curr Top Dev Biol 2024; 161:297-318. [PMID: 39870436 DOI: 10.1016/bs.ctdb.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
All-trans retinoic acid (ATRA) signaling is essential in numerous different biological contexts. This review highlights the diverse roles of ATRA during development, function, and diseases of the pancreas. ATRA is essential to specify pancreatic progenitors from gut tube endoderm, endocrine and exocrine differentiation, and adult islet function. ATRA concentration must be carefully regulated during the derivation of islet-like cells from human pluripotent stem cells (hPSCs) to optimize the expression of key pancreatic transcription factors while mitigating adverse and unwanted cell-types in these cultures. The ATRA pathway is integral to the pancreas and here we will present selected studies from decades of research that has laid the essential groundwork for ongoing projects dedicated to unraveling the complexities of ATRA signaling in the pancreas.
Collapse
Affiliation(s)
- Manuj Bandral
- University of Michigan, Department of Pharmacology, Caswell Diabetes Institute, Ann Arbor, MI, United States
| | - Lori Sussel
- University of Colorado Denver Anschutz Medical Campus, Barbara Davis Center for Diabetes, Aurora, CO, United States
| | - David S Lorberbaum
- University of Michigan, Department of Pharmacology, Caswell Diabetes Institute, Ann Arbor, MI, United States.
| |
Collapse
|
21
|
Maestas MM, Bui MH, Millman JR. Recent progress in modeling and treating diabetes using stem cell-derived islets. Stem Cells Transl Med 2024; 13:949-958. [PMID: 39159002 PMCID: PMC11465181 DOI: 10.1093/stcltm/szae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Stem cell-derived islets (SC-islets) offer the potential to be an unlimited source of cells for disease modeling and the treatment of diabetes. SC-islets can be genetically modified, treated with chemical compounds, or differentiated from patient derived stem cells to model diabetes. These models provide insights into disease pathogenesis and vulnerabilities that may be targeted to provide treatment. SC-islets themselves are also being investigated as a cell therapy for diabetes. However, the transplantation process is imperfect; side effects from immunosuppressant use have reduced SC-islet therapeutic potential. Alternative methods to this include encapsulation, use of immunomodulating molecules, and genetic modification of SC-islets. This review covers recent advances using SC-islets to understand different diabetes pathologies and as a cell therapy.
Collapse
Affiliation(s)
- Marlie M Maestas
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Maggie H Bui
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Jeffrey R Millman
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, United States
| |
Collapse
|
22
|
Kadhim AZ, Vanderkruk B, Mar S, Dan M, Zosel K, Xu EE, Spencer RJ, Sasaki S, Cheng X, Sproul SLJ, Speckmann T, Nian C, Cullen R, Shi R, Luciani DS, Hoffman BG, Taubert S, Lynn FC. Transcriptional coactivator MED15 is required for beta cell maturation. Nat Commun 2024; 15:8711. [PMID: 39379383 PMCID: PMC11461855 DOI: 10.1038/s41467-024-52801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Mediator, a co-regulator complex required for RNA Polymerase II activity, interacts with tissue-specific transcription factors to regulate development and maintain homeostasis. We observe reduced Mediator subunit MED15 expression in endocrine hormone-producing pancreatic islets isolated from people living with type 2 diabetes and sought to understand how MED15 and Mediator control gene expression programs important for the function of insulin-producing β-cells. Here we show that Med15 is expressed during mouse β-cell development and maturation. Knockout of Med15 in mouse β-cells causes defects in β-cell maturation without affecting β-cell mass or insulin expression. ChIP-seq and co-immunoprecipitation analyses found that Med15 binds β-cell transcription factors Nkx6-1 and NeuroD1 to regulate key β-cell maturation genes. In support of a conserved role during human development, human embryonic stem cell-derived β-like cells, genetically engineered to express high levels of MED15, express increased levels of maturation markers. We provide evidence of a conserved role for Mediator in β-cell maturation and demonstrate an additional layer of control that tunes β-cell transcription factor function.
Collapse
Affiliation(s)
- Alex Z Kadhim
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Ben Vanderkruk
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Samantha Mar
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Meixia Dan
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Katarina Zosel
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Eric E Xu
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Rachel J Spencer
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Shugo Sasaki
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Xuanjin Cheng
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Shannon L J Sproul
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Thilo Speckmann
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Cuilan Nian
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Robyn Cullen
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Dan S Luciani
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Bradford G Hoffman
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Stefan Taubert
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | - Francis C Lynn
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada.
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
23
|
Cauchi D, Mangion S, Cassar N. Dorsal agenesis of the pancreas: an incidental finding. J Surg Case Rep 2024; 2024:rjae655. [PMID: 39421339 PMCID: PMC11483742 DOI: 10.1093/jscr/rjae655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
This case report focuses on a 29-year-old female who presented with acute abdominal pain at Mater Dei Hospital, Malta. Her clinical presentation, followed up by diagnostic imaging, led to the diagnosis of a rare congenital abnormality known as dorsal agenesis of the pancreas. This condition is characterized by the absence or underdevelopment of the dorsal portion of the pancreas, a crucial aspect of pancreatic anatomy and function. The following text details the clinical presentation, diagnostic findings, and the broader implications of dorsal pancreatic agenesis in medical practice, reflecting on the rarity of this condition and the complexity of its diagnosis and management.
Collapse
Affiliation(s)
- Daphne Cauchi
- Department of Surgery, Mater Dei Hospital, Triq Dun Karm, Msida MSD 2090, Malta
| | - Shaun Mangion
- Department of Surgery, Mater Dei Hospital, Triq Dun Karm, Msida MSD 2090, Malta
| | - Noel Cassar
- Department of Surgery, Mater Dei Hospital, Triq Dun Karm, Msida MSD 2090, Malta
| |
Collapse
|
24
|
Kulkarni RN. Everything You Wanted to Know About Pancreatic Ducts But Didn't Know Where to Look. Gastroenterology 2024; 167:845-847. [PMID: 39089467 DOI: 10.1053/j.gastro.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Rohit N Kulkarni
- Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
25
|
Wang L, Baek S, Prasad G, Wildenthal J, Guo K, Sturgill D, Truongvo T, Char E, Pegoraro G, McKinnon K, Hoskins JW, Amundadottir LT, Arda HE. Predictive Prioritization of Enhancers Associated with Pancreas Disease Risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611794. [PMID: 39314336 PMCID: PMC11418953 DOI: 10.1101/2024.09.07.611794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Genetic and epigenetic variations in regulatory enhancer elements increase susceptibility to a range of pathologies. Despite recent advances, linking enhancer elements to target genes and predicting transcriptional outcomes of enhancer dysfunction remain significant challenges. Using 3D chromatin conformation assays, we generated an extensive enhancer interaction dataset for the human pancreas, encompassing more than 20 donors and five major cell types, including both exocrine and endocrine compartments. We employed a network approach to parse chromatin interactions into enhancer-promoter tree models, facilitating a quantitative, genome-wide analysis of enhancer connectivity. With these tree models, we developed a machine learning algorithm to estimate the impact of enhancer perturbations on cell type-specific gene expression in the human pancreas. Orthogonal to our computational approach, we perturbed enhancer function in primary human pancreas cells using CRISPR interference and quantified the effects at the single-cell level through RNA FISH coupled with high-throughput imaging. Our enhancer tree models enabled the annotation of common germline risk variants associated with pancreas diseases, linking them to putative target genes in specific cell types. For pancreatic ductal adenocarcinoma, we found a stronger enrichment of disease susceptibility variants within acinar cell regulatory elements, despite ductal cells historically being assumed as the primary cell-of-origin. Our integrative approach-combining cell type-specific enhancer-promoter interaction mapping, computational models, and single-cell enhancer perturbation assays-produced a robust resource for studying the genetic basis of pancreas disorders.
Collapse
Affiliation(s)
- Li Wang
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gauri Prasad
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Wildenthal
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Konnie Guo
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Sturgill
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thucnhi Truongvo
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin Char
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine McKinnon
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Jason W. Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - H. Efsun Arda
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Zhao J, Liang S, Cen HH, Li Y, Baker RK, Ruprai B, Gao G, Zhang C, Ren H, Tang C, Chen L, Liu Y, Lynn FC, Johnson JD, Kieffer TJ. PDX1+ cell budding morphogenesis in a stem cell-derived islet spheroid system. Nat Commun 2024; 15:5894. [PMID: 39003281 PMCID: PMC11246529 DOI: 10.1038/s41467-024-50109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Remarkable advances in protocol development have been achieved to manufacture insulin-secreting islets from human pluripotent stem cells (hPSCs). Distinct from current approaches, we devised a tunable strategy to generate islet spheroids enriched for major islet cell types by incorporating PDX1+ cell budding morphogenesis into staged differentiation. In this process that appears to mimic normal islet morphogenesis, the differentiating islet spheroids organize with endocrine cells that are intermingled or arranged in a core-mantle architecture, accompanied with functional heterogeneity. Through in vitro modelling of human pancreas development, we illustrate the importance of PDX1 and the requirement for EphB3/4 signaling in eliciting cell budding morphogenesis. Using this new approach, we model Mitchell-Riley syndrome with RFX6 knockout hPSCs illustrating unexpected morphogenesis defects in the differentiation towards islet cells. The tunable differentiation system and stem cell-derived islet models described in this work may facilitate addressing fundamental questions in islet biology and probing human pancreas diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada.
| | - Shenghui Liang
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Yanjun Li
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
| | - Robert K Baker
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Balwinder Ruprai
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Guang Gao
- Imaging Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Chloe Zhang
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Huixia Ren
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Liangyi Chen
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, 510631, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Francis C Lynn
- BC Children's Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - James D Johnson
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
27
|
Uijterwijk BA, Lemmers DH, Fusai GK, Zerbi A, Salvia R, Sparrelid E, White S, Björnsson B, Mavroeidis VK, Roberts KJ, Mazzola M, Cabús SS, Soonawalla Z, Korkolis D, Serradilla M, Pessaux P, Luyer M, Mowbray N, Ielpo B, Mazzotta A, Kleeff J, Boggi U, Muñoz MAS, Goh BKP, Andreotti E, Wilmink H, Ghidini M, Zaniboni A, Verbeke C, Adsay V, Bianchi D, Besselink MG, Abu Hilal M. Differences in Lymph Node Metastases Patterns Among Non-pancreatic Periampullary Cancers and Histologic Subtypes: An International Multicenter Retrospective Cohort Study and Systematic Review. Ann Surg Oncol 2024; 31:4654-4664. [PMID: 38602578 PMCID: PMC11164734 DOI: 10.1245/s10434-024-15213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/09/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Standard lymphadenectomy for pancreatoduodenectomy is defined for pancreatic ductal adenocarcinoma and adopted for patients with non-pancreatic periampullary cancer (NPPC), ampullary adenocarcinoma (AAC), distal cholangiocarcinoma (dCCA), or duodenal adenocarcinoma (DAC). This study aimed to compare the patterns of lymph node metastases among the different NPPCs in a large series and in a systematic review to guide the discussion on surgical lymphadenectomy and pathology assessment. METHODS This retrospective cohort study included patients after pancreatoduodenectomy for NPPC with at least one lymph node metastasis (2010-2021) from 24 centers in nine countries. The primary outcome was identification of lymph node stations affected in case of a lymph node metastasis per NPPC. A separate systematic review included studies on lymph node metastases patterns of AAC, dCCA, and DAC. RESULTS The study included 2367 patients, of whom 1535 had AAC, 616 had dCCA, and 216 had DAC. More patients with pancreatobiliary type AAC had one or more lymph node metastasis (67.2% vs 44.8%; P < 0.001) compared with intestinal-type, but no differences in metastasis pattern were observed. Stations 13 and 17 were most frequently involved (95%, 94%, and 90%). Whereas dCCA metastasized more frequently to station 12 (13.0% vs 6.4% and 7.0%, P = 0.005), DAC metastasized more frequently to stations 6 (5.0% vs 0% and 2.7%; P < 0.001) and 14 (17.0% vs 8.4% and 11.7%, P = 0.015). CONCLUSION This study is the first to comprehensively demonstrate the differences and similarities in lymph node metastases spread among NPPCs, to identify the existing research gaps, and to underscore the importance of standardized lymphadenectomy and pathologic assessment for AAC, dCCA, and DAC.
Collapse
Affiliation(s)
- Bas A Uijterwijk
- Department of Surgery, Fondazione Poliambulanza, Brescia, Italy.
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - Daniël H Lemmers
- Department of Surgery, Fondazione Poliambulanza, Brescia, Italy
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Alessandro Zerbi
- Department of Biomedical Sciences, Italy and Pancreatic Surgery, Humanitas University, IRCCS Humanitas Research Hospital, Pieve Emanuele, Rozzano, Italy
| | - Roberto Salvia
- Department of General and Pancreatic Surgery, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Ernesto Sparrelid
- Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Steven White
- Department of Surgery, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Bergthor Björnsson
- Department of Surgery in Linköping and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Vasileios K Mavroeidis
- Department of Academic Surgery, The Royal Marsden Hospital, London, UK
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Keith J Roberts
- Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - Michele Mazzola
- Division of Oncologic and Mini-Invasive General Surgery, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Zahir Soonawalla
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Dimitris Korkolis
- Department of Surgery, Hellenic Anticancer Hospital "Saint Savvas", Athens, Greece
| | - Mario Serradilla
- Department of Surgery, Miguel Servet University Hospital, Zaragoza, Spain
| | - Patrick Pessaux
- Hepatobiliary and Pancreatic Surgical Unit, Nouvel Hôpital Civil (NHC), Strasbourg, France
| | - Misha Luyer
- Department of Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | | | | | - Alessandro Mazzotta
- Department of Digestive, Oncologic and Metabolic Surgery, Institut Mutualiste Montsouris, Paris, France
| | - Jorg Kleeff
- Department of Surgery, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ugo Boggi
- Department of Surgery, Pisa University Hospital, Pisa, Italy
| | | | - Brian K P Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Duke-National University of Singapore, Singapore, Singapore
| | - Elena Andreotti
- Department of Surgery, Fondazione Poliambulanza, Brescia, Italy
| | - Hanneke Wilmink
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zaniboni
- Department of Medical Oncology, Fondazione Poliambulanza, Brescia, Italy
| | - Caroline Verbeke
- Department of Pathology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Volkan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Denise Bianchi
- Department of Pathology, Fondazione Poliambulanza, Brescia, Italy
| | - Marc G Besselink
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
28
|
Edri S, Rosenthal V, Ginsburg O, Newman Frisch A, Pierreux CE, Sharon N, Levenberg S. 3D model of mouse embryonic pancreas and endocrine compartment using stem cell-derived mesoderm and pancreatic progenitors. iScience 2024; 27:109959. [PMID: 38832019 PMCID: PMC11144751 DOI: 10.1016/j.isci.2024.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
The developing mouse pancreas is surrounded by mesoderm compartments providing signals that induce pancreas formation. Most pancreatic organoid protocols lack this mesoderm niche and only partially capture the pancreatic cell repertoire. This work aims to generate pancreatic aggregates by differentiating mouse embryonic stem cells (mESCs) into mesoderm progenitors (MPs) and pancreas progenitors (PPs), without using Matrigel. First, mESCs were differentiated into epiblast stem cells (EpiSCs) to enhance the PP differentiation rate. Next, PPs and MPs aggregated together giving rise to various pancreatic cell types, including endocrine, acinar, and ductal cells, and to endothelial cells. Single-cell RNA sequencing analysis revealed a larger endocrine population within the PP + MP aggregates, as compared to PPs alone or PPs in Matrigel aggregates. The PP + MP aggregate gene expression signatures and its endocrine population percentage closely resembled those of the endocrine population found in the mouse embryonic pancreas, which holds promise for studying pancreas development.
Collapse
Affiliation(s)
- Shlomit Edri
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Vardit Rosenthal
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Or Ginsburg
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Abigail Newman Frisch
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Nadav Sharon
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
29
|
MacCalman A, De Franco E, Franklin A, Flaxman CS, Richardson SJ, Murrall K, Burrage J, Walker EM, Morgan NG, Hattersley AT, Dempster EL, Hannon E, Jeffries AR, Owens NDL, Mill J. Developmentally dynamic changes in DNA methylation in the human pancreas. BMC Genomics 2024; 25:553. [PMID: 38831310 PMCID: PMC11145889 DOI: 10.1186/s12864-024-10450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
Development of the human pancreas requires the precise temporal control of gene expression via epigenetic mechanisms and the binding of key transcription factors. We quantified genome-wide patterns of DNA methylation in human fetal pancreatic samples from donors aged 6 to 21 post-conception weeks. We found dramatic changes in DNA methylation across pancreas development, with > 21% of sites characterized as developmental differentially methylated positions (dDMPs) including many annotated to genes associated with monogenic diabetes. An analysis of DNA methylation in postnatal pancreas tissue showed that the dramatic temporal changes in DNA methylation occurring in the developing pancreas are largely limited to the prenatal period. Significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small proportion of sites showing sex-specific DNA methylation trajectories across pancreas development. Pancreas dDMPs were not distributed equally across the genome and were depleted in regulatory domains characterized by open chromatin and the binding of known pancreatic development transcription factors. Finally, we compared our pancreas dDMPs to previous findings from the human brain, identifying evidence for tissue-specific developmental changes in DNA methylation. This study represents the first systematic exploration of DNA methylation patterns during human fetal pancreas development and confirms the prenatal period as a time of major epigenomic plasticity.
Collapse
Affiliation(s)
- Ailsa MacCalman
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Elisa De Franco
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Alice Franklin
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Christine S Flaxman
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Sarah J Richardson
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Kathryn Murrall
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Joe Burrage
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Emma M Walker
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Noel G Morgan
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Emma L Dempster
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Aaron R Jeffries
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Nick D L Owens
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK.
| |
Collapse
|
30
|
Alvanos A, Bechmann I, Steinke H. Presenting embryologically defined peripancreatic compartments and fusion planes in the search for pancreatic cancer fields. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108272. [PMID: 38552419 DOI: 10.1016/j.ejso.2024.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Clinical progress in form of "total mesometrial resection" (TMMR) in cervical cancer and "total mesorectal excision" (TME) in rectal cancer can be traced to a paradigm-shift regarding the extent and range of resection. More significance is bestowed upon embryologically defined borders which define compartments, "morphogenetic units" and "cancer fields", that have to be addressed in order to avoid incomplete tumor resection. We want to transfer this rationale on the pancreas and define such borders for pancreatic compartments. MATERIAL AND METHODS We used 26 unfixed body donors (16 male, 10 female) ranging in age from 64 to 98 years. Manual preparation consisted of performing the Cattell-Braasch maneuver to restore embryologic anatomy and define fascial remnants of the borders of the dorsal and ventral mesogastrium with focus on the pancreatic fusion fasciae and peripancreatic spaces. RESULTS We tracked what used to be the dorsal and ventral mesogastrium and assigned their remnants to the bowel and pancreas. Following avascular embryologic fascial fusion planes along the mesogastria we could demonstrate peripancreatic spaces, which were sealed off from bordering surfaces of presumably different morphogenetic units and possible cancer fields. Reverting embryologic development also seemed possible within the pancreas, demonstrating the embryologic fusion plane between the ventral and dorsal pancreatic buds as two distinct compartments. CONCLUSIONS Following pancreatic fusion fasciae by separating embryologic fusion planes enables to define the pancreatic compartments which might play a major role in applying the success of TMMR and TME on pancreatic resection and define pancreatic cancer fields.
Collapse
Affiliation(s)
- Athanasios Alvanos
- University of Leipzig, Faculty of Medicine, Institute of Anatomy, Liebigstraße 13, 04103 Leipzig, Germany.
| | - Ingo Bechmann
- University of Leipzig, Faculty of Medicine, Institute of Anatomy, Liebigstraße 13, 04103 Leipzig, Germany.
| | - Hanno Steinke
- University of Leipzig, Faculty of Medicine, Institute of Anatomy, Liebigstraße 13, 04103 Leipzig, Germany.
| |
Collapse
|
31
|
Ashok A, Kalthur G, Kumar A. Degradation meets development: Implications in β-cell development and diabetes. Cell Biol Int 2024; 48:759-776. [PMID: 38499517 DOI: 10.1002/cbin.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Pancreatic development is orchestrated by timely synthesis and degradation of stage-specific transcription factors (TFs). The transition from one stage to another stage is dependent on the precise expression of the developmentally relevant TFs. Persistent expression of particular TF would impede the exit from the progenitor stage to the matured cell type. Intracellular protein degradation-mediated protein turnover contributes to a major extent to the turnover of these TFs and thereby dictates the development of different tissues. Since even subtle changes in the crucial cellular pathways would dramatically impact pancreatic β-cell performance, it is generally acknowledged that the biological activity of these pathways is tightly regulated by protein synthesis and degradation process. Intracellular protein degradation is executed majorly by the ubiquitin proteasome system (UPS) and Lysosomal degradation pathway. As more than 90% of the TFs are targeted to proteasomal degradation, this review aims to examine the crucial role of UPS in normal pancreatic β-cell development and how dysfunction of these pathways manifests in metabolic syndromes such as diabetes. Such understanding would facilitate designing a faithful approach to obtain a therapeutic quality of β-cells from stem cells.
Collapse
Affiliation(s)
- Akshaya Ashok
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Kalthur
- Division of Reproductive and Developmental Biology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
32
|
Villalba A, Gitton Y, Inoue M, Aiello V, Blain R, Toupin M, Mazaud-Guittot S, Rachdi L, Semb H, Chédotal A, Scharfmann R. A 3D atlas of the human developing pancreas to explore progenitor proliferation and differentiation. Diabetologia 2024; 67:1066-1078. [PMID: 38630142 PMCID: PMC11058870 DOI: 10.1007/s00125-024-06143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/07/2024] [Indexed: 04/30/2024]
Abstract
AIMS/HYPOTHESIS Rodent pancreas development has been described in great detail. On the other hand, there are still gaps in our understanding of the developmental trajectories of pancreatic cells during human ontogenesis. Here, our aim was to map the spatial and chronological dynamics of human pancreatic cell differentiation and proliferation by using 3D imaging of cleared human embryonic and fetal pancreases. METHODS We combined tissue clearing with light-sheet fluorescence imaging in human embryonic and fetal pancreases during the first trimester of pregnancy. In addition, we validated an explant culture system enabling in vitro proliferation of pancreatic progenitors to determine the mitogenic effect of candidate molecules. RESULTS We detected the first insulin-positive cells as early as five post-conceptional weeks, two weeks earlier than previously observed. We observed few insulin-positive clusters at five post-conceptional weeks (mean ± SD 9.25±5.65) with a sharp increase to 11 post-conceptional weeks (4307±152.34). We identified a central niche as the location of onset of the earliest insulin cell production and detected extra-pancreatic loci within the adjacent developing gut. Conversely, proliferating pancreatic progenitors were located in the periphery of the epithelium, suggesting the existence of two separated pancreatic niches for differentiation and proliferation. Additionally, we observed that the proliferation ratio of progenitors ranged between 20% and 30%, while for insulin-positive cells it was 1%. We next unveiled a mitogenic effect of the platelet-derived growth factor AA isoform (PDGFAA) in progenitors acting through the pancreatic mesenchyme by increasing threefold the number of proliferating progenitors. CONCLUSIONS/INTERPRETATION This work presents a first 3D atlas of the human developing pancreas, charting both endocrine and proliferating cells across early development.
Collapse
Affiliation(s)
- Adrian Villalba
- Institut Cochin, CNRS, Inserm, Université Paris Cité, Paris, France
| | - Yorick Gitton
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Megumi Inoue
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Virginie Aiello
- Institut Cochin, CNRS, Inserm, Université Paris Cité, Paris, France
| | - Raphaël Blain
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Maryne Toupin
- Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Université Rennes, Rennes, France
| | - Séverine Mazaud-Guittot
- Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Université Rennes, Rennes, France
| | - Latif Rachdi
- Institut Cochin, CNRS, Inserm, Université Paris Cité, Paris, France
| | - Henrik Semb
- Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, München, Germany
| | - Alain Chédotal
- Inserm, CNRS, Institut de la Vision, Sorbonne Université, Paris, France.
- Institut de pathologie, groupe hospitalier Est, hospices civils de Lyon, Lyon, France.
- MeLiS, CNRS UMR5284, Inserm U1314, University Claude Bernard Lyon 1, Lyon, France.
| | | |
Collapse
|
33
|
Ansarullah, Migliorini A, Bakhti M. Editorial: Islet cell development, heterogeneity and regeneration. Front Endocrinol (Lausanne) 2024; 15:1404839. [PMID: 38828416 PMCID: PMC11140119 DOI: 10.3389/fendo.2024.1404839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Affiliation(s)
- Ansarullah
- Center for Biometric Analysis, The Jackson Laboratory, Bar Harbor, ME, United States
| | - Adriana Migliorini
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
34
|
Oropeza D, Herrera PL. Glucagon-producing α-cell transcriptional identity and reprogramming towards insulin production. Trends Cell Biol 2024; 34:180-197. [PMID: 37626005 DOI: 10.1016/j.tcb.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023]
Abstract
β-Cell replacement by in situ reprogramming of non-β-cells is a promising diabetes therapy. Following the observation that near-total β-cell ablation in adult mice triggers the reprogramming of pancreatic α-, δ-, and γ-cells into insulin (INS)-producing cells, recent studies are delving deep into the mechanisms controlling adult α-cell identity. Systematic analyses of the α-cell transcriptome and epigenome have started to pinpoint features that could be crucial for maintaining α-cell identity. Using different transgenic and chemical approaches, significant advances have been made in reprogramming α-cells in vivo into INS-secreting cells in mice. The recent reprogramming of human α-cells in vitro is an important step forward that must now be complemented with a comprehensive molecular dissection of the mechanisms controlling α-cell identity.
Collapse
Affiliation(s)
- Daniel Oropeza
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
35
|
Lim SW, Shin YJ, Cui S, Ko EJ, Chung BH, Yang CW. Prediction of diabetes mellitus after kidney transplantation using patient-specific induced pluripotent stem cells. Kidney Res Clin Pract 2024; 43:236-249. [PMID: 37448282 PMCID: PMC11016675 DOI: 10.23876/j.krcp.22.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Multiple risk factors are involved in new-onset diabetes mellitus (DM) after organ transplantation; however, their ability to predict clinical prognosis remains unclear. Therefore, we investigated whether patient-specific induced pluripotent stem cells (iPSCs) could help predict DM development before performing kidney transplantation (KT). METHODS We first performed whole transcriptome and functional enrichment analyses of KT patient-derived iPSCs. Our results revealed that insulin resistance, type 2 DM, and transforming growth factor beta signaling pathways are associated between the groups of DM and non-DM. We next determined whether the genetic background was associated with development of iPSCs into pancreatic progenitor (PP) cells. RESULTS The levels of differentiation-related key markers of PP cells were significantly lower in the DM group than in the non-DM group. Moreover, the results of tacrolimus toxicity screening showed a significant decrease in the number of PP cells of the DM group compared with the non-DM group, suggesting that these cells are more susceptible to tacrolimus toxicity. CONCLUSION Taken together, these results indicate that PP cells of the DM group showed low developmental potency accompanied by a significantly different genetic background compared with the non-DM group. Thus, genetic analysis can be used to predict the risk of DM before KT.
Collapse
Affiliation(s)
- Sun Woo Lim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Jin Shin
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheng Cui
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Jeong Ko
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Ha Chung
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Woo Yang
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
36
|
Wal P. Phytochemicals and their Potential Mechanisms against Insulin Resistance. Curr Diabetes Rev 2024; 20:e081123223322. [PMID: 37946350 DOI: 10.2174/0115733998262924231020083353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Insulin's inception dates back to 1921 and was unveiled through a momentous revelation. Diabetes is a dangerous, long-term disease in which the body fails to generate enough insulin or utilize the insulin it creates adequately. This causes hyperglycemia, a state of high blood sugar levels, which can even put a person into a coma if not managed. Activation of the insulin receptor corresponds to two crucial metabolic functions, i.e., uptake of glucose and storage of glycogen. Type 2 diabetes mellitus (T2DM) exists as one of the most challenging medical conditions in the 21st century. The sedentary lifestyle and declining quality of food products have contributed to the rapid development of metabolic disorders. Hence, there is an urgent need to lay some reliable, significant molecules and modalities of treatment to combat and manage this epidemic. In this review, we have made an attempt to identify and enlist the major phytoconstituents along with the associated sources and existing mechanisms against insulin resistance. The conducted study may offer potential sustainable solutions for developing and formulating scientifically validated molecules and phytoconstituents as formulations for the management of this metabolic disorder.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (PHARMACY), NH19 Kanpur, Agra Highway, Bhauti Kanpur, Uttar Pradesh 209305, India
| |
Collapse
|
37
|
Narayan G, Ronima K R, Agrawal A, Thummer RP. An Insight into Vital Genes Responsible for β-cell Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:1-27. [PMID: 37432546 DOI: 10.1007/5584_2023_778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The regulation of glucose homeostasis and insulin secretion by pancreatic β-cells, when disturbed, will result in diabetes mellitus. Replacement of dysfunctional or lost β-cells with fully functional ones can tackle the problem of β-cell generation in diabetes mellitus. Various pancreatic-specific genes are expressed during different stages of development, which have essential roles in pancreatogenesis and β-cell formation. These factors play a critical role in cellular-based studies like transdifferentiation or de-differentiation of somatic cells to multipotent or pluripotent stem cells and their differentiation into functional β-cells. This work gives an overview of crucial transcription factors expressed during various stages of pancreas development and their role in β-cell specification. In addition, it also provides a perspective on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ronima K R
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
38
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Cota P, Caliskan ÖS, Bastidas-Ponce A, Jing C, Jaki J, Saber L, Czarnecki O, Taskin D, Blöchinger AK, Kurth T, Sterr M, Burtscher I, Krahmer N, Lickert H, Bakhti M. Insulin regulates human pancreatic endocrine cell differentiation in vitro. Mol Metab 2024; 79:101853. [PMID: 38103636 PMCID: PMC10765254 DOI: 10.1016/j.molmet.2023.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
OBJECTIVE The consequences of mutations in genes associated with monogenic forms of diabetes on human pancreas development cannot be studied in a time-resolved fashion in vivo. More specifically, if recessive mutations in the insulin gene influence human pancreatic endocrine lineage formation is still an unresolved question. METHODS To model the extremely reduced insulin levels in patients with recessive insulin gene mutations, we generated a novel knock-in H2B-Cherry reporter human induced pluripotent stem cell (iPSC) line expressing no insulin upon differentiation to stem cell-derived (SC-) β cells in vitro. Differentiation of iPSCs into the pancreatic and endocrine lineage, combined with immunostaining, Western blotting and proteomics analysis phenotypically characterized the insulin gene deficiency in SC-islets. Furthermore, we leveraged FACS analysis and confocal microscopy to explore the impact of insulin shortage on human endocrine cell induction, composition, differentiation and proliferation. RESULTS Interestingly, insulin-deficient SC-islets exhibited low insulin receptor (IR) signaling when stimulated with glucose but displayed increased IR sensitivity upon treatment with exogenous insulin. Furthermore, insulin shortage did not alter neurogenin-3 (NGN3)-mediated endocrine lineage induction. Nevertheless, lack of insulin skewed the SC-islet cell composition with an increased number in SC-β cell formation at the expense of SC-α cells. Finally, insulin deficiency reduced the rate of SC-β cell proliferation but had no impact on the expansion of SC-α cells. CONCLUSIONS Using iPSC disease modelling, we provide first evidence of insulin function in human pancreatic endocrine lineage formation. These findings help to better understand the phenotypic impact of recessive insulin gene mutations during pancreas development and shed light on insulin gene function beside its physiological role in blood glucose regulation.
Collapse
Affiliation(s)
- Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Özüm Sehnaz Caliskan
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Changying Jing
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Munich medical research school (MMRS), Ludwig Maximilian University (LMU), Munich, Germany
| | - Jessica Jaki
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lama Saber
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Oliver Czarnecki
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Damla Taskin
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Anna Karolina Blöchinger
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform Core Facility Electron Microscopy and Histology, Technische Universität Dresden, Dresden, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Natalie Krahmer
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; School of Medicine, Technical University of Munich (TUM), Munich, Germany.
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
40
|
Wang P, Wu L, Wang H, Zhang L, Yin W, Tao R, Tao F, Zhu P. Prenatal air pollution, fetal β-cell dysfunction and neurodevelopmental delay. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115705. [PMID: 37979352 DOI: 10.1016/j.ecoenv.2023.115705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Emerging evidence has reported significant associations of prenatal air pollution exposure with neurodevelopmental delay in offspring. Sensitive exposure windows and the modifiable factor remain elusive. OBJECTIVE We aim to identify sensitive windows of air pollution during pregnancy on neurodevelopmental delay, and examine whether cord blood C-peptide mediates the relationship. METHODS This study included 7438 mother-newborn pairs in Hefei, China, from 2015 to 2021. Weekly exposure to particulate matter of aerodynamic diameter <2.5 µm, 10 µm (PM2.5, PM10), nitrogen dioxide (NO2) and carbon monoxide (CO) was estimated at regulatory air monitoring stations in Hefei. Denver Developmental Screening Test-II and the Gesell Developmental Schedules were applied to assess the neurodevelopmental delay in children 6-36 mon of age. Distributed lag nonlinear models examined sensitive time windows of prenatal air pollutants exposure. Mediation analysis estimated the mediating role of cord blood C-peptide. RESULTS The sensitive PM2.5, PM10, NO2, and CO exposure windows associated with neurodevelopmental delay were throughout pregnancy. Weekly air pollutants exposure was related to higher neurodevelopmental delay risks [cumulative odds ratio (OR): 1.40(1.29,1.53) in PM2.5 (per 10 μg/m3), 1.40(1.28,1.53) in PM10 (per 10 μg/m3), 1.41(1.30,1.52) in CO (per 0.1 mg/m3), and 1.49(1.29,1.72) in NO2 (per 5 μg/m3)]. Mediation analysis indicated 18.3 % contributions of cord C-peptide to the relationship [average mediation effect: 0.04(0.01.0.06); average direct effect: 0.15(0.07.0.25)]. CONCLUSIONS Exposure to air pollution throughout pregnancy is linked to neurodevelopmental delay mediated by poorer fetal β-cell function. Screening and treatment of abnormal glucose metabolism in infants could benefit the prevention of air pollution-associated neurodevelopment delay.
Collapse
Affiliation(s)
- Peng Wang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, Anhui, China
| | - Lin Wu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, Anhui, China
| | - Haixia Wang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, Anhui, China
| | - Lei Zhang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China
| | - Wanjun Yin
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China
| | - Ruixue Tao
- Department of Obstetrics and Gynecology, the First People's Hospital of Hefei City, Hefei, China
| | - Fangbiao Tao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, Anhui, China
| | - Peng Zhu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
41
|
De Franco E, Owens NDL, Montaser H, Wakeling MN, Saarimäki-Vire J, Triantou A, Ibrahim H, Balboa D, Caswell RC, Jennings RE, Kvist JA, Johnson MB, Muralidharan S, Ellard S, Wright CF, Maddirevula S, Alkuraya FS, Hanley NA, Flanagan SE, Otonkoski T, Hattersley AT, Imbeault M. Primate-specific ZNF808 is essential for pancreatic development in humans. Nat Genet 2023; 55:2075-2081. [PMID: 37973953 PMCID: PMC10703691 DOI: 10.1038/s41588-023-01565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Identifying genes linked to extreme phenotypes in humans has the potential to highlight biological processes not shared with all other mammals. Here, we report the identification of homozygous loss-of-function variants in the primate-specific gene ZNF808 as a cause of pancreatic agenesis. ZNF808 is a member of the KRAB zinc finger protein family, a large and rapidly evolving group of epigenetic silencers which target transposable elements. We show that loss of ZNF808 in vitro results in aberrant activation of regulatory potential contained in the primate-specific transposable elements it represses during early pancreas development. This leads to inappropriate specification of cell fate with induction of genes associated with liver identity. Our results highlight the essential role of ZNF808 in pancreatic development in humans and the contribution of primate-specific regions of the human genome to congenital developmental disease.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Nick D L Owens
- Institute of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matthew N Wakeling
- Institute of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Athina Triantou
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Richard C Caswell
- Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Rachel E Jennings
- Division of Diabetes, Endocrinology & Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
- Endocrinology Department, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jouni A Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matthew B Johnson
- Institute of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Sachin Muralidharan
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sian Ellard
- Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Caroline F Wright
- Institute of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Neil A Hanley
- Division of Diabetes, Endocrinology & Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
- Endocrinology Department, Manchester University NHS Foundation Trust, Manchester, UK
| | - Sarah E Flanagan
- Institute of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Andrew T Hattersley
- Institute of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK.
| | | |
Collapse
|
42
|
Merz S, Kleger A. Modellierung der Bauchspeicheldrüse aus hPS-Zellen. BIOSPEKTRUM 2023; 29:749-751. [DOI: 10.1007/s12268-023-2048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
AbstractHuman pluripotent stem cells can be differentiated into the pancreatic lineage, providing a human pancreas model to study diseases and development. We improved the differentiation protocol to generate pancreatic progenitors, the common ancestor of the endocrine and exocrine pancreas. We classified the glycoprotein-2 high-expressing subpopulation as truly multipotent, thereby making it particularly suitable to engineer acinar cells. Its capability of developing simultaneously into endocrine, ductal and acinar lineages qualifies it as a useful tool for pancreatic disease modelling.
Collapse
|
43
|
Wang H, Yin W, Ma S, Wang P, Zhang L, Chen X, Zhu P. Antenatal depression moderated the association between gestational diabetes mellitus and fetal hyperinsulinism. Am J Obstet Gynecol MFM 2023; 5:101183. [PMID: 37827375 DOI: 10.1016/j.ajogmf.2023.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Gestational diabetes mellitus and antenatal depression are common comorbidities. However, the combined effects of antenatal depression and diabetes mellitus during pregnancy on fetal β-cell function are unknown. OBJECTIVE This study aimed to test whether the association of maternal gestational diabetes mellitus and glucose metabolism with cord blood C-peptide levels varies with antenatal depression. STUDY DESIGN Data on mother-child pairs (N=5734) from the Maternal and Infant Health Cohort Study in Hefei were analyzed. Gestational diabetes mellitus was diagnosed using the 75-g oral glucose tolerance test at 24 to 28 weeks of gestation. Antenatal depression was measured using the Edinburgh Postnatal Depression Scale during midpregnancy and late pregnancy. Cord blood samples were collected at delivery and tested for C-peptide levels. RESULTS A total of 1054 mothers (18.38%) were diagnosed with gestational diabetes mellitus. Gestational diabetes mellitus was associated with a 5.57 (95% confidence interval, 3.65-7.50) percentile higher cord blood C-peptide level. This association varied with depression severity: the differences in cord blood C-peptide percentile for gestational diabetes mellitus vs no gestational diabetes mellitus were 5.12 (95% confidence interval, 2.81-9.75) for nonantenatal depression, 7.36 (95% confidence interval, 2.85-13.38) for moderate antenatal depression, and 10.06 (95% confidence interval, 4.69-14.8) for severe antenatal depression in midpregnancy. Similar associations stratified by antenatal depression in late pregnancy were observed. Antenatal depression was significantly positively correlated with fetal hyperinsulinism in participants with gestational diabetes mellitus but not in participants without gestational diabetes mellitus. CONCLUSION Antenatal depression, which is related to maternal hyperglycemia, can aggravate the risk of fetal hyperinsulinism in early life.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu)
| | - Wanjun Yin
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu)
| | - Shuangshuang Ma
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu)
| | - Peng Wang
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu)
| | - Lei Zhang
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu)
| | - Xianxia Chen
- Department of Obstetrics and Gynecology, Anhui Maternal and Child Health Hospital, Hefei, China (Dr Chen).
| | - Peng Zhu
- Department of Maternal, Child, and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu); Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China (Drs H Wang, Yin, Ma, P Wang, Zhang, and Zhu).
| |
Collapse
|
44
|
Cota P, Saber L, Taskin D, Jing C, Bastidas-Ponce A, Vanheusden M, Shahryari A, Sterr M, Burtscher I, Bakhti M, Lickert H. NEUROD2 function is dispensable for human pancreatic β cell specification. Front Endocrinol (Lausanne) 2023; 14:1286590. [PMID: 37955006 PMCID: PMC10634430 DOI: 10.3389/fendo.2023.1286590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction The molecular programs regulating human pancreatic endocrine cell induction and fate allocation are not well deciphered. Here, we investigated the spatiotemporal expression pattern and the function of the neurogenic differentiation factor 2 (NEUROD2) during human endocrinogenesis. Methods Using Crispr-Cas9 gene editing, we generated a reporter knock-in transcription factor (TF) knock-out human inducible pluripotent stem cell (iPSC) line in which the open reading frame of both NEUROD2 alleles are replaced by a nuclear histone 2B-Venus reporter (NEUROD2nVenus/nVenus). Results We identified a transient expression of NEUROD2 mRNA and its nuclear Venus reporter activity at the stage of human endocrine progenitor formation in an iPSC differentiation model. This expression profile is similar to what was previously reported in mice, uncovering an evolutionarily conserved gene expression pattern of NEUROD2 during endocrinogenesis. In vitro differentiation of the generated homozygous NEUROD2nVenus/nVenus iPSC line towards human endocrine lineages uncovered no significant impact upon the loss of NEUROD2 on endocrine cell induction. Moreover, analysis of endocrine cell specification revealed no striking changes in the generation of insulin-producing b cells and glucagon-secreting a cells upon lack of NEUROD2. Discussion Overall, our results suggest that NEUROD2 is expendable for human b cell formation in vitro.
Collapse
Affiliation(s)
- Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Lama Saber
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Damla Taskin
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Changying Jing
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Munich Medical Research School (MMRS), Ludwig Maximilian University (LMU), Munich, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthew Vanheusden
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Alireza Shahryari
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
45
|
Fei L, Zhang K, Poddar N, Hautaniemi S, Sahu B. Single-cell epigenome analysis identifies molecular events controlling direct conversion of human fibroblasts to pancreatic ductal-like cells. Dev Cell 2023; 58:1701-1715.e8. [PMID: 37751683 DOI: 10.1016/j.devcel.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023]
Abstract
Cell fate can be reprogrammed by ectopic expression of lineage-specific transcription factors (TFs). However, the exact cell state transitions during transdifferentiation are still poorly understood. Here, we have generated pancreatic exocrine cells of ductal epithelial identity from human fibroblasts using a set of six TFs. We mapped the molecular determinants of lineage dynamics using a factor-indexing method based on single-nuclei multiome sequencing (FI-snMultiome-seq) that enables dissecting the role of each individual TF and pool of TFs in cell fate conversion. We show that transition from mesenchymal fibroblast identity to epithelial pancreatic exocrine fate involves two deterministic steps: an endodermal progenitor state defined by activation of HHEX with FOXA2 and SOX17 and a temporal GATA4 activation essential for the maintenance of pancreatic cell fate program. Collectively, our data suggest that transdifferentiation-although being considered a direct cell fate conversion method-occurs through transient progenitor states orchestrated by stepwise activation of distinct TFs.
Collapse
Affiliation(s)
- Liangru Fei
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland
| | - Kaiyang Zhang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland
| | - Nikita Poddar
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland
| | - Biswajyoti Sahu
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland; Medicum, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00014, Finland; Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Gaustadelléen 21, 0349 Oslo, Norway.
| |
Collapse
|
46
|
Bohuslavova R, Fabriciova V, Smolik O, Lebrón-Mora L, Abaffy P, Benesova S, Zucha D, Valihrach L, Berkova Z, Saudek F, Pavlinkova G. NEUROD1 reinforces endocrine cell fate acquisition in pancreatic development. Nat Commun 2023; 14:5554. [PMID: 37689751 PMCID: PMC10492842 DOI: 10.1038/s41467-023-41306-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
NEUROD1 is a transcription factor that helps maintain a mature phenotype of pancreatic β cells. Disruption of Neurod1 during pancreatic development causes severe neonatal diabetes; however, the exact role of NEUROD1 in the differentiation programs of endocrine cells is unknown. Here, we report a crucial role of the NEUROD1 regulatory network in endocrine lineage commitment and differentiation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that Neurod1 inactivation triggers a downregulation of endocrine differentiation transcription factors and upregulation of non-endocrine genes within the Neurod1-deficient endocrine cell population, disturbing endocrine identity acquisition. Neurod1 deficiency altered the H3K27me3 histone modification pattern in promoter regions of differentially expressed genes, which resulted in gene regulatory network changes in the differentiation pathway of endocrine cells, compromising endocrine cell potential, differentiation, and functional properties.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Laura Lebrón-Mora
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Zuzana Berkova
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Frantisek Saudek
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| |
Collapse
|
47
|
Ma Z, Zhang X, Zhong W, Yi H, Chen X, Zhao Y, Ma Y, Song E, Xu T. Deciphering early human pancreas development at the single-cell level. Nat Commun 2023; 14:5354. [PMID: 37660175 PMCID: PMC10475098 DOI: 10.1038/s41467-023-40893-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 08/15/2023] [Indexed: 09/04/2023] Open
Abstract
Understanding pancreas development can provide clues for better treatments of pancreatic diseases. However, the molecular heterogeneity and developmental trajectory of the early human pancreas are poorly explored. Here, we performed large-scale single-cell RNA sequencing and single-cell assay for transposase accessible chromatin sequencing of human embryonic pancreas tissue obtained from first-trimester embryos. We unraveled the molecular heterogeneity, developmental trajectories and regulatory networks of the major cell types. The results reveal that dorsal pancreatic multipotent cells in humans exhibit different gene expression patterns than ventral multipotent cells. Pancreato-biliary progenitors that generate ventral multipotent cells in humans were identified. Notch and MAPK signals from mesenchymal cells regulate the differentiation of multipotent cells into trunk and duct cells. Notably, we identified endocrine progenitor subclusters with different differentiation potentials. Although the developmental trajectories are largely conserved between humans and mice, some distinct gene expression patterns have also been identified. Overall, we provide a comprehensive landscape of early human pancreas development to understand its lineage transitions and molecular complexity.
Collapse
Affiliation(s)
- Zhuo Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570102, China
| | - Wen Zhong
- Science for Life Laboratory, Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, 581 83, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hongyan Yi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570102, China
| | - Xiaowei Chen
- Center for High Throughput Sequencing, Core Facility for Protein Research, Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yinsuo Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570102, China.
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Guangzhou Laboratory, Guangzhou, 510005, China.
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China.
| |
Collapse
|
48
|
Arkenberg MR, Ueda Y, Hashino E, Lin CC. Photo-click hydrogels for 3D in situ differentiation of pancreatic progenitors from induced pluripotent stem cells. Stem Cell Res Ther 2023; 14:223. [PMID: 37649117 PMCID: PMC10469883 DOI: 10.1186/s13287-023-03457-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSC) can be differentiated to cells in all three germ layers, as well as cells in the extraembryonic tissues. Efforts in iPSC differentiation into pancreatic progenitors in vitro have largely been focused on optimizing soluble growth cues in conventional two-dimensional (2D) culture, whereas the impact of three-dimensional (3D) matrix properties on the morphogenesis of iPSC remains elusive. METHODS In this work, we employ gelatin-based thiol-norbornene photo-click hydrogels for in situ 3D differentiation of human iPSCs into pancreatic progenitors (PP). Molecular analysis and single-cell RNA-sequencing were utilized to elucidate on the distinct identities of subpopulations within the 2D and 3D differentiated cells. RESULTS We found that, while established soluble cues led to predominately PP cells in 2D culture, differentiation of iPSCs using the same soluble factors led to prominent branching morphogenesis, ductal network formation, and generation of diverse endoderm populations. Through single-cell RNA-sequencing, we found that 3D differentiation resulted in enrichments of pan-endodermal cells and ductal cells. We further noted the emergence of a group of extraembryonic cells in 3D, which was absent in 2D differentiation. The unexpected emergence of extraembryonic cells in 3D was found to be associated with enrichment of Wnt and BMP signaling pathways, which may have contributed to the emergence of diverse cell populations. The expressions of PP signature genes PDX1 and NKX6.1 were restored through inhibition of Wnt signaling at the beginning of the posterior foregut stage. CONCLUSIONS To our knowledge, this work established the first 3D hydrogel system for in situ differentiation of human iPSCs into PPs.
Collapse
Affiliation(s)
- Matthew R Arkenberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yoshitomo Ueda
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Eri Hashino
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 W. Michigan St. SL220K, Indianapolis, IN, 46202, USA.
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
49
|
Cho G, Hyun K, Choi J, Shin E, Kim B, Kim H, Kim J, Han YM. Arginine 65 methylation of Neurogenin 3 by PRMT1 is required for pancreatic endocrine development of hESCs. Exp Mol Med 2023; 55:1506-1519. [PMID: 37394590 PMCID: PMC10393949 DOI: 10.1038/s12276-023-01035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023] Open
Abstract
Neurogenin 3 (NGN3) is a key transcription factor in the cell fate determination of endocrine progenitors (EPs) in the developing pancreas. Previous studies have shown that the stability and activity of NGN3 are regulated by phosphorylation. However, the role of NGN3 methylation is poorly understood. Here, we report that protein arginine methyltransferase-1 (PRMT1)-mediated arginine 65 methylation of NGN3 is required for the pancreatic endocrine development of human embryonic stem cells (hESCs) in vitro. We found that inducible PRMT1-knockout (P-iKO) hESCs did not differentiate from EPs into endocrine cells (ECs) in the presence of doxycycline. Loss of PRMT1 caused NGN3 accumulation in the cytoplasm of EPs and decreased the transcriptional activity of NGN3. We found that PRMT1 specifically methylates NGN3 arginine 65 and that this modification is a prerequisite for ubiquitin-mediated degradation. Our findings demonstrate that arginine 65 methylation of NGN3 is a key molecular switch in hESCs permitting their differentiation into pancreatic ECs.
Collapse
Affiliation(s)
- Gahyang Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kwangbeom Hyun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jieun Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Eunji Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bumsoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Yong-Mahn Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
50
|
Lo EK, Mears BM, Maurer HC, Idrizi A, Hansen KD, Thompson ED, Hruban RH, Olive KP, Feinberg AP. Comprehensive DNA Methylation Analysis Indicates That Pancreatic Intraepithelial Neoplasia Lesions Are Acinar-Derived and Epigenetically Primed for Carcinogenesis. Cancer Res 2023; 83:1905-1916. [PMID: 36989344 PMCID: PMC10239363 DOI: 10.1158/0008-5472.can-22-4052] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is believed to arise from the accumulation of a series of somatic mutations and is also frequently associated with pancreatic intraepithelial neoplasia (PanIN) lesions. However, there is still debate as to whether the cell type-of-origin of PanINs and PDACs in humans is acinar or ductal. As cell type identity is maintained epigenetically, DNA methylation changes during pancreatic neoplasia can provide a compelling perspective to examine this question. Here, we performed laser-capture microdissection on surgically resected specimens from 18 patients to isolate, with high purity, DNA for whole-genome bisulfite sequencing from four relevant cell types: acini, nonneoplastic ducts, PanIN lesions, and PDAC lesions. Differentially methylated regions (DMR) were identified using two complementary analytical approaches: bsseq, which identifies any DMRs but is particularly useful for large block-like DMRs, and informME, which profiles the potential energy landscape across the genome and is particularly useful for identifying differential methylation entropy. Both global methylation profiles and block DMRs clearly implicated an acinar origin for PanINs. At the gene level, PanIN lesions exhibited an intermediate acinar-ductal phenotype resembling acinar-to-ductal metaplasia. In 97.6% of PanIN-specific DMRs, PanIN lesions had an intermediate methylation level between normal and PDAC, which suggests from an information theory perspective that PanIN lesions are epigenetically primed to progress to PDAC. Thus, epigenomic analysis complements histopathology to define molecular progression toward PDAC. The shared epigenetic lineage between PanIN and PDAC lesions could provide an opportunity for prevention by targeting aberrantly methylated progression-related genes. SIGNIFICANCE Analysis of DNA methylation landscapes provides insights into the cell-of-origin of PanIN lesions, clarifies the role of PanIN lesions as metaplastic precursors to human PDAC, and suggests potential targets for chemoprevention.
Collapse
Affiliation(s)
- Emily K.W. Lo
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian M. Mears
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - H. Carlo Maurer
- Department of Internal Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kasper D. Hansen
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth D. Thompson
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Baltimore, MD, USA
| | - Ralph H. Hruban
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Baltimore, MD, USA
| | - Kenneth P. Olive
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, MD, USA
| |
Collapse
|