1
|
Castilla-Casadiego DA, Morton LD, Loh DH, Pineda-Hernandez A, Chavda AP, Garcia F, Rosales AM. Peptoid-Cross-Linked Hydrogel Stiffness Modulates Human Mesenchymal Stromal Cell Immunoregulatory Potential in the Presence of Interferon-Gamma. Macromol Biosci 2024; 24:e2400111. [PMID: 38567626 PMCID: PMC11250919 DOI: 10.1002/mabi.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Human mesenchymal stromal cell (hMSC) manufacturing requires the production of large numbers of therapeutically potent cells. Licensing with soluble cytokines improves hMSC therapeutic potency by enhancing secretion of immunoactive factors but typically decreases proliferative ability. Soft hydrogels, however, have shown promise for boosting immunomodulatory potential, which may compensate for decreased proliferation. Here, hydrogels are cross-linked with peptoids of different secondary structures to generate substrates of various bulk stiffnesses but fixed network connectivity. Secretions of interleukin 6, monocyte chemoattractive protein-1, macrophage colony-stimulating factor, and vascular endothelial growth factor are shown to depend on hydrogel stiffness in the presence of interferon gamma (IFN-γ) supplementation, with soft substrates further improving secretion. The immunological function of these secreted cytokines is then investigated via coculture of hMSCs seeded on hydrogels with primary peripheral blood mononuclear cells (PBMCs) in the presence and absence of IFN-γ. Cocultures with hMSCs seeded on softer hydrogels show decreased PBMC proliferation with IFN-γ. To probe possible signaling pathways, immunofluorescent studies probe the nuclear factor kappa B pathway and demonstrate that IFN-γ supplementation and softer hydrogel mechanics lead to higher activation of this pathway. Overall, these studies may allow for production of more efficacious therapeutic hMSCs in the presence of IFN-γ.
Collapse
Affiliation(s)
| | - Logan D. Morton
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Darren H. Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ajay P. Chavda
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Francis Garcia
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Adrianne M. Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
2
|
Matsuzaka Y, Yashiro R. Current Strategies and Therapeutic Applications of Mesenchymal Stem Cell-Based Drug Delivery. Pharmaceuticals (Basel) 2024; 17:707. [PMID: 38931374 PMCID: PMC11206583 DOI: 10.3390/ph17060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising approach for drug delivery strategies because of their unique properties. These strategies include stem cell membrane-coated nanoparticles, stem cell-derived extracellular vesicles, immunomodulatory effects, stem cell-laden scaffolds, and scaffold-free stem cell sheets. MSCs offer advantages such as low immunogenicity, homing ability, and tumor tropism, making them ideal for targeted drug delivery systems. Stem cell-derived extracellular vesicles have gained attention for their immune properties and tumor-homing abilities, presenting a potential solution for drug delivery challenges. The relationship between MSC-based drug delivery and the self-renewal and differentiation capabilities of MSCs lies in the potential of engineered MSCs to serve as effective carriers for therapeutic agents while maintaining their intrinsic properties. MSCs exhibit potent immunosuppressive functions in MSC-based drug delivery strategies. Stem cell-derived EVs have low immunogenicity and strong therapeutic potential for tissue repair and regeneration. Scaffold-free stem cell sheets represent a cutting-edge approach in regenerative medicine, offering a versatile platform for tissue engineering and regeneration across different medical specialties. MSCs have shown great potential for clinical applications in regenerative medicine because of their ability to differentiate into various cell types, secrete bioactive factors, and modulate immune responses. Researchers are exploring these innovative approaches to enhance drug delivery efficiency and effectiveness in treating various diseases.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan;
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Kiyose 204-8588, Tokyo, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan;
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
3
|
Maličev E, Jazbec K. An Overview of Mesenchymal Stem Cell Heterogeneity and Concentration. Pharmaceuticals (Basel) 2024; 17:350. [PMID: 38543135 PMCID: PMC10975472 DOI: 10.3390/ph17030350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest in cell therapies due to the immunomodulatory and other effects they have after autologous or allogeneic transplantation. In most clinical applications, a high number of MSCs is required; therefore, the isolated MSC population must be expanded in the cell culture until the desired number is reached. Analysing freshly isolated MSCs is challenging due to their rareness and heterogeneity, which is noticeable among donors, tissues, and cell subpopulations. Although the phenotype of MSCs in tissue can differ from those of cultured cells, phenotyping and counting are usually performed only after MSC proliferation. As MSC applicability is a developing and growing field, there is a need to implement phenotyping and counting methods for freshly isolated MSCs, especially in new one-step procedures where isolated cells are implanted immediately without cell culturing. Only by analysing harvested cells can we correctly evaluate such studies. This review describes multilevel heterogeneity and concentrations of MSCs and different strategies for phenotype determination and enumeration of freshly isolated MSCs.
Collapse
Affiliation(s)
- Elvira Maličev
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
| |
Collapse
|
4
|
Wuttisarnwattana P, Eid S, Wilson DL, Cooke KR. Assessment of therapeutic role of mesenchymal stromal cells in mouse models of graft-versus-host disease using cryo-imaging. Sci Rep 2023; 13:1698. [PMID: 36717650 PMCID: PMC9886911 DOI: 10.1038/s41598-023-28478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Insights regarding the biodistribution and homing of mesenchymal stromal cells (MSCs), as well as their interaction with alloreactive T-cells are critical for understanding how MSCs can regulate graft-versus-host disease (GVHD) following allogeneic (allo) bone marrow transplantation (BMT). We developed novel assays based on 3D, microscopic, cryo-imaging of whole-mouse-sized volumes to assess the therapeutic potential of human MSCs using an established mouse GVHD model. Following infusion, we quantitatively tracked fluorescently labeled, donor-derived, T-cells and third party MSCs in BMT recipients using multispectral cryo-imaging. Specific MSC homing sites were identified in the marginal zones in the spleen and the lymph nodes, where we believe MSC immunomodulation takes place. The number of MSCs found in spleen of the allo BMT recipients was about 200% more than that observed in the syngeneic group. To more carefully define the effects MSCs had on T cell activation and expansion, we developed novel T-cell proliferation assays including secondary lymphoid organ (SLO) enlargement and Carboxyfluoescein succinimidyl ester (CFSE) dilution. As anticipated, significant SLO volume enlargement and CFSE dilution was observed in allo but not syn BMT recipients due to rapid proliferation and expansion of labeled T-cells. MSC treatment markedly attenuated CFSE dilution and volume enlargement of SLO. These assays confirm evidence of potent, in vivo, immunomodulatory properties of MSC following allo BMT. Our innovative platform includes novel methods for tracking cells of interest as well as assessing therapeutic function of MSCs during GVHD induction. Our results support the use of MSCs treatment or prevention of GVHD and illuminate the wider adoption of MSCs as a standard medicinal cell therapy.
Collapse
Affiliation(s)
- Patiwet Wuttisarnwattana
- Optimization Theory and Applications for Engineering Systems Research Group, Department of Computer Engineering, Excellence Center in Infrastructure Technology and Transportation Engineering, Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Saada Eid
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Kenneth R Cooke
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Hospital, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Zhang J, Lu Y, Mao Y, Yu Y, Wu T, Zhao W, Zhu Y, Zhao P, Zhang F. IFN-γ enhances the efficacy of mesenchymal stromal cell-derived exosomes via miR-21 in myocardial infarction rats. STEM CELL RESEARCH & THERAPY 2022; 13:333. [PMID: 35870960 PMCID: PMC9308256 DOI: 10.1186/s13287-022-02984-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/14/2022] [Indexed: 11/10/2022]
Abstract
Background Mesenchymal stromal cells (MSCs) activated with IFN-γ elicit stronger physical effects. Exosomes (Exos) secreted from MSCs show protective effects against myocardial injury. This study aimed to determine whether Exos derived from IFN-γ-treated MSCs exhibit more potent cardioprotective function and the underlying mechanisms. Methods H9c2 cells or human umbilical vein endothelial cells (HUVECs) were treated with Exos isolated from MSCs (Ctrl-Exo) or IFN-γ-primed MSCs (IFN-γ-Exo) under oxygen and glucose deprivation (OGD) conditions in vitro and in vivo in an infarcted rat heart. RNA sequencing was used to identify differentially expressed functional transcription factors (TFs). Quantitative reverse transcription-PCR (qPCR) was used to confirm the upregulated TFs and miRNA in IFN-γ-primed MSCs. Dual-luciferase reporter gene assay was used to analyze the transcriptional regulation of miRNAs by STAT1. The target of miR-21-5p (miR-21) was determined by luciferase reporter assays and qPCR. The function of BTG2 was verified in vitro under OGD conditions. Result IFN-γ-Exo accelerated migration and tube-like structure formation and prevented OGD-induced apoptosis in H9c2. Similarly, IFN-γ-Exo treatment caused a decrease in fibrosis, reduced cardiomyocyte apoptosis, and improved cardiac function compared to Ctrl-Exo treatment. MiR-21 was significantly upregulated in IFN-γ-primed MSCs and IFN-γ-Exo. STAT1 transcriptionally induced miR-21 expression. Up-regulated miR-21 could inhibit BTG anti-proliferation factor 2 (BTG2) expressions. BTG2 promoted H9c2 cell apoptosis and reversed the protective effects of miR-21 under OGD conditions. Conclusion IFN-γ-Exo showed enhanced therapeutic efficacy against acute MI, possibly by promoting angiogenesis and reducing apoptosis by upregulating miR-21, which directly targeted BTG2. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02984-z.
Collapse
|
6
|
Cai S, Fan C, Xie L, Zhong H, Li A, Lv S, Liao M, Yang X, Su X, Wang Y, Wang H, Wang M, Huang P, Liu Y, Wang Y, Liu Y, Wang T, Zhong Y, Ma L. Single-cell RNA sequencing reveals the potential mechanism of heterogeneity of immunomodulatory properties of foreskin and umbilical cord mesenchymal stromal cells. Cell Biosci 2022; 12:115. [PMID: 35869528 PMCID: PMC9306236 DOI: 10.1186/s13578-022-00848-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are heterogeneous populations. Heterogeneity exists within the same tissue and between different tissues. Some studies have found enormous heterogeneity in immunomodulatory function among MSCs derived from different tissues. Moreover, the underlying mechanism of heterogeneity in immunomodulatory abilities is still unclear. METHODS Foreskin mesenchymal stromal cells (FSMSCs) and human umbilical cord mesenchymal stromal cells (HuMSCs) were isolated and cultured until the third passage. According to the International Association for Cell Therapy standard, we confirmed the cell type. Then, FSMSCs and HuMSCs were cocultured with human peripheral blood mononuclear cells (PBMCs) stimulated by lipopolysaccharide (LPS) in vitro. Furthermore, the supernatant was sampled for an enzyme-linked immunosorbent assay to investigate the secretion of IL-1β, IL-6, IL-10, TNF-α, and TGF-β1. Finally, we performed single-cell RNA sequencing (scRNA-seq) of FSMSCs and HuMSCs. RESULTS We successfully identified FSMSCs and HuMSCs as MSCs. When cocultured with LPS pretreated PBMCs, FSMSCs and HuMSCs could effectively reduced the secretion of IL-1β and TNF-α. However, FSMSCs stimulated the PBMCs to secrete more IL-10, TGF-β1, and IL-6. Furthermore, 4 cell subsets were identified from integrated scRNA-seq data, including proliferative MSCs (MKI67+, CD146low+, NG2+, PDGFRB-), pericytes (CD146high+, PDGFRB+, MKI67-, CD31-, CD45-, CD34-), immune MSCs (CXCL12high+, PTGIShigh+, PDGFRB+, CD146-, MKI67-) and progenitor proliferative MSCs (CXCL12low+, PTGISlow+, PDGFRB+, CD146-, MKI67-). Among them, we found that immune MSCs with strengthened transcriptional activity were similar to pericytes with regard to the degree of differentiated. Various of immune-related genes, gene sets, and regulons were also enriched in immune MSCs. Moreover, immune MSCs were determined to be close to other cell subsets in cell-cell communication analysis. Finally, we found that the proportion of immune MSCs in foreskin tissue was highest when comparing the subset compositions of MSCs derived from different tissues. CONCLUSIONS FSMSCs show better immunomodulatory capacity than HuMSCs in vitro. Moreover, immune MSCs may play a vital role in the heterogeneity of immunoregulatory properties. This study provides new insights suggesting that immune MSCs can be isolated to exert stable immunoregulatory functions without being limited by the heterogeneity of MSCs derived from different tissues.
Collapse
Affiliation(s)
- Siyu Cai
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Chuiqin Fan
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Lichun Xie
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, The Women and Children's Medical Center of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huifeng Zhong
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Aijia Li
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Siyu Lv
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Maochuan Liao
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Xixi Yang
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Xing Su
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yue Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Hongwu Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Manna Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Peng Huang
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Yulin Liu
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yu Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tianyou Wang
- Department of Hematology and Oncology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Yong Zhong
- Department of Paediatrics, The Southeast General Hospital of Dongguan, Dongguan, 523000, China
| | - Lian Ma
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, The Women and Children's Medical Center of Guangzhou Medical University, Guangzhou, 510150, China
- Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, 518000, China
| |
Collapse
|
7
|
Khosravi-Farsani S, Zaminy A, Kazemi S, Hashemzadeh-Chaleshtori M. Mesenchymal stem cells versus their conditioned medium in the treatment of ischemia/reperfusion injury: Evaluation of efficacy and hepatic specific gene expression in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:799-807. [PMID: 36033951 PMCID: PMC9392563 DOI: 10.22038/ijbms.2022.62642.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/26/2022] [Indexed: 11/05/2022]
Abstract
Objectives The mechanisms underlying the beneficial effects of MSCs on hepatic I/R injury are still poorly described, especially the changes in hepatocyte gene expression. In this study, the effect of bone marrow-derived mesenchymal stem cells (BMSCs) and adipose tissue-derived mesenchymal stem cells (AMSCs) and their conditioned medium on hepatocyte gene expression resulted by I/R shock were investigated. Materials and Methods Liver ischemia models were induced by clamping in experimental groups. Experimental groups received MSCs or conditioned medium treatments and the control group received Dulbecco's Modified Eagle Medium (DMEM). During 1, 24 hr, and 1 week after treatment, the serum levels of alanine aminotransferase (ALT), aspartate transaminase (AST) and lactate dehydrogenase (LDH) enzymes and tissue catalase activity (CAT) were measured. Gene expression of a number of hepatocyte-specific genes (Alb, Afp, and Ck8) and Icam-1 which is upregulated under inflammatory conditions were also evaluated in 5, 24 hr, and 1-week intervals after I/R insult. Results In this study, liver enzymes showed a much more shift in the control group than treated groups and it was more noticeable 5 hr post-treatment. Moreover, gene expression pattern of the control group underwent changes after I/R injury. However, treated groups gene expression analysis met a steady trend after I/R insult. Conclusion Our finding shows that stem cell treatment has better curative effects than conditioned medium. BMSCs, AMSCs or BMSC and AMSC-derived bioactive molecules injection have potential to be considered as a therapeutic approach for treating acute liver injury.
Collapse
Affiliation(s)
- Somayeh Khosravi-Farsani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran, Department of Anatomical Sciences, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arash Zaminy
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Sedigheh Kazemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Hashemzadeh-Chaleshtori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran,Corresponding author: Morteza Hashemzadeh-Chaleshtori. Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran. Tel: +98-38-33331471;
| |
Collapse
|
8
|
Heras KL, Igartua M, Santos-Vizcaino E, Hernandez RM. Cell-based dressings: A journey through chronic wound management. BIOMATERIALS ADVANCES 2022; 135:212738. [PMID: 35929212 DOI: 10.1016/j.bioadv.2022.212738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The field of regenerative medicine has undergone a paradigm shift in recent decades thanks to the emergence of novel therapies based on the use of living organisms. The development of cell-based strategies has become a trend for the treatment of different conditions and pathologies. In this sense, the need for more adequate, biomimetic and well-planned treatments for chronic wounds has found different and innovative strategies, based on the combination of cells with dressings, which seek to revolutionize the wound healing management. Therefore, the objective of this review is to analyze the current state and the latest advances in the research of cell-based dressings for chronic wounds, ranging from traditional and "second generation" bioengineered living skin equivalents to mesenchymal stem cell dressings; the latter include biopolymeric porous scaffolds, electrospun nanofiber meshes, hydrogels and 3D printed bio-printed dressings. Finally, this review updates the completed and ongoing clinical trials in this field and encourages researchers to rethink these new approaches, manufacturing processes and mechanisms of action, as well as their administration strategies and timings.
Collapse
Affiliation(s)
- Kevin Las Heras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
9
|
Li P, Zhang Y, Li Q, Zhang Y. Effect of HO-1-modified BMMSCs on immune function in liver transplantation. Sci Rep 2022; 12:3046. [PMID: 35197503 PMCID: PMC8866406 DOI: 10.1038/s41598-022-06141-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022] Open
Abstract
We examined whether haem oxygenase-1 (HO-1) could enhance the immunosuppressive effects of bone marrow mesenchymal stem cells (BMMSCs) on the rejection of transplanted liver allografts in rats. The animals were divided into three groups: the normal saline (NS) group, BMMSC group and HO-1/BMMSCs group. In vitro, the extraction, culture and HO-1 transfection of BMMSCs were performed. Mixed lymphocyte response (MLR) analysis of HO-1/BMMSCs efficacy was performed. The rejection model of orthotopic liver transplantation in rats was established when BMMSCs and HO-1/BMMSCs were transfused via the portal vein. To reduce research bias, we established an isogenic Liver transplantation model of (LEW → LEW) and (BN → BN), which can achieve tolerance. Changes in histopathology and liver function in the transplanted liver and changes in regulatory T cell (Tregs), natural killer (NK) cells and cytokines after transplantation were observed in the different groups. The severe acute rejection after liver transplantation on postoperative Day 10 was observed in the NS group. The BMMSC group showed strong protective effects against rejection within the first 10 days after transplantation, while HO-1/BMMSCs showed stronger effects on rejection than BMMSCs alone. In addition, the activity of natural killer (NK) cells decreased significantly, the levels of regulatory T cells (Tregs), interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) increased significantly and the levels of interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-17 (IL-17), interleukin-23 (IL-23), tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) decreased significantly in the HO-1/BMMSC group compared with the BMMSC group. HO-1/BMMSCs showed better immunosuppressive effects after liver transplantation than the other treatments. Our findings reveal that HO-1 can enhance the effects of BMMSCs on inhibiting acute rejection in orthotopic liver transplantation in rats.
Collapse
Affiliation(s)
- Peng Li
- Department of Hepatobiliary Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Yuyi Zhang
- Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Qiongxia Li
- Department of Digestive Endoscopy Centre, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Yubo Zhang
- Department of Stomatology, Xinchang Hospital Affiliated with Wenzhou Medical University, Shaoxing, 312500, China.
| |
Collapse
|
10
|
Rawat S, Dadhwal V, Mohanty S. Dexamethasone priming enhances stemness and immunomodulatory property of tissue-specific human mesenchymal stem cells. BMC DEVELOPMENTAL BIOLOGY 2021; 21:16. [PMID: 34736395 PMCID: PMC8567134 DOI: 10.1186/s12861-021-00246-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/19/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Human Mesenchymal Stem Cells (hMSCs) represent a promising cell source for cell-based therapy in autoimmune diseases and other degenerative disorders due to their immunosuppressive, anti-inflammatory and regenerative potentials. Belonging to a glucocorticoid family, Dexamethasone (Dex) is a powerful anti-inflammatory compound that is widely used as therapy in autoimmune disease conditions or allogeneic transplantation. However, minimal immunomodulatory effect of hMSCs may limit their therapeutic uses. Moreover, the effect of glucocorticoids on the immunomodulatory molecules or other regenerative properties of tissue-specific hMSCs remains unknown. METHOD Herein, we evaluated the in vitro effect of Dex at various dose concentrations and time intervals, 1000 ng/ml, 2000 ng/ml, 3000 ng/ml and 24 h, 48 h respectively, on the basic characteristics and immunomodulatory properties of Bone marrow derived MSC (BM-MSCs), Adipose tissue derived MSCs (AD-MSCs), Dental Pulp derived MSC (DP-MSCs) and Umbilical cord derived MSCs (UC-MSCs). RESULTS The present study indicated that the concentration of Dex did not ramify the cellular morphology nor showed cytotoxicity as well as conserved the basic characteristics of tissue specific hMSCs including cell proliferation and surface marker profiling. However, quite interestingly it was observed that the stemness markers (Oct-4, Sox-2, Nanog and Klf-4) showed a significant upregulation in DP-MSCs and AD-MSCs followed by UC-MSCs and BM-MSCs. Additionally, immunomodulatory molecules, Prostaglandin E-2 (PGE-2), Indoleamine- 2,3-dioxygenase (IDO) and Human Leukocyte Antigen-G (HLA-G) were seen to be upregulated in a dose-dependent manner. Moreover, there was a differential response of tissue specific hMSCs after pre-conditioning with Dex during mixed lymphocyte reaction, wherein UC-MSCs and DP-MSCs showed enhanced immunosuppression as compared to AD-MSCs and BM-MSCs, thereby proving to be a better candidate for therapeutic applications in immune-related diseases. CONCLUSION Dex preconditioning improved the hMSCs immunomodulatory property and may have reduced the challenge associated with minimal potency and strengthen their therapeutic efficacy. Preconditioning of tissue specific hMSCs with dexamethasone biomanufacturers the enhanced potential hMSCs with better stemness and immunomodulatory properties for future therapeutics.
Collapse
Affiliation(s)
- Sonali Rawat
- Stem Cell Facility, All India Institute of Medical Science, New Delhi, India
| | - Vatsla Dadhwal
- Department of Obstetrics and Gynecology, All India Institute of Medical Science, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Science, New Delhi, India.
| |
Collapse
|
11
|
Wedzinska A, Figiel-Dabrowska A, Kozlowska H, Sarnowska A. The Effect of Proinflammatory Cytokines on the Proliferation, Migration and Secretory Activity of Mesenchymal Stem/Stromal Cells (WJ-MSCs) under 5% O 2 and 21% O 2 Culture Conditions. J Clin Med 2021; 10:1813. [PMID: 33919308 PMCID: PMC8122617 DOI: 10.3390/jcm10091813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/24/2021] [Accepted: 04/17/2021] [Indexed: 11/16/2022] Open
Abstract
Treatment with Mesenchymal Stem/Stromal Cells (MSCs) in clinical trials is becoming one of the most-popular and fast-developing branches of modern regenerative medicine, as it is still in an experimental phase. The cross-section of diseases to which these cells are applied is very wide, ranging from degenerative diseases, through autoimmune processes and to acute inflammatory diseases, e.g., viral infections. Indeed, now that first clinical trials applying MSCs against COVID-19 have started, important questions concern not only the therapeutic properties of MSCs, but also the changes that might occur in the cell features as a response to the "cytokine storm" present in the acute phase of an infection and capable of posing a risk to a patient. The aim of our study was thus to assess changes potentially occurring in the biology of MSCs in the active inflammatory environment, e.g., in regards to the cell cycle, cell migration and secretory capacity. The study using MSCs derived from Wharton's jelly (WJ-MSCs) was conducted under two aerobic conditions: 21% O2 vs. 5% O2, since oxygen concentration is one of the key factors in inflammation. Under both oxygen conditions cells were exposed to proinflammatory cytokines involved significantly in acute inflammation, i.e., IFNγ, TNFα and IL-1β at different concentrations. Regardless of the aerobic conditions, WJ-MSCs in the inflammatory environment do not lose features typical for mesenchymal cells, and their proliferation dynamic remains unchanged. Sudden fluctuations in proliferation, the early indicator of potential genetic disturbance, were not observed, while the cells' migration activity increased. The presence of pro-inflammatory factors was also found to increase the secretion of such anti-inflammatory cytokines as IL-4 and IL-10. It is concluded that the inflammatory milieu in vitro does not cause phenotype changes or give rise to proliferation disruption of WJ-MSCs, and nor does it inhibit the secretory properties providing for their use against acute inflammation.
Collapse
Affiliation(s)
- Aleksandra Wedzinska
- Mossakowski Medical Research Centre, Translational Platform for Regenerative Medicine, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.W.); (A.F.-D.)
| | - Anna Figiel-Dabrowska
- Mossakowski Medical Research Centre, Translational Platform for Regenerative Medicine, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.W.); (A.F.-D.)
| | - Hanna Kozlowska
- Mossakowski Medical Research Centre, Laboratory of Advanced Microscopy Techniques, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Anna Sarnowska
- Mossakowski Medical Research Centre, Translational Platform for Regenerative Medicine, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.W.); (A.F.-D.)
- Mossakowski Medical Research Centre, Stem Cell Bioengineering Unit, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
12
|
Kwon JH, Kim M, Um S, Lee HJ, Bae YK, Choi SJ, Hwang HH, Oh W, Jin HJ. Senescence-Associated Secretory Phenotype Suppression Mediated by Small-Sized Mesenchymal Stem Cells Delays Cellular Senescence through TLR2 and TLR5 Signaling. Cells 2021; 10:cells10010063. [PMID: 33401590 PMCID: PMC7824096 DOI: 10.3390/cells10010063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
In order to provide a sufficient number of cells for clinical use, mesenchymal stem cells (MSCs) must be cultured for long-term expansion, which inevitably triggers cellular senescence. Although the small size of MSCs is known as a critical determinant of their fate, the main regulators of stem cell senescence and the underlying signaling have not been addressed. Umbilical cord blood-derived MSCs (UCB-MSCs) were obtained using size-isolation methods and then cultured with control or small cells to investigate the major factors that modulate MSC senescence. Cytokine array data suggested that the secretion of interukin-8 (IL-8) or growth-regulated oncogene-alpha (GROa) by senescent cells was markedly inhibited during incubation of small cells along with suppression of cognate receptor (C-X-C motif chemokine receptor2, CXCR2) via blockade of the autocrine/paracrine positive loop. Moreover, signaling via toll-like receptor 2 (TLR2) and TLR5, both pattern recognition receptors, drove cellular senescence of MSCs, but was inhibited in small cells. The activation of TLRs (2 and 5) through ligand treatment induced a senescent phenotype in small cells. Collectively, our data suggest that small cell from UCB-MSCs exhibit delayed cellular senescence by inhibiting the process of TLR signaling-mediated senescence-associated secretory phenotype (SASP) activation.
Collapse
Affiliation(s)
- Ji Hye Kwon
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Miyeon Kim
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Soyoun Um
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Hyang Ju Lee
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Yun Kyung Bae
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Hyun Ho Hwang
- King Abdullah University of Science and Technology, Thuwal 47000, Makkah Province, Saudi Arabia;
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Hye Jin Jin
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
- Correspondence:
| |
Collapse
|
13
|
Um S, Ha J, Choi SJ, Oh W, Jin HJ. Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells. World J Stem Cells 2020; 12:1511-1528. [PMID: 33505598 PMCID: PMC7789129 DOI: 10.4252/wjsc.v12.i12.1511] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/23/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Umbilical cord blood (UCB) is a primitive and abundant source of mesenchymal stem cells (MSCs). UCB-derived MSCs have a broad and efficient therapeutic capacity to treat various diseases and disorders. Despite the high latent self-renewal and differentiation capacity of these cells, the safety, efficacy, and yield of MSCs expanded for ex vivo clinical applications remains a concern. However, immunomodulatory effects have emerged in various disease models, exhibiting specific mechanisms of action, such as cell migration and homing, angiogenesis, anti-apoptosis, proliferation, anti-cancer, anti-fibrosis, anti-inflammation and tissue regeneration. Herein, we review the current literature pertaining to the UCB-derived MSC application as potential treatment strategies, and discuss the concerns regarding the safety and mass production issues in future applications.
Collapse
Affiliation(s)
- Soyoun Um
- Research Team for Immune Cell Therapy, Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, South Korea
| | - Jueun Ha
- Research Team for Osteoarthritis, Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, South Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, South Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, South Korea
| | - Hye Jin Jin
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, South Korea
| |
Collapse
|
14
|
Cabezas J, Rojas D, Wong Y, Telleria F, Manriquez J, Mançanares ACF, Rodriguez-Alvarez LL, Castro FO. In vitro preconditioning of equine adipose mesenchymal stem cells with prostaglandin E 2, substance P and their combination changes the cellular protein secretomics and improves their immunomodulatory competence without compromising stemness. Vet Immunol Immunopathol 2020; 228:110100. [PMID: 32871408 DOI: 10.1016/j.vetimm.2020.110100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSC) are modern tools in regenerative therapies of humans and animals owed to their immunomodulatory properties, which are activated in a pro-inflammatory environment. Different preconditioning strategies had been devised to enhance the immunomodulatory properties of MSC. In this research, we evaluated the immunological attributes of equine adipose MSC (eAMSC) before and after preconditioning in vitro with prostaglandin E2 (PGE2), substance P (SP), their combination and IFNγ. PGE2/SP was the best combination to keep or enhance the mesodermal lineage differentiation of eAMSC. Alongside with this, preconditioning of eMSC with PGE2 and SP did not affect expression of stemness MSC surface phenotype: CD90+, CD44+, MHC class I+, MHC class II- and CD45-, assessed by cytometry. Both naïve and preconditioned eAMSC expressed genes related with immune properties, such as MHC-I, PTGES, IL6, IL1A, TNFα and IL8 assessed by qPCR. Only TNFα was under expressed in treated cells, while the other markers were either overexpressed or not changed. In no cases MHC-II expression was detected. The antiproliferative effect of preconditioned eAMSC exposed to activated peripheral blood mononuclear cells (PBMC) showed that SP treatment significantly inhibited proliferation of LPS stimulated PBMC. When eAMSC were stimulated with Poly I:C, all the treatments significantly inhibited proliferation of stimulated PBMC (p < 0.05). Direct contact (coculture) between the preconditioned eAMSC and PBMC, induced a shift of significantly more (CD4/CD25/FOXP3)+ T-regulatory PBMC than naïve eAMSC. In the experiments of this research, we investigated the secreted proteomic profile of naïve and preconditioned eAMSC, 42 up-regulated and 40 down-regulated proteins were found in the proteomic assay. Our proteomic data revealed profound changes in the secretory pattern of MSC exposed to different treatments, compared to naïve eAMSC as well as among treatments. In overall, compared to naïve cells, the protein profile of preconditioned cells resembled the mesenchymal-epithelial transition (MET). Here we showed that the combined use of PGE2 and SP provoked in overall the highest expression of anti-inflammatory markers as well as lead to an increased acquisition of a T-regulatory phenotype in preconditioned eAMSC without affecting their "stemness".
Collapse
Affiliation(s)
- J Cabezas
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - D Rojas
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Sciences, Department of Animal Pathology, Chile.
| | - Y Wong
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - F Telleria
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - J Manriquez
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - A C F Mançanares
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - L L Rodriguez-Alvarez
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - F O Castro
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| |
Collapse
|
15
|
Umbilical Cord-Derived Mesenchymal Stem Cells Are Able to Use bFGF Treatment and Represent a Superb Tool for Immunosuppressive Clinical Applications. Int J Mol Sci 2020; 21:ijms21155366. [PMID: 32731615 PMCID: PMC7432622 DOI: 10.3390/ijms21155366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have become a promising tool in cellular therapy for restoring immune system haemostasis; however, the success of clinical trials has been impaired by the lack of standardized manufacturing processes. This study aims to determine the suitability of source tissues and culture media for the production of MSC-based advanced therapy medicinal products (ATMPs) and to define parameters to extend the set of release criteria. MSCs were isolated from umbilical cord (UC), bone marrow and lipoaspirate and expanded in three different culture media. MSC phenotype, proliferation capacity and immunosuppressive parameters were evaluated in normal MSCs compared to primed MSCs treated with cytokines mimicking an inflammatory environment. Compared to bone marrow and lipoaspirate, UC-derived MSCs (UC-MSCs) showed the highest proliferative capacity, which was further enhanced by media supplemented with bFGF, while the cells maintained their immunosuppressive characteristics. Moreover, UC-MSCs expanded in the bFGF-enriched medium were the least sensitive to undesirable priming-induced changes in the MSC phenotype. Surface markers and secreted factors were identified to reflect the cell response to inflammatory priming and to be variable among MSCs from different source tissues. This study demonstrates that UC is a favorable cell source for manufacturing MSC-based ATMPs for immunosuppressive applications. UC-MSCs are able to use the bFGF-enriched medium for higher cell yields without the impairment of immunosuppressive parameters and undesirable phenotype changes after inflammatory preconditioning of MSCs before transplantation. Additionally, immunosuppressive parameters were identified to help finding predictors of clinically efficient MSCs in the following clinical trials.
Collapse
|
16
|
Caffi V, Espinosa G, Gajardo G, Morales N, Durán MC, Uberti B, Morán G, Plaza A, Henríquez C. Pre-conditioning of Equine Bone Marrow-Derived Mesenchymal Stromal Cells Increases Their Immunomodulatory Capacity. Front Vet Sci 2020; 7:318. [PMID: 32656251 PMCID: PMC7325884 DOI: 10.3389/fvets.2020.00318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are increasingly explored for the treatment of degenerative and inflammatory diseases in human and veterinary medicine. One of the key characteristics of MSCs is that they modulate inflammation mainly through the secretion of soluble mediators. However, despite widespread clinical use, knowledge regarding the effector mechanisms of equine MSCs, and consequently their effectiveness in the treatment of diseases, is still unknown. The objectives of this study were to determine the mechanisms underlying inhibition of lymphocyte proliferation by equine bone marrow-derived MSCs, and to evaluate the effect of pre-conditioning of equine MSCs with different pro-inflammatory cytokines on inhibition of lymphocyte proliferation. We determined that inhibition of lymphocyte proliferation by equine MSCs depends on activity of prostaglandin-endoperoxide synthase 2 and indoleamine 2,3-dioxygenase. Additionally, pre-conditioning of MSCs with TNF-α, IFN-γ or their combination significantly increased the expression of prostaglandin-endoperoxide synthase 2, indoleamine 2,3-dioxygenase, iNOS and IL-6. This upregulation correlated with an increased inhibitory effect of MSCs on lymphocyte proliferation. In conclusion, pre-conditioning of bone marrow-derived MSC increases their inhibitory effect on lymphocyte proliferation in horses.
Collapse
Affiliation(s)
- Valeria Caffi
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.,Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Gabriel Espinosa
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo Gajardo
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Natalia Morales
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - María Carolina Durán
- Instituto de Ciencias Clínicas, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Benjamín Uberti
- Instituto de Ciencias Clínicas, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Gabriel Morán
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Anita Plaza
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Henríquez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
17
|
Bao Z, Li J, Zhang P, Pan Q, Liu B, Zhu J, Jian Q, Jia D, Yi C, Moeller CJ, Liu H. Toll-Like Receptor 3 Activator Preconditioning Enhances Modulatory Function of Adipose‑Derived Mesenchymal Stem Cells in a Fully MHC-Mismatched Murine Model of Heterotopic Heart Transplantation. Ann Transplant 2020; 25:e921287. [PMID: 32366814 PMCID: PMC7219555 DOI: 10.12659/aot.921287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Donor-specific tolerance is the ultimate goal in organ transplantation. Diverse approaches, including the use of mesenchymal stem cells (MSCs), have been investigated to induce graft tolerance. Non-stimulated MSCs showed limited regulatory functions through interaction with multiple immune-regulatory cells, such as regulatory T cells (Tregs). To augment their functions, MSCs have been preconditioned with toll-like receptor (TLR3/4) agonist in autoimmune disease models, but results were conflicting. Material/Methods We evaluated the immunomodulatory effects of mouse adipose-derived mesenchymal stem cells (ADSCs) preconditioned with various combinations of TLR3/4 agonist and antagonists, including polyinosinic-polycytidylic acid poly(I:C)-TLR3 agonist, lipopolysaccharide (LPS) -TLR4 agonist, and TAK242-TLR4 antagonist. In vitro and in vivo experiments including mixed lymphocyte reaction, cytokines measurement, Tregs analysis, and a fully mismatched MHC heterotopic heart transplantation in mice (BALB/c to C57BL/6) were conducted. Results ADSCs preconditioned with poly(I:C) showed the highest efficiency in inhibiting lymphocyte proliferation, which was correlated with the upregulation of fibrinogen-like protein 2 (FGL2), an effector molecule of Tregs. The mean survival of cardiac allografts was extended from 8 to 12 days by intravenous injection of a single dose of ADSCs preconditioned with TLR3 agonist. The proportion of Tregs in the recipient’s spleen was significantly increased by injecting the poly(I:C)-stimulated ADSCs. Conclusions These results show that short-term TLR3 agonist preconditioning enhances the immunomodulatory efficacy of ADSCs, which can induce the generation of Tregs and upregulate the expression of FGL2, thereby improving the outcome of patients receiving organ transplantation.
Collapse
Affiliation(s)
- Zhiye Bao
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Jingjing Li
- Department of Pediatric Surgery, Tianjin Children's Hospital, Tianjin, China (mainland)
| | - Pengju Zhang
- Oncology Center of People's Liberation Army (PLA), 81st Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Boqian Liu
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Jiayi Zhu
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Qian Jian
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Degong Jia
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| | - Caiyu Yi
- China Medical University, Shenyang, Liaoning, China (mainland)
| | | | - Hao Liu
- The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
18
|
Yu T, Yan B, Li J, Zhang T, Yang R, Wang X, Liu Y, Liu D. Acetylsalicylic acid rescues the immunomodulation of inflamed gingiva-derived mesenchymal stem cells via upregulating FasL in mice. Stem Cell Res Ther 2019; 10:368. [PMID: 31796122 PMCID: PMC6892130 DOI: 10.1186/s13287-019-1485-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gingiva-derived mesenchymal stem cells (GMSCs) obtained multipotent differentiation and immunomodulatory properties. However, collecting healthy gingival tissues may be challenging in the clinical situation. Thus, in our present study, we aim to evaluate whether the immunomodulatory capacity of gingiva-derived mesenchymal stem cells from inflamed gingival tissues (iGMSCs) is impaired and find a way to rescue their deficient properties. METHODS We compared the immunomodulation capacity of GMSCs and iGMSCs using an in vitro co-culture system and a mouse colitis model. T cell apoptosis, T helper 17 (Th17), and regulatory T (Treg) cell differentiation were detected by flow cytometry analysis. RESULTS We demonstrated that iGMSCs obtained a decreased immunomodulatory capacity compared with GMSCs. Acetylsalicylic acid (ASA) pretreatment was able to rescue iGMSCs' impaired immunomodulatory properties. Mechanistically, ASA was capable of upregulating the expression of Fas ligand (FasL) in iGMSCs, leading to an improvement in iGMSC-mediated T cell apoptosis and therapeutic efficacy in the treatment in colitis mice. CONCLUSIONS This study indicates that the deficient immunomodulatory function of iGMSCs could be rescued by ASA pretreatment via upregulating of FasL in mice. This strategy might serve as a practical approach to rescue deficient MSC function for further therapeutic application.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Boxi Yan
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Jing Li
- Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Ting Zhang
- Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Ruili Yang
- Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Xuedong Wang
- Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Yan Liu
- Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Dawei Liu
- Department of Orthodontics, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China.
| |
Collapse
|
19
|
McClellan A, Paterson YZ, Paillot R, Guest DJ. Equine Fetal, Adult, and Embryonic Stem Cell-Derived Tenocytes Are All Immune Privileged but Exhibit Different Immune Suppressive Properties In Vitro. Stem Cells Dev 2019; 28:1413-1423. [PMID: 31507234 DOI: 10.1089/scd.2019.0120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In horses and humans, tendon injuries are a significant problem. Not only can they occur in both athletes and nonathletes, they require lengthy periods of recuperation and undergo poor natural regeneration, which leads to high reinjury rates. Embryonic stem cells (ESCs) may provide a renewable source of allogeneic cells to use in clinical applications to aid tissue regeneration. Equine ESCs can undergo tenocyte differentiation in vivo and in vitro, but the immune properties of tenocytes isolated from either ESCs or tissues have not previously been characterized. Here, we demonstrate that equine tenocytes derived from fetal and adult tendon tissue and ESCs express robust levels of major histocompatibility complex (MHC) I but no MHC II in response to inflammatory cytokine interferon gamma (IFNγ). However, MHC expression does not affect their allorecognition by peripheral blood mononuclear cells in vitro. Adult and fetal tenocytes remain immune privileged and strongly immune suppressive in both the presence and absence of exogenously applied IFNγ. In contrast, ESC-derived tenocytes are immune privileged even in the presence of IFNγ, but they are only weakly immune suppressive in the presence but not in the absence of exogenously applied IFNγ. This is despite ESC-tenocytes expressing a number of genes involved in immune modulation at significantly higher levels than those expressed by adult and fetal tenocytes when in standard, nonstimulated monolayer culture. Together, this work suggests that, similar to other fibroblasts, tenocytes have immune modulatory properties, and that culture-expanded tenocytes derived from primary tissues or ESCs may be safe to use in clinical transplantations to injured tendons of unrelated animals.
Collapse
Affiliation(s)
- Alyce McClellan
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| | - Yasmin Z Paterson
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Romain Paillot
- LABÉO Frank Duncombe, Caen, France.,Normandie University, UniCaen, Biotargen, Saint-Contest, France
| | - Deborah Jane Guest
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The advent of cell therapies, mainly based on the use of mesenchymal stromal cells (MSCs), represents a great step forward in the treatment of immune-mediated conditions. Here, we focus on those intestinal disorders wherein MSCs have been applied for immunotherapeutic purposes and whose results are available. RECENT FINDINGS By virtue of their ability to favour both tissue regeneration and immune tolerance, together with a substantial lack of immunogenicity, MSCs have gained huge attention in the last decade. Following abundant positive experimental data, a sizable number of clinical trials using MSCs as a new treatment in chronic inflammatory intestinal diseases were carried out with promising results and several are still ongoing. The main indication was refractory Crohn's disease wherein both feasibility and safety clearly emerged when treating the luminal phenotype with intravenous infusion/s, albeit no definitive conclusion on efficacy may be drawn. By contrast, the availability of robust demonstration also on the efficacy when treating the fistulizing phenotype through local injection/s of MSCs has led to approval of the marketing of an industrial preparation (darvadstrocel). SUMMARY Successful clinical implementation of this attractive option is hampered by a number of obstacles arising from methodology and regulation issues, which require the institution of interdisciplinary task forces before this cell therapy becomes a bedside reality.
Collapse
|
21
|
Glutamine Metabolism Is Essential for Stemness of Bone Marrow Mesenchymal Stem Cells and Bone Homeostasis. Stem Cells Int 2019; 2019:8928934. [PMID: 31611919 PMCID: PMC6757285 DOI: 10.1155/2019/8928934] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Skeleton has emerged as an endocrine organ which is both capable of regulating energy metabolism and being a target for it. Glutamine is the most bountiful and flexible amino acid in the body which provides adenosine 5′-triphosphate (ATP) demands for cells. Emerging evidences support that glutamine which acts as the second metabolic regulator after glucose exerts crucial roles in bone homeostasis at cellular level, including the lineage allocation and proliferation of bone mesenchymal stem cells (BMSCs), the matrix mineralization of osteoblasts, and the biosynthesis in chondrocytes. The integrated mechanism consisting of WNT, mammalian target of rapamycin (mTOR), and reactive oxygen species (ROS) signaling pathway in a glutamine-dependent pattern is responsible to regulate the complex intrinsic biological process, despite more extensive molecules are deserved to be elucidated in glutamine metabolism further. Indeed, dysfunctional glutamine metabolism enhances the development of degenerative bone diseases, such as osteoporosis and osteoarthritis, and glutamine or glutamine progenitor supplementation can partially restore bone defects which may promote treatment of bone diseases, although the mechanisms are not quite clear. In this review, we will summarize and update the latest research findings and clinical trials on the crucial regulatory roles of glutamine metabolism in BMSCs and BMSC-derived bone cells, also followed with the osteoclasts which are important in bone resorption.
Collapse
|
22
|
García JR, Quirós M, Han WM, O'Leary MN, Cox GN, Nusrat A, García AJ. IFN-γ-tethered hydrogels enhance mesenchymal stem cell-based immunomodulation and promote tissue repair. Biomaterials 2019; 220:119403. [PMID: 31401468 DOI: 10.1016/j.biomaterials.2019.119403] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/17/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Because of their immunomodulatory activities, human mesenchymal stem cells (hMSCs) are being explored to treat a variety of chronic conditions such as inflammatory bowel disorders and graft-vs-host disease. Treating hMSCs with IFN-γ prior to administration augments these immunomodulatory properties; however, this ex vivo treatment limits the broad applicability of this therapy due to technical and regulatory issues. In this study, we engineered an injectable synthetic hydrogel with tethered recombinant IFN-γ that activates encapsulated hMSCs to increase their immunomodulatory functions and avoids the need for ex vivo manipulation. Tethering IFN-γ to the hydrogel increases retention of IFN-γ within the biomaterial while preserving its biological activity. hMSCs encapsulated within hydrogels with tethered IFN-γ exhibited significant differences in cytokine secretion and showed a potent ability to halt activated T-cell proliferation and monocyte-derived dendritic cell differentiation compared to hMSCs that were pre-treated with IFN-γ and untreated hMSCs. Importantly, hMSCs encapsulated within hydrogels with tethered IFN-γ accelerated healing of colonic mucosal wounds in both immunocompromised and immunocompetent mice. This novel approach for licensing hMSCs with IFN-γ may enhance the clinical translation and efficacy of hMSC-based therapies.
Collapse
Affiliation(s)
- José R García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Miguel Quirós
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Woojin M Han
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
23
|
Haque N, Khan IM, Abu Kasim NH. Survival and immunomodulation of stem cells from human extracted deciduous teeth expanded in pooled human and foetal bovine sera. Cytokine 2019; 120:144-154. [PMID: 31071675 DOI: 10.1016/j.cyto.2019.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/20/2019] [Accepted: 04/27/2019] [Indexed: 12/17/2022]
Abstract
The immunomodulatory properties of mesenchymal stem cells (MSCs) from autologous and allogeneic sources are useful in stimulating tissue regeneration and repair. To obtain a high number of MSCs for transplantation requires extensive in vitro expansion with culture media supplements that can cause xeno-contamination of cells potentially compromising function and clinical outcomes. In this study stem cells from human extracted deciduous teeth (SHED) were cultured in Knockout™ DMEM supplemented with either pooled human serum (pHS) or foetal bovine serum (FBS) to compare their suitability in maintaining immunomodulatory properties of cells during in vitro expansion. No significant difference in cell survival of SHED grown in pHS (pHS-SHED) or FBS (FBS-SHED) was observed when co-cultured with complement, monocytes or lymphocytes. However, significant changes in the expression of sixteen paracrine factors involved in immunomodulation were observed in the supernatants of FBS-SHED co-cultures with monocytes or lymphocytes compared to that in pHS-SHEDs after both 24 and 120 h of incubation. Further analysis of changing protein levels of paracrine factors in co-cultures using biological pathway analysis software predicted upregulation of functions associated with immunogenicity in FBS-SHED and lymphocyte co-cultures compared to pHS-SHED co-cultures. Pathway analysis also predicted significant stimulation of HMGB1 and TREM1 signalling pathways in FBS-SHED co-cultures indicating activation of immune cells and inflammation. Though FBS supplementation does not impact survival of SHED, our combinatorial biological pathway analysis supports the idea that in vitro expansion of SHEDs in pHS provides optimal conditions to minimise xeno-contamination and inflammation and maintain their immunomodulatory properties.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor, Malaysia; Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Ilyas M Khan
- Centre for NanoHealth, Swansea University Medical School, Swansea, UK
| | - Noor Hayaty Abu Kasim
- Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Kim SH, Das A, Choi HI, Kim KH, Chai JC, Choi MR, Binas B, Park KS, Lee YS, Jung KH, Chai YG. Forkhead box O1 (FOXO1) controls the migratory response of Toll-like receptor (TLR3)-stimulated human mesenchymal stromal cells. J Biol Chem 2019; 294:8424-8437. [PMID: 30944148 DOI: 10.1074/jbc.ra119.008673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) can potently regulate the functions of immune cells and are being investigated for the management of inflammatory diseases. Toll-like receptor 3 (TLR3)-stimulated human MSCs (hMSCs) exhibit increased migration and chemotaxis within and toward damaged tissues. However, the regulatory mechanisms underlying these migratory activities are unclear. Therefore, we analyzed the migration capability and gene expression profiles of TLR3-stimulated hMSCs using RNA-Seq, wound healing, and transwell cell migration assay. Along with increased cell migration, the TLR3 stimulation also increased the expression of cytokines, chemokines, and cell migration-related genes. The promoter regions of the latter showed an enrichment of putative motifs for binding the transcription factors forkhead box O1 (FOXO1), FOXO3, NF-κB (NF-κB1), and RELA proto-oncogene and NF-κB subunit. Of note, FOXO1 inhibition by the FOXO1-selective inhibitor AS1842856 significantly reduced both migration and the expression of migration-related genes. In summary, our results indicate that TLR3 stimulation induces hMSC migration through the expression of FOXO1-activated genes.
Collapse
Affiliation(s)
- Sun Hwa Kim
- Department of Molecular & Life Science, Hanyang University, Seoul 04673, Republic of Korea
| | - Amitabh Das
- Institute of Natural Science & Technology, Hanyang University, Ansan 15588
| | - Hae In Choi
- Department of Bionanotechnology, Hanyang University, Seoul 04673, Republic of Korea
| | - Ki Hoon Kim
- Department of Molecular & Life Science, Hanyang University, Seoul 04673, Republic of Korea
| | - Jin Choul Chai
- Department of Molecular & Life Science, Hanyang University, Seoul 04673, Republic of Korea
| | - Mi Ran Choi
- Institute of Natural Science & Technology, Hanyang University, Ansan 15588
| | - Bert Binas
- Department of Molecular & Life Science, Hanyang University, Seoul 04673, Republic of Korea
| | - Kyoung Sun Park
- Institute of Natural Science & Technology, Hanyang University, Ansan 15588
| | - Young Seek Lee
- Department of Molecular & Life Science, Hanyang University, Seoul 04673, Republic of Korea
| | - Kyoung Hwa Jung
- Institute of Natural Science & Technology, Hanyang University, Ansan 15588.
| | - Young Gyu Chai
- Department of Molecular & Life Science, Hanyang University, Seoul 04673, Republic of Korea; Department of Bionanotechnology, Hanyang University, Seoul 04673, Republic of Korea.
| |
Collapse
|
25
|
Affan A, Al-Jezani N, Railton P, Powell JN, Krawetz RJ. Multiple mesenchymal progenitor cell subtypes with distinct functional potential are present within the intimal layer of the hip synovium. BMC Musculoskelet Disord 2019; 20:125. [PMID: 30909916 PMCID: PMC6434889 DOI: 10.1186/s12891-019-2495-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/05/2019] [Indexed: 12/18/2022] Open
Abstract
Background The synovial membrane adjacent to the articular cartilage is home to synovial mesenchymal progenitor cell (sMPC) populations that have the ability to undergo chondrogenesis. While it has been hypothesized that multiple subtypes of stem and progenitor cells exist in vivo, there is little evidence supporting this hypothesis in human tissues. Furthermore, in most of the published literature on this topic, the cells are cultured before derivation of clonal populations. This gap in the literature makes it difficult to determine if there are distinct MPC subtypes in human synovial tissues, and if so, if these sMPCs express any markers in vivo/in situ that provide information in regards to the function of specific MPC subtypes (e.g. cells with increased chondrogenic capacity)? Therefore, the current study was undertaken to determine if any of the classical MPC cell surface markers provide insight into the differentiation capacity of sMPCs. Methods Clonal populations of sMPCs were derived from a cohort of patients with hip osteoarthritis (OA) and patients at high risk to develop OA using indexed cell sorting. Tri-differentiation potential and cell surface receptor expression of the resultant clones was determined. Results A number of clones with distinct differentiation potential were derived from this cohort, yet the most common cell surface marker profile on MPCs (in situ) that demonstrated chondrogenic potential was determined to be CD90+/CD44+/CD73+. A validation cohort was employed to isolate cells with only this cell surface profile. Isolating cells directly from human synovial tissue with these three markers alone, did not enrich for cells with chondrogenic capacity. Conclusions Therefore, additional markers are required to further discriminate the heterogeneous subtypes of MPCs and identify sMPCs with functional properties that are believed to be advantageous for clinical application. Electronic supplementary material The online version of this article (10.1186/s12891-019-2495-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asmaa Affan
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,University of Calgary, Biomedical Engineering Graduate Program, Calgary, Canada
| | - Nedaa Al-Jezani
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,University of Calgary, Medical Science Graduate Program, Calgary, AB, Canada
| | - Pamela Railton
- University of Calgary, Department of Surgery, Calgary, Alberta, Canada.,Charles Sturt University, Orange, Australia
| | - James N Powell
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,University of Calgary, Department of Surgery, Calgary, Alberta, Canada
| | - Roman J Krawetz
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada. .,University of Calgary, Biomedical Engineering Graduate Program, Calgary, Canada. .,University of Calgary, Department of Surgery, Calgary, Alberta, Canada. .,University of Calgary, Department of Anatomy and Cell Biology, Calgary, Alberta, Canada.
| |
Collapse
|
26
|
Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng 2019; 3:90-104. [PMID: 30944433 DOI: 10.1038/s41551-018-0325-8] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) for basic research and clinical applications are manufactured and developed as unique cell products by many different manufacturers and laboratories, often under different conditions. The lack of standardization of MSC identity has limited consensus around which MSC properties are relevant for specific outcomes. In this Review, we examine how the choice of media, cell source, culture environment and storage affects the phenotype and clinical utility of MSC-based products, and discuss the techniques better suited to prime MSCs with specific phenotypes of interest and the need for the continued development of standardized assays that provide quality assurance for clinical-grade MSCs. Bioequivalence between cell products and batches must be investigated rather than assumed, so that the diversity of phenotypes between differing MSC products can be accounted for to identify products with the highest therapeutic potential and to preserve their safety in clinical treatments.
Collapse
|
27
|
Arabiyat AS, Diaz-Rodriguez P, Erndt-Marino JD, Totsingan F, Mekala S, Gross RA, Hahn MS. Effect of Poly(sophorolipid) Functionalization on Human Mesenchymal Stem Cell Osteogenesis and Immunomodulation. ACS APPLIED BIO MATERIALS 2018; 2:118-126. [DOI: 10.1021/acsabm.8b00434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Pro inflammatory stimuli enhance the immunosuppressive functions of adipose mesenchymal stem cells-derived exosomes. Sci Rep 2018; 8:13325. [PMID: 30190615 PMCID: PMC6127134 DOI: 10.1038/s41598-018-31707-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
The predominant mechanism by which adipose mesenchymal stem cells (AMSCs) participate to tissue repair is through a paracrine activity and their communication with the inflammatory microenvironment is essential part of this process. This hypothesis has been strengthened by the recent discovery that stem cells release not only soluble factors but also extracellular vesicles, which elicit similar biological activity to the stem cells themselves. We demonstrated that the treatment with inflammatory cytokines increases the immunosuppressive and anti-inflammatory potential of AMSCs-derived exosomes, which acquire the ability to shift macrophages from M1 to M2 phenotype by shuttling miRNA regulating macrophages polarization. This suggests that the immunomodulatory properties of AMSCs-derived exosomes may be not constitutive, but are instead induced by the inflammatory microenvironment.
Collapse
|
29
|
Dos Santos GG, Hastreiter AA, Sartori T, Borelli P, Fock RA. L-Glutamine in vitro Modulates some Immunomodulatory Properties of Bone Marrow Mesenchymal Stem Cells. Stem Cell Rev Rep 2018; 13:482-490. [PMID: 28593472 DOI: 10.1007/s12015-017-9746-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glutamine (GLUT) is a nonessential amino acid that can become conditionally essential under stress conditions, being able to act in the modulation of the immune responses. Mesenchymal stem cells (MSCs) are known to their capability in the modulation of immune responses through cell-cell contact and by the secretion of soluble factors. Considering that GLUT is an immunonutrient and little is known about the influence of GLUT on the capability of MSCs to modulate immune cells, this work aims to investigate how variations in GLUT concentrations in vitro could affect some immunomodulatory properties of MSCs. In order to evaluate the effects of GLUT on MSCs immunomodulatory properties, cell proliferation rates, the expression of NFκB and STAT-3, and the production of IL-1β, IL-6, IL-10, TGF-β and TNF-α by MSCs were assessed. Based on our findings, GLUT at high doses (10 mM) augmented the proliferation of MSCs and modulated immune responses by decreasing levels of pro-inflammatory cytokines, such as IL-1β and IL-6, and by increasing levels of anti-inflammatory cytokines IL-10 and TGF-β. In addition, MSCs cultured in higher GLUT concentrations (10 mM) expressed lower levels of NF-κB and higher levels of STAT-3. Furthermore, conditioned media from MSCs cultured at higher GLUT concentrations (10 mM) reduced lymphocyte and macrophage proliferation, increased IL-10 production by both cells types, and decreased IFN-γ production by lymphocytes. Overall, this study showed that 10 mM of GLUT is able to modify immunomodulatory properties of MSCs.
Collapse
Affiliation(s)
- Guilherme Galvão Dos Santos
- Laboratory of Experimental Hematology, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Lineu Prestes, 580 - Bloco 17., São Paulo, SP, 05508-900, Brazil
| | - Araceli Aparecida Hastreiter
- Laboratory of Experimental Hematology, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Lineu Prestes, 580 - Bloco 17., São Paulo, SP, 05508-900, Brazil
| | - Talita Sartori
- Laboratory of Experimental Hematology, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Lineu Prestes, 580 - Bloco 17., São Paulo, SP, 05508-900, Brazil
| | - Primavera Borelli
- Laboratory of Experimental Hematology, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Lineu Prestes, 580 - Bloco 17., São Paulo, SP, 05508-900, Brazil
| | - Ricardo Ambrósio Fock
- Laboratory of Experimental Hematology, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Lineu Prestes, 580 - Bloco 17., São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
30
|
Reid E, Guduric-Fuchs J, O'Neill CL, Allen LD, Chambers SEJ, Stitt AW, Medina RJ. Preclinical Evaluation and Optimization of a Cell Therapy Using Human Cord Blood-Derived Endothelial Colony-Forming Cells for Ischemic Retinopathies. Stem Cells Transl Med 2017; 7:59-67. [PMID: 29164803 PMCID: PMC5746158 DOI: 10.1002/sctm.17-0187] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022] Open
Abstract
Cell therapy using endothelial progenitors holds promise for vascular repair in ischemic retinopathies. Using a well-defined subpopulation of human cord blood-derived endothelial progenitors known as endothelial colony-forming cells (ECFCs), we have evaluated essential requirements for further development of this cell therapy targeting the ischemic retina, including dose response, delivery route, and toxicity. First, to evaluate therapeutic efficacy relating to cell dose, ECFCs were injected into the vitreous of mice with oxygen-induced retinopathy. Using angiography and histology, we found that intravitreal delivery of low dose (1 × 103 ) ECFCs was as effective as higher cell doses (1 × 104 , 1 × 105 ) in promoting vascular repair. Second, injection into the common carotid artery was tested as an alternative, systemic delivery route. Intracarotid ECFC delivery conferred therapeutic benefit which was comparable to intravitreal delivery using the same ECFC dose (1 × 105 ), although there were fewer human cells observed in the retinal vasculature following systemic delivery. Third, cell immunogenicity was evaluated by injecting ECFCs into the vitreous of healthy adult mice. Assessment of murine ocular tissues identified injected cells in the vitreous, while demonstrating integrity of the host retina. In addition, ECFCs did not invade into the retina, but remained in the vitreous, where they eventually underwent cell death within 3 days of delivery without evoking an inflammatory response. Human specific Alu sequences were not found in healthy mouse retinas after 3 days of ECFC delivery. These findings provide supportive preclinical evidence for the development of ECFCs as an efficacious cell product for ischemic retinopathies. Stem Cells Translational Medicine 2018;7:59-67.
Collapse
Affiliation(s)
- Emma Reid
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Christina L O'Neill
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Lynsey-Dawn Allen
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Sarah E J Chambers
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
31
|
Fischer G, Wang F, Xiang H, Bai X, Yu H, Hogan QH. Inhibition of neuropathic hyperalgesia by intrathecal bone marrow stromal cells is associated with alteration of multiple soluble factors in cerebrospinal fluid. Exp Brain Res 2017; 235:2627-2638. [PMID: 28573310 PMCID: PMC6688185 DOI: 10.1007/s00221-017-5000-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/24/2017] [Indexed: 01/09/2023]
Abstract
Injury-induced neuropathic pain remains a serious clinical problem. Recent studies indicate that bone marrow stromal cells (BMSCs) effectively attenuate chronic neuropathic pain in animal models. Here, we examined the therapeutic effect of intrathecal administration of BMSCs isolated from young (1-month-old) rats on pain hypersensitivity induced by tibial nerve injury. Cerebrospinal fluid (CSF) was collected and analyzed to examine the effect of BMSC administration on the expression of 67 soluble factors in CSF. A sustained remission in injury-induced mechanical hyperalgesia was observed in BMSC-treated rats but not in control animals. Engrafted BMSCs were observed in spinal cords and dorsal root ganglia at 5 weeks after cell injection. Injury significantly decreased the levels of six soluble factors in CSF: intercellular adhesion molecule 1 (ICAM-1), interleukin-1β (IL-1β), IL-10, hepatocyte growth factor (HGF), Nope protein, and neurogenic locus notch homolog protein 1 (Notch-1). Intrathecal BMSCs significantly attenuated the injury-induced reduction of ICAM-1, IL-1β, HGF, IL-10, and Nope. This study adds to evidence supporting the use of intrathecal BMSCs in pain control and shows that this effect is accompanied by the reversal of injury-induced reduction of multiple CSF soluble factors. Our findings suggest that these soluble factors may be potential targets for treating chronic pain.
Collapse
Affiliation(s)
- Gregory Fischer
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Fei Wang
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, People's Republic of China
| | - Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Xiaowen Bai
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA.
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA.
| |
Collapse
|
32
|
Hlebokazov F, Dakukina T, Ihnatsenko S, Kosmacheva S, Potapnev M, Shakhbazau A, Goncharova N, Makhrov M, Korolevich P, Misyuk N, Dakukina V, Shamruk I, Slobina E, Marchuk S. Treatment of refractory epilepsy patients with autologous mesenchymal stem cells reduces seizure frequency: An open label study. Adv Med Sci 2017; 62:273-279. [PMID: 28500900 DOI: 10.1016/j.advms.2016.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Existing anti-epileptic drugs (AED) have limited efficiency in many patients, necessitating the search for alternative approaches such as stem cell therapy. We report the use of autologous patient-derived mesenchymal stem cells (MSC) as a therapeutic agent in symptomatic drug-resistant epilepsy in a Phase I open label clinical trial (registered as NCT02497443). PATIENTS AND METHODS The patients received either standard treatment with AED (control group), or AED supplemented with single intravenous administration of undifferentiated autologous MSC (target dose of 1×106cells/kg), followed by a single intrathecal injection of neurally induced autologous MSC (target dose of 0.1×106cells/kg). RESULTS MSC injections were well tolerated and did not cause any severe adverse effects. Seizure frequency was designated as the main outcome and evaluated at 1 year time point. 3 out of 10 patients in MSC therapy group achieved remission (no seizures for one year and more), and 5 additional patients became responders to AEDs, while only 2 out of 12 patients became responders in control group (difference significant, P=0.0135). CONCLUSIONS MSC possess unique immunomodulatory properties and are a safe and promising candidate for cell therapy in AED resistant epilepsy patients.
Collapse
|
33
|
Adipose Extracellular Matrix/Stromal Vascular Fraction Gel Secretes Angiogenic Factors and Enhances Skin Wound Healing in a Murine Model. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3105780. [PMID: 28835892 PMCID: PMC5556995 DOI: 10.1155/2017/3105780] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells are an attractive cell type for cytotherapy in wound healing. The authors recently developed a novel, adipose-tissue-derived, injectable extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel) for stem cell therapy. This study was designed to assess the therapeutic effects of ECM/SVF-gel on wound healing and potential mechanisms. ECM/SVF-gel was prepared for use in nude mouse excisional wound healing model. An SVF cell suspension and phosphate-buffered saline injection served as the control. The expression levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and monocyte chemotactic protein-1 (MCP-1) in ECM/SVF-gel were analyzed at different time points. Angiogenesis (tube formation) assays of ECM/SVF-gel extracts were evaluated, and vessels density in skin was determined. The ECM/SVF-gel extract promoted tube formation in vitro and increased the expression of the angiogenic factors VEGF and bFGF compared with those in the control. The expression of the inflammatory chemoattractant MCP-1 was high in ECM/SVF-gel at the early stage and decreased sharply during the late stage of wound healing. The potent angiogenic effects exerted by ECM/SVF-gel may contribute to the improvement of wound healing, and these effects could be related to the enhanced inflammatory response in ECM/SVF-gel during the early stage of wound healing.
Collapse
|
34
|
Prockop DJ, Oh JY, Lee RH. Data against a Common Assumption: Xenogeneic Mouse Models Can Be Used to Assay Suppression of Immunity by Human MSCs. Mol Ther 2017. [PMID: 28647464 DOI: 10.1016/j.ymthe.2017.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Much of what we know about immunology suggests that little is to be gained from experiments in which human cells are administered to immunocompetent mice. Multiple reports have demonstrated that this common assumption does not hold for experiments with human mesenchymal stem/stromal cells (hMSCs). The data demonstrate that hMSCs can suppress immune responses to a variety of stimuli in immunocompetent mice by a range of different mechanisms that are similar to those employed by mouse MSCs. Therefore, further experiments with hMSCs in mice will make it possible to generate preclinical data that will improve both the efficacy and safety of the clinical trials with the cells that are now in progress.
Collapse
Affiliation(s)
- Darwin J Prockop
- Institute for Regenerative Medicine, College of Medicine, Texas A&M University, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77845, USA.
| | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea
| | - Ryang Hwa Lee
- Institute for Regenerative Medicine, College of Medicine, Texas A&M University, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77845, USA
| |
Collapse
|
35
|
Yang L, Shen ZY, Wang RR, Yin ML, Zheng WP, Wu B, Liu T, Song HL. Effects of heme oxygenase-1-modified bone marrow mesenchymal stem cells on microcirculation and energy metabolism following liver transplantation. World J Gastroenterol 2017; 23:3449-3467. [PMID: 28596681 PMCID: PMC5442081 DOI: 10.3748/wjg.v23.i19.3449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of heme oxygenase-1 (HO-1)-modified bone marrow mesenchymal stem cells (BMMSCs) on the microcirculation and energy metabolism of hepatic sinusoids following reduced-size liver transplantation (RLT) in a rat model.
METHODS BMMSCs were isolated and cultured in vitro using an adherent method, and then transduced with HO-1-bearing recombinant adenovirus to construct HO-1/BMMSCs. A rat acute rejection model following 50% RLT was established using a two-cuff technique. Recipients were divided into three groups based on the treatment received: normal saline (NS), BMMSCs and HO-1/BMMSCs. Liver function was examined at six time points. The levels of endothelin-1 (ET-1), endothelial nitric-oxide synthase (eNOS), inducible nitric-oxide synthase (iNOS), nitric oxide (NO), and hyaluronic acid (HA) were detected using an enzyme-linked immunosorbent assay. The portal vein pressure (PVP) was detected by Power Lab ML880. The expressions of ET-1, iNOS, eNOS, and von Willebrand factor (vWF) protein in the transplanted liver were detected using immunohistochemistry and Western blotting. ATPase in the transplanted liver was detected by chemical colorimetry, and the ultrastructural changes were observed under a transmission electron microscope.
RESULTS HO-1/BMMSCs could alleviate the pathological changes and rejection activity index of the transplanted liver, and improve the liver function of rats following 50% RLT, with statistically significant differences compared with those of the NS group and BMMSCs group (P < 0.05). In term of the microcirculation of hepatic sinusoids: The PVP on POD7 decreased significantly in the HO-1/BMMSCs and BMMSCs groups compared with that of the NS group (P < 0.01); HO-1/BMMSCs could inhibit the expressions of ET-1 and iNOS, increase the expressions of eNOS and inhibit amounts of NO production, and maintain the equilibrium of ET-1/NO (P < 0.05); and HO-1/BMMSCs increased the expression of vWF in hepatic sinusoidal endothelial cells (SECs), and promoted the degradation of HA, compared with those of the NS group and BMMSCs group (P < 0.05). In term of the energy metabolism of the transplanted liver, HO-1/BMMSCs repaired the damaged mitochondria, and improved the activity of mitochondrial aspartate aminotransferase (ASTm) and ATPase, compared with the other two groups (P <0.05).
CONCLUSION HO-1/BMMSCs can improve the microcirculation of hepatic sinusoids significantly, and recover the energy metabolism of damaged hepatocytes in rats following RLT, thus protecting the transplanted liver.
Collapse
|
36
|
Rajan TS, Scionti D, Diomede F, Grassi G, Pollastro F, Piattelli A, Cocco L, Bramanti P, Mazzon E, Trubiani O. Gingival Stromal Cells as an In Vitro Model: Cannabidiol Modulates Genes Linked With Amyotrophic Lateral Sclerosis. J Cell Biochem 2016; 118:819-828. [PMID: 27714895 DOI: 10.1002/jcb.25757] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022]
Abstract
Research in recent years has extensively investigated the therapeutic efficacy of mesenchymal stromal cells in regenerative medicine for many neurodegenerative diseases at preclinical and clinical stages. However, the success rate of stem cell therapy remains less at translational phase. Lack of relevant animal models that potentially simulate the molecular etiology of human pathological symptoms might be a reason behind such poor clinical outcomes associated with stem cell therapy. Apparently, self-renewal and differentiation ability of mesenchymal stem cells may help to study the early developmental signaling pathways connected with the diseases, such as Alzheimer's disease, Amyotrophic lateral sclerosis (ALS), etc., at in vitro level. Cannabidiol, a non-psychotrophic cannabinoid, has been demonstrated as a potent anti-inflammatory and neuroprotective agent in neurological preclinical models. In the present study, we investigated the modulatory role of cannabidiol on genes associated with ALS using human gingiva-derived mesenchymal stromal cells (hGMSCs) as an in vitro model system. Next generation transcriptomic sequencing analysis demonstrated considerable modifications in the expression of genes connected with ALS pathology, oxidative stress, mitochondrial dysfunction, and excitotoxicity in hGMSCs treated with cannabidiol. Our results suggest the efficacy of cannabidiol to delineate the unknown molecular pathways, which may underlie ALS pathology at an early stage using hGMSCs as a compelling in vitro system. J. Cell. Biochem. 118: 819-828, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thangavelu Soundara Rajan
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Domenico Scionti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio," Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Gianpaolo Grassi
- Council for Research and Experimentation in Agriculture-Research Centre for Industrial Crops (CRA-CIN), Rovigo, Italy
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Adriano Piattelli
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio," Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio," Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| |
Collapse
|
37
|
Yang Y, Song HL, Zhang W, Wu BJ, Fu NN, Dong C, Shen ZY. Heme oxygenase-1-transduced bone marrow mesenchymal stem cells in reducing acute rejection and improving small bowel transplantation outcomes in rats. Stem Cell Res Ther 2016; 7:164. [PMID: 27866474 PMCID: PMC5116370 DOI: 10.1186/s13287-016-0427-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/22/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
Background We determined whether bone marrow mesenchymal stem cells (BMMSCs) transduced with heme oxygenase-1 (HO-1), a cytoprotective and immune-protective factor, could improve outcomes for small bowel transplantation (SBTx) in rats. Methods We performed heterotopic SBTx from Brown Norway rats to Lewis rats, before infusing Ad/HO-1-transduced BMMSCs (Ad/HO-1/BMMSCs) through the superficial dorsal veins of the penis. Respective infusions with Ad/BMMSCs, BMMSCs, and normal saline served as controls. The animals were sacrificed after 1, 5, 7, or 10 days. At each time point, we measured small bowel histology and apoptosis, HO-1 protein and mRNA expression, natural killer (NK) cell activity, cytokine concentrations in serum and intestinal graft, and levels of regulatory T (Treg) cells. Results The saline-treated control group showed aggravated acute cellular rejection over time, with mucosal destruction, increased apoptosis, NK cell activation, and upregulation of proinflammatory and immune-related mediators. Both the Ad/BMMSC-treated group and the BMMSC-treated group exhibited attenuated acute cellular rejection at an early stage, but the effects receded 7 days after transplantation. Strikingly, the Ad/HO-1/BMMSC-treated group demonstrated significantly attenuated acute cellular rejection, reduced apoptosis and NK cell activity, and suppressed concentrations of inflammation and immune-related cytokines, and upregulated expression of anti-inflammatory cytokine mediators and increased Treg cell levels. Conclusion Our data suggest that Ad/HO-1-transduced BMMSCs have a reinforced effect on reducing acute rejection and protecting the outcome of SBTx in rats.
Collapse
Affiliation(s)
- Yang Yang
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Hong Li Song
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China. .,Tianjin Key Laboratory of Organ Transplantation, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
| | - Wen Zhang
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Ben Juan Wu
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Nan Nan Fu
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Chong Dong
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Zhong Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
| |
Collapse
|
38
|
Preconditioning of Human Mesenchymal Stem Cells to Enhance Their Regulation of the Immune Response. Stem Cells Int 2016; 2016:3924858. [PMID: 27822228 PMCID: PMC5086389 DOI: 10.1155/2016/3924858] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted the attention of researchers and clinicians for their ability to differentiate into a number of cell types, participate in tissue regeneration, and repair the damaged tissues by producing various growth factors and cytokines, as well as their unique immunoprivilege in alloreactive hosts. The immunomodulatory functions of exogenous MSCs have been widely investigated in immune-mediated inflammatory diseases and transplantation research. However, a harsh environment at the site of tissue injury/inflammation with insufficient oxygen supply, abundance of reactive oxygen species, and presence of other harmful molecules that damage the adoptively transferred cells collectively lead to low survival and engraftment of the transferred cells. Preconditioning of MSCs ex vivo by hypoxia, inflammatory stimulus, or other factors/conditions prior to their use in therapy is an adaptive strategy that prepares MSCs to survive in the harsh environment and to enhance their regulatory function of the local immune responses. This review focuses on a number of approaches in preconditioning human MSCs with the goal of augmenting their capacity to regulate both innate and adaptive immune responses.
Collapse
|
39
|
Saparov A, Ogay V, Nurgozhin T, Jumabay M, Chen WCW. Preconditioning of Human Mesenchymal Stem Cells to Enhance Their Regulation of the Immune Response. Stem Cells Int 2016; 2016:3924858. [PMID: 27822228 PMCID: PMC5086389 DOI: 10.1155/2016/3924858 10.1155/2016/3924858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/28/2016] [Indexed: 03/24/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted the attention of researchers and clinicians for their ability to differentiate into a number of cell types, participate in tissue regeneration, and repair the damaged tissues by producing various growth factors and cytokines, as well as their unique immunoprivilege in alloreactive hosts. The immunomodulatory functions of exogenous MSCs have been widely investigated in immune-mediated inflammatory diseases and transplantation research. However, a harsh environment at the site of tissue injury/inflammation with insufficient oxygen supply, abundance of reactive oxygen species, and presence of other harmful molecules that damage the adoptively transferred cells collectively lead to low survival and engraftment of the transferred cells. Preconditioning of MSCs ex vivo by hypoxia, inflammatory stimulus, or other factors/conditions prior to their use in therapy is an adaptive strategy that prepares MSCs to survive in the harsh environment and to enhance their regulatory function of the local immune responses. This review focuses on a number of approaches in preconditioning human MSCs with the goal of augmenting their capacity to regulate both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Arman Saparov
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan
| | - Talgat Nurgozhin
- Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Medet Jumabay
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - William C. W. Chen
- Research Laboratory of Electronics and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
40
|
Shakhbazau A, Potapnev M. Autologous mesenchymal stromal cells as a therapeutic in ALS and epilepsy patients: Treatment modalities and ex vivo neural differentiation. Cytotherapy 2016; 18:1245-55. [DOI: 10.1016/j.jcyt.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/07/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
|
41
|
Elshaer SL, Lorys RE, El-Remessy AB. Cell Therapy and Critical Limb Ischemia: Evidence and Window of Opportunity in Obesity. ACTA ACUST UNITED AC 2016; 3. [PMID: 28979948 DOI: 10.15226/2374-8354/3/1/00121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sally L Elshaer
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia 30912, USA
| | - Renee E Lorys
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia 30912, USA
| | - A B El-Remessy
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia 30912, USA
| |
Collapse
|