1
|
Moghassemi S, Nikanfar S, Dadashzadeh A, Sousa MJ, Wan Y, Sun F, Colson A, De Windt S, Kwaspen L, Kanbar M, Sobhani K, Yang J, Vlieghe H, Li Y, Debiève F, Wyns C, Amorim CA. The revolutionary role of placental derivatives in biomedical research. Bioact Mater 2025; 49:456-485. [PMID: 40177109 PMCID: PMC11964572 DOI: 10.1016/j.bioactmat.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
The human placenta is a transient yet crucial organ that plays a key role in sustaining the relationship between the maternal and fetal organisms. Despite its historical classification as "biowaste," placental tissues have garnered increasing attention since the early 1900s for their significant medical potential, particularly in wound repair and surgical application. As ethical considerations regarding human placental derivatives have largely been assuaged in many countries, they have gained significant attention due to their versatile applications in various biomedical fields, such as biomedical engineering, regenerative medicine, and pharmacology. Moreover, there is a substantial trend toward various animal product substitutions in laboratory research with human placental derivatives, reflecting a broader commitment to advancing ethical and sustainable research methodologies. This review provides a comprehensive examination of the current applications of human placental derivatives, explores the mechanisms behind their therapeutic effects, and outlines the future potential and directions of this rapidly advancing field.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Saba Nikanfar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yuting Wan
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Fengxuan Sun
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Arthur Colson
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sven De Windt
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lena Kwaspen
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Keyvan Sobhani
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yongqian Li
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Morakhia KR, Shah AC, Patel MP, Shah JK, Patel R, Chorawala MR. From current landscape to future horizon in stem cell therapy for tissue regeneration and wound healing: bridging the gap. Z NATURFORSCH C 2025:znc-2025-0020. [PMID: 40420770 DOI: 10.1515/znc-2025-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/27/2025] [Indexed: 05/28/2025]
Abstract
Stem cell therapy has emerged as a groundbreaking approach in regenerative medicine, offering immense potential for tissue regeneration and wound healing. Stem cells, with their ability to self-renew and differentiate into specialized cell types, provide innovative therapeutic strategies for variety of medical conditions. Key stem cell types, including embryonic, induced pluripotent, and adult stem cells such as mesenchymal and hematopoietic stem cells, play pivotal roles in regenerative processes and wound repair. In tissue regeneration, stem cells replenish damaged or necrotic cells by differentiating into specialized cell types like bone, muscle, or nerve cells, thus restoring the structural and functional integrity of tissues. In wound healing, stem cells stimulate angiogenesis, generate new skin cells, and modulate immune responses to enhance repair. This multifaceted therapeutic potential has paved the way for clinical applications in cardiovascular, neurological, musculoskeletal, and autoimmune disorders, as well as skin and burn injuries. This review highlights recent advancements in stem cell therapy, exploring its clinical applications and addressing challenges such as immune rejection, ethical concerns, scalability, and the need for long-term clinical trials. The article underscores the importance of continued research to fully realize the transformative potential of stem cell therapy in modern medicine.
Collapse
Affiliation(s)
- Kashvy R Morakhia
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Aayushi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Mannat P Patel
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Jainam K Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajanikant Patel
- Department of Product Development, Granules Pharmaceuticals Inc., 3701 Concorde Parkway, Chantilly, VA 20151, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
3
|
Harrington K, Shah K. Harmonizing the Gut Microbiome and Cellular Immunotherapies: The Next Leap in Cancer Treatment. Cells 2025; 14:708. [PMID: 40422211 DOI: 10.3390/cells14100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
The gut microbiome, a diverse community of microorganisms, plays a key role in shaping the host's immune system and modulating cancer therapies. Emerging evidence highlights its critical influence on the efficacy and toxicity of cell-based immunotherapies, including chimeric antigen receptor T cell, natural killer cell, and stem cell therapies. This review explores the interplay between gut microbiota and cellular immunotherapies, focusing on mechanisms by which microbial metabolites and microbial composition impact treatment outcomes. Furthermore, we discuss strategies to leverage the gut microbiome to optimize therapeutic efficacy and minimize adverse effects. A deeper understanding of the relationship between the gut microbiome and cellular immunotherapies can pave the way for more effective cell-based therapies for cancer.
Collapse
Affiliation(s)
- Kendall Harrington
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Zamorano M, Aguilar-Gallardo C, Lugo A, Jimenez L, Farias JG, Mantalaris A. Engineering an Integrated Bioprocess to Produce Human Dental Pulp Stem Cell-Alginate-Based Bone Organoids. Int J Mol Sci 2025; 26:4348. [PMID: 40362585 PMCID: PMC12073084 DOI: 10.3390/ijms26094348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Bone tissue engineering (BTE) emerged as a practical approach to tackle prosthetic industry limitations. We merge aspects from developmental biology, engineering and medicine with the aim to produce fully functional bone tissue. Mesenchymal stem cells have the capability of self-renewal and specific lineage differentiation. Herein lies their potential for BTE. Among MSCs, human dental pulp stem cells have a higher proliferation rate, shorter doubling times, lower cellular senescence, and enhanced osteogenesis than hBM-SCs under specific conditions. In addition, these cells are readily accessible and can be extracted through a subtle extraction procedure. Thus, they garner fewer moral concerns than most MSCs available and embody a promising cell source for BTE therapies able to replace hBM-MSCs. Interestingly, their study has been limited. Conversely, there is a need for their further study to harness their true value in BTE, with special emphasis in the design of bioprocesses able to produce viable, homogenous bone constructs in a clinical scale. Here, we study the osteogenic differentiation of hDPSCs encapsulated in alginate hydrogels under suspended culture in a novel perfusion bioreactor. The system is compared with traditional 3D static and fed-batch culture methodologies. The novel system performed better, producing higher alkaline phosphatase activity, and more homogeneous, dense and functional bone constructs. Additionally, cell constructs produced by the in-house-designed system were richer in mature osteoblast-like and mineralizing osteocyte-like cells. In conclusion, this study reports the development of a novel bioprocess able to produce hDPSC-based bone-like constructs, providing new insights into hDPSCs' therapeutic potential and a system able to be transferred from the laboratory bench into medical facilities.
Collapse
Affiliation(s)
- Mauricio Zamorano
- Chemical Engineering Department, Universidad de La Frontera, Temuco 4811230, Chile; (A.L.); (L.J.); (J.G.F.)
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK;
| | - Cristobal Aguilar-Gallardo
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK;
- Instituto de Investigación Sanitaria Hospital La Fe, Valencia 46026, Spain
| | - Aloyma Lugo
- Chemical Engineering Department, Universidad de La Frontera, Temuco 4811230, Chile; (A.L.); (L.J.); (J.G.F.)
| | - Luis Jimenez
- Chemical Engineering Department, Universidad de La Frontera, Temuco 4811230, Chile; (A.L.); (L.J.); (J.G.F.)
| | - Jorge G. Farias
- Chemical Engineering Department, Universidad de La Frontera, Temuco 4811230, Chile; (A.L.); (L.J.); (J.G.F.)
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK;
- Bioprocess Systems Engineering Group, Trinity College Dublin, Dublin A94 X099, Ireland
| |
Collapse
|
5
|
Wen S, Dooner M, Pereira M, Del Tatto M, Quesenberry P. Mesenchymal Stem Cell-Derived Extracellular Vesicles Improve Survival and Enhance Hematopoietic Recovery in Mice Exposed to High-Dose Irradiation. Stem Cells Dev 2025; 34:189-200. [PMID: 40135580 DOI: 10.1089/scd.2025.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Exposure to high-dose radiation often results in hematopoietic acute radiation syndromes, leading to early mortality, while current therapies for patients exposed to lethal radiation doses are limited. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have shown promise in tissue repair and regeneration but have not been well investigated for mitigating high-dose radiation damage. We previously demonstrated that human or murine MSC-EVs can reverse bone marrow injury caused by mild or moderate radiation. The current study evaluated the therapeutic potential of human MSC-EVs in mice exposed to high-dose total body irradiation (TBI). Mice were exposed to 0, 700, or 950 cGy TBI and subsequently received daily intravenous MSC-EV injections (1 × 109 particles) for 3 days postirradiation. We evaluated survival rates, peripheral blood recovery, bone marrow engraftment, and bone marrow gene expression profiles at various intervals following treatment. MSC-EV administration significantly enhanced survival, with 70% of treated mice surviving 120 days after 950 cGy TBI exposure, compared with 0% survival in untreated controls by day 30. Although early peripheral blood recovery was not observed within 14 days, MSC-EV treatment facilitated substantial recovery at 3 months postirradiation, with significant increases in red blood cell, platelet, white blood cell, and hemoglobin levels, despite white blood cell and hemoglobin levels remaining slightly below normal. Furthermore, the engraftment capacity of bone marrow stem cells was significantly improved. The changes in hematopoietic-related gene expression presented at 14 days postirradiation returned to normal levels by 120 days in MSC-EV-treated mice. These results highlight the potential of MSC-EVs as a therapeutic strategy for high-dose radiation injuries by promoting hematopoietic recovery and improving survival. Our future research will focus on elucidating the radioprotective mechanisms and investigating their integration with existing therapies.
Collapse
Affiliation(s)
- Sicheng Wen
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Mark Dooner
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Mandy Pereira
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Michael Del Tatto
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Peter Quesenberry
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
6
|
Li ZP, Li H, Ruan YH, Wang P, Zhu MT, Fu WP, Wang RB, Tang XD, Zhang Q, Li SL, Yin H, Li CJ, Tian YG, Han RN, Wang YB, Zhang CJ. Stem cell therapy for intervertebral disc degeneration: Clinical progress with exosomes and gene vectors. World J Stem Cells 2025; 17:102945. [PMID: 40308883 PMCID: PMC12038459 DOI: 10.4252/wjsc.v17.i4.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/25/2025] [Accepted: 03/10/2025] [Indexed: 04/23/2025] Open
Abstract
Intervertebral disc degeneration is a leading cause of lower back pain and is characterized by pathological processes such as nucleus pulposus cell apoptosis, extracellular matrix imbalance, and annulus fibrosus rupture. These pathological changes result in disc height loss and functional decline, potentially leading to disc herniation. This comprehensive review aimed to address the current challenges in intervertebral disc degeneration treatment by evaluating the regenerative potential of stem cell-based therapies, with a particular focus on emerging technologies such as exosomes and gene vector systems. Through mechanisms such as differentiation, paracrine effects, and immunomodulation, stem cells facilitate extracellular matrix repair and reduce nucleus pulposus cell apoptosis. Despite recent advancements, clinical applications are hindered by challenges such as hypoxic disc environments and immune rejection. By analyzing recent preclinical and clinical findings, this review provided insights into optimizing stem cell therapy to overcome these obstacles and highlighted future directions in the field.
Collapse
Affiliation(s)
- Zhi-Peng Li
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Han Li
- Department of Orthopedics, Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua 322100, Zhejiang Province, China
| | - Yu-Hua Ruan
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Peng Wang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Meng-Ting Zhu
- Department of Neurology, Union Medical College Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Wei-Ping Fu
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rui-Bo Wang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xiao-Dong Tang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qi Zhang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Sen-Li Li
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - He Yin
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Cheng-Jin Li
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yi-Gong Tian
- Third Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rui-Ning Han
- Third Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yao-Bin Wang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chang-Jiang Zhang
- Second Department of Orthopedics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.
| |
Collapse
|
7
|
Zayed M, Kim YC, Jeong BH. Biological characteristics and transcriptomic profile of adipose-derived mesenchymal stem cells isolated from prion-infected murine model. Stem Cell Res Ther 2025; 16:154. [PMID: 40156048 PMCID: PMC11951670 DOI: 10.1186/s13287-025-04273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Prion diseases are characterized by accumulation of misfolded host prion proteins (PrPSc) that produce aggregates in brain tissue. Mesenchymal stem cells (MSCs) have been identified as potential therapeutic candidates for prion diseases. However, it has been demonstrated that MSCs maintained and expressed PrPSc levels following inoculation, raising concerns regarding their safe and effective use in medical applications. Prion infectivity has been reported in fat tissues, thus the response of adipose-derived MSCs (AdMSCs) to prion infection needs to be fully studied. METHODS For this study, we analyzed the properties of AdMSCs isolated from mice infected with the ME7 scrapie strain and compared them with negative controls. We investigated morphology, viability, immunophenotyping, markers of inflammation, migration activity, and neurotrophic factors. RNA sequencing (RNA-Seq) was performed to identify transcriptome profile changes. RESULTS AdMSCs derived from ME7-infected mice displayed immunophenotypes similar to cells from negative controls, but they were larger with lower viability (p < 0.05). ME7 infection caused higher expression of inflammatory mediators CCL5, TNF-α, C3, and IL6 (p < 0.05 and p < 0.01) and low expression of the stem cell marker, CXCR4 (p < 0.05) which was confirmed by immunofluorescence staining. The results showed decreased migration activity and wound closure ability of AdMSCs isolated from ME7-infected mice as confirmed by Transwell migration and scratch wound assays (p < 0.05 and p < 0.001), respectively. The RNA-Seq results detected 367 differentially expressed genes between AdMSCs from ME7-infected mice and those from the negative controls, and negative regulation of locomotion, extracellular matrix (ECM) organization, collagen-containing ECM, and extracellular structure organization genes were common in AdMSCs from ME7-infected mice. Transcriptomic analysis revealed that pathways enriched in AdMSCs from ME7-infected mice included those involved in the PI3K-Akt signaling pathway, cell adhesion, protein digestion and absorption, and cytokine-cytokine receptor interactions. Interestingly, genes related to the regulation of iron storage, such as Hp and hepcidin, were upregulated in AdMSCs isolated from ME7-infected mice. CONCLUSIONS Based on these data, therapeutic strategies for AdMSCs in prion disease should be further investigated.
Collapse
Affiliation(s)
- Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong, 36729, Republic of Korea
- School of Life Sciences and Biotechnology, Gyeongkuk National University, Andong 36729, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
8
|
Safwan M, Bourgleh MS, Haider KH. Clinical experience with cryopreserved mesenchymal stem cells for cardiovascular applications: A systematic review. World J Stem Cells 2025; 17:102067. [PMID: 40160690 PMCID: PMC11947892 DOI: 10.4252/wjsc.v17.i3.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/17/2025] [Accepted: 02/24/2025] [Indexed: 03/21/2025] Open
Abstract
BACKGROUND As living biodrugs, mesenchymal stem cells (MSCs) have progressed to phase 3 clinical trials for cardiovascular applications. However, their limited immediate availability hampers their routine clinical use. AIM To validate our hypothesis that cryopreserved MSCs (CryoMSCs) are as safe and effective as freshly cultured MSC counterparts but carry logistical advantages. METHODS Four databases were systematically reviewed for relevant randomized controlled trials (RCTs) evaluating the safety and efficacy of CryoMSCs from various tissue sources in treating patients with heart disease. A subgroup analysis was performed based on MSC source and post-thaw cell viability to determine treatment effects across different CryoMSCs sources and viability status. Weighted mean differences (WMDs) and odds ratios were calculated to measure changes in the estimated treatment effects. All statistical analyses were performed using RevMan version 5.4.1 software. RESULTS Seven RCTs (285 patients) met the eligibility criteria for inclusion in the meta-analysis. During short-term follow-up, CryoMSCs demonstrated a significant 2.11% improvement in left ventricular ejection fraction (LVEF) [WMD (95%CI) = 2.11 (0.66-3.56), P = 0.004, I 2 = 1%], with umbilical cord-derived MSCs being the most effective cell type. However, the significant effect on LVEF was not sustained over the 12 months of follow-up. Subgroup analysis demonstrated a substantial 3.44% improvement in LVEF [WMD (95%CI) = 3.44 (1.46-5.43), P = 0.0007, I 2 = 0%] when using MSCs with post-thaw viability exceeding 80%. There was no statistically significant difference in the frequency of major cardiac adverse events observed in rehospitalization or mortality in patients treated with CryoMSCs vs the control group. CONCLUSION CryoMSCs are a promising option for heart failure patients, particularly considering the current treatment options for cardiovascular diseases. Our data suggest that CryoMSCs could be a viable alternative or complementary treatment to the current options, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Moaz Safwan
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, AlQaseem, Saudi Arabia
| | - Mariam Safwan Bourgleh
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, AlQaseem, Saudi Arabia
| | - Khawaja Husnain Haider
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, AlQaseem, Saudi Arabia.
| |
Collapse
|
9
|
Huang YY, Zhou LY, Chen GF, Peng D, Pan MZ, Zhou JB, Qu J. Refractive status and histological changes after posterior scleral reinforcement in guinea pig. Int J Ophthalmol 2025; 18:375-382. [PMID: 40103945 PMCID: PMC11865658 DOI: 10.18240/ijo.2025.03.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/13/2024] [Indexed: 03/20/2025] Open
Abstract
AIM To investigate the refractive and the histological changes in guinea pig eyes after posterior scleral reinforcement with scleral allografts. METHODS Four-week-old guinea pigs were implanted with scleral allografts, and the changes of refraction, corneal curvature and axis length were monitored for 51d. The effects of methylprednisolone (MPS) on refraction parameters were also evaluated. And the microstructure and ultra-microstructure of eyes were observed on the 9d and 51d after operation. Repeated-measures analysis of variance and one-way analysis of variance were used. RESULTS The refraction outcome of the implanted eye decreased after operation, and the refraction change of the 3 mm scleral allografts group was significantly different with control group (P=0.005) and the sham surgical group (P=0.004). After the application of MPS solution, the reduction of refraction outcome was statistically suppressed (P=0.008). The inflammatory encapsulation appeared 9d after surgery. On 51d after operation, the loose implanted materials were absorbed, while the adherent implanted materials with MPS group were still tightly attached to the recipient's eyeball. CONCLUSION After implantation of scleral allografts, the refraction of guinea pig eyes fluctuated from a decrease to an increase. The outcome of the scleral allografts is affected by implantation methods and the inflammatory response. Stability of the material can be improved by MPS.
Collapse
Affiliation(s)
- Yu-Yan Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Li-Yang Zhou
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Guo-Fu Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Hefei Aier Eye Hospital, Hefei 230000, Anhui Province, China
| | - Duo Peng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215000, Jiangsu Province, China
| | - Miao-Zhen Pan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Ji-Bo Zhou
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jia Qu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| |
Collapse
|
10
|
Jammes M, Tabasi A, Bach T, Ritter T. Healing the cornea: Exploring the therapeutic solutions offered by MSCs and MSC-derived EVs. Prog Retin Eye Res 2025; 105:101325. [PMID: 39709150 DOI: 10.1016/j.preteyeres.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs). Consequently, using MSC-EVs emerged as a pioneering strategy to mitigate the risks related to cell therapy while providing MSC therapeutic benefits. Despite the promises given by MSC- and MSC-EV-based approaches, many improvements are considered to optimize the therapeutic significance of these therapies. This review aspires to provide a comprehensive and detailed overview of current knowledge on corneal therapies involving MSCs and MSC-EVs, the strategies currently under evaluation, and the gaps remaining to be addressed for clinical implementation. From encapsulating MSCs or their EVs into biomaterials to enhance the ocular retention time to loading MSC-EVs with therapeutic drugs, a wide range of ground-breaking strategies are currently contemplated to lead to the safest and most effective treatments. Promising research initiatives also include diverse gene therapies and the targeting of specific cell types through the modification of the EV surface, paving the way for future therapeutic innovations. As one of the most important challenges, MSC-EV large-scale production strategies are extensively investigated and offer a wide array of possibilities to meet the needs of clinical applications.
Collapse
Affiliation(s)
- Manon Jammes
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Abbas Tabasi
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Trung Bach
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
11
|
Sadiasa A, Werkmeister JA, Gurung S, Gargett CE. Steps towards the clinical application of endometrial and menstrual fluid mesenchymal stem cells for the treatment of gynecological disorders. Expert Opin Biol Ther 2025; 25:285-307. [PMID: 39925343 DOI: 10.1080/14712598.2025.2465826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION The human endometrium is a highly regenerative tissue that contains mesenchymal stem/stromal cells (MSCs). These MSCs are sourced via office-based biopsies and menstrual fluid, providing a less invasive and readily available option for cell-based therapies. This review provides an update on endometrial-derived MSCs as a treatment option for gynecological diseases. AREAS COVERED This narrative review covers the characterization and therapeutic mechanisms of endometrium biopsy-derived MSCs (eMSCs) and menstrual fluid-derived mesenchymal stromal cells (MenSCs), highlighting similarities and differences. It also covers studies of their application in preclinical animal models and in clinical trials as potential cell-based therapies for gynecological diseases. EXPERT OPINION eMSCs and MenSCs from a homologous tissue source have the potential to promote regenerative activity as a treatment for gynecological diseases. Both eMSCs and MenSCs demonstrate therapeutic benefits through their paracrine activity in tissue regeneration, immunomodulation, angiogenesis, and mitigating fibrosis. Further research is essential to establish standardized isolation and characterization protocols, particularly for heterogeneous MenSCs, and to fully understand their mechanisms of action. Implementing SUSD2 magnetic bead sorting for purifying eMSCs from endometrial tissues and menstrual fluid is crucial for their use in future cell-based therapies. Optimization of production, storage, and delivery methods will maximize their therapeutic effectiveness.
Collapse
Affiliation(s)
- Alexander Sadiasa
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Rouzbahani M, Ghanaati H. Intra-Arterial Stem Cell Injection for Treating Various Diseases: A New Frontier in Interventional Radiology. Cardiovasc Intervent Radiol 2025; 48:288-296. [PMID: 39789253 DOI: 10.1007/s00270-024-03947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
This article provides radiologists with insights into stem cells' functions, sources, and potentially successful clinical treatments via intravascular injection in organs such as the liver, kidney, pancreas, musculoskeletal system, and for ischemic conditions affecting the brain, heart and limbs. Understanding stem cells' significance in interventional radiology and its limitations enables tailored interventions for diverse conditions, ensuring efficient medical care and optimal treatment selection.
Collapse
Affiliation(s)
- Maedeh Rouzbahani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Ghanaati
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Quan J, Liu Q, Li P, Yang Z, Zhang Y, Zhao F, Zhu G. Mesenchymal stem cell exosome therapy: current research status in the treatment of neurodegenerative diseases and the possibility of reversing normal brain aging. Stem Cell Res Ther 2025; 16:76. [PMID: 39985030 PMCID: PMC11846194 DOI: 10.1186/s13287-025-04160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/21/2025] [Indexed: 02/23/2025] Open
Abstract
With the exacerbation of the aging population trend, a series of neurodegenerative diseases caused by brain aging have become increasingly common, significantly impacting the daily lives of the elderly and imposing heavier burdens on nations and societies. Brain aging is a complex process involving multiple mechanisms, including oxidative stress, apoptosis of damaged neuronal cells, chronic inflammation, and mitochondrial dysfunction, and research into new therapeutic strategies to delay brain aging has gradually become a research focus in recent years. Mesenchymal stem cells (MSCs) have been widely used in cell therapy due to their functions such as antioxidative stress, anti-inflammation, and tissue regeneration. However, accompanying safety issues such as immune rejection, tumor development, and pulmonary embolism cannot be avoided. Studies have shown that using exosome derived from mesenchymal stem cells (MSC-Exo) for the treatment of neurodegenerative diseases is a safe and effective method. It not only has the therapeutic effects of stem cells but also avoids the risks associated with cell therapy. Therefore, exploring new therapeutic strategies to delay normal brain aging from the mechanism of MSC-Exo in the treatment of neurodegenerative diseases is feasible. This review summarizes the characteristics of MSC-Exo and their clinical progress in the treatment of neurodegenerative diseases, aiming to explore the possibility and potential mechanisms of MSC-Exo in reversing brain aging.
Collapse
Affiliation(s)
- Jinglan Quan
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Qing Liu
- Department of Library, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Pinghui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Zhiyu Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Yaohui Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Fuxing Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China
| | - Gaohong Zhu
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, Yunnan, 650032, China.
| |
Collapse
|
14
|
Ravi S, Chokkakula LPP, Dey SR, Rath SN. Fabrication of Hypoxia-Mimicking Supramolecular Hydrogels for Cartilage Repair. ACS APPLIED BIO MATERIALS 2025; 8:1261-1277. [PMID: 39873629 DOI: 10.1021/acsabm.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Despite advancements in chronic arthritis treatment, there remains a significant demand for advanced nanotechnologies capable of efficiently delivering a wide range of therapeutic agents to provide symptomatic relief and facilitate the healing of inflamed cartilage tissue. Considering the significant impact of hypoxia on the development and maintenance of chondral tissue, replicating its effects on stem cells could be a potential approach for the treatment of osteoarthritis (OA). Cobalt is a prominent hypoxia-inducing agent, owing to its ability to activate the hypoxia-inducible factor (HIF) pathway regardless of cellular oxygen levels. The intra-articular (IA) injection of dexamethasone (Dex) is often used to alleviate inflammation and pain associated with OA. Nevertheless, several obstacles impede the drug's efficacy, including its short duration of action and rapid elimination from the joint space. Considering these research problems, the study brings an advanced strategy for the development of a three-dimensional (3D) bioprintable hypoxia-mimicking supramolecular hydrogel (HMSG) through the self-assembly of Dex-loaded poly(ethylene glycol) diacrylate (PEGDA) guest polymers with acryloyl β-cyclodextrin (AβCD) host monomers, in combination with cobalt nanowires (Co NWs). Through the process of photo-cross-linking, HMSG can generate multivalent host-guest nanoclusters, making it an excellent candidate for 3D bioprinting, showcasing remarkable mechanical properties. By effectively delivering Dex and Co2+ in a sustained manner, the HMSG affords a suitable microenvironment for the encapsulated umbilical cord-derived mesenchymal stem cells (UMSCs), thereby promoting the synthesis of matrix components and decreasing the release of catabolic factors. Moreover, the HMSG ameliorates OA severity by increasing the M2 macrophage polarization, which can ultimately contribute to immunomodulatory effects. In conclusion, the results propose potential approaches for utilizing HMSG as efficient carriers to transport various therapeutic molecules to the injury site, thereby assimilating into nearby tissues and promoting successful tissue repair without the need for external growth factors.
Collapse
Affiliation(s)
- Subhashini Ravi
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India
| | - L P Pavithra Chokkakula
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India
| | - Suhash Ranjan Dey
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India
| |
Collapse
|
15
|
Lu W, Allickson J. Mesenchymal stromal cell therapy: Progress to date and future outlook. Mol Ther 2025:S1525-0016(25)00093-0. [PMID: 39916329 DOI: 10.1016/j.ymthe.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
In clinical trials, mesenchymal stromal/stem cells (MSCs) have consistently demonstrated safety. However, demonstration of efficacy has been inconsistent and many MSC trials have failed to meet their efficacy endpoint. This disappointing reality is reflected by the limited number MSC therapies approved by regulatory agencies, despite the large number of MSC trials registered on clinicaltrials.gov. Notably, there has been a recent approval of an MSC therapy for pediatric graft-vs.-host disease in the United States, marking the first MSC therapy approved by the U.S. Food and Drug Administration. This review provides a background of the history and potential therapeutic value of MSCs, an overview of MSC products with regulatory approval, and a summary of registered MSC trials. It concludes with a discussion on current and ongoing challenges and questions surrounding MSC therapy that remains to be resolved before becoming available for routine clinical use outside of clinical trials.
Collapse
Affiliation(s)
- Wen Lu
- Department of Laboratory Medicine and Pathology, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA.
| | - Julie Allickson
- Department of Laboratory Medicine and Pathology, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
16
|
Nouri S, Shokraneh S, Fatehi Shalamzari P, Ahmed MH, Radi UK, Idan AH, Ebrahimi MJ, Moafi M, Gholizadeh N. Application of Mesenchymal Stem Cells and Exosome alone or Combination Therapy as a Treatment Strategy for Wound Healing. Cell Biochem Biophys 2024; 82:3209-3222. [PMID: 39068609 DOI: 10.1007/s12013-024-01448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The process of wound healing consists of multiple phases, and any disruptions in these phases can lead to the wound becoming chronic and impose heavy financial and psychological costs on the patient and a huge economic burden on the country's healthcare system. Various treatments such as drugs, matrix and scaffolds, blood products, cell therapy, and a combination of these treatments are used for wound healing. The use of mesenchymal stem cells (MSCs) is one of these methods that have produced appropriate responses in the healing of patients' wounds. MSCs by secreting growth factors, cytokines, chemokines, and RNAs elicit changes in cell proliferation, migration, growth, signaling, immunomodulation, and wound re-epithelialization process, and as a result, accelerate wound closure and wound healing. These cells can be isolated from different body sources with different cell characteristics and used directly on the wound site or by injection. In addition, MSCs-derived exosomes have attracted growing attention due to circumventing concerns relating to the direct use of MSCs. To increase the performance of MSCs, they can be used together with other compounds such as platelets, matrices, or scaffolds. This study examined the functions of MSCs in wound healing, as well as the vesicles they secrete, cellular and molecular mechanisms, and combined treatments with MSCs for wound healing.
Collapse
Affiliation(s)
- Soheil Nouri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Mohammad Javad Ebrahimi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maral Moafi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
17
|
Sharun K, Banu SA, Alifsha B, Abualigah L, Pawde AM, Dhama K, Pal A. Mesenchymal stem cell therapy in veterinary ophthalmology: clinical evidence and prospects. Vet Res Commun 2024; 48:3517-3531. [PMID: 39212813 DOI: 10.1007/s11259-024-10522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mesenchymal stem cell (MSC) therapy presents a promising strategy for treating various ocular conditions in veterinary medicine. This review explores the therapeutic potential of MSCs in managing corneal ulcers, immune-mediated keratitis, chronic superficial keratitis, keratoconjunctivitis sicca, retinal degeneration, and ocular burns in feline, equine, and canine patients. Studies have demonstrated the immunomodulatory and regenerative properties of MSCs, highlighting their ability to mitigate inflammation and promote tissue regeneration. Experimental studies have shown the potential of MSC therapy in reducing corneal opacity and vascularization, indicating significant therapeutic advantages. Delivery methods play a crucial role in optimizing the therapeutic efficacy of MSCs in ocular diseases. Various delivery methods, such as intravitreal injection, subconjunctival injection, topical administration, and scaffold-mediated delivery, are being explored to optimize MSC delivery to the target ocular tissues. Clinical trials have shown significant improvements in clinical signs following MSC therapy, underscoring its efficacy in treating ocular diseases. Additionally, tissue engineering approaches incorporating MSCs, growth factors, and scaffolds offer innovative strategies for corneal regeneration and tissue repair. Despite challenges such as standardization of protocols and long-term safety assessment, ongoing research endeavours seek to unlock the full therapeutic potential of MSC therapy in ocular diseases. Future prospects in MSC therapy involve exploring scaffold and hydrogel-based approaches and cell-free therapies leveraging the bioactive molecules released by MSCs. Continued research and development efforts are essential to unlock the full therapeutic potential of MSCs and realize their transformative impact on ocular diseases in veterinary patients.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, 32003, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - B Alifsha
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Laith Abualigah
- Computer Science Department, Al al-Bayt University, Mafraq, 25113, Jordan
- MEU Research Unit, Middle East University, Amman, 11831, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, 11931, Jordan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amar Pal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
18
|
Wu KC, Chang YH, Ding DC, Lin SZ. Mesenchymal Stromal Cells for Aging Cartilage Regeneration: A Review. Int J Mol Sci 2024; 25:12911. [PMID: 39684619 PMCID: PMC11641625 DOI: 10.3390/ijms252312911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cartilage degeneration is a key feature of aging and osteoarthritis, characterized by the progressive deterioration of joint function, pain, and limited mobility. Current treatments focus on symptom relief, not cartilage regeneration. Mesenchymal stromal cells (MSCs) offer a promising therapeutic option due to their capability to differentiate into chondrocytes, modulate inflammation, and promote tissue regeneration. This review explores the potential of MSCs for cartilage regeneration, examining their biological properties, action mechanisms, and applications in preclinical and clinical settings. MSCs derived from bone marrow, adipose tissue, and other sources can self-renew and differentiate into multiple cell types. In aging cartilage, they aid in tissue regeneration by secreting growth factors and cytokines that enhance repair and modulate immune responses. Recent preclinical studies show that MSCs can restore cartilage integrity, reduce inflammation, and improve joint function, although clinical translation remains challenging due to limitations such as cell viability, scalability, and regulatory concerns. Advancements in MSC delivery, including scaffold-based approaches and engineered exosomes, may improve therapeutic effectiveness. Potential risks, such as tumorigenicity and immune rejection, are also discussed, emphasizing the need for optimized treatment protocols and large-scale clinical trials to develop effective, minimally invasive therapies for cartilage regeneration.
Collapse
Affiliation(s)
- Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
19
|
Alizadeh SD, Jahani S, Rukerd MRZ, Tabrizi R, Masoomi R, Banihashemian SZ, Tabatabaei MSHZ, Ghodsi Z, Pour-Rashidi A, Harrop J, Rahimi-Movaghar V. Human studies of the efficacy and safety of stem cells in the treatment of diabetic peripheral neuropathy: a systematic review and meta-analysis. Stem Cell Res Ther 2024; 15:442. [PMID: 39563393 PMCID: PMC11577959 DOI: 10.1186/s13287-024-04033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVE To assess the efficacy and safety of stem cell therapy in human studies for diabetic peripheral neuropathy (DPN). METHODS A comprehensive literature review was performed across multiple databases, including Ovid MEDLINE ALL, Embase via Ovid SP, Scopus, Web of Science Core Collection, and Cochrane CENTRAL, up to January 31, 2024. Keywords and controlled vocabularies related to diabetic neuropathy and stem cell therapy were used. Inclusion criteria encompassed all controlled trials examining stem cell therapy for DPN, excluding animal or in vitro studies, review papers, conference abstracts, and editor letters. Data extraction and risk of bias assessment were independently performed by multiple reviewers using standardized tools. RESULTS Out of 5431 initial entries, seven were included. Stem cell therapies included bone marrow-derived mononuclear cells and umbilical cord-derived mesenchymal stem cells, administered mainly via intramuscular transplantation. Meta-analysis indicated significant improvements in motor nerve conduction velocity (weighted mean differences (WMD): 2.2, 95% CI 1.6-2.8) and sensory nerve conduction velocity (WMD: 1.9, 95% CI 1.1-2.6). Vibration perception threshold and Toronto Clinical Scoring System scores decreased significantly (WMD: - 2.9, 95% CI - 4.0, - 1.8, and WMD: - 3.6, 95% CI - 5.0, - 2.2, respectively). Sensitivity analysis and subgroup analysis confirmed the robustness and specificity of these findings. The complications were pain and swelling at the injection sites, which disappeared in a few days. CONCLUSION Stem cell therapy shows significant promise in improving clinical outcomes for DPN, with evident benefits in nerve conduction and sensory parameters. Further research is needed to consolidate these findings and optimize therapeutic protocols.
Collapse
Affiliation(s)
- Seyed Danial Alizadeh
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Jahani
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Science, Fasa, Iran
| | - Rasoul Masoomi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Zahra Ghodsi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Pour-Rashidi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Founder of Neurosurgical Research Network, Universal Scientific Education and Research Network, Tehran, Iran
| | - James Harrop
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Universal Scientific Education and Research Network, Tehran, Iran.
| |
Collapse
|
20
|
Miao ZW, Wang Z, Zheng SL, Wang SN, Miao CY. Anti-stroke biologics: from recombinant proteins to stem cells and organoids. Stroke Vasc Neurol 2024; 9:467-480. [PMID: 38286483 PMCID: PMC11732845 DOI: 10.1136/svn-2023-002883] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
The use of biologics in various diseases has dramatically increased in recent years. Stroke, a cerebrovascular disease, is the second most common cause of death, and the leading cause of disability with high morbidity worldwide. For biologics applied in the treatment of acute ischaemic stroke, alteplase is the only thrombolytic agent. Meanwhile, current clinical trials show that two recombinant proteins, tenecteplase and non-immunogenic staphylokinase, are most promising as new thrombolytic agents for acute ischaemic stroke therapy. In addition, stem cell-based therapy, which uses stem cells or organoids for stroke treatment, has shown promising results in preclinical and early clinical studies. These strategies for acute ischaemic stroke mainly rely on the unique properties of undifferentiated cells to facilitate tissue repair and regeneration. However, there is a still considerable journey ahead before these approaches become routine clinical use. This includes optimising cell delivery methods, determining the ideal cell type and dosage, and addressing long-term safety concerns. This review introduces the current or promising recombinant proteins for thrombolysis therapy in ischaemic stroke and highlights the promise and challenges of stem cells and cerebral organoids in stroke therapy.
Collapse
Affiliation(s)
- Zhu-Wei Miao
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Si-Li Zheng
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/ Naval Medical University, Shanghai, China
| |
Collapse
|
21
|
Rivera Orsini MA, Ozmen EB, Miles A, Newby SD, Springer N, Millis D, Dhar M. Isolation and Characterization of Canine Adipose-Derived Mesenchymal Stromal Cells: Considerations in Translation from Laboratory to Clinic. Animals (Basel) 2024; 14:2974. [PMID: 39457904 PMCID: PMC11503832 DOI: 10.3390/ani14202974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
In allogeneic MSC implantation, the cells are isolated from a donor different from the recipient. When tested, allogeneic MSCs have several advantages over autologous ones: faster cell growth, sufficient cell concentration, and readily available cells for clinics. To ensure the safe and efficient use of allogeneic MSCs in clinics, the MSCs need to be first tested in vitro. With this study, we paved the way by addressing the in vitro aspects of canine adipose-derived MSCs, considering the limited studies on the clinical use of canine cells. We isolated cAD-MSCs from canine falciform ligament fat and evaluated their viability and proliferation using an MTS assay. Then, we characterized the MSC-specific antigens using immunophenotyping and immunofluorescence and demonstrated their potential for in vitro differentiation. Moreover, we established shipping and cryobanking procedures to lead the study to become an off-the-shelf therapy. During expansion, the cells demonstrated a linear increase in cell numbers, confirming their proliferation quantitatively. The cells showed viability before and after cryopreservation, demonstrating that cell viability can be preserved. From a clinical perspective, the established shipping conditions demonstrated that the cells retain their viability for up to 48 h. This study lays the groundwork for the potential use of allogeneic cAD-MSCs in clinical applications.
Collapse
Affiliation(s)
- Michael A. Rivera Orsini
- Regenerative Medicine and Tissue Engineering, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.A.R.O.); (E.B.O.); (S.D.N.)
| | - Emine Berfu Ozmen
- Regenerative Medicine and Tissue Engineering, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.A.R.O.); (E.B.O.); (S.D.N.)
- Genome Science and Technology, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Alyssa Miles
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (A.M.); (N.S.)
| | - Steven D. Newby
- Regenerative Medicine and Tissue Engineering, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.A.R.O.); (E.B.O.); (S.D.N.)
| | - Nora Springer
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (A.M.); (N.S.)
| | - Darryl Millis
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Madhu Dhar
- Regenerative Medicine and Tissue Engineering, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.A.R.O.); (E.B.O.); (S.D.N.)
| |
Collapse
|
22
|
Chang YS, Yang M, Ahn SY, Sung SI, Park WS. Improving the future of clinical trials and translation of mesenchymal stromal cell therapies for neonatal disorders. Stem Cells Transl Med 2024; 13:941-948. [PMID: 39120439 PMCID: PMC11465171 DOI: 10.1093/stcltm/szae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/23/2024] [Indexed: 08/10/2024] Open
Abstract
Despite recent advances in neonatal intensive care medicine, neonatal disorders such as (bronchopulmonary dysplasia [BPD], intraventricular hemorrhage [IVH], and hypoxic ischemic encephalopathy [HIE]) remain major causes of death and morbidity in survivors, with few effective treatments being available. Recent preclinical studies have demonstrated the pleiotropic host injury-responsive paracrine protective effects of cell therapy especially with mesenchymal stromal cells (MSCs) against BPD, IVH, and HIE. These findings suggest that MSCs therapy might emerge as a novel therapeutic modality for these currently devastating neonatal disorders with complex multifactorial etiologies. Although early-phase clinical trials suggest their safety and feasibility, their clinical therapeutic benefits have not yet been proven. Therefore, based on currently available preclinical research and clinical trial data, we focus on critical issues that need to be addressed for future successful clinical trials and eventual clinical translation such as selecting the right patient and optimal cell type, route, dose, and timing of MSCs therapy for neonatal disorders such as BPD, HIE, and IVH.
Collapse
Affiliation(s)
- Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Misun Yang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Gangnam Cha Hospital, Cha University, Seoul, Korea
| |
Collapse
|
23
|
Di T, Wang L, Cheng B, Guo M, Feng C, Wu Z, Wang L, Chen Y. Single-cell RNA sequencing reveals vascularization-associated cell subpopulations in dental pulp: PDGFRβ+ DPSCs with activated PI3K/AKT pathway. Stem Cells 2024; 42:914-927. [PMID: 39167061 DOI: 10.1093/stmcls/sxae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND This study aims to address challenges in dental pulp regeneration therapy. The heterogeneity of DPSCs poses challenges, especially in stem cell transplantation for clinical use, particularly when sourced from donors of different ages and conditions. METHODS Pseudotime analysis was employed to analyze single-cell sequencing data, and immunohistochemical studies were conducted to investigate the expression of fibronectin 1 (FN1). We performed in vitro sorting of PDGFRβ+ DPSCs using flow cytometry. A series of functional assays, including cell proliferation, scratch, and tube formation assays, were performed to experimentally validate the vasculogenic capabilities of the identified PDGFRβ+ DPSC subset. Furthermore, gene-edited mouse models were utilized to demonstrate the importance of PDGFRβ+ DPSCs. Transcriptomic sequencing was conducted to compare the differences between PDGFRβ+ DPSCs and P1-DPSCs. RESULTS Single-cell sequencing analysis unveiled a distinct subset, PDGFRβ+ DPSCs, characterized by significantly elevated FN1 expression during dental pulp development. Subsequent cell experiments demonstrated that this subset possesses remarkable abilities to promote HUVEC proliferation, migration, and tube formation. Gene-edited mouse models confirmed the vital role of PDGFRβ+ DPSCs in dental pulp development. Transcriptomic sequencing and in vitro experiments demonstrated that the PDGFR/PI3K/AKT signaling pathway is a crucial factor mediating the proliferation rate and pro-angiogenic properties of PDGFRβ+ DPSCs. CONCLUSION We defined a new subset, PDGFRβ+ DPSCs, characterized by strong proliferative activity and pro-angiogenic capabilities, demonstrating significant clinical translational potential.
Collapse
Affiliation(s)
- Tiankai Di
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
- Department of Stomatology, Joint Logistics Support Force of the Chinese People's Liberation Army, Hohhot, Inner Mongolia 010000, People's Republic of China
| | - Liying Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Baixiang Cheng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of General Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Mingzhu Guo
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, Shandong Province, People's Republic of China
| | - Chao Feng
- Department of Clinical Laboratory, Joint Logistics Support Force of the Chinese People's Liberation Army, Hohhot, Inner Mongolia 010000, People's Republic of China
| | - Zhenzhen Wu
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Lulu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Yujiang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| |
Collapse
|
24
|
Chakra MA, Bailly H, Klampke F, Boaz J, Jida M, Yassine AA, McElree IM, Moussa M. An update on the use of stem cell therapy for erectile dysfunction. Asian J Urol 2024; 11:530-544. [PMID: 39534008 PMCID: PMC11551375 DOI: 10.1016/j.ajur.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/24/2023] [Indexed: 11/16/2024] Open
Abstract
Objective This systematic review aimed to analyze animal and human trial data to better understand the efficacy of stem cell therapy (SCT) for erectile dysfunction (ED) and the obstacles that may hinder its application in this field. Methods We searched electronic databases, including PubMed and Scopus, for published studies with the Medical Subject Heading terms of "erectile dysfunction" (AND) "stem cell therapy" (OR) "erectile dysfunction" (AND) "clinical trial of stem cell therapy" (OR) "stem cell therapy" (AND) "sexual dysfunction". The search was limited to English-language journals and full papers only. The initial search resulted in 450 articles, of which 90 relevant to our aims were included in the analysis. Results ED is a multifactorial disease. Current treatment options rely on pharmacotherapy as well as surgical options. Patients may have side effects or unsatisfactory results following the use of these treatment options. SCT may restore pathophysiological changes leading to ED rather than treating the symptoms. It has been evaluated in animal models and shown promising results in humans. Results confirm that SCT does improve erectile function in animals with different types of SC use. In humans, evidence showed promising results, but the trials were heterogeneous and limited mainly by a lack of randomization and the small sample size. Many challenges could limit future research in this field, including ethical dilemmas, regulation, patient recruitment, the cost of therapy, and the lack of a standardized SCT regimen. Repairing and possibly replacing diseased cells, tissue, or organs and eventually retrieving normal function should always be the goals of any therapy, and this can only be guaranteed by SCT. Conclusion SCT is a potential and successful treatment for ED, particularly in patients who are resistant to the classic therapy. SCT may promote nerve regeneration and vascular cell regeneration, not only symptomatic treatment.
Collapse
Affiliation(s)
| | - Hugo Bailly
- Department of Urology, Vivantes Klinikum, Berlin, Germany
| | - Fabian Klampke
- Department of Urology, Vivantes Klinikum, Berlin, Germany
| | - Johann Boaz
- Department of Urology, Royal Liverpool University Hospital, Liverpool, UK
| | | | - Ahmad Abou Yassine
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Ian M. McElree
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mohamad Moussa
- Department of Urology, Lebanese University, Beirut, Lebanon
| |
Collapse
|
25
|
Park S, Rahaman KA, Kim YC, Jeon H, Han HS. Fostering tissue engineering and regenerative medicine to treat musculoskeletal disorders in bone and muscle. Bioact Mater 2024; 40:345-365. [PMID: 38978804 PMCID: PMC11228556 DOI: 10.1016/j.bioactmat.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
The musculoskeletal system, which is vital for movement, support, and protection, can be impaired by disorders such as osteoporosis, osteoarthritis, and muscular dystrophy. This review focuses on the advances in tissue engineering and regenerative medicine, specifically aimed at alleviating these disorders. It explores the roles of cell therapy, particularly Mesenchymal Stem Cells (MSCs) and Adipose-Derived Stem Cells (ADSCs), biomaterials, and biomolecules/external stimulations in fostering bone and muscle regeneration. The current research underscores the potential of MSCs and ADSCs despite the persistent challenges of cell scarcity, inconsistent outcomes, and safety concerns. Moreover, integrating exogenous materials such as scaffolds and external stimuli like electrical stimulation and growth factors shows promise in enhancing musculoskeletal regeneration. This review emphasizes the need for comprehensive studies and adopting innovative techniques together to refine and advance these multi-therapeutic strategies, ultimately benefiting patients with musculoskeletal disorders.
Collapse
Affiliation(s)
- Soyeon Park
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Khandoker Asiqur Rahaman
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yu-Chan Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojeong Jeon
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyung-Seop Han
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
26
|
Foster T, Lim P, Ionescu CM, Wagle SR, Kovacevic B, Mooranian A, Al-Salami H. Exploring delivery systems for targeted nanotechnology-based gene therapy in the inner ear. Ther Deliv 2024; 15:801-818. [PMID: 39324734 PMCID: PMC11457609 DOI: 10.1080/20415990.2024.2389032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/02/2024] [Indexed: 09/27/2024] Open
Abstract
Hearing loss places a significant burden on our aging population. However, there has only been limited progress in developing therapeutic techniques to effectively mediate this condition. This review will outline several of the most commonly utilized practices for the treatment of sensorineural hearing loss before exploring more novel techniques currently being investigated via both in vitro and in vivo research. This review will place particular emphasis on novel gene-delivery technologies. Primarily, it will focus on techniques used to deliver genes that have been shown to encourage the proliferation and differentiation of sensory cells within the inner ear and how these technologies may be translated into providing clinically useful results for patients.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, 6000, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, 9016, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Medical School, University of Western Australia, Perth, 6000, Western Australia, Australia
| |
Collapse
|
27
|
Gordon J, Borlongan CV. An update on stem cell therapy for stroke patients: Where are we now? J Cereb Blood Flow Metab 2024; 44:1469-1479. [PMID: 38639015 PMCID: PMC11418600 DOI: 10.1177/0271678x241227022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 04/20/2024]
Abstract
With a foundation built upon initial work from the 1980s demonstrating graft viability in cerebral ischemia, stem cell transplantation has shown immense promise in promoting survival, enhancing neuroprotection and inducing neuroregeneration, while mitigating both histological and behavioral deficits that frequently accompany ischemic stroke. These findings have led to a number of clinical trials that have thoroughly supported a strong safety profile for stem cell therapy in patients but have generated variable efficacy. As preclinical evidence continues to expand through the investigation of new cell lines and optimization of stem cell delivery, it remains critical for translational models to adhere to the protocols established through basic scientific research. With the recent shift in approach towards utilization of stem cells as a conjunctive therapy alongside standard thrombolytic treatments, key issues including timing, route of administration, and stem cell type must each be appropriately translated from the laboratory in order to resolve the question of stem cell efficacy for cerebral ischemia that ultimately will enhance therapeutics for stroke patients towards improving quality of life.
Collapse
Affiliation(s)
- Jonah Gordon
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
28
|
Kim CD, Koo KM, Kim HJ, Kim TH. Recent Advances in Nanomaterials for Modulation of Stem Cell Differentiation and Its Therapeutic Applications. BIOSENSORS 2024; 14:407. [PMID: 39194636 DOI: 10.3390/bios14080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Challenges in directed differentiation and survival limit the clinical use of stem cells despite their promising therapeutic potential in regenerative medicine. Nanotechnology has emerged as a powerful tool to address these challenges and enable precise control over stem cell fate. In particular, nanomaterials can mimic an extracellular matrix and provide specific cues to guide stem cell differentiation and proliferation in the field of nanotechnology. For instance, recent studies have demonstrated that nanostructured surfaces and scaffolds can enhance stem cell lineage commitment modulated by intracellular regulation and external stimulation, such as reactive oxygen species (ROS) scavenging, autophagy, or electrical stimulation. Furthermore, nanoframework-based and upconversion nanoparticles can be used to deliver bioactive molecules, growth factors, and genetic materials to facilitate stem cell differentiation and tissue regeneration. The increasing use of nanostructures in stem cell research has led to the development of new therapeutic approaches. Therefore, this review provides an overview of recent advances in nanomaterials for modulating stem cell differentiation, including metal-, carbon-, and peptide-based strategies. In addition, we highlight the potential of these nano-enabled technologies for clinical applications of stem cell therapy by focusing on improving the differentiation efficiency and therapeutics. We believe that this review will inspire researchers to intensify their efforts and deepen their understanding, thereby accelerating the development of stem cell differentiation modulation, therapeutic applications in the pharmaceutical industry, and stem cell therapeutics.
Collapse
Affiliation(s)
- Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyung-Joo Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
29
|
Kostecka A, Kalamon N, Skoniecka A, Koczkowska M, Skowron PM, Piotrowski A, Pikuła M. Adipose-derived mesenchymal stromal cells in clinical trials: Insights from single-cell studies. Life Sci 2024; 351:122761. [PMID: 38866216 DOI: 10.1016/j.lfs.2024.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Mesenchymal Stromal Cells (MSCs) offer tremendous potential for the treatment of various diseases and their healing properties have been explored in hundreds of clinical trials. These trails primarily focus on immunological and neurological disorders, as well as regenerative medicine. Adipose tissue is a rich source of mesenchymal stromal cells and methods to obtain and culture adipose-derived MSCs (AD-MSCs) have been well established. Promising results from pre-clinical testing of AD-MSCs activity prompted clinical trials that further led to the approval of AD-MSCs for the treatment of complex perianal fistulas in Crohn's disease and subcutaneous tissue defects. However, AD-MSC heterogeneity along with various manufacturing protocols or different strategies to boost their activity create the need for standardized quality control procedures and safety assessment of the intended cell product. High-resolution transcriptomic methods have been recently gaining attention, as they deliver insight into gene expression profiles of individual cells, helping to deconstruct cellular hierarchy and differentiation trajectories, and to understand cell-cell interactions within tissues. This article presents a comprehensive overview of completed clinical trials evaluating the safety and efficacy of AD-MSC treatment, together with current single-cell studies of human AD-MSC. Furthermore, our work emphasizes the increasing significance of single-cell research in elucidating the mechanisms of cellular action and predicting their therapeutic effects.
Collapse
Affiliation(s)
- Anna Kostecka
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Natalia Kalamon
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| | - Aneta Skoniecka
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Koczkowska
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Arkadiusz Piotrowski
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, 80-211 Gdańsk, Poland.
| |
Collapse
|
30
|
Swain HN, Boyce PD, Bromet BA, Barozinksy K, Hance L, Shields D, Olbricht GR, Semon JA. Mesenchymal stem cells in autoimmune disease: A systematic review and meta-analysis of pre-clinical studies. Biochimie 2024; 223:54-73. [PMID: 38657832 DOI: 10.1016/j.biochi.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Mesenchymal Stem Cells (MSCs) are of interest in the clinic because of their immunomodulation capabilities, capacity to act upstream of inflammation, and ability to sense metabolic environments. In standard physiologic conditions, they play a role in maintaining the homeostasis of tissues and organs; however, there is evidence that they can contribute to some autoimmune diseases. Gaining a deeper understanding of the factors that transition MSCs from their physiological function to a pathological role in their native environment, and elucidating mechanisms that reduce their therapeutic relevance in regenerative medicine, is essential. We conducted a Systematic Review and Meta-Analysis of human MSCs in preclinical studies of autoimmune disease, evaluating 60 studies that included 845 patient samples and 571 control samples. MSCs from any tissue source were included, and the study was limited to four autoimmune diseases: multiple sclerosis, rheumatoid arthritis, systemic sclerosis, and lupus. We developed a novel Risk of Bias tool to determine study quality for in vitro studies. Using the International Society for Cell & Gene Therapy's criteria to define an MSC, most studies reported no difference in morphology, adhesion, cell surface markers, or differentiation into bone, fat, or cartilage when comparing control and autoimmune MSCs. However, there were reported differences in proliferation. Additionally, 308 biomolecules were differentially expressed, and the abilities to migrate, invade, and form capillaries were decreased. The findings from this study could help to explain the pathogenic mechanisms of autoimmune disease and potentially lead to improved MSC-based therapeutic applications.
Collapse
Affiliation(s)
- Hailey N Swain
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Parker D Boyce
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Bradley A Bromet
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Kaiden Barozinksy
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Lacy Hance
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Dakota Shields
- Department of Mathematics and Statistics, Missouri University of Science and Technology, USA
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, USA
| | - Julie A Semon
- Department of Biological Sciences, Missouri University of Science and Technology, USA.
| |
Collapse
|
31
|
Starska-Kowarska K. Role of Mesenchymal Stem/Stromal Cells in Head and Neck Cancer-Regulatory Mechanisms of Tumorigenic and Immune Activity, Chemotherapy Resistance, and Therapeutic Benefits of Stromal Cell-Based Pharmacological Strategies. Cells 2024; 13:1270. [PMID: 39120301 PMCID: PMC11311692 DOI: 10.3390/cells13151270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Head and neck cancer (HNC) entails a heterogenous neoplastic disease that arises from the mucosal epithelium of the upper respiratory system and the gastrointestinal tract. It is characterized by high morbidity and mortality, being the eighth most common cancer worldwide. It is believed that the mesenchymal/stem stromal cells (MSCs) present in the tumour milieu play a key role in the modulation of tumour initiation, development and patient outcomes; they also influence the resistance to cisplatin-based chemotherapy, the gold standard for advanced HNC. MSCs are multipotent, heterogeneous and mobile cells. Although no MSC-specific markers exist, they can be recognized based on several others, such as CD73, CD90 and CD105, while lacking the presence of CD45, CD34, CD14 or CD11b, CD79α, or CD19 and HLA-DR antigens; they share phenotypic similarity with stromal cells and their capacity to differentiate into other cell types. In the tumour niche, MSC populations are characterized by cell quiescence, self-renewal capacity, low reactive oxygen species production and the acquisition of epithelial-to-mesenchymal transition properties. They may play a key role in the process of acquiring drug resistance and thus in treatment failure. The present narrative review examines the links between MSCs and HNC, as well as the different mechanisms involved in the development of resistance to current chemo-radiotherapies in HNC. It also examines the possibilities of pharmacological targeting of stemness-related chemoresistance in HNSCC. It describes promising new strategies to optimize chemoradiotherapy, with the potential to personalize patient treatment approaches, and highlights future therapeutic perspectives in HNC.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-42-2725237
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
32
|
Zhang L, Wang Z, Sun X, Rong W, Deng W, Yu J, Xu X, Yu Q. Nasal mucosa-derived mesenchymal stem cells prolonged the survival of septic rats by protecting macrophages from pyroptosis. Cell Immunol 2024; 401-402:104840. [PMID: 38880071 DOI: 10.1016/j.cellimm.2024.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Sepsis is characterized by an exacerbated inflammatory response, driven by the overproduction of cytokines, a phenomenon known as a cytokine storm. This condition is further compounded by the extensive infiltration of M1 macrophages and the pyroptosis of these cells, leading to immune paralysis. To counteract this, we sought to transition M1 macrophages into the M2 phenotype and safeguard them from pyroptosis. For this purpose, we employed ectodermal mesenchymal stem cells (EMSCs) sourced from the nasal mucosa to examine their impact on both macrophages and septic animal models. The co-culture protocol involving LPS-stimulated rat bone marrow macrophages and EMSCs was employed to examine the paracrine influence of EMSCs on macrophages. The intravenous administration of EMSCs was utilized to observe the enhancement in the survival rate of septic rat models and the protection of associated organs. The findings indicated that EMSCs facilitated M2 polarization of macrophages, which were stimulated by LPS, and significantly diminished levels of pro-inflammatory cytokines and NLRP3. Furthermore, EMSCs notably restored the mitochondrial membrane potential (MMP) of macrophages through paracrine action, eliminated excess reactive oxygen species (ROS), and inhibited macrophage pyroptosis. Additionally, the systemic integration of EMSCs substantially reduced injuries to multiple organs and preserved the fundamental functions of the heart, liver, and kidney in CLP rats, thereby extending their survival.
Collapse
Affiliation(s)
| | - Zhe Wang
- School of Pharmacy, Jiangsu University, China
| | - Xuan Sun
- School of Pharmacy, Jiangsu University, China
| | | | - Wenwen Deng
- School of Pharmacy, Jiangsu University, China
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, China
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, China
| | - Qingtong Yu
- School of Pharmacy, Jiangsu University, China.
| |
Collapse
|
33
|
Velikova T, Dekova T, Miteva DG. Controversies regarding transplantation of mesenchymal stem cells. World J Transplant 2024; 14:90554. [PMID: 38947963 PMCID: PMC11212595 DOI: 10.5500/wjt.v14.i2.90554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 06/13/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tantalized regenerative medicine with their therapeutic potential, yet a cloud of controversies looms over their clinical transplantation. This comprehensive review navigates the intricate landscape of MSC controversies, drawing upon 15 years of clinical experience and research. We delve into the fundamental properties of MSCs, exploring their unique immunomodulatory capabilities and surface markers. The heart of our inquiry lies in the controversial applications of MSC transplantation, including the perennial debate between autologous and allogeneic sources, concerns about efficacy, and lingering safety apprehensions. Moreover, we unravel the enigmatic mechanisms surrounding MSC transplantation, such as homing, integration, and the delicate balance between differentiation and paracrine effects. We also assess the current status of clinical trials and the ever-evolving regulatory landscape. As we peer into the future, we examine emerging trends, envisioning personalized medicine and innovative delivery methods. Our review provides a balanced and informed perspective on the controversies, offering readers a clear understanding of the complexities, challenges, and potential solutions in MSC transplantation.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Department of Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Tereza Dekova
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1164, Bulgaria
| | | |
Collapse
|
34
|
Tamo AK, Djouonkep LDW, Selabi NBS. 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. Int J Biol Macromol 2024; 270:132123. [PMID: 38761909 DOI: 10.1016/j.ijbiomac.2024.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
In tissue engineering, 3D printing represents a versatile technology employing inks to construct three-dimensional living structures, mimicking natural biological systems. This technology efficiently translates digital blueprints into highly reproducible 3D objects. Recent advances have expanded 3D printing applications, allowing for the fabrication of diverse anatomical components, including engineered functional tissues and organs. The development of printable inks, which incorporate macromolecules, enzymes, cells, and growth factors, is advancing with the aim of restoring damaged tissues and organs. Polysaccharides, recognized for their intrinsic resemblance to components of the extracellular matrix have garnered significant attention in the field of tissue engineering. This review explores diverse 3D printing techniques, outlining distinctive features that should characterize scaffolds used as ideal matrices in tissue engineering. A detailed investigation into the properties and roles of polysaccharides in tissue engineering is highlighted. The review also culminates in a profound exploration of 3D polysaccharide-based hydrogel applications, focusing on recent breakthroughs in regenerating different tissues such as skin, bone, cartilage, heart, nerve, vasculature, and skeletal muscle. It further addresses challenges and prospective directions in 3D printing hydrogels based on polysaccharides, paving the way for innovative research to fabricate functional tissues, enhancing patient care, and improving quality of life.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France.
| | - Lesly Dasilva Wandji Djouonkep
- College of Petroleum Engineering, Yangtze University, Wuhan 430100, China; Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
35
|
Mićanović D, Stanisavljević S, Li H, Koprivica I, Jonić N, Stojanović I, Savković V, Saksida T. Mesenchymal Stem Cells from Mouse Hair Follicles Inhibit the Development of Type 1 Diabetes. Int J Mol Sci 2024; 25:5974. [PMID: 38892159 PMCID: PMC11172537 DOI: 10.3390/ijms25115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are known for their immunosuppressive properties. Based on the demonstrated anti-inflammatory effect of mouse MSCs from hair follicles (moMSCORS) in a murine wound closure model, this study evaluates their potential for preventing type 1 diabetes (T1D) in C57BL/6 mice. T1D was induced in C57BL/6 mice by repeated low doses of streptozotocin. moMSCORS were injected intravenously on weekly basis. moMSCORS reduced T1D incidence, the insulitis stage, and preserved insulin production in treated animals. moMSCORS primarily exerted immunomodulatory effects by inhibiting CD4+ T cell proliferation and activation. Ex vivo analysis indicated that moMSCORS modified the cellular immune profile within pancreatic lymph nodes and pancreatic infiltrates by reducing the numbers of M1 pro-inflammatory macrophages and T helper 17 cells and upscaling the immunosuppressive T regulatory cells. The proportion of pathogenic insulin-specific CD4+ T cells was down-scaled in the lymph nodes, likely via soluble factors. The moMSCORS detected in the pancreatic infiltrates of treated mice presumably exerted the observed suppressive effect on CD4+ through direct contact. moMSCORS alleviated T1D symptoms in the mouse, qualifying as a candidate for therapeutic products by multiple advantages: non-invasive sampling by epilation, easy access, permanent availability, scalability, and benefits of auto-transplantation.
Collapse
Affiliation(s)
- Dragica Mićanović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| | - Hanluo Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China;
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| | - Natalija Jonić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| | - Vuk Savković
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| |
Collapse
|
36
|
Rodham P, Khaliq F, Giannoudis V, Giannoudis PV. Cellular therapies for bone repair: current insights. J Orthop Traumatol 2024; 25:28. [PMID: 38789881 PMCID: PMC11132192 DOI: 10.1186/s10195-024-00768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Mesenchymal stem cells are core to bone homeostasis and repair. They both provide the progenitor cells from which bone cells are formed and regulate the local cytokine environment to create a pro-osteogenic environment. Dysregulation of these cells is often seen in orthopaedic pathology and can be manipulated by the physician treating the patient. This narrative review aims to describe the common applications of cell therapies to bone healing whilst also suggesting the future direction of these techniques.
Collapse
Affiliation(s)
- Paul Rodham
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | - Farihah Khaliq
- Academic Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, Leeds, UK
| | - Vasileos Giannoudis
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | - Peter V Giannoudis
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds, UK.
- NIHR Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, UK.
| |
Collapse
|
37
|
Badr OI, Kamal MM, El-Maraghy SA, Ghaiad HR. The effect of diabetes mellitus on differentiation of mesenchymal stem cells into insulin-producing cells. Biol Res 2024; 57:20. [PMID: 38698488 PMCID: PMC11067316 DOI: 10.1186/s40659-024-00502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a global epidemic with increasing incidences. DM is a metabolic disease associated with chronic hyperglycemia. Aside from conventional treatments, there is no clinically approved cure for DM up till now. Differentiating mesenchymal stem cells (MSCs) into insulin-producing cells (IPCs) is a promising approach for curing DM. Our study was conducted to investigate the effect of DM on MSCs differentiation into IPCs in vivo and in vitro. METHODS We isolated adipose-derived mesenchymal stem cells (Ad-MSCs) from the epididymal fat of normal and STZ-induced diabetic Sprague-Dawley male rats. Afterwards, the in vitro differentiation of normal-Ad-MSCs (N-Ad-MSCs) and diabetic-Ad-MSCs (DM-Ad-MSCs) into IPCs was compared morphologically then through determining the gene expression of β-cell markers including neurogenin-3 (Ngn-3), homeobox protein (Nkx6.1), musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), and insulin-1 (Ins-1) and eventually, through performing glucose-stimulated insulin secretion test (GSIS). Finally, the therapeutic potential of N-Ad-MSCs and DM-Ad-MSCs transplantation was compared in vivo in STZ-induced diabetic animals. RESULTS Our results showed no significant difference in the characteristics of N-Ad-MSCs and DM-Ad-MSCs. However, we demonstrated a significant difference in their abilities to differentiate into IPCs in vitro morphologically in addition to β-cell markers expression, and functional assessment via GSIS test. Furthermore, the abilities of both Ad-MSCs to control hyperglycemia in diabetic rats in vivo was assessed through measuring fasting blood glucose (FBGs), body weight (BW), histopathological examination of both pancreas and liver and immunoexpression of insulin in pancreata of study groups. CONCLUSION Our findings reveal the effectiveness of N-Ad-MSCs in differentiating into IPCs in vitro and controlling the hyperglycemia of STZ-induced diabetic rats in vivo compared to DM-Ad-MSCs.
Collapse
Affiliation(s)
- Omar I Badr
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Drug Research and Development Group, Health Research Center of Excellence, The British University in Egypt, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shohda A El-Maraghy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba R Ghaiad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
38
|
Picazo RA, Rojo C, Rodriguez-Quiros J, González-Gil A. Current Advances in Mesenchymal Stem Cell Therapies Applied to Wounds and Skin, Eye, and Neuromuscular Diseases in Companion Animals. Animals (Basel) 2024; 14:1363. [PMID: 38731367 PMCID: PMC11083242 DOI: 10.3390/ani14091363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are considered a very promising alternative tool in cell therapies and regenerative medicine due to their ease of obtaining from various tissues and their ability to differentiate into different cell types. This manuscript provides a review of current knowledge on the use of MSC-based therapies as an alternative for certain common pathologies in dogs and cats where conventional treatments are ineffective. The aim of this review is to assist clinical veterinarians in making decisions about the suitability of each protocol from a clinical perspective, rather than focusing solely on research. MSC-based therapies have shown promising results in certain pathologies, such as spinal cord injuries, wounds, and skin and eye diseases. However, the effectiveness of these cell therapies can be influenced by a wide array of factors, leading to varying outcomes. Future research will focus on designing protocols and methodologies that allow more precise and effective MSC treatments for each case.
Collapse
Affiliation(s)
- Rosa Ana Picazo
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Concepción Rojo
- Department of Anatomy and Embryology, School of Veterinary Medicine, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Jesus Rodriguez-Quiros
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Alfredo González-Gil
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
39
|
Li Z, Shao Y, Yang Y, Zan J. Zeolitic imidazolate framework-8: a versatile nanoplatform for tissue regeneration. Front Bioeng Biotechnol 2024; 12:1386534. [PMID: 38655386 PMCID: PMC11035894 DOI: 10.3389/fbioe.2024.1386534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024] Open
Abstract
Extensive research on zeolitic imidazolate framework (ZIF-8) and its derivatives has highlighted their unique properties in nanomedicine. ZIF-8 exhibits advantages such as pH-responsive dissolution, easy surface functionalization, and efficient drug loading, making it an ideal nanosystem for intelligent drug delivery and phototherapy. These characteristics have sparked significant interest in its potential applications in tissue regeneration, particularly in bone, skin, and nerve regeneration. This review provides a comprehensive assessment of ZIF-8's feasibility in tissue engineering, encompassing material synthesis, performance testing, and the development of multifunctional nanosystems. Furthermore, the latest advancements in the field, as well as potential limitations and future prospects, are discussed. Overall, this review emphasizes the latest developments in ZIF-8 in tissue engineering and highlights the potential of its multifunctional nanoplatforms for effective complex tissue repair.
Collapse
Affiliation(s)
- Zhixin Li
- Department of Rehabilitation, Ganzhou People’s Hospital, Ganzhou, China
| | - Yinjin Shao
- Department of Rehabilitation, Ganzhou People’s Hospital, Ganzhou, China
| | - Youwen Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang, China
| | - Jun Zan
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang, China
| |
Collapse
|
40
|
Teshima T. Heterogeneity of mesenchymal stem cells as a limiting factor in their clinical application to inflammatory bowel disease in dogs and cats. Vet J 2024; 304:106090. [PMID: 38417670 DOI: 10.1016/j.tvjl.2024.106090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Inflammatory bowel disease (IBD) is a major subtype of chronic enteropathies in dogs and cats. Conventional drugs such as immunomodulatory medicines as glucocorticoids and/or other anti-inflammatory are mainly applied for treatment. However, these drugs are not always effective to maintain remission from IBD and are limited by unacceptable side effects. Hence, more effective and safe therapeutic options need to be developed. Mesenchymal stem cells (MSCs) are multipotent stem cells with a self-renewal capacity, and have immunomodulatory, anti-inflammatory, anti-fibrotic, and tissue repair properties. Therefore, the application of MSCs as an alternative therapy for IBD has great potential in veterinary medicine. The efficacy of adipose tissue-derived MSC (ADSC) therapy for IBD in dogs and cats has been reported, including numerous studies in animal models. However, treatment outcomes in clinical trials of human IBD patients have not been consistent with preclinical studies. MSC-based therapy for various diseases has received widespread attention, but various problems in such therapy remain, among which no consensus has been reached on the preparation and treatment procedures for MSCs, and cellular heterogeneity of MSCs may be an issue. This review describes the current status of ADSC therapy for canine and feline IBD and summarizes the cellular heterogeneity of canine ADSCs, to highlight the necessity for further reduction or elimination of MSCs heterogeneity and standardization of MSC-based therapies.
Collapse
Affiliation(s)
- Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Japan; Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan.
| |
Collapse
|
41
|
McDonald J, Mohak S, Fabian Z. Stem Cell-Derived Extracellular Vesicles in the Treatment of Cardiovascular Diseases. Pharmaceutics 2024; 16:381. [PMID: 38543275 PMCID: PMC10974254 DOI: 10.3390/pharmaceutics16030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 01/03/2025] Open
Abstract
Cardiovascular disease constitutes a noteworthy public health challenge characterized by a pronounced incidence, frequency, and mortality rate, particularly impacting specific demographic groups, and imposing a substantial burden on the healthcare infrastructure. Certain risk factors, such as age, gender, and smoking, contribute to the prevalence of fatal cardiovascular disease, highlighting the need for targeted interventions. Current challenges in clinical practice involve medication complexities, the lack of a systematic decision-making approach, and prevalent drug therapy problems. Stem cell-derived extracellular vesicles stand as versatile entities with a unique molecular fingerprint, holding significant therapeutic potential across a spectrum of applications, particularly in the realm of cardio-protection. Their lipid, protein, and nucleic acid compositions, coupled with their multifaceted functions, underscore their role as promising mediators in regenerative medicine and pave the way for further exploration of their intricate contributions to cellular physiology and pathology. Here, we overview our current understanding of the possible role of stem cell-derived extracellular vesicles in the clinical management of human cardiovascular pathologies.
Collapse
Affiliation(s)
- Jennifer McDonald
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, UK;
| | - Sidhesh Mohak
- Department of Internal Medicine, South Texas Health System, McAllen, TX 78503, USA;
| | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, UK;
| |
Collapse
|
42
|
Galera MR, Svalgaard J, Woetmann A. Therapeutic potential of adipose derived stromal cells for major skin inflammatory diseases. Front Med (Lausanne) 2024; 11:1298229. [PMID: 38463491 PMCID: PMC10921940 DOI: 10.3389/fmed.2024.1298229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024] Open
Abstract
Inflammatory skin diseases like psoriasis and atopic dermatitis are chronic inflammatory skin conditions continuously under investigation due to increased prevalence and lack of cure. Moreover, long-term treatments available are often associated with adverse effects and drug resistance. Consequently, there is a clear unmet need for new therapeutic approaches. One promising and cutting-edge treatment option is the use of adipose-derived mesenchymal stromal cells (AD-MSCs) due to its immunomodulatory and anti-inflammatory properties. Therefore, this mini review aims to highlight why adipose-derived mesenchymal stromal cells are a potential new treatment for these diseases by summarizing the pre-clinical and clinical studies investigated up to date and addressing current limitations and unresolved clinical questions from a dermatological and immunomodulatory point of view.
Collapse
Affiliation(s)
- Marina Ramírez Galera
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Woetmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Hadzimustafic N, D’Elia A, Shamoun V, Haykal S. Human-Induced Pluripotent Stem Cells in Plastic and Reconstructive Surgery. Int J Mol Sci 2024; 25:1863. [PMID: 38339142 PMCID: PMC10855589 DOI: 10.3390/ijms25031863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
A hallmark of plastic and reconstructive surgery is restoring form and function. Historically, tissue procured from healthy portions of a patient's body has been used to fill defects, but this is limited by tissue availability. Human-induced pluripotent stem cells (hiPSCs) are stem cells derived from the de-differentiation of mature somatic cells. hiPSCs are of particular interest in plastic surgery as they have the capacity to be re-differentiated into more mature cells, and cultured to grow tissues. This review aims to evaluate the applications of hiPSCs in the plastic surgery context, with a focus on recent advances and limitations. The use of hiPSCs and non-human iPSCs has been researched in the context of skin, nerve, vasculature, skeletal muscle, cartilage, and bone regeneration. hiPSCs offer a future for regenerated autologous skin grafts, flaps comprised of various tissue types, and whole functional units such as the face and limbs. Also, they can be used to model diseases affecting tissues of interest in plastic surgery, such as skin cancers, epidermolysis bullosa, and scleroderma. Tumorigenicity, immunogenicity and pragmatism still pose significant limitations. Further research is required to identify appropriate somatic origin and induction techniques to harness the epigenetic memory of hiPSCs or identify methods to manipulate epigenetic memory.
Collapse
Affiliation(s)
- Nina Hadzimustafic
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.H.); (A.D.); (V.S.)
| | - Andrew D’Elia
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.H.); (A.D.); (V.S.)
| | - Valentina Shamoun
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.H.); (A.D.); (V.S.)
| | - Siba Haykal
- Department of Plastic and Reconstructive Surgery, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
44
|
Paresishvili T, Kakabadze Z. Freeze-Dried Mesenchymal Stem Cells: From Bench to Bedside. Review. Adv Biol (Weinh) 2024; 8:e2300155. [PMID: 37990389 DOI: 10.1002/adbi.202300155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Indexed: 11/23/2023]
Abstract
This review describes the freeze-dried mesenchymal stem cells (MSCs) and their ability to restore damaged tissues and organs. An analysis of the literature shows that after the lyophilization MSCs retain >80% of paracrine factors and that the mechanism of their action on the restoration of damaged tissues and organs is similar to the mechanism of action of paracrine factors in fresh and cryopreserved mesenchymal stem cells. Based on the own materials, the use of paracrine factors of freeze-dried MSCs in vivo and in vitro for the treatment of various diseases of organs and tissues has shown to be effective. The study also discusses about the advantages and disadvantages of freeze-dried MSCs versus cryopreserved MSCs. However, for the effective use of freeze-dried MSCs in clinical practice, a more detailed study of the mechanism of interaction of paracrine factors of freeze-dried MSCs with target cells and tissues is required. It is also necessary to identify possible other specific paracrine factors of freeze-dried MSCs. In addition, develop new therapeutic strategies for the use of freeze-dried MSCs in regenerative medicine and tissue bioengineering.
Collapse
Affiliation(s)
- Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| | - Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| |
Collapse
|
45
|
Park JS, Kim DY, Hong HS. FGF2/HGF priming facilitates adipose-derived stem cell-mediated bone formation in osteoporotic defects. Heliyon 2024; 10:e24554. [PMID: 38304814 PMCID: PMC10831751 DOI: 10.1016/j.heliyon.2024.e24554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Aims The activity of adipose-derived stem cells (ADSCs) is susceptible to the physiological conditions of the donor. Therefore, employing ADSCs from donors of advanced age or with diseases for cell therapy necessitates a strategy to enhance therapeutic efficacy before transplantation. This study aims to investigate the impact of supplementing Fibroblast Growth Factor 2 (FGF2) and Hepatocyte Growth Factor (HGF) on ADSC-mediated osteogenesis under osteoporotic conditions and to explore the underlying mechanisms of action. Main methods Adipose-derived stem cells (ADSCs) obtained from ovariectomized (OVX) rats were cultured ex vivo. These cells were cultured in an osteogenic medium supplemented with FGF2 and HGF and subsequently autologously transplanted into osteoporotic femur defects using Hydroxyapatite-Tricalcium Phosphate. The assessment of bone formation was conducted four weeks post-transplantation. Key findings Osteoporosis detrimentally affects the viability and osteogenic differentiation potential of ADSCs, often accompanied by a deficiency in FGF2 and HGF signaling. However, priming with FGF2 and HGF facilitated the formation of immature osteoblasts from OVX ADSCs in vitro, promoting the expression of osteoblastogenic proteins, including Runx-2, osterix, and ALP, during the early phase of osteogenesis. Furthermore, FGF2/HGF priming augmented the levels of VEGF and SDF-1α in the microenvironment of OVX ADSCs under osteogenic induction. Importantly, transplantation of OVX ADSCs primed with FGF2/HGF for 6 days significantly enhanced bone formation compared to non-primed cells. The success of bone regeneration was confirmed by the expression of type-1 collagen and osteocalcin in the bone tissue of the deficient area. Significance Our findings corroborate that priming with FGF2/HGF can improve the differentiation potential of ADSCs. This could be applied in autologous stem cell therapy for skeletal disease in the geriatric population.
Collapse
Affiliation(s)
- Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Do Young Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, South Korea
- Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, 02447, South Korea
| |
Collapse
|
46
|
Mahmoud M, Abdel-Rasheed M, Galal ER, El-Awady RR. Factors Defining Human Adipose Stem/Stromal Cell Immunomodulation in Vitro. Stem Cell Rev Rep 2024; 20:175-205. [PMID: 37962697 PMCID: PMC10799834 DOI: 10.1007/s12015-023-10654-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Human adipose tissue-derived stem/stromal cells (hASCs) are adult multipotent mesenchymal stem/stromal cells with immunomodulatory capacities. Here, we present up-to-date knowledge on the impact of different experimental and donor-related factors on hASC immunoregulatory functions in vitro. The experimental determinants include the immunological status of hASCs relative to target immune cells, contact vs. contactless interaction, and oxygen tension. Factors such as the ratio of hASCs to immune cells, the cellular context, the immune cell activation status, and coculture duration are also discussed. Conditioning of hASCs with different approaches before interaction with immune cells, hASC culture in xenogenic or xenofree culture medium, hASC culture in two-dimension vs. three-dimension with biomaterials, and the hASC passage number are among the experimental parameters that greatly may impact the hASC immunosuppressive potential in vitro, thus, they are also considered. Moreover, the influence of donor-related characteristics such as age, sex, and health status on hASC immunomodulation in vitro is reviewed. By analysis of the literature studies, most of the indicated determinants have been investigated in broad non-standardized ranges, so the results are not univocal. Clear conclusions cannot be drawn for the fine-tuned scenarios of many important factors to set a standard hASC immunopotency assay. Such variability needs to be carefully considered in further standardized research. Importantly, field experts' opinions may help to make it clearer.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| | - Eman Reda Galal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab R El-Awady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
47
|
Salaudeen MA, Allan S, Pinteaux E. Hypoxia and interleukin-1-primed mesenchymal stem/stromal cells as novel therapy for stroke. Hum Cell 2024; 37:154-166. [PMID: 37987924 PMCID: PMC10764391 DOI: 10.1007/s13577-023-00997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023]
Abstract
Promising preclinical stroke research has not yielded meaningful and significant success in clinical trials. This lack of success has prompted the need for refinement of preclinical studies with the intent to optimize the chances of clinical success. Regenerative medicine, especially using mesenchymal stem/stromal cells (MSCs), has gained popularity in the last decade for treating many disorders, including central nervous system (CNS), such as stroke. In addition to less stringent ethical constraints, the ample availability of MSCs also makes them an attractive alternative to totipotent and other pluripotent stem cells. The ability of MSCs to differentiate into neurons and other brain parenchymal and immune cells makes them a promising therapy for stroke. However, these cells also have some drawbacks that, if not addressed, will render MSCs unfit for treating ischaemic stroke. In this review, we highlighted the molecular and cellular changes that occur following an ischaemic stroke (IS) incidence and discussed the physiological properties of MSCs suitable for tackling these changes. We also went further to discuss the major drawbacks of utilizing MSCs in IS and how adequate priming using both hypoxia and interleukin-1 can optimize the beneficial properties of MSCs while eliminating these drawbacks.
Collapse
Affiliation(s)
- Maryam Adenike Salaudeen
- Faculty of Biology, Medicine, and Health, Division of Neuroscience, University of Manchester, Manchester, UK
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | - Stuart Allan
- Faculty of Biology, Medicine, and Health, Division of Neuroscience, University of Manchester, Manchester, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine, and Health, Division of Neuroscience, University of Manchester, Manchester, UK.
| |
Collapse
|
48
|
Amend B, Buttgereit L, Abruzzese T, Harland N, Abele H, Jakubowski P, Stenzl A, Gorodetsky R, Aicher WK. Regulation of Immune Checkpoint Antigen CD276 (B7-H3) on Human Placenta-Derived Mesenchymal Stromal Cells in GMP-Compliant Cell Culture Media. Int J Mol Sci 2023; 24:16422. [PMID: 38003612 PMCID: PMC10671289 DOI: 10.3390/ijms242216422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Therapies utilizing autologous mesenchymal cell delivery are being investigated as anti-inflammatory and regenerative treatments for a broad spectrum of age-related diseases, as well as various chronic and acute pathological conditions. Easily available allogeneic full-term human placenta mesenchymal stromal cells (pMSCs) were used as a potential pro-regenerative, cell-based therapy in degenerative diseases, which could be applied also to elderly individuals. To explore the potential of allogeneic pMSCs transplantation for pro-regenerative applications, such cells were isolated from five different term-placentas, obtained from the dissected maternal, endometrial (mpMSCs), and fetal chorion tissues (fpMSCs), respectively. The proliferation rate of the cells in the culture, as well as their shape, in vitro differentiation potential, and the expression of mesenchymal lineage and stem cell markers, were investigated. Moreover, we studied the expression of immune checkpoint antigen CD276 as a possible modulation of the rejection of transplanted non-HLA-matched homologous or even xeno-transplanted pMSCs. The expression of the cell surface markers was also explored in parallel in the cryosections of the relevant intact placenta tissue samples. The expansion of pMSCs in a clinical-grade medium complemented with 5% human platelet lysate and 5% human serum induced a significant expression of CD276 when compared to mpMSCs expanded in a commercial medium. We suggest that the expansion of mpMSCs, especially in a medium containing platelet lysate, elevated the expression of the immune-regulatory cell surface marker CD276. This may contribute to the immune tolerance towards allogeneic pMSC transplantations in clinical situations and even in xenogenic animal models of human diseases. The endurance of the injected comparably young human-term pMSCs may promote prolonged effects in clinical applications employing non-HLA-matched allogeneic cell therapy for various degenerative disorders, especially in aged adults.
Collapse
Affiliation(s)
- Bastian Amend
- Department of Urology, University Hospital, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Lea Buttgereit
- Centre for Medical Research, Department of Urology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Tanja Abruzzese
- Centre for Medical Research, Department of Urology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Niklas Harland
- Department of Urology, University Hospital, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Harald Abele
- Department of Gynaecology and Obstetrics, University Hospital, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Peter Jakubowski
- Department of Gynaecology and Obstetrics, University Hospital, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Raphael Gorodetsky
- Biotechnology and Radiobiology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Centre, Jerusalem 91120, Israel
| | - Wilhelm K. Aicher
- Centre for Medical Research, Department of Urology, Eberhard Karls University, 72076 Tuebingen, Germany
| |
Collapse
|
49
|
Zaripova LN, Midgley A, Christmas SE, Beresford MW, Pain C, Baildam EM, Oldershaw RA. Mesenchymal Stem Cells in the Pathogenesis and Therapy of Autoimmune and Autoinflammatory Diseases. Int J Mol Sci 2023; 24:16040. [PMID: 38003230 PMCID: PMC10671211 DOI: 10.3390/ijms242216040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs) modulate immune responses and maintain self-tolerance. Their trophic activities and regenerative properties make them potential immunosuppressants for treating autoimmune and autoinflammatory diseases. MSCs are drawn to sites of injury and inflammation where they can both reduce inflammation and contribute to tissue regeneration. An increased understanding of the role of MSCs in the development and progression of autoimmune disorders has revealed that MSCs are passive targets in the inflammatory process, becoming impaired by it and exhibiting loss of immunomodulatory activity. MSCs have been considered as potential novel cell therapies for severe autoimmune and autoinflammatory diseases, which at present have only disease modifying rather than curative treatment options. MSCs are emerging as potential therapies for severe autoimmune and autoinflammatory diseases. Clinical application of MSCs in rare cases of severe disease in which other existing treatment modalities have failed, have demonstrated potential use in treating multiple diseases, including rheumatoid arthritis, systemic lupus erythematosus, myocardial infarction, liver cirrhosis, spinal cord injury, multiple sclerosis, and COVID-19 pneumonia. This review explores the biological mechanisms behind the role of MSCs in autoimmune and autoinflammatory diseases. It also covers their immunomodulatory capabilities, potential therapeutic applications, and the challenges and risks associated with MSC therapy.
Collapse
Affiliation(s)
- Lina N. Zaripova
- Institute of Fundamental and Applied Medicine, National Scientific Medical Center, 42 Abylai Khan Avenue, Astana 010000, Kazakhstan;
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Angela Midgley
- Department of Women and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK; (A.M.); (M.W.B.); (C.P.)
| | - Stephen E. Christmas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, The Ronald Ross Building, 8 West Derby Street, Liverpool L69 7BE, UK;
| | - Michael W. Beresford
- Department of Women and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK; (A.M.); (M.W.B.); (C.P.)
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, East Prescott Road, Liverpool L14 5AB, UK
| | - Clare Pain
- Department of Women and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK; (A.M.); (M.W.B.); (C.P.)
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, East Prescott Road, Liverpool L14 5AB, UK
| | - Eileen M. Baildam
- Department of Paediatric Rheumatology, The Alexandra Hospital, Mill Lane, Cheadle SK8 2PX, UK;
| | - Rachel A. Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
50
|
Forteza-Genestra MA, Antich-Rosselló M, Ramis-Munar G, Calvo J, Gayà A, Monjo M, Ramis JM. Comparative effect of platelet- and mesenchymal stromal cell-derived extracellular vesicles on human cartilage explants using an ex vivo inflammatory osteoarthritis model. Bone Joint Res 2023; 12:667-676. [PMID: 37852621 PMCID: PMC10584413 DOI: 10.1302/2046-3758.1210.bjr-2023-0109.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Aims Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges. In contrast, platelet-derived EVs might reach clinics faster since platelet concentrates, such as platelet lysates (PL), are already used in therapeutics. Hence, we aimed to test the therapeutic potential of PL-derived extracellular vesicles (pEVs) as a new treatment for OA, which is a degenerative joint disease of articular cartilage and does not have any curative or regenerative treatment, by comparing its effects to those of human umbilical cord MSC-derived EVs (cEVs) on an ex vivo OA-induced model using human cartilage explants. Methods pEVs and cEVs were isolated by size exclusion chromatography (SEC) and physically characterized by nanoparticle tracking analysis (NTA), protein content, and purity. OA conditions were induced in human cartilage explants (10 ng/ml oncostatin M and 2 ng/ml tumour necrosis factor alpha (TNFα)) and treated with 1 × 109 particles of pEVs or cEVs for 14 days. Then, DNA, glycosaminoglycans (GAG), and collagen content were quantified, and a histological study was performed. EV uptake was monitored using PKH26 labelled EVs. Results Significantly higher content of DNA and collagen was observed for the pEV-treated group compared to control and cEV groups. No differences were found in GAG quantification nor in EVs uptake within any treated group. Conclusion In conclusion, pEVs showed better performance than cEVs in our in vitro OA model. Although further studies are needed, pEVs are shown as a potential alternative to cEVs for cell-free regenerative medicine.
Collapse
Affiliation(s)
- Maria A. Forteza-Genestra
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Miquel Antich-Rosselló
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Guillem Ramis-Munar
- Microscopy Area, Serveis Cietificotècnics, University of the Balearic Islands, Palma, Spain
| | - Javier Calvo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
| | - Antoni Gayà
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Joana M. Ramis
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|