1
|
Shang D, Chen Y, Sun D. Umbilical cord-derived mesenchymal stem cells combined with kaempferol synergistically promote repair of damaged endometrium by modulating JAK2/STAT3 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04056-4. [PMID: 40266305 DOI: 10.1007/s00210-025-04056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Intrauterine adhesion (IUA) is a disease caused by endometrial damage without effective treatments. Stem cell therapy has been initiated as a new attempt to repair and regenerate injured tissues. However, the therapeutic efficacy of stem cell therapy is limited. Kaempferol is a natural flavonoid with various beneficial effects. In this study, our goal is to investigate the roles of kaempferol combined with umbilical cord-derived mesenchymal stem cells (UCMSCs) in IUA. UCMSCs were collected from human umbilical cords. The multilineage differentiation potential of human UCMSCs was evaluated by Oil Red O staining, Alizarin Red S staining, and Alcian Blue staining. The phenotype profile of human UCMSCs was assessed by flow cytometry. CCK-8 and Transwell assays were performed to detect cell viability and migration. The IUA rat model was established. Histological changes were examined by hematoxylin-eosin staining and Masson staining. Gene expression was evaluated by western blotting and immunofluorescence. Kaempferol (10 μM) promoted the migration and proliferation of human UCMSCs in vitro. Additionally, kaempferol/UCMSCs combination treatment recovered endometrial injury and inhibited endometrial fibrosis and epithelial-mesenchymal transition occurrence in IUA rat models. Mechanistically, kaempferol/UCMSCs combination treatment inhibited JAK2/STAT3 pathway. Kaempferol/UCMSCs combination treatment can promote the repair of damaged endometrium by decreasing endometrial fibrosis. The inactivation of JAK2/STAT3 pathway is greatly responsible for the protective effect of kaempferol/UCMSCs combination treatment.
Collapse
Affiliation(s)
- Di Shang
- Ultrasound Diagnosis Department, Hubei Maternal and Child Health Hospital, Wuhan, 430070, China
| | - Yuru Chen
- Training Base of Hubei Maternal and Child Health Hospital, Hubei University of Medicine, Wuhan, 442000, China
| | - Dongyan Sun
- Department of Medical Affairs, Hubei Maternal and Child Health Hospital, No.745 Wuluo Road, Hongshan District, Wuhan, 430070, China.
| |
Collapse
|
2
|
Farag A, Hendawy H, Emam MH, Hasegawa M, Mandour AS, Tanaka R. Stem Cell Therapies in Canine Cardiology: Comparative Efficacy, Emerging Trends, and Clinical Integration. Biomolecules 2025; 15:371. [PMID: 40149907 PMCID: PMC11940628 DOI: 10.3390/biom15030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality in dogs, with limited options available for reversing myocardial damage. Stem cell therapies have shown significant potential for cardiac repair, owing to their immunomodulatory, antifibrotic, and regenerative properties. This review evaluates the therapeutic applications of mesenchymal stem cells (MSCs) derived from bone marrow, adipose tissue, and Wharton's jelly with a focus on their role in canine cardiology and their immunoregulatory properties. Preclinical studies have highlighted their efficacy in enhancing cardiac function, reducing fibrosis, and promoting angiogenesis. Various delivery methods, including intracoronary and intramyocardial injections, are assessed for their safety and efficacy. Challenges such as low cell retention, differentiation efficiency, and variability in therapeutic responses are also discussed. Emerging strategies, including genetic modifications and combination therapies, aim to enhance the efficacy of MSCs. Additionally, advances in delivery systems and regulatory frameworks are reviewed to support clinical translation. This comprehensive evaluation underscores the potential of stem cell therapies to revolutionize canine cardiovascular disease management while identifying critical areas for future research and clinical integration.
Collapse
Affiliation(s)
- Ahmed Farag
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mahmoud H. Emam
- Animal Medicine Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mizuki Hasegawa
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ryou Tanaka
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
3
|
Yang X, Si M, Liu T, Yang J, Jiang L, Sun X, Yu H. The aryl hydrocarbon receptor affects the inflammatory response of bone marrow mesenchymal stem cell via the hippo-YAP pathway to exacerbate systemic lupus erythematosus. FASEB J 2025; 39:e70410. [PMID: 39985295 DOI: 10.1096/fj.202402784r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
The impaired immune regulation of bone marrow mesenchymal stem cells (BM-MSCs) disrupts T-cell homeostasis and alters the immunological environment in individuals with systemic lupus erythematosus (SLE). However, the specific molecular mechanisms underlying the defective immune functions of BM-MSCs in patients with SLE remain unclear. Here, we report that BM-MSCs derived from MRL/lpr mice exhibit a diminished proliferative capacity, elevated levels of aryl hydrocarbon receptor (AhR) and increased levels of secreted proinflammatory cytokines, including IL-1β, IL-6, and TNF-α. These BM-MSCs can increase splenocyte proliferation and upregulate the expression of retinoic acid receptor-related orphan receptor gamma t (RORγt) in EL4 cells, which constitute a murine T-cell lymphoblastic leukemia cell line. Furthermore, MRL/lpr mice treated with FICZ (an AhR agonist) displayed splenomegaly and exacerbated renal pathology, alongside increased levels of AhR, and inflammatory cytokines. Notably, BM-MSCs isolated from FICZ-treated mice also facilitated splenocyte proliferation and increased the RORγt level in EL4 cells during coculture. Similar effects were observed when BM-MSCs were exposed to FICZ in vitro, but these effects were reversed by the administration of CH223191 (an AhR antagonist). Additionally, the expression of Yes-associated protein (YAP) was significantly increased in both MRL/lpr mice and FICZ-treated BM-MSCs. Importantly, verteporfin (a Hippo-YAP inhibitor) attenuated the elevated RORγt levels in EL4 cells and the increased splenocyte proliferation. This study advances our understanding of SLE pathogenesis by pinpointing AhR as a pivotal modulator of the inflammatory response of BM-MSCs through the Hippo-YAP pathway in individuals with SLE. This novel insight not only enriches the current knowledge of SLE mechanisms but also highlights new potential therapeutic targets for SLE.
Collapse
Affiliation(s)
- Xingzhi Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Mingjun Si
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Ting Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Jingyu Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Lili Jiang
- School of Material Science and Technology, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haitao Yu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Laboratory Medicine, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Cieśla J, Tomsia M. Differentiation of stem cells into chondrocytes and their potential clinical application in cartilage regeneration. Histochem Cell Biol 2025; 163:27. [PMID: 39863760 DOI: 10.1007/s00418-025-02356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA). The review summarizes the most important scientific reports on biology and mechanisms of SC-derived chondrogenesis and sources of SCs for chondrogenic purposes. Additionally, it focuses on the genetic mechanisms, microRNA (miRNA) regulation, and epigenetic processes steering the chondrogenic differentiation of SCs. It also describes the attempts to create functional cartilage with tissue engineering using growth factors and scaffolds. Finally, it presents the challenges that researchers will have to face in the future to effectuate SC differentiation methods into clinical practice for treating cartilage diseases.
Collapse
Affiliation(s)
- Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.
| |
Collapse
|
5
|
Cheng G, Wang X, Zhang F, Wang K, Li Y, Guo T, Xu N, Wei W, Yan S. Reparative homing of bone mesenchymal stem cells induced by iMSCs via the SDF-1/CXCR4 axis for articular cartilage defect restoration. Biomed Pharmacother 2024; 181:117649. [PMID: 39536539 DOI: 10.1016/j.biopha.2024.117649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The intrinsic healing ability of articular cartilage is poor after injury or illness, and untreated injury could lead to cartilage degeneration and ultimately osteoarthritis. iMSCs are derived from embryonic induced pluripotent stem cells and have strong therapeutic capabilities in the repair of cartilage defects, while the mechanism of action is unclear. The aim of this study is to clarify the repair mode of iMSCs on cartilage defects in rat knee joints, elucidate the chemotactic effect of iMSCs on autologous BMSCs in rats, and provide a basis for the treatment of cartilage defects and endogenous regeneration with iMSCs. METHODS Based on the establishment of the rat cartilage defect model, the reparative effect of iMSCs on the rat cartilage defect was evaluated. The cartilage repair was evaluated by quantitative score, H&E staining, Masson staining and Safranin-O staining, and the metabolic changes of iMSCs in the joint cavity were detected in vivo. The expression of SOX9, CD29, CD90, ColⅠ, ColⅡ, PCNA, SDF-1, and CXCR4 was detected by immunohistochemistry (IHC), IF, flow cytometry, respectively. After co-culturing iMSCs with BMSCs in vitro, the expression of CXCR4/SDF-1 on the cell membrane surface of BMSCs was detected by western blotting.; The level of p-Akt and p-Erk1/2 in total protein of BMSCs were detected by western blotting. SIGNIFICANCE Our research results provide experimental evidence for the treatment of cartilage defects and endogenous regeneration with iMSCs; This also provides new ideas for the clinical treatment of cartilage defects using iMSCs.
Collapse
Affiliation(s)
- Gang Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Xulei Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Laboratory Animal Center, Anhui Medical University, Hefei 230032, China
| | - Feng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Kang Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Ying Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Tingting Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Nuo Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| | - Shangxue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Laboratory Animal Center, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
6
|
Gao Q, Cekuc MS, Ergul YS, Pius AK, Shinohara I, Murayama M, Susuki Y, Ma C, Morita M, Chow SKH, Goodman SB. 3D Culture of MSCs for Clinical Application. Bioengineering (Basel) 2024; 11:1199. [PMID: 39768017 PMCID: PMC11726872 DOI: 10.3390/bioengineering11121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
Mesenchymal stem cells (MSCs) play an important role in regenerative medicine and drug discovery due to their multipotential differentiation capabilities and immunomodulatory effects. Compared with traditional 2D cultures of MSCs, 3D cultures of MSCs have emerged as an effective approach to enhance cell viability, proliferation, and functionality, and provide a more relevant physiological environment. Here, we review the therapeutic potential of 3D-cultured MSCs, highlighting their roles in tissue regeneration and repair and drug screening. We further summarize successful cases that apply 3D MSCs in modeling disease states, enabling the identification of novel therapeutic strategies. Despite these promising applications, we discuss challenges that remain in the clinical translation of 3D MSC technologies, including stability, cell heterogeneity, and regulatory issues. We conclude by addressing these obstacles and emphasizing the need for further research to fully exploit the potential of 3D MSCs in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94304, USA; (Q.G.)
| |
Collapse
|
7
|
Shi X, Zhang K, Yu F, Qi Q, Cai X, Zhang Y. Advancements and Innovative Strategies in Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cell Therapy: A Comprehensive Review. Stem Cells Int 2024; 2024:4073485. [PMID: 39377039 PMCID: PMC11458320 DOI: 10.1155/2024/4073485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/24/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
The effectiveness and safety of mesenchymal stem cell (MSC) therapy have been substantiated across various diseases. Nevertheless, challenges such as the restricted in vitro expansion capacity of tissue-derived MSCs and the clinical instability due to the high heterogeneity of isolated cells require urgent resolution. The induced pluripotent stem cell-derived MSCs (iPSC-MSCs), which is differentiated from iPSCs via specific experimental pathways, holds considerable potential as a substitute for tissue derived MSCs. Multiple studies have demonstrated that iPSCs can be differentiated into iPSC-MSCs through diverse differentiation strategies. Research suggests that iPSC-MSCs, when compared to tissue derived MSCs, exhibit superior characteristics in terms of proliferation ability, immune modulation capacity, and biological efficiency. In this review, we meticulously described and summarized the experimental methods of iPSC differentiation into iPSC-MSCs, the application of iPSC-MSCs in various disease models, the latest advancements in clinically relevant iPSC-derived cell products, and the development strategies for the next generation of iPSC-derived therapy products (not only cell products but also their derivatives).
Collapse
Affiliation(s)
- Xiaoyu Shi
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Kun Zhang
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Fengshi Yu
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Qi Qi
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Xiaoyu Cai
- State Industrial Base for Stem Cell Engineering Products, Tianjin 300384, China
| | - Yu Zhang
- VCANBIO Cell and Gene Engineering Corp. Ltd., Tianjin, China
| |
Collapse
|
8
|
Meng Q, Winston T, Ma J, Song Y, Wang C, Yang J, Ma Z, Cooney RN. INDUCED PLURIPOTENT STEM CELL-DERIVED MESENCHYMAL STEM CELLS-DERIVED EXTRACELLULAR VESICLES ATTENUATE LPS-INDUCED LUNG INJURY AND ENDOTOXEMIA IN MICE. Shock 2024; 62:294-303. [PMID: 38813932 PMCID: PMC11466509 DOI: 10.1097/shk.0000000000002381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT Introduction: We hypothesized extracellular vesicles (EVs) from preconditioned human-induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) attenuate LPS-induced acute lung injury (ALI) and endotoxemia. Methods: iMSCs were incubated with cell stimulation cocktail (CSC) and EVs were isolated. iMSC-EVs were characterized by size and EV markers. Biodistribution of intratracheal (IT), intravenous, and intraperitoneal injection of iMSC-EVs in mice was examined using IVIS. Uptake of iMSC-EVs in lung tissue, alveolar macrophages, and RAW264.7 cells was also assessed. C57BL/6 mice were treated with IT/IP iMSC-EVs or vehicle ± IT/IP LPS to induce ALI/acute respiratory distress syndrome and endotoxemia. Lung tissues, plasma, and bronchoalveolar lavage fluid (BALF) were harvested at 24 h. Lung histology, BALF neutrophil/macrophage, cytokine levels, and total protein concentration were measured to assess ALI and inflammation. Survival studies were performed using IP LPS in mice for 3 days. Results: iMSC-EV route of administration resulted in differential tissue distribution. iMSC-EVs were taken up by alveolar macrophages in mouse lung and cultured RAW264.7 cells. IT LPS-treated mice demonstrated marked histologic ALI, increased BALF neutrophils/macrophages and protein, and increased BALF and plasma TNF-α/IL-6 levels. These parameters were attenuated by 2 h before or 2 h after treatment with IT iMSC-EVs in ALI mice. Interestingly, the IT LPS-induced increase in IL-10 was augmented by iMSC-EVs. Mice treated with IP LPS showed increases in TNF-α and IL-6 that were downregulated by iMSC-EVs and LPS-induced mortality was ameliorated by iMSC-EVs. Administration of IT iMSC-EVs 2 h after LPS downregulated the increase in proinflammatory cytokines (TNF-α/IL-6) by LPS and further increased IL-10 levels. Conclusions: iMSC-EVs attenuate the inflammatory effects of LPS on cytokine levels in ALI and IP LPS in mice. LPS-induced mortality was improved with administration of iMSC-EVs.
Collapse
Affiliation(s)
- Qinghe Meng
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| | - Tackla Winston
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York
| | - Julia Ma
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| | - Yuanhui Song
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York
| | - Chunyan Wang
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| | - Junhui Yang
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York
| | - Robert N Cooney
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| |
Collapse
|
9
|
Lai Z, Shu Q, Song Y, Tang A, Tian J. Effect of DNA methylation on the osteogenic differentiation of mesenchymal stem cells: concise review. Front Genet 2024; 15:1429844. [PMID: 39015772 PMCID: PMC11250479 DOI: 10.3389/fgene.2024.1429844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have promising potential for bone tissue engineering in bone healing and regeneration. They are regarded as such due to their capacity for self-renewal, multiple differentiation, and their ability to modulate the immune response. However, changes in the molecular pathways and transcription factors of MSCs in osteogenesis can lead to bone defects and metabolic bone diseases. DNA methylation is an epigenetic process that plays an important role in the osteogenic differentiation of MSCs by regulating gene expression. An increasing number of studies have demonstrated the significance of DNA methyltransferases (DNMTs), Ten-eleven translocation family proteins (TETs), and MSCs signaling pathways about osteogenic differentiation in MSCs. This review focuses on the progress of research in these areas.
Collapse
Affiliation(s)
- Zhihao Lai
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qing Shu
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yue Song
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Ao Tang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Winston T, Song Y, Shi H, Yang J, Alsudais M, Kontaridis MI, Wu Y, Gaborski TR, Meng Q, Cooney RN, Ma Z. Lineage-Specific Mesenchymal Stromal Cells Derived from Human iPSCs Showed Distinct Patterns in Transcriptomic Profile and Extracellular Vesicle Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308975. [PMID: 38757640 PMCID: PMC11267277 DOI: 10.1002/advs.202308975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Over the past decades, mesenchymal stromal cells (MSCs) have been extensively investigated as a potential therapeutic cell source for the treatment of various disorders. Differentiation of MSCs from human induced pluripotent stem cells (iMSCs) has provided a scalable approach for the biomanufacturing of MSCs and related biological products. Although iMSCs shared typical MSC markers and functions as primary MSCs (pMSCs), there is a lack of lineage specificity in many iMSC differentiation protocols. Here, a stepwise hiPSC-to-iMSC differentiation method is employed via intermediate cell stages of neural crest and cytotrophoblast to generate lineage-specific MSCs with varying differentiation efficiencies and gene expression. Through a comprehensive comparison between early developmental cell types (hiPSCs, neural crest, and cytotrophoblast), two lineage-specific iMSCs, and six source-specific pMSCs, are able to not only distinguish the transcriptomic differences between MSCs and early developmental cells, but also determine the transcriptomic similarities of iMSC subtypes to postnatal or perinatal pMSCs. Additionally, it is demonstrated that different iMSC subtypes and priming conditions affected EV production, exosomal protein expression, and cytokine cargo.
Collapse
Affiliation(s)
- Tackla Winston
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Yuanhui Song
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Huaiyu Shi
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Junhui Yang
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Munther Alsudais
- Departments of Biomedical and Chemical EngineeringRochester Institute of TechnologyOne Lomb Memorial DriveRochesterNY14623USA
| | - Maria I. Kontaridis
- Department of Biomedical Research and Translational MedicineMasonic Medical Research Institute2150 Bleecker StreetUticaNY13501USA
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical CenterHarvard Medical School330 Brookline AveBostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBuilding C, 240 Longwood AveBostonMA02115USA
| | - Yaoying Wu
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
- Department of Microbiology & ImmunologySUNY Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Thomas R. Gaborski
- Departments of Biomedical and Chemical EngineeringRochester Institute of TechnologyOne Lomb Memorial DriveRochesterNY14623USA
| | - Qinghe Meng
- Department of SurgeryState University of New York Upstate Medical University750 East Adams StreetSyracuseNY13210USA
- Sepsis Interdisciplinary Research CenterState University of New York Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Robert N. Cooney
- Department of SurgeryState University of New York Upstate Medical University750 East Adams StreetSyracuseNY13210USA
- Sepsis Interdisciplinary Research CenterState University of New York Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Zhen Ma
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
- Department of BiologySyracuse University107 College PlSyracuseNY13210USA
| |
Collapse
|
11
|
Haskell A, White BP, Rogers RE, Goebel E, Lopez MG, Syvyk AE, de Oliveira DA, Barreda HA, Benton J, Benavides OR, Dalal S, Bae E, Zhang Y, Maitland K, Nikolov Z, Liu F, Lee RH, Kaunas R, Gregory CA. Scalable manufacture of therapeutic mesenchymal stromal cell products on customizable microcarriers in vertical wheel bioreactors that improve direct visualization, product harvest, and cost. Cytotherapy 2024; 26:372-382. [PMID: 38363250 PMCID: PMC11057043 DOI: 10.1016/j.jcyt.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND AIMS Human mesenchymal stromal cells (hMSCs) and their secreted products show great promise for treatment of musculoskeletal injury and inflammatory or immune diseases. However, the path to clinical utilization is hampered by donor-tissue variation and the inability to manufacture clinically relevant yields of cells or their products in a cost-effective manner. Previously we described a method to produce chemically and mechanically customizable gelatin methacryloyl (GelMA) microcarriers for culture of hMSCs. Herein, we demonstrate scalable GelMA microcarrier-mediated expansion of induced pluripotent stem cell (iPSC)-derived hMSCs (ihMSCs) in 500 mL and 3L vertical wheel bioreactors, offering several advantages over conventional microcarrier and monolayer-based expansion strategies. METHODS Human mesenchymal stromal cells derived from induced pluripotent cells were cultured on custom-made spherical gelatin methacryloyl microcarriers in single-use vertical wheel bioreactors (PBS Biotech). Cell-laden microcarriers were visualized using confocal microscopy and elastic light scattering methodologies. Cells were assayed for viability and differentiation potential in vitro by standard methods. Osteogenic cell matrix derived from cells was tested in vitro for osteogenic healing using a rodent calvarial defect assay. Immune modulation was assayed with an in vivo peritonitis model using Zymozan A. RESULTS The optical properties of GelMA microcarriers permit noninvasive visualization of cells with elastic light scattering modalities, and harvest of product is streamlined by microcarrier digestion. At volumes above 500 mL, the process is significantly more cost-effective than monolayer culture. Osteogenic cell matrix derived from ihMSCs expanded on GelMA microcarriers exhibited enhanced in vivo bone regenerative capacity when compared to bone morphogenic protein 2, and the ihMSCs exhibited superior immunosuppressive properties in vivo when compared to monolayer-generated ihMSCs. CONCLUSIONS These results indicate that the cell expansion strategy described here represents a superior approach for efficient generation, monitoring and harvest of therapeutic MSCs and their products.
Collapse
Affiliation(s)
- Andrew Haskell
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Berkley P White
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Robert E Rogers
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Erin Goebel
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA; Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Megan G Lopez
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Andrew E Syvyk
- National Center for Therapeutics Manufacturing, Texas A&M University, College Station, Texas, USA
| | - Daniela A de Oliveira
- National Center for Therapeutics Manufacturing, Texas A&M University, College Station, Texas, USA; Biological and Agricultural Engineering, Texas A&M University, College Station, Texas, USA
| | - Heather A Barreda
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Joshua Benton
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Oscar R Benavides
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Sujata Dalal
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - EunHye Bae
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Yu Zhang
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Kristen Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA; Imaging Program, Chan Zuckerberg Initiative, Redwood City, California, USA
| | - Zivko Nikolov
- National Center for Therapeutics Manufacturing, Texas A&M University, College Station, Texas, USA; Biological and Agricultural Engineering, Texas A&M University, College Station, Texas, USA
| | - Fei Liu
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Ryang Hwa Lee
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Carl A Gregory
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, Texas, USA.
| |
Collapse
|
12
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
13
|
Fang S, Wang J, Liu G, Qu B, Chunyu J, Xu W, Xiang J, Li X. DPPA2/4 Promote the Pluripotency and Proliferation of Bovine Extended Pluripotent Stem Cells by Upregulating the PI3K/AKT/GSK3β/β-Catenin Signaling Pathway. Cells 2024; 13:382. [PMID: 38474345 PMCID: PMC10930381 DOI: 10.3390/cells13050382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Developmental pluripotency-associated 2 (DPPA2) and DPPA4 are crucial transcription factors involved in maintaining pluripotency in humans and mice. However, the role of DPPA2/4 in bovine extended pluripotent stem cells (bEPSCs) has not been investigated. In this study, a subset of bEPSC-related differentially expressed genes (DEGs), including DPPA2 and DPPA4, was identified based on multiomics data (ATAC-seq and RNA-seq). Subsequent investigations revealed that double overexpression of DPPA2/4 facilitates the reprogramming of bovine fetal fibroblasts (BFFs) into bEPSCs, whereas knockout of DPPA2/4 in BFFs leads to inefficient reprogramming. DPPA2/4 overexpression and knockdown experiments revealed that the pluripotency and proliferation capability of bEPSCs were maintained by promoting the transition from the G1 phase to the S phase of the cell cycle. By activating the PI3K/AKT/GSK3β/β-catenin pathway in bEPSCs, DPPA2/4 can increase the nuclear accumulation of β-catenin, which further upregulates lymphoid enhancer binding factor 1 (LEF1) transcription factor activity. Moreover, DPPA2/4 can also regulate the expression of LEF1 by directly binding to its promoter region. Overall, our results demonstrate that DPPA2/4 promote the reprogramming of BFFs into bEPSCs while also maintaining the pluripotency and proliferation capability of bEPSCs by regulating the PI3K/AKT/GSK3β/β-catenin pathway and subsequently activating LEF1. These findings expand our understanding of the gene regulatory network involved in bEPSC pluripotency.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinzhu Xiang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (S.F.); (J.W.); (G.L.); (B.Q.); (J.C.); (W.X.)
| | - Xueling Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (S.F.); (J.W.); (G.L.); (B.Q.); (J.C.); (W.X.)
| |
Collapse
|
14
|
Diaz-Hernandez ME, Khan NM, Drissi H. Efficient Differentiation of Human Induced Pluripotent Stem Cell (hiPSC)-Derived Mesenchymal Progenitors Into Adipocytes and Osteoblasts. Bio Protoc 2023; 13:e4885. [PMID: 38023794 PMCID: PMC10665636 DOI: 10.21769/bioprotoc.4885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) hold immense promise in regenerative medicine as they can differentiate into various cell lineages, including adipocytes, osteoblasts, and chondrocytes. Precisely guiding hiPSC-derived mesenchymal progenitor cells (iMSCs) towards specific differentiation pathways is crucial for harnessing their therapeutic potential in tissue engineering, disease modeling, and regenerative therapies. To achieve this, we present a comprehensive and reproducible protocol for effectively differentiating iMSCs into adipocytes and osteoblasts. The differentiation process entails culturing iMSCs in tailored media supplemented with specific growth factors, which act as cues to initiate adipogenic or osteogenic commitment. Our protocol provides step-by-step guidelines for achieving adipocyte and osteoblast differentiation, ensuring the generation of mature and functional cells. To validate the success of differentiation, key assessment criteria are employed. For adipogenesis, the presence of characteristic lipid droplets within the iMSC-derived cells is considered indicative of successful differentiation. Meanwhile, Alizarin Red staining serves as a marker for the osteogenic differentiation, confirming the formation of mineralized nodules. Importantly, the described method stands out due to its simplicity, eliminating the need for specialized equipment, expensive materials, or complex reagents. Its ease of implementation offers an attractive advantage for researchers seeking robust and cost-effective approaches to derive adipocytes and osteoblasts from iMSCs. Overall, this protocol establishes a foundation for exploring the therapeutic potential of hiPSC-derived cells and advancing the field of regenerative medicine. Key features • iMSC derivation in this protocol uses embryonic body formation technique. • Adipogenesis and osteogenesis protocols were optimized for human iPSC-derived iMSCs. • Derivation of iMSC from hiPSC was developed in a feeder-free culture condition. • This protocol does not include human iPSC reprogramming strategies.
Collapse
Affiliation(s)
| | - Nazir M. Khan
- Department of Orthopaedics, Emory University, Atlanta, USA
- VA Medical Center, Atlanta, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University, Atlanta, USA
- VA Medical Center, Atlanta, USA
| |
Collapse
|
15
|
Arakawa M, Sakamoto Y, Miyagawa Y, Nito C, Takahashi S, Nitahara-Kasahara Y, Suda S, Yamazaki Y, Sakai M, Kimura K, Okada T. iPSC-derived mesenchymal stem cells attenuate cerebral ischemia-reperfusion injury by inhibiting inflammatory signaling and oxidative stress. Mol Ther Methods Clin Dev 2023; 30:333-349. [PMID: 37637385 PMCID: PMC10448333 DOI: 10.1016/j.omtm.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/11/2023] [Indexed: 08/29/2023]
Abstract
Induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) hold great promise as a cell source for transplantation into injured tissues to alleviate inflammation. However, the therapeutic efficacy of iMSC transplantation for ischemic stroke remains unknown. In this study, we evaluated the therapeutic effects of iMSC transplantation on brain injury after ischemia-reperfusion using a rat transient middle cerebral artery occlusion model and compared its therapeutic efficacy with that of bone marrow mesenchymal stem cells (BMMSCs). We showed that iMSCs and BMMSCs reduced infarct volumes after reperfusion and significantly improved motor function on days 3, 7, 14, 28, and 56 and cognitive function on days 28 and 56 after reperfusion compared with the vehicle group. Furthermore, immunological analyses revealed that transplantation of iMSCs and BMMSCs inhibited microglial activation and expression of proinflammatory cytokines and suppressed oxidative stress and neuronal cell death in the cerebral cortex at the ischemic border zone. No difference in therapeutic effect was observed between the iMSC and BMMSC groups. Taken together, our results demonstrate that iMSC therapy can be a practical alternative as a cell source for attenuation of brain injury and improvement of neurological function because of the unlimited supply of uniform therapeutic cells.
Collapse
Affiliation(s)
- Masafumi Arakawa
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuki Sakamoto
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Chikako Nito
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan
| | - Shiro Takahashi
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiyuki Yamazaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mashito Sakai
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Chiou SH, Ong HKA, Chou SJ, Aldoghachi AF, Loh JK, Verusingam ND, Yang YP, Chien Y. Current trends and promising clinical utility of IPSC-derived MSC (iMSC). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:131-154. [PMID: 37678969 DOI: 10.1016/bs.pmbts.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Mesenchymal stem cells (MSCs) differentiated from human induced pluripotent stem cells (iPSC) or induced MSC (iMSCs) are expected to address issues of scalability and safety as well as the difficulty in producing homogenous clinical grade MSCs as demonstrated by the promising outcomes from preclinical and clinical trials, currently ongoing. The assessment of iMSCs based in vitro and in vivo studies have thus far showed more superior performance as compared to that of the primary or native human MSCs, in terms of cell proliferation, expansion capacity, immunomodulation properties as well as the influence of paracrine signaling and exosomal influence in cell-cell interaction. In this chapter, an overview of current well-established methods in generating a sustainable source of iMSCs involving well defined culture media is discussed followed by the properties of iMSC as compared to that of MSC and its promising prospects for continuous development into potential clinical grade applications.
Collapse
Affiliation(s)
- Shih-Hwa Chiou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Han Kiat Alan Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Shih-Jie Chou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veteran General Hospital, Taipei, Taiwan
| | - A F Aldoghachi
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Jit Kai Loh
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Nalini Devi Verusingam
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veteran General Hospital, Taipei, Taiwan.
| | - Yueh Chien
- Department of Medical Research, Taipei Veteran General Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Konteles V, Papathanasiou I, Tzetis M, Goussetis E, Trachana V, Mourmoura E, Balis C, Malizos K, Tsezou A. Integration of Transcriptome and MicroRNA Profile Analysis of iMSCs Defines Their Rejuvenated State and Conveys Them into a Novel Resource for Cell Therapy in Osteoarthritis. Cells 2023; 12:1756. [PMID: 37443790 PMCID: PMC10340510 DOI: 10.3390/cells12131756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Although MSCs grant pronounced potential for cell therapies, several factors, such as their heterogeneity restrict their use. To overcome these limitations, iMSCs (MSCs derived from induced pluripotent stem cells (iPSCs) have attracted attention. Here, we analyzed the transcriptome of MSCs, iPSCs and iMSCs derived from healthy individuals and osteoarthritis (OA) patients and explored miRNA-mRNA interactions during these transitions. We performed RNA-seq and gene expression comparisons and Protein-Protein-Interaction analysis followed by GO enrichment and KEGG pathway analyses. MicroRNAs' (miRNA) expression profile using miRarrays and differentially expressed miRNA's impact on regulating iMSCs gene expression was also explored. Our analyses revealed that iMSCs derivation from iPSCs favors the expression of genes conferring high proliferation, differentiation, and migration properties, all of which contribute to a rejuvenated state of iMSCs compared to primary MSCs. Additionally, our exploration of the involvement of miRNAs in this rejuvenated iMSCs transcriptome concluded in twenty-six miRNAs that, as our analysis showed, are implicated in pluripotency. Notably, the identified here interactions between hsa-let7b/i, hsa-miR-221/222-3p, hsa-miR-302c, hsa-miR-181a, hsa-miR-331 with target genes HMGA2, IGF2BP3, STARD4, and APOL6 could prove to be the necessary tools that will convey iMSCs into the ideal mean for cell therapy in osteoarthritis.
Collapse
Affiliation(s)
- Vasileios Konteles
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.K.); (I.P.)
| | - Ioanna Papathanasiou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.K.); (I.P.)
- Department of Biology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evgenios Goussetis
- Stem Cell Transplant Unit, Aghia Sophia Children’s Hospital, 11527 Athens, Greece;
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Evanthia Mourmoura
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.K.); (I.P.)
| | - Charalampos Balis
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.K.); (I.P.)
| | - Konstantinos Malizos
- Department of Orthopaedics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.K.); (I.P.)
- Department of Biology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| |
Collapse
|
18
|
Papalamprou A, Yu V, Chen A, Stefanovic T, Kaneda G, Salehi K, Castaneda CM, Gertych A, Glaeser JD, Sheyn D. Directing iPSC differentiation into iTenocytes using combined scleraxis overexpression and cyclic loading. J Orthop Res 2023; 41:1148-1161. [PMID: 36203346 PMCID: PMC10076443 DOI: 10.1002/jor.25459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
Regenerative therapies for tendon are falling behind other tissues due to the lack of an appropriate and potent cell therapeutic candidate. This study aimed to induce tenogenesis using stable Scleraxis (Scx) overexpression in combination with uniaxial mechanical stretch of iPSC-derived mesenchymal stromal-like cells (iMSCs). Scx is the single direct molecular regulator of tendon differentiation known to date. Bone marrow-derived (BM-)MSCs were used as reference. Scx overexpression alone resulted in significantly higher upregulation of tenogenic markers in iMSCs compared to BM-MSCs. Mechanoregulation is known to be a central element guiding tendon development and healing. Mechanical stimulation combined with Scx overexpression resulted in morphometric and cytoskeleton-related changes, upregulation of early and late tendon markers, and increased extracellular matrix deposition and alignment, and tenomodulin perinuclear localization in iMSCs. Our findings suggest that these cells can be differentiated into tenocytes and might be a better candidate for tendon cell therapy applications than BM-MSCs.
Collapse
Affiliation(s)
- Angela Papalamprou
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Victoria Yu
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Angel Chen
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tina Stefanovic
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Chloe M. Castaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Arkadiusz Gertych
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Juliane D. Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
19
|
Aldoghachi AF, Loh JK, Wang ML, Yang YP, Chien CS, Teh HX, Omar AH, Cheong SK, Yeap SK, Ho WY, Ong AHK. Current developments and therapeutic potentials of exosomes from induced pluripotent stem cells-derived mesenchymal stem cells. J Chin Med Assoc 2023; 86:356-365. [PMID: 36762931 DOI: 10.1097/jcma.0000000000000899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells derived from adult human tissues that have the ability to proliferate in vitro and maintain their multipotency, making them attractive cell sources for regenerative medicine. However, MSCs reportedly show limited proliferative capacity with inconsistent therapeutic outcomes due to their heterogeneous nature. On the other hand, induced pluripotent stem cells (iPSC) have emerged as an alternative source for the production of various specialized cell types via their ability to differentiate from all three primary germ layers, leading to applications in regenerative medicine, disease modeling, and drug therapy. Notably, iPSCs can differentiate into MSCs in monolayer, commonly referred to as induced mesenchymal stem cells (iMSCs). These cells show superior therapeutic qualities compared with adult MSCs as the applications of the latter are restricted by passage number and autoimmune rejection when applied in tissue regeneration trials. Furthermore, increasing evidence shows that the therapeutic properties of stem cells are a consequence of the paracrine effects mediated by their secretome such as from exosomes, a type of extracellular vesicle secreted by most cell types. Several studies that investigated the potential of exosomes in regenerative medicine and therapy have revealed promising results. Therefore, this review focuses on the recent findings of exosomes secreted from iMSCs as a potential noncell-based therapy.
Collapse
Affiliation(s)
- Ahmed Faris Aldoghachi
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Jit-Kai Loh
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chian-Shiu Chien
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hui Xin Teh
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Alfaqih Hussain Omar
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, Malaysia
| | - Soon-Keng Cheong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
- National Cancer Council (MAKNA), Kuala Lumpur, Malaysia
| | - Swee Keong Yeap
- Marine Biotechnology, China-ASEAN College of Marine Sciences, Xiamen University Malaysia Campus, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Alan Han-Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| |
Collapse
|
20
|
Xiang S, Lin Z, Makarcyzk MJ, Riewruja K, Zhang Y, Zhang X, Li Z, Clark KL, Li E, Liu S, Hao T, Fritch MR, Alexander PG, Lin H. Differences in the intrinsic chondrogenic potential of human mesenchymal stromal cells and iPSC-derived multipotent cells. Clin Transl Med 2022; 12:e1112. [PMID: 36536500 PMCID: PMC9763539 DOI: 10.1002/ctm2.1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human multipotent progenitor cells (hiMPCs) created from induced pluripotent stem cells (iPSCs) represent a new cell source for cartilage regeneration. In most studies, bone morphogenetic proteins (BMPs) are needed to enhance transforming growth factor-β (TGFβ)-induced hiMPC chondrogenesis. In contrast, TGFβ alone is sufficient to result in robust chondrogenesis of human primary mesenchymal stromal cells (hMSCs). Currently, the mechanism underlying this difference between hiMPCs and hMSCs has not been fully understood. METHODS In this study, we first tested different growth factors alone or in combination in stimulating hiMPC chondrogenesis, with a special focus on chondrocytic hypertrophy. The reparative capacity of hiMPCs-derived cartilage was assessed in an osteochondral defect model created in rats. hMSCs isolated from bone marrow were included in all studies as the control. Lastly, a mechanistic study was conducted to understand why hiMPCs and hMSCs behave differently in responding to TGFβ. RESULTS Chondrogenic medium supplemented with TGFβ3 and BMP6 led to robust in vitro cartilage formation from hiMPCs with minimal hypertrophy. Cartilage tissue generated from this new method was resistant to osteogenic transition upon subcutaneous implantation and resulted in a hyaline cartilage-like regeneration in osteochondral defects in rats. Interestingly, TGFβ3 induced phosphorylation of both Smad2/3 and Smad1/5 in hMSCs, but only activated Smad2/3 in hiMPCs. Supplementing BMP6 activated Smad1/5 and significantly enhanced TGFβ's compacity in inducing hiMPC chondrogenesis. The chondro-promoting function of BMP6 was abolished by the treatment of a BMP pathway inhibitor. CONCLUSIONS This study describes a robust method to generate chondrocytes from hiMPCs with low hypertrophy for hyaline cartilage repair, as well as elucidates the difference between hMSCs and hiMPCs in response to TGFβ. Our results also indicated the importance of activating both Smad2/3 and Smad1/5 in the initiation of chondrogenesis.
Collapse
Affiliation(s)
- Shiqi Xiang
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of OrthopaedicsThe Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Zixuan Lin
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Meagan J. Makarcyzk
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPennsylvaniaUSA
| | - Kanyakorn Riewruja
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Osteoarthritis and Musculoskeleton Research Unit, Faculty of MedicineChulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Yiqian Zhang
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Xiurui Zhang
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Zhong Li
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Karen L. Clark
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Eileen Li
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Silvia Liu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tingjun Hao
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Madalyn R. Fritch
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Peter G. Alexander
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- McGowan Institute for Regenerative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Hang Lin
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPennsylvaniaUSA
- McGowan Institute for Regenerative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
21
|
Trends in using mesenchymal stromal/stem cells (MSCs) in treating corneal diseases. Ocul Surf 2022; 26:255-267. [DOI: 10.1016/j.jtos.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022]
|
22
|
Recent Advances in Extracellular Vesicle-Based Therapies Using Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells. Biomedicines 2022; 10:biomedicines10092281. [PMID: 36140386 PMCID: PMC9496279 DOI: 10.3390/biomedicines10092281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022] Open
Abstract
Extracellular vesicles (EVs) are being widely investigated as acellular therapeutics in regenerative medicine applications. EVs isolated from mesenchymal stromal cells (MSCs) are by far the most frequently used in preclinical models for diverse therapeutic applications, including inflammatory, degenerative, or acute diseases. Although they represent promising tools as cell-free therapeutic agents, one limitation to their use is related to the batch-to-batch unreliability that may arise from the heterogeneity between MSC donors. Isolating EVs from MSCs derived from induced pluripotent stem cells (iMSCs) might allow unlimited access to cells with a more stable phenotype and function. In the present review, we first present the latest findings regarding the functional aspects of EVs isolated from iMSCs and their interest in regenerative medicine for the treatment of various diseases. We will then discuss future directions for their translation to clinics with good manufacturing practice implementation.
Collapse
|
23
|
Zhou S, Lei Y, Wang P, Chen J, Zeng L, Qu T, Maldonado M, Huang J, Han T, Wen Z, Tian E, Meng X, Zhong Y, Gu J. Human Umbilical Cord Mesenchymal Stem Cells Encapsulated with Pluronic F-127 Enhance the Regeneration and Angiogenesis of Thin Endometrium in Rat via Local IL-1 β Stimulation. Stem Cells Int 2022; 2022:7819234. [PMID: 35761831 PMCID: PMC9233600 DOI: 10.1155/2022/7819234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Thin endometrium (< 7 mm) could cause low clinical pregnancy, reduced live birth, increased spontaneous abortion, and decreased birth weight. However, the treatments for thin endometrium have not been well developed. In this study, we aim to determine the role of Pluronic F-127 (PF-127) encapsulation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in the regeneration of thin endometrium and its underlying mechanism. Thin endometrium rat model was created by infusion of 95% ethanol. Thin endometrium modeled rat uterus were treated with saline, hUC-MSCs, PF-127, or hUC-MSCs plus PF-127 separately. Regenerated rat uterus was measured for gene expression levels of angiogenesis factors and histological morphology. Angiogenesis capacity of interleukin-1 beta (IL-1β)-primed hUC-MSCs was monitored via quantitative polymerase chain reaction (q-PCR), Luminex assay, and tube formation assay. Decreased endometrium thickness and gland number and increased inflammatory factor IL-1β were achieved in the thin endometrium rat model. Embedding of hUC-MSCs with PF-127 could prolong the hUC-MSCs retaining, which could further enhance endometrium thickness and gland number in the thin endometrium rat model via increasing angiogenesis capacity. Conditional medium derived from IL-1β-primed hUC-MSCs increased the concentration of angiogenesis factors (basic fibroblast growth factor (bFGF), vascular endothelial growth factors (VEGF), and hepatocyte growth factor (HGF)). Improvement in the thickness, number of glands, and newly generated blood vessels could be achieved by uterus endometrium treatment with PF-127 and hUC-MSCs transplantation. Local IL-1β stimulation-primed hUC-MSCs promoted the release of angiogenesis factors and may play a vital role on thin endometrium regeneration.
Collapse
Affiliation(s)
- Shuling Zhou
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| | - Yu Lei
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| | - Ping Wang
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Jianying Chen
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Liting Zeng
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| | - Ting Qu
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Martin Maldonado
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Jihua Huang
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Tingting Han
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Zina Wen
- Department of Andrology, Chengdu Xi'nan Gynecological Hospital, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Erpo Tian
- Department of Andrology, Chengdu Xi'nan Gynecological Hospital, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Xiangqian Meng
- Department of Embryology, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 3 San-guantang Road, Chengdu, 610066 Sichuan, China
| | - Ying Zhong
- Department of Embryology, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 3 San-guantang Road, Chengdu, 610066 Sichuan, China
| | - Jiang Gu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| |
Collapse
|
24
|
Liu J, Zhou F, Zhou Q, Hu S, Chen H, Zhu X, Shi F, Yan J, Huang J, Sun J, Zhang F, Gu N. A novel porous granular scaffold for the promotion of trabecular bone repair by time-dependent alteration of morphology. BIOMATERIALS ADVANCES 2022; 136:212777. [PMID: 35929315 DOI: 10.1016/j.bioadv.2022.212777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Granular scaffolds have been extensively used in the clinic to repair irregular maxillofacial defects. There remain some challenges for the repair of trabecular structures in cancellous bone due to the reticular lamella-like morphology. In this study, we fabricated a novel granular scaffold by rational design of components with different degradation rates so that the morphology of the novel scaffold can evolve to match the growth period of bone cells. Here, polycaprolactone (PCL) was used to fabricate porous microspheres as a skeleton with slow degradation. The macropores were filled with quick degraded gelatin to form complete microspheres. Asynchronous degradation of the two components altered the morphology of the evolutive scaffold from compact to porous, gradually exposing the ridge-like skeletons. This scaffold reversed the decline of cellular adhesion to simple porous skeletons during the initial adhesion. Furthermore, the cells were able to grow into the pores and adhere onto the skeletons with an elongated cellular morphology, facilitating osteogenic differentiation. This novel scaffold was experimentally proven to promote the regeneration of alveolar bone along with a good percentage of bone volume and the formation of trabecular structures. We believe this morphology-evolved scaffold is highly promising for regenerative applications in the clinic.
Collapse
Affiliation(s)
- Jun Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Fang Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Qiao Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Shuying Hu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Hanbang Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Xinchen Zhu
- Department of Prosthodontics, Wuxi Stomatology Hospital, Wuxi 214001, China
| | - Fan Shi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Jia Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Jianli Huang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China.
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
25
|
Bruschi M, Sahu N, Singla M, Grandi F, Agarwal P, Chu C, Bhutani N. A Quick and Efficient Method for the Generation of Immunomodulatory Mesenchymal Stromal Cell from Human Induced Pluripotent Stem Cell. Tissue Eng Part A 2022; 28:433-446. [PMID: 34693750 PMCID: PMC9131357 DOI: 10.1089/ten.tea.2021.0172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been widely investigated for their regenerative capacity, anti-inflammatory properties and beneficial immunomodulatory effects across multiple clinical indications. Nevertheless, their widespread clinical utilization is limited by the variability in MSC quality, impacted by donor age, metabolism, and disease. Human induced pluripotent stem cells (hiPSCs) generated from readily accessible donor tissues, are a promising source of stable and rejuvenated MSC but differentiation methods generally require prolonged culture and result in low frequencies of stable MSCs. To overcome this limitation, we have optimized a quick and efficient method for hiPSC differentiation into footprint-free MSCs (human induced MSCs [hiMSCs]) in this study. This method capitalizes on the synergistic action of growth factors Wnt3a and Activin A with bone morphogenetic protein-4 (BMP4), leading to an enrichment of MSC after only 4 days of treatment. These hiMSCs demonstrate a significant upregulation of mesenchymal stromal markers (CD105+, CD90+, CD73, and cadherin 11) compared with bone marrow-derived MSCs (bmMSCs), with reduced expression of the pluripotency genes (octamer-binding transcription factor [Oct-4], cellular myelocytomatosis oncogene [c-Myc], Klf4, and Nanog homebox [Nanog]) compared with hiPSC. Moreover, they show improved proliferation capacity in culture without inducing any teratoma formation in vivo. Osteogenesis, chondrogenesis, and adipogenesis assays confirmed the ability of hiMSCs to differentiate into the three different lineages. Secretome analyses showed cytokine profiles compared with bmMSCs. Encapsulated hiMSCs in alginate beads cocultured with osteoarthritic (OA) cartilage explants showed robust immunomodulation, with stimulation of cell growth and proteoglycan production in OA cartilage. Our quick and efficient protocol for derivation of hiMSC from hiPSC, and their encapsulation in microbeads, therefore, presents a reliable and reproducible method to boost the clinical applications of MSCs.
Collapse
Affiliation(s)
- Michela Bruschi
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Neety Sahu
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Mamta Singla
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Fiorella Grandi
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California, USA
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Pranay Agarwal
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Constance Chu
- Department of Orthopaedic Surgery, PAVAHCS, Palo Alto, California, USA
| | - Nidhi Bhutani
- Department of Orthopedic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
26
|
Abstract
Human mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells or medicinal signaling cells, are important adult stem cells for regenerative medicine, largely due to their regenerative characteristics such as self-renewal, secretion of trophic factors, and the capability of inducing mesenchymal cell lineages. MSCs also possess homing and trophic properties modulating immune system, influencing microenvironment around damaged tissues and enhancing tissue repair, thus offering a broad perspective in cell-based therapies. Therefore, it is not surprising that MSCs have been the broadly used adult stem cells in clinical trials. To gain better insights into the current applications of MSCs in clinical applications, we perform a comprehensive review of reported data of MSCs clinical trials conducted globally. We summarize the biological effects and mechanisms of action of MSCs, elucidating recent clinical trials phases and findings, highlighting therapeutic effects of MSCs in several representative diseases, including neurological, musculoskeletal diseases and most recent Coronavirus infectious disease. Finally, we also highlight the challenges faced by many clinical trials and propose potential solutions to streamline the use of MSCs in routine clinical applications and regenerative medicine.
Collapse
|
27
|
Prajwal GS, Jeyaraman N, Kanth V K, Jeyaraman M, Muthu S, Rajendran SNS, Rajendran RL, Khanna M, Oh EJ, Choi KY, Chung HY, Ahn BC, Gangadaran P. Lineage Differentiation Potential of Different Sources of Mesenchymal Stem Cells for Osteoarthritis Knee. Pharmaceuticals (Basel) 2022; 15:386. [PMID: 35455383 PMCID: PMC9028477 DOI: 10.3390/ph15040386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) have paved a way for treating musculoskeletal diseases in a minimally invasive manner. The regenerative medicine cocktail involves the usage of mesenchymal stem/stromal cells (MSCs), either uncultured or culture-expanded cells along with growth factors, cytokines, exosomes, and secretomes to provide a better regenerative milieu in degenerative diseases. The successful regeneration of cartilage depends on the selection of the appropriate source of MSCs, the quality, quantity, and frequency of MSCs to be injected, and the selection of the patient at an appropriate stage of the disease. However, confirmation on the most favorable source of MSCs remains uncertain to clinicians. The lack of knowledge in the current cellular treatment is uncertain in terms of how beneficial MSCs are in the long-term or short-term (resolution of pain) and improved quality of life. Whether MSCs treatments have any superiority, exists due to sources of MSCs utilized in their potential to objectively regenerate the cartilage at the target area. Many questions on source and condition remain unanswered. Hence, in this review, we discuss the lineage differentiation potentials of various sources of MSCs used in the management of knee osteoarthritis and emphasize the role of tissue engineering in cartilage regeneration.
Collapse
Affiliation(s)
- Gollahalli Shivashankar Prajwal
- Research Fellow, Fellowship in Orthopaedic Rheumatology (FEIORA), Dr. Ram Manohar Lohiya National Law University, Lucknow 226010, Uttar Pradesh, India; (G.S.P.); (N.J.)
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Mallika Spine Centre, Guntur 522001, Andhra Pradesh, India
| | - Naveen Jeyaraman
- Research Fellow, Fellowship in Orthopaedic Rheumatology (FEIORA), Dr. Ram Manohar Lohiya National Law University, Lucknow 226010, Uttar Pradesh, India; (G.S.P.); (N.J.)
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India
| | - Krishna Kanth V
- Department of Orthopaedics, Government Medical College, Mahabubabad 506104, Telangana, India;
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, Uttar Pradesh, India
- Orthopaedic Research Group, Coimbatore 641001, Tamil Nadu, India
| | - Sathish Muthu
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Government Medical College, Mahabubabad 506104, Telangana, India;
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Orthopaedic Research Group, Coimbatore 641001, Tamil Nadu, India
| | - Sree Naga Sowndary Rajendran
- Department of Medicine, Sri Venkateshwaraa Medical College Hospital and Research Centre, Puducherry 605102, Puducherry, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624001, Tamil Nadu, India
- Department of Orthopaedics, Prasad Institute of Medical Sciences, Lucknow 226010, Uttar Pradesh, India
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (K.Y.C.); (H.Y.C.)
| | - Kang Young Choi
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (K.Y.C.); (H.Y.C.)
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (K.Y.C.); (H.Y.C.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
28
|
Raggi C, M'Callum MA, Pham QT, Gaub P, Selleri S, Baratang NV, Mangahas CL, Cagnone G, Reversade B, Joyal JS, Paganelli M. Leveraging interacting signaling pathways to robustly improve the quality and yield of human pluripotent stem cell-derived hepatoblasts and hepatocytes. Stem Cell Reports 2022; 17:584-598. [PMID: 35120625 PMCID: PMC9039749 DOI: 10.1016/j.stemcr.2022.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLCs) have shown great potential as an alternative to primary human hepatocytes (PHHs) for in vitro modeling. Several differentiation protocols have been described to direct PSCs toward the hepatic fate. Here, by leveraging recent knowledge of the signaling pathways involved in liver development, we describe a robust, scalable protocol that allowed us to consistently generate high-quality bipotent human hepatoblasts and HLCs from both embryonic stem cells and induced PSC (iPSCs). Although not yet fully mature, such HLCs were more similar to adult PHHs than were cells obtained with previously described protocols, showing good potential as a physiologically representative alternative to PHHs for in vitro modeling. PSC-derived hepatoblasts effectively generated with this protocol could differentiate into mature hepatocytes and cholangiocytes within syngeneic liver organoids, thus opening the way for representative human 3D in vitro modeling of liver development and pathophysiology.
We generated human hepatoblasts and hepatocyte-like cells (HLCs) from pluripotent stem cells Timed action on Wnt/β-catenin and TGFβ pathways improved maturity and yield of HLCs Hepatoblasts matured into hepatocytes and bile ducts within complex liver organoids The protocol is robust and showed potential for scalability and drug testing
Collapse
Affiliation(s)
- Claudia Raggi
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada; Morphocell Technologies Inc., Montreal, QC, Canada
| | - Marie-Agnès M'Callum
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada
| | - Quang Toan Pham
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada
| | - Perrine Gaub
- CHU Sainte-Justine Research Center, Montreal, QC, Canada; Morphocell Technologies Inc., Montreal, QC, Canada
| | - Silvia Selleri
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada
| | | | - Chenicka Lyn Mangahas
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada
| | - Gaël Cagnone
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Bruno Reversade
- Institute of Molecular and Cell Biology and Institute of Medical Biology, A(∗)STAR, Singapore, Singapore
| | - Jean-Sébastien Joyal
- CHU Sainte-Justine Research Center, Montreal, QC, Canada; Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Massimiliano Paganelli
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada; Department of Pediatrics, Université de Montréal, Montreal, QC, Canada; Morphocell Technologies Inc., Montreal, QC, Canada; Pediatric Hepatology, CHU Sainte-Justine, Montreal, QC, Canada.
| |
Collapse
|
29
|
Liu TM. Application of mesenchymal stem cells derived from human pluripotent stem cells in regenerative medicine. World J Stem Cells 2021; 13:1826-1844. [PMID: 35069985 PMCID: PMC8727229 DOI: 10.4252/wjsc.v13.i12.1826] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent the most clinically used stem cells in regenerative medicine. However, due to the disadvantages with primary MSCs, such as limited cell proliferative capacity and rarity in the tissues leading to limited MSCs, gradual loss of differentiation during in vitro expansion reducing the efficacy of MSC application, and variation among donors increasing the uncertainty of MSC efficacy, the clinical application of MSCs has been greatly hampered. MSCs derived from human pluripotent stem cells (hPSC-MSCs) can circumvent these problems associated with primary MSCs. Due to the infinite self-renewal of hPSCs and their differentiation potential towards MSCs, hPSC-MSCs are emerging as an attractive alternative for regenerative medicine. This review summarizes the progress on derivation of MSCs from human pluripotent stem cells, disease modelling and drug screening using hPSC-MSCs, and various applications of hPSC-MSCs in regenerative medicine. In the end, the challenges and concerns with hPSC-MSC applications are also discussed.
Collapse
Affiliation(s)
- Tong-Ming Liu
- Agency for Science, Technology and Research, Institute of Molecular and Cell Biology, Singapore 138648, Singapore.
| |
Collapse
|
30
|
Elhussieny A, Nogami K, Sakai-Takemura F, Maruyama Y, Takemura N, Soliman WT, Takeda S, Miyagoe-Suzuki Y. Mesenchymal stem cells derived from human induced pluripotent stem cells improve the engraftment of myogenic cells by secreting urokinase-type plasminogen activator receptor (uPAR). Stem Cell Res Ther 2021; 12:532. [PMID: 34627382 PMCID: PMC8501581 DOI: 10.1186/s13287-021-02594-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disease caused by mutations in the dystrophin gene. Transplantation of myogenic stem cells holds great promise for treating muscular dystrophies. However, poor engraftment of myogenic stem cells limits the therapeutic effects of cell therapy. Mesenchymal stem cells (MSCs) have been reported to secrete soluble factors necessary for skeletal muscle growth and regeneration. Methods We induced MSC-like cells (iMSCs) from induced pluripotent stem cells (iPSCs) and examined the effects of iMSCs on the proliferation and differentiation of human myogenic cells and on the engraftment of human myogenic cells in the tibialis anterior (TA) muscle of NSG-mdx4Cv mice, an immunodeficient dystrophin-deficient DMD model. We also examined the cytokines secreted by iMSCs and tested their effects on the engraftment of human myogenic cells. Results iMSCs promoted the proliferation and differentiation of human myogenic cells to the same extent as bone marrow-derived (BM)-MSCs in coculture experiments. In cell transplantation experiments, iMSCs significantly improved the engraftment of human myogenic cells injected into the TA muscle of NSG-mdx4Cv mice. Cytokine array analysis revealed that iMSCs produced insulin-like growth factor-binding protein 2 (IGFBP2), urokinase-type plasminogen activator receptor (uPAR), and brain-derived neurotrophic factor (BDNF) at higher levels than did BM-MSCs. We further found that uPAR stimulates the migration of human myogenic cells in vitro and promotes their engraftment into the TA muscles of immunodeficient NOD/Scid mice. Conclusions Our results indicate that iMSCs are a new tool to improve the engraftment of myogenic progenitors in dystrophic muscle. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02594-1.
Collapse
Affiliation(s)
- Ahmed Elhussieny
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Neurology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ken'ichiro Nogami
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Fusako Sakai-Takemura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Yusuke Maruyama
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Natsumi Takemura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Wael Talaat Soliman
- Department of Neurology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
31
|
Rogers RE, Haskell A, White BP, Dalal S, Lopez M, Tahan D, Pan S, Kaur G, Kim H, Barreda H, Woodard SL, Benavides OR, Dai J, Zhao Q, Maitland KC, Han A, Nikolov ZL, Liu F, Lee RH, Gregory CA, Kaunas R. A scalable system for generation of mesenchymal stem cells derived from induced pluripotent cells employing bioreactors and degradable microcarriers. Stem Cells Transl Med 2021; 10:1650-1665. [PMID: 34505405 PMCID: PMC8641084 DOI: 10.1002/sctm.21-0151] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are effective in treating disorders resulting from an inflammatory or heightened immune response. The hMSCs derived from induced pluripotent stem cells (ihMSCs) share the characteristics of tissue derived hMSCs but lack challenges associated with limited tissue sources and donor variation. To meet the expected future demand for ihMSCs, there is a need to develop scalable methods for their production at clinical yields while retaining immunomodulatory efficacy. Herein, we describe a platform for the scalable expansion and rapid harvest of ihMSCs with robust immunomodulatory activity using degradable gelatin methacryloyl (GelMA) microcarriers. GelMA microcarriers were rapidly and reproducibly fabricated using a custom microfluidic step emulsification device at relatively low cost. Using vertical wheel bioreactors, 8.8 to 16.3‐fold expansion of ihMSCs was achieved over 8 days. Complete recovery by 5‐minute digestion of the microcarriers with standard cell dissociation reagents resulted in >95% viability. The ihMSCs matched or exceeded immunomodulatory potential in vitro when compared with ihMSCs expanded on monolayers. This is the first description of a robust, scalable, and cost‐effective method for generation of immunomodulatory ihMSCs, representing a significant contribution to their translational potential.
Collapse
Affiliation(s)
- Robert E Rogers
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Andrew Haskell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Berkley P White
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, Texas, USA
| | - Sujata Dalal
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Megan Lopez
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Daniel Tahan
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Simin Pan
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Gagandeep Kaur
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Hyemee Kim
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Heather Barreda
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Susan L Woodard
- National Center for Therapeutics Manufacturing, Texas A&M University, College Station, Texas, USA
| | - Oscar R Benavides
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, Texas, USA
| | - Jing Dai
- Department of Electrical and Computer Engineering, Texas A&M University, Wisenbaker Engineering Building, College Station, Texas, USA
| | - Qingguo Zhao
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Kristen C Maitland
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, Texas, USA
| | - Arum Han
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, Texas, USA.,Department of Electrical and Computer Engineering, Texas A&M University, Wisenbaker Engineering Building, College Station, Texas, USA
| | - Zivko L Nikolov
- National Center for Therapeutics Manufacturing, Texas A&M University, College Station, Texas, USA.,Biological and Agricultural Engineering, Texas A&M University, Scoates Hall, College Station, Texas, USA
| | - Fei Liu
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Ryang Hwa Lee
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, Texas, USA
| |
Collapse
|
32
|
Dupuis V, Oltra E. Methods to produce induced pluripotent stem cell-derived mesenchymal stem cells: Mesenchymal stem cells from induced pluripotent stem cells. World J Stem Cells 2021; 13:1094-1111. [PMID: 34567428 PMCID: PMC8422924 DOI: 10.4252/wjsc.v13.i8.1094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/03/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.
Collapse
Affiliation(s)
- Victoria Dupuis
- Faculté des Sciences et d’Ingénierie, Sorbonne Université, Paris 75252, France
| | - Elisa Oltra
- Department of Pathology, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain.
| |
Collapse
|
33
|
Mercado-Rubio MD, Pérez-Argueta E, Zepeda-Pedreguera A, Aguilar-Ayala FJ, Peñaloza-Cuevas R, Kú-González A, Rojas-Herrera RA, Rodas-Junco BA, Nic-Can GI. Similar Features, Different Behaviors: A Comparative In VitroStudy of the Adipogenic Potential of Stem Cells from Human Follicle, Dental Pulp, and Periodontal Ligament. J Pers Med 2021; 11:jpm11080738. [PMID: 34442382 PMCID: PMC8401480 DOI: 10.3390/jpm11080738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022] Open
Abstract
Dental tissue-derived mesenchymal stem cells (DT-MSCs) are a promising resource for tissue regeneration due to their multilineage potential. Despite accumulating data regarding the biology and differentiation potential of DT-MSCs, few studies have investigated their adipogenic capacity. In this study, we have investigated the mesenchymal features of dental pulp stem cells (DPSCs), as well as the in vitro effects of different adipogenic media on these cells, and compared them to those of periodontal ligament stem cells (PLSCs) and dental follicle stem cells (DFSCs). DFSC, PLSCs, and DPSCs exhibit similar morphology and proliferation capacity, but they differ in their self-renewal ability and expression of stemness markers (e.g OCT4 and c-MYC). Interestingly, DFSCs and PLSCs exhibited more lipid accumulation than DPSCs when induced to adipogenic differentiation. In addition, the mRNA levels of adipogenic markers (PPAR, LPL, and ADIPOQ) were significantly higher in DFSCs and PLSCs than in DPSCs, which could be related to the differences in the adipogenic commitment in those cells. These findings reveal that the adipogenic capacity differ among DT-MSCs, features that might be advantageous to increasing our understanding about the developmental origins and regulation of adipogenic commitment.
Collapse
Affiliation(s)
- Melissa D. Mercado-Rubio
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico; (M.D.M.-R.); (E.P.-A.); (A.Z.-P.); (R.A.R.-H.)
| | - Erick Pérez-Argueta
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico; (M.D.M.-R.); (E.P.-A.); (A.Z.-P.); (R.A.R.-H.)
| | - Alejandro Zepeda-Pedreguera
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico; (M.D.M.-R.); (E.P.-A.); (A.Z.-P.); (R.A.R.-H.)
| | - Fernando J. Aguilar-Ayala
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida 97000, Yucatán, Mexico; (F.J.A.-A.); (R.P.-C.)
| | - Ricardo Peñaloza-Cuevas
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida 97000, Yucatán, Mexico; (F.J.A.-A.); (R.P.-C.)
| | - Angela Kú-González
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico;
| | - Rafael A. Rojas-Herrera
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico; (M.D.M.-R.); (E.P.-A.); (A.Z.-P.); (R.A.R.-H.)
| | - Beatriz A. Rodas-Junco
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida 97000, Yucatán, Mexico; (F.J.A.-A.); (R.P.-C.)
- CONACYT-Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico
- Correspondence: (B.A.R.-J.); or (G.I.N.-C.)
| | - Geovanny I. Nic-Can
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida 97000, Yucatán, Mexico; (F.J.A.-A.); (R.P.-C.)
- CONACYT-Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico
- Correspondence: (B.A.R.-J.); or (G.I.N.-C.)
| |
Collapse
|
34
|
Zha S, Tay JCK, Zhu S, Li Z, Du Z, Wang S. Generation of Mesenchymal Stromal Cells with Low Immunogenicity from Human PBMC-Derived β2 Microglobulin Knockout Induced Pluripotent Stem Cells. Cell Transplant 2021; 29:963689720965529. [PMID: 33172291 PMCID: PMC7784598 DOI: 10.1177/0963689720965529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are viewed as immune-privileged cells and have been broadly applied in allogeneic adoptive cell transfer for regenerative medicine or immune-suppressing purpose. However, the surface expression of human leukocyte antigen (HLA) class I molecules on MSCs could still possibly induce the rejection of allogeneic MSCs from the recipients. Here, we disrupted the β2 microglobulin (B2M) gene in human peripheral blood mononuclear cell-derived induced pluripotent stem cells (iPSCs) with two clustered regulatory interspaced short palindromic repeat (CRISPR)-associated Cas9 endonuclease-based methods. The B2M knockout iPSCs did not express HLA class I molecules but maintained their pluripotency and genome stability. Subsequently, MSCs were derived from the HLA-negative iPSCs (iMSCs). We demonstrated that B2M knockout did not affect iMSC phenotype, multipotency, and immune suppressive characteristics and, most importantly, reduced iMSC immunogenicity to allogeneic peripheral blood mononuclear cells. Thus, B2M knockout iPSCs could serve as unlimited off-the-shelf cell resources in adoptive cell transfer, while the derived iMSCs hold great potential as universal grafts in allogeneic MSC transplantation.
Collapse
Affiliation(s)
- Shijun Zha
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Johan Chin-Kang Tay
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sumin Zhu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhendong Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhicheng Du
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
35
|
Kwon D, Ahn HJ, Han MJ, Ji M, Ahn J, Seo KW, Kang KS. Human Leukocyte Antigen Class I Pseudo-Homozygous Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2021; 16:792-808. [PMID: 32712868 DOI: 10.1007/s12015-020-09990-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSC) are an important type of cell that are highly recognized for their safety and efficacy as a cell therapy agent. In order to obtain MSC, primary tissues (adipose tissue, bone marrow, and umbilical cord blood) must be used; however, these tissues, especially umbilical cord blood, are difficult to obtain due to various reasons, such as the low birth rate trend. In addition, to maximize the safety and efficacy of MSC as allogenic cell therapeutic agents, it is desirable to minimize the possibility of an immune rejection reaction after in vivo transplantation. This study tried to establish a novel method for producing induced pluripotent stem cells (iPSC)-derived MSC in which the human leukocyte antigen (HLA)-class I gene is knocked out. To do so, dermal fibroblast originated iPSC generation using Yamanaka 4-factor, HLA class I gene edited iPSC generation using CRISPR/Cas9, and differentiation from iPSC to MSC using MSC culture medium was utilized. Through this, HLA-A, B, and C pseudo-homozygous iPSC-derived MSC (KO iMSC) were produced by monoallelically knocking out the polymorphic HLA-A, B, and C genes, which are the major causes of immune rejection during allogenic cell transplantation. Produced KO iMSC possesses multipotency and it was safe in vivo to be able to be differentiated to cartilage. In addition, it was not attacked by natural killer cells unlike HLA class I null cells. In conclusion, KO iMSC that do not induce immune rejection during allogenic cell transplantation can be produced. In the future, KO iMSC can be successfully utilized as allogenic cell therapeutic agents for many recipients through HLA screening.
Collapse
Affiliation(s)
- Daekee Kwon
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul, 08826, South Korea
| | - Hee-Jin Ahn
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul, 08826, South Korea
| | - Mi-Jung Han
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul, 08826, South Korea
| | - Minjun Ji
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul, 08826, South Korea
| | - Jongchan Ahn
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul, 08826, South Korea
| | - Kwang-Won Seo
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Sun Kang
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul, 08826, South Korea. .,Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
36
|
Stem cell-based therapy treating glioblastoma multiforme. Hematol Oncol Stem Cell Ther 2021; 14:1-15. [PMID: 32971031 DOI: 10.1016/j.hemonc.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/20/2020] [Accepted: 08/14/2020] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GB) is one of the most malignant types of central nervous system tumours, classified as grade IV by the World Health Organization. Despite the therapeutic advances, the prognosis is ominous, with a median survival of about 12-15 months post diagnosis. Although therapeutic options available can increase the survival, they are ineffective in treating patients with GB. Impairing factors such as the blood-brain barrier, cancer stem cells, and infiltration into brain parenchyma lead to failure of current therapies. Therefore, clinicians need novel/alternative effective strategies to treat GB. Due to their ability to preserve healthy tissues and to provide an effective and long-lasting response, stem cells (SCs) with tropism for tumour cells have attracted considerable attention in the scientific community. As is the case here, SCs can be used to target brain tumour cancer cells, especially high-grade malignant gliomas like GB, by overcoming the resistance and exerting benefits for patients affected with such lethal disease. Herein, we will discuss the research knowledge regarding SC-based therapy for the treatment of GB, focalising our attention on SCs and SC-released extracellular vesicles modified to express/load different antitumour payloads, as well as on SCs exploited as a diagnostic tool. Advantages and unresolved issues of anticancer SC-based therapy will also be considered.
Collapse
|
37
|
Kim YS, Mikos AG. Emerging strategies in reprogramming and enhancing the fate of mesenchymal stem cells for bone and cartilage tissue engineering. J Control Release 2021; 330:565-574. [DOI: 10.1016/j.jconrel.2020.12.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
|
38
|
Akbulut AC, Wasilewski GB, Rapp N, Forin F, Singer H, Czogalla-Nitsche KJ, Schurgers LJ. Menaquinone-7 Supplementation Improves Osteogenesis in Pluripotent Stem Cell Derived Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 8:618760. [PMID: 33585456 PMCID: PMC7876270 DOI: 10.3389/fcell.2020.618760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/09/2020] [Indexed: 01/15/2023] Open
Abstract
Development of clinical stem cell interventions are hampered by immature cell progeny under current protocols. Human mesenchymal stem cells (hMSCs) are characterized by their ability to self-renew and differentiate into multiple lineages. Generating hMSCs from pluripotent stem cells (iPSCs) is an attractive avenue for cost-efficient and scalable production of cellular material. In this study we generate mature osteoblasts from iPSCs using a stable expandable MSC intermediate, refining established protocols. We investigated the timeframe and phenotype of cells under osteogenic conditions as well as the effect of menaquinone-7 (MK-7) on differentiation. From day 2 we noted a significant increase in RUNX2 expression under osteogenic conditions with MK-7, as well as decreases in ROS species production, increased cellular migration and changes to dynamics of collagen deposition when compared to differentiated cells that were not treated with MK-7. At day 21 OsteoMK-7 increased alkaline phosphatase activity and collagen deposition, as well as downregulated RUNX2 expression, suggesting to a mature cellular phenotype. Throughout we note no changes to expression of osteocalcin suggesting a non-canonical function of MK-7 in osteoblast differentiation. Together our data provide further mechanistic insight between basic and clinical studies on extrahepatic activity of MK-7. Our findings show that MK-7 promotes osteoblast maturation thereby increasing osteogenic differentiation.
Collapse
Affiliation(s)
- Asim Cengiz Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Grzegorz B Wasilewski
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands.,NattoPharma ASA, Oslo, Norway
| | - Nikolas Rapp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Francesco Forin
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Heike Singer
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Katrin J Czogalla-Nitsche
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands.,Department of Nephro-Cardiology, Rheinisch-Westfälische Technische Hochschule Klinikum, Aachen, Germany
| |
Collapse
|
39
|
Li J, Lin Q, Lin Y, Lai R, Zhang W. Effects of DLX3 on the osteogenic differentiation of induced pluripotent stem cell‑derived mesenchymal stem cells. Mol Med Rep 2021; 23:232. [PMID: 33655330 PMCID: PMC7893805 DOI: 10.3892/mmr.2021.11871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is a disease characterized by the degeneration of bone structure and decreased bone mass. Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) have multiple advantages that make them ideal seed cells for bone regeneration, including high-level proliferation, multi-differentiation potential and favorable immune compatibility. Distal-less homeobox (DLX)3, an important member of the DLX family, serves a crucial role in osteogenic differentiation and bone formation. The present study aimed to evaluate the effects of DLX3 on the proliferation and osteogenic differentiation of human iPSC-MSCs. iPSC-MSCs were induced from iPSCs, and identified via flow cytometry. Alkaline phosphatase (ALP), Von Kossa, Oil Red O and Alcian blue staining methods were used to evaluate the osteogenic, adipogenic and chondrogenic differentiation of iPSC-MSCs. DLX3 overexpression plasmids were constructed and transfected into iPSC-MSCs to generate iPSC-MSC-DLX3. iPSC-MSC-GFP was used as the control. Reverse transcription-quantitative PCR (RT-qPCR) and western blotting were performed to measure the expression of DLX3 2 days after transfection. Subsequently, cell proliferation was assessed using a Cell Counting Kit-8 assay on days 1, 3, 5 and 7. RT-qPCR and western blotting were used to analyze osteogenic-related gene and protein expression levels on day 7. ALP activity and mineralized nodules were assessed via ALP staining on day 14. Statistical analysis was performed using an unpaired Student's t-test. Flow cytometry results demonstrated that iPSC-MSCs were positive for CD73, CD90 and CD105, but negative for CD34 and CD45. iPSC-MSC-DLX3 had significantly lower proliferation compared with iPSC-MSC-GFP on days 5 and 7 (P<0.05). mRNA expression levels of osteogenic markers, such as ALP, osteopenia (OPN), osteocalcin (OCN) and Collagen Type I (COL-1), were significantly increased in iPSC-MSC-DLX3 compared with iPSC-MSC-GFP on day 7 (P<0.05). Similarly, the protein expression levels of ALP, OCN, OPN and COL-1 were significantly increased in iPSC-MSC-DLX3 compared with iPSC-MSC-GFP on day 7 (P<0.05). The number of mineralized nodules in iPSC-MSC-DLX3 was increased compared with that in iPSC-MSC-GFP on day 14 (P<0.05). Thus, the present study demonstrated that DLX3 serves a negative role in proliferation, but a positive role in the osteogenic differentiation of iPSC-MSCs. This may provide novel insight for treating osteoporosis.
Collapse
Affiliation(s)
- Junyuan Li
- The Medical Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Qiang Lin
- The Medical Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yixin Lin
- The Medical Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Renfa Lai
- The Medical Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Wen Zhang
- Department of Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
40
|
Herrmann M, Diederichs S, Melnik S, Riegger J, Trivanović D, Li S, Jenei-Lanzl Z, Brenner RE, Huber-Lang M, Zaucke F, Schildberg FA, Grässel S. Extracellular Vesicles in Musculoskeletal Pathologies and Regeneration. Front Bioeng Biotechnol 2021; 8:624096. [PMID: 33553127 PMCID: PMC7855463 DOI: 10.3389/fbioe.2020.624096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
The incidence of musculoskeletal diseases is steadily increasing with aging of the population. In the past years, extracellular vesicles (EVs) have gained attention in musculoskeletal research. EVs have been associated with various musculoskeletal pathologies as well as suggested as treatment option. EVs play a pivotal role in communication between cells and their environment. Thereby, the EV cargo is highly dependent on their cellular origin. In this review, we summarize putative mechanisms by which EVs can contribute to musculoskeletal tissue homeostasis, regeneration and disease, in particular matrix remodeling and mineralization, pro-angiogenic effects and immunomodulatory activities. Mesenchymal stromal cells (MSCs) present the most frequently used cell source for EV generation for musculoskeletal applications, and herein we discuss how the MSC phenotype can influence the cargo and thus the regenerative potential of EVs. Induced pluripotent stem cell-derived mesenchymal progenitor cells (iMPs) may overcome current limitations of MSCs, and iMP-derived EVs are discussed as an alternative strategy. In the last part of the article, we focus on therapeutic applications of EVs and discuss both practical considerations for EV production and the current state of EV-based therapies.
Collapse
Affiliation(s)
- Marietta Herrmann
- Interdisciplinary Center for Clinical Research (IZKF) Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Würzburg, Würzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Würzburg, Würzburg, Germany
| | - Solvig Diederichs
- Research Centre for Experimental Orthopaedics, Centre for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Svitlana Melnik
- Research Centre for Experimental Orthopaedics, Centre for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Drenka Trivanović
- Interdisciplinary Center for Clinical Research (IZKF) Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Würzburg, Würzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Würzburg, Würzburg, Germany
| | - Shushan Li
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - Rolf E. Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, Frankfurt, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| |
Collapse
|
41
|
Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Show Comparable Functionality to Their Autologous Origin. Cells 2020; 10:cells10010033. [PMID: 33379312 PMCID: PMC7823915 DOI: 10.3390/cells10010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/12/2023] Open
Abstract
A multimodal therapeutic approach involving radiotherapy is required when treating head and neck squamous cell carcinoma. However, radiotherapy is restricted due to its high risk for damages to the surrounding healthy tissue of the treated area. Tissue regeneration and wound healing is promoted by the survival and regenerative capacities of tissue-resident or invading stem cells. Mesenchymal stem cells (MSCs) exhibit a promising therapeutic potential in the field of cell-based tissue engineering and regenerative medicine due to their immunomodulatory properties and differentiation capacity. However, the generation of MSCs for therapeutic applications is still a major challenge. We aimed to produce highly homogeneous induced pluripotent stem cell-derived mesenchymal stem cells (iP-MSCs) in an autologous manner from initially isolated human mucosa mesenchymal stem cells (mMSCs) of the upper respiratory tract. Therefore, mMSCs were reprogrammed into induced pluripotent stem cells (iPSCs) by non-integrative chromosomal technologies and differentiated into corresponding iP-MSCs. We demonstrated that mMSCs and iP-MSCs show similar cell characteristics in terms of morphology, clonogenic potential, differentiation, and surface phenotype. Moreover, iP-MSCs demonstrated related immunosuppressive capacity as mMSCs including the secretion of cytokines, and T cell inhibition. Therefore, generating iP-MSCs in an autologous manner may be a novel personalized treatment option in regenerative medicine.
Collapse
|
42
|
Li H, Long C, Xiang J, Liang P, Li X, Zuo Y. Dppa2/4 as a trigger of signaling pathways to promote zygote genome activation by binding to CG-rich region. Brief Bioinform 2020; 22:6034044. [PMID: 33316032 DOI: 10.1093/bib/bbaa342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
Developmental pluripotency-associated 2 (Dppa2) and developmental pluripotency-associated 4 (Dppa4) as positive drivers were helpful for transcriptional regulation of zygotic genome activation (ZGA). Here, we systematically assessed the cooperative interplay of Dppa2 and Dppa4 in regulating cell pluripotency and found that simultaneous overexpression of Dppa2/4 can make induced pluripotent stem cells closer to embryonic stem cells (ESCs). Compared with other pluripotency transcription factors, Dppa2/4 can regulate majorities of signaling pathways by binding on CG-rich region of proximal promoter (0-500 bp), of which 85% and 77% signaling pathways were significantly activated by Dppa2 and Dppa4, respectively. Notably, Dppa2/4 also can dramatically trigger the decisive signaling pathways for facilitating ZGA, including Hippo, MAPK and TGF-beta signaling pathways and so on. At last, we found alkaline phosphatase, placental-like 2 (Alppl2) was completely silenced when Dppa2 and 4 single- or double-knockout in ESC, which is consistent with Dux. Moreover, Alppl2 was significantly activated in mouse 2-cell embryos and 4-8 cells stage of human embryos, further predicted that Alppl2 was directly regulated by Dppa2/4 as a ZGA candidate driver to facilitate pre-embryonic development.
Collapse
Affiliation(s)
- Hanshuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Chunshen Long
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jinzhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Pengfei Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xueling Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
43
|
Luo L, Zhou Y, Zhang C, Huang J, Du J, Liao J, Bergholt NL, Bünger C, Xu F, Lin L, Tong G, Zhou G, Luo Y. Feeder-free generation and transcriptome characterization of functional mesenchymal stromal cells from human pluripotent stem cells. Stem Cell Res 2020; 48:101990. [PMID: 32950887 DOI: 10.1016/j.scr.2020.101990] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/23/2020] [Accepted: 09/05/2020] [Indexed: 01/18/2023] Open
Abstract
Induced mesenchymal stromal cells (iMSCs) derived from human pluripotent stem cells (PSCs) are attractive cells for regenerative medicine. However, the transcriptome of iMSCs and signature genes that can distinguish MSCs from fibroblasts and other cell types are rarely explored. In this study, we reported an optimized feeder-free method for the generation of iMSCs from human pluripotent stem cells. These iMSCs display a typical MSC morphology, express classic MSC markers (CD29, CD44, CD73, CD90, CD105, CD166), are negative for lymphocyte markers (CD11b, CD14, CD31, CD34, CD45, HLA-DR), and are potent for osteogenic and chondrogenic differentiation. Using genome-wide transcriptome profiling, we created an easily accessible transcriptome reference for the process of differentiating PSCs into iMSCs. The iMSC transcriptome reference revealed clear patterns in the silencing of pluripotency genes, activation of lineage commitment genes, and activation of mesenchymal genes during iMSC generation. All previously known positive and negative markers for MSCs were confirmed by our iMSC transcriptomic reference, and most importantly, gene classification and time course analysis identified 52 genes including FN1, TGFB1, TAGLN and SERPINE1, which showed significantly higher expression in MSCs (over 3 folds) than fibroblasts and other cell types. Taken together, these results provide a useful method and important resources for developing and understanding iMSCs in regenerative medicine.
Collapse
Affiliation(s)
- Lidan Luo
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518033, China; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Yan Zhou
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, China; Lungene Technologies Co., Ltd, Shenzhen, China.
| | - Chenxi Zhang
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Shenzhen 518083, China.
| | - Jinrong Huang
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Jie Du
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, China; Lungene Technologies Co., Ltd, Shenzhen, China.
| | - Jinqi Liao
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, China; Lungene Technologies Co., Ltd, Shenzhen, China.
| | | | - Cody Bünger
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Fengping Xu
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Shenzhen 518083, China.
| | - Lin Lin
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Guangdong Tong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518033, China.
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, China.
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Shenzhen 518083, China; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
44
|
Sfougataki I, Varela I, Stefanaki K, Karagiannidou A, Roubelakis MG, Kalodimou V, Papathanasiou I, Traeger-Synodinos J, Kitsiou-Tzeli S, Kanavakis E, Kitra V, Tsezou A, Tzetis M, Goussetis E. Proliferative and chondrogenic potential of mesenchymal stromal cells from pluripotent and bone marrow cells. Histol Histopathol 2020; 35:1415-1426. [PMID: 32959885 DOI: 10.14670/hh-18-259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs) can be derived from a wide range of fetal and adult sources including pluripotent stem cells (PSCs). The properties of PSC-derived MSCs need to be fully characterized, in order to evaluate the feasibility of their use in clinical applications. PSC-MSC proliferation and differentiation potential in comparison with bone marrow (BM)-MSCs is still under investigation. The objective of this study was to determine the proliferative and chondrogenic capabilities of both human induced pluripotent stem cell (hiPSC-) and embryonic stem cell (hESC-) derived MSCs, by comparing them with BM-MSCs. METHODS MSCs were derived from two hiPSC lines (hiPSC-MSCs), the well characterized Hues9 hESC line (hESC-MSCs) and BM from two healthy donors (BM-MSCs). Proliferation potential was investigated using appropriate culture conditions, with serial passaging, until cells entered into senescence. Differentiation potential to cartilage was examined after in vitro chondrogenic culture conditions. RESULTS BM-MSCs revealed a fold expansion of 1.18x10⁵ and 2.3x10⁵ while the two hiPSC-MSC lines and hESC-MSC showed 5.88x10¹⁰, 3.49x10⁸ and 2.88x10⁸, respectively. Under chondrogenic conditions, all MSC lines showed a degree of chondrogenesis. However, when we examined the formed chondrocyte micromasses by histological analysis of the cartilage morphology and immunohistochemistry for the chondrocyte specific markers Sox9 and Collagen II, we observed that PSC-derived MSC lines had formed pink rather than hyaline cartilage, in contrast to BM-MSCs. CONCLUSION In conclusion, MSCs derived from both hESCs and hiPSCs had superior proliferative capacity compared to BM-MSCs, but they were inefficient in their ability to form hyaline cartilage.
Collapse
Affiliation(s)
- Irene Sfougataki
- Stem Cell Transplant Unit, Aghia Sophia Children's Hospital, Athens, Greece.,Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Aghia Sophia Children's Hospital, Athens, Greece.
| | - Ioanna Varela
- Stem Cell Transplant Unit, Aghia Sophia Children's Hospital, Athens, Greece
| | - Kalliope Stefanaki
- Department of Histopathology, Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Maria G Roubelakis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Kalodimou
- Flow Cytometry-Research and Regenerative Medicine Department, IASO Hospital, Athens, Greece
| | - Ioanna Papathanasiou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessally, Thessally, Greece
| | - Joanne Traeger-Synodinos
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Kitsiou-Tzeli
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanuel Kanavakis
- Genesis Genoma Lab, Genetic diagnosis, Clinical Genetics and Research, Chalandri, Greece
| | - Vasiliki Kitra
- Stem Cell Transplant Unit, Aghia Sophia Children's Hospital, Athens, Greece
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessally, Thessally, Greece
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evgenios Goussetis
- Stem Cell Transplant Unit, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
45
|
Mao X, Li X, Hu W, Hao S, Yuan Y, Guan L, Guo B. Downregulated brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1 inhibits osteogenesis of BMSCs through p53 in type 2 diabetes mellitus. Biol Open 2020; 9:bio051482. [PMID: 32554484 PMCID: PMC7358138 DOI: 10.1242/bio.051482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/27/2020] [Indexed: 12/05/2022] Open
Abstract
The bone marrow mesenchymal stem cells (BMSCs)-mediated abnormal bone metabolism can delay and impair the bone remodeling process in type 2 diabetes mellitus (T2DM). Our previous study demonstrated that the downregulation of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1), a circadian clock protein, inhibited the Wnt/β-catenin pathway via enhanced GSK-3β in diabetic BMSCs. In this article, we confirmed that the downregulated BMAL1 in T2DM played an inhibitory role in osteogenic differentiation of BMSCs. Upregulation of BMAL1 in the diabetic BMSCs significantly recovered the expression pattern of osteogenic marker genes and alkaline phosphatase (Alp) activity. We also observed an activation of the p53 signaling pathways, exhibited by increased p53 and p21 in diabetic BMSCs. Downregulation of p53 resulting from overexpression of BMAL1 was detected, and when we applied p53 gene silencing (shRNA) and the p53 inhibitor, pifithrin-α (PFT-α), the impaired osteogenic differentiation ability of diabetic BMSCs was greatly restored. However, there was no change in the level of expression of BMAL1. Taken together, our results first revealed that BMAL1 regulated osteogenesis of BMSCs through p53 in T2DM, providing a novel direction for further exploration of the mechanism underlying osteoporosis in diabetes.
Collapse
Affiliation(s)
- Xiaofei Mao
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoguang Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Wei Hu
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Siwei Hao
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yifang Yuan
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Lian Guan
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Bin Guo
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
46
|
Lim PSL, Meshorer E. Dppa2 and Dppa4 safeguard bivalent chromatin in order to establish a pluripotent epigenome. Nat Struct Mol Biol 2020; 27:685-686. [DOI: 10.1038/s41594-020-0453-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
McNeill EP, Zeitouni S, Pan S, Haskell A, Cesarek M, Tahan D, Clough BH, Krause U, Dobson LK, Garcia M, Kung C, Zhao Q, Saunders WB, Liu F, Kaunas R, Gregory CA. Characterization of a pluripotent stem cell-derived matrix with powerful osteoregenerative capabilities. Nat Commun 2020; 11:3025. [PMID: 32541821 PMCID: PMC7295745 DOI: 10.1038/s41467-020-16646-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/13/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately 10% of fractures will not heal without intervention. Current treatments can be marginally effective, costly, and some have adverse effects. A safe and manufacturable mimic of anabolic bone is the primary goal of bone engineering, but achieving this is challenging. Mesenchymal stem cells (MSCs), are excellent candidates for engineering bone, but lack reproducibility due to donor source and culture methodology. The need for a bioactive attachment substrate also hinders progress. Herein, we describe a highly osteogenic MSC line generated from induced pluripotent stem cells that generates high yields of an osteogenic cell-matrix (ihOCM) in vitro. In mice, the intrinsic osteogenic activity of ihOCM surpasses bone morphogenic protein 2 (BMP2) driving healing of calvarial defects in 4 weeks by a mechanism mediated in part by collagen VI and XII. We propose that ihOCM may represent an effective replacement for autograft and BMP products used commonly in bone tissue engineering. Production of a safe and manufacturable material to mimic anabolic bone for tissue engineering has been hard to achieve to date. Here the authors use a mesenchymal stem cell line generated from induced pluripotent stem cells to produce osteogenic cell-matrix, displaying significant healing properties in mice.
Collapse
Affiliation(s)
- Eoin P McNeill
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Suzanne Zeitouni
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Simin Pan
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Andrew Haskell
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Michael Cesarek
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Daniel Tahan
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Bret H Clough
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Ulf Krause
- Institute for Transfusion Medicine and Cellular Medicine, University Hospital Muenster, Muenster, Germany
| | - Lauren K Dobson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Mayra Garcia
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Christopher Kung
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Qingguo Zhao
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - W Brian Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Fei Liu
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
48
|
Rodrigues Sousa E, Zoni E, Karkampouna S, La Manna F, Gray PC, De Menna M, Kruithof-de Julio M. A Multidisciplinary Review of the Roles of Cripto in the Scientific Literature Through a Bibliometric Analysis of its Biological Roles. Cancers (Basel) 2020; 12:cancers12061480. [PMID: 32517087 PMCID: PMC7352664 DOI: 10.3390/cancers12061480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Cripto is a small glycosylphosphatidylinisitol (GPI)-anchored and secreted oncofetal protein that plays important roles in regulating normal physiological processes, including stem cell differentiation, embryonal development, and tissue growth and remodeling, as well as pathological processes such as tumor initiation and progression. Cripto functions as a co-receptor for TGF-β ligands such as Nodal, GDF1, and GDF3. Soluble and secreted forms of Cripto also exhibit growth factor-like activity and activate SRC/MAPK/PI3K/AKT pathways. Glucose-Regulated Protein 78 kDa (GRP78) binds Cripto at the cell surface and has been shown to be required for Cripto signaling via both TGF-β and SRC/MAPK/PI3K/AKT pathways. To provide a comprehensive overview of the scientific literature related to Cripto, we performed, for the first time, a bibliometric analysis of the biological roles of Cripto as reported in the scientific literature covering the last 10 years. We present different fields of knowledge in comprehensive areas of research on Cripto, ranging from basic to translational research, using a keyword-driven approach. Our ultimate aim is to aid the scientific community in conducting targeted research by identifying areas where research has been conducted so far and, perhaps more importantly, where critical knowledge is still missing.
Collapse
Affiliation(s)
- Elisa Rodrigues Sousa
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Eugenio Zoni
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Sofia Karkampouna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Federico La Manna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Marta De Menna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Marianna Kruithof-de Julio
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
49
|
Induced Pluripotent Stem Cells in Dental and Nondental Tissue Regeneration: A Review of an Unexploited Potential. Stem Cells Int 2020; 2020:1941629. [PMID: 32300365 PMCID: PMC7146092 DOI: 10.1155/2020/1941629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-based therapies currently represent the state of art for tissue regenerative treatment approaches for various diseases and disorders. Induced pluripotent stem cells (iPSCs), reprogrammed from adult somatic cells, using vectors carrying definite transcription factors, have manifested a breakthrough in regenerative medicine, relying on their pluripotent nature and ease of generation in large amounts from various dental and nondental tissues. In addition to their potential applications in regenerative medicine and dentistry, iPSCs can also be used in disease modeling and drug testing for personalized medicine. The current review discusses various techniques for the production of iPSC-derived osteogenic and odontogenic progenitors, the therapeutic applications of iPSCs, and their regenerative potential in vivo and in vitro. Through the present review, we aim to explore the potential applications of iPSCs in dental and nondental tissue regeneration and to highlight different protocols used for the generation of different tissues and cell lines from iPSCs.
Collapse
|
50
|
Wang B, Wang L, Mao J, Wen H, Xu L, Ren Y, Du H, Yang H. Mouse bone marrow mesenchymal stem cells with distinct p53 statuses display differential characteristics. Mol Med Rep 2020; 21:2051-2062. [PMID: 32186775 PMCID: PMC7115213 DOI: 10.3892/mmr.2020.11025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/26/2019] [Indexed: 11/05/2022] Open
Abstract
Mesenchymal stem cells (MSCs) affect diverse aspects of tumor progression, such as angiogenesis, tumor growth and metastasis. Bone marrow MSCs (BM‑MSCs) are fibroblast‑like cells with multipotent differentiation ability, that localize to areas of tissue damage, including wounds and solid tumors. The tumor suppressor gene, p53, is functionally involved in cell cycle control, apoptosis and genomic stability, and is mutated and inactivated in most human cancers. The present study aimed to investigate the role of p53 in the biology of BM‑MSCs. In the present study, p53 wild‑type (p53+/+), knockdown (p53+/‑) and knockout (p53‑/‑) mouse BM‑MSCs (mBM‑MSCs) were observed to be similar in appearance and in the expression of cell surface biomarkers, but expressed differential p53 protein levels. The p53+/‑ and p53‑/‑ mBM‑MSCs demonstrated an increased proliferation rate compared with mBM‑MSCs derived from p53+/+ mice. mBM‑MSCs from all three groups, representing distinct p53 statuses, were unable to form tumors over a 3‑month period in vivo. The adipogenic and osteogenic differentiation of mBM‑MSCs was increased in the absence of p53. The colony formation and migratory abilities of p53+/‑ and p53‑/‑ mBM‑MSCs were markedly enhanced, and the expression levels of stem cell‑associated proteins were significantly increased compared with p53+/+. The expression levels of microRNA (miR)‑3152 and miR‑337 were significantly increased in p53+/‑ and p53‑/‑ mBM‑MSCs, whereas the expression levels of miR‑221, miR‑155, miR‑1288 and miR‑4669 were significantly decreased. The expression levels of tumor necrosis factor‑α and interferon‑γ‑inducible protein‑10 were significantly upregulated in the supernatant of p53+/‑ and p53‑/‑ mBM‑MSCs. Ubiquitin protein ligase E3 component n‑recognin 2, RING‑finger protein 31 and matrix metalloproteinase 19 were highly expressed in p53+/‑ and p53‑/‑ mBM‑MSCs. The results of the present study indicated that p53 may serve an important role in the biology of mBM‑MSCs, and may provide novel insights into the role of cells with different p53 statuses in cancer progression.
Collapse
Affiliation(s)
- Bo Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Lingxia Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jiahui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Huiyan Wen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Longjiang Xu
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yang Ren
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Huan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|