1
|
Mavaei M, Farokhi S, Yousefi MH, Fakouri A, Shadab A, Abdolmohammadi MH, Fallahian F, Afkhami H. Exploring two tumor treatment strategies: effectiveness of ribosome inactivating proteins and mesenchymal stem cells/MSC derived extracellular vesicles in cancer treatment. Front Oncol 2025; 15:1533065. [PMID: 40444089 PMCID: PMC12120475 DOI: 10.3389/fonc.2025.1533065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/15/2025] [Indexed: 06/02/2025] Open
Abstract
Cancer is a complex and heterogeneous disease that often requires multifaceted treatment strategies to achieve optimal therapeutic outcomes. Given the limitations of single-agent therapies, particularly in the face of intricate biological signaling networks and treatment resistance, there is a growing need for combinatory approaches. This article presents a novel hypothesis: the simultaneous use of ribosome-inactivating proteins (RIPs) and mesenchymal stem cells (MSCs) or MSC-derived extracellular vesicles (EVs) in cancer treatment. RIPs, with their potent cytotoxic properties, can target tumor cells effectively, while MSCs, known for their tumor-homing abilities and regenerative potential, can serve as delivery vehicles, potentially enhancing the targeting precision and reducing the systemic toxicity of RIPs. This hypothesis explores the synergistic potential of combining these two therapeutic modalities, leveraging the advantages of both techniques to create a more effective cancer treatment strategy. By combining RIPs' ability to inhibit protein synthesis with MSCs or MSC-derived EVs' capability to modulate the tumor microenvironment and deliver therapeutic agents. This approach offers a promising avenue for overcoming cancer's inherent complexity. However, challenges remain, such as optimizing dosing protocols, addressing safety concerns, and ensuring efficient drug delivery. Future research and clinical trials are necessary to validate this combination as a viable cancer therapy.
Collapse
Affiliation(s)
- Maryamosadat Mavaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Hasan Yousefi
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Arshia Fakouri
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | | | - Faranak Fallahian
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hamed Afkhami
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
2
|
Mizuno K, Ohnishi H, Kishimoto Y, Kojima T, Fujimura S, Kawai Y, Kitano M, Ikeya M, Omori K. Rat Tracheal Cartilage Regeneration Using Mesenchymal Stem Cells Derived From Human iPS Cells. Tissue Eng Part A 2025; 31:398-408. [PMID: 38970444 DOI: 10.1089/ten.tea.2024.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Abstract
Tracheal cartilage provides structural support to the airways to enable breathing. However, it can become damaged or impaired, sometimes requiring surgical resection and reconstruction. Previously, we clinically applied an artificial trachea composed of a polypropylene mesh and collagen sponge, with a favorable postoperative course. However, the artificial trachea presents a limitation, as the mesh is not biodegradable and cannot be used in pediatric patients. Compared to a polypropylene mesh, regenerated cartilage represents an ideal material for reconstruction of the damaged trachea. The use of mesenchymal stem cells (MSCs) as a source for cartilage regeneration has gained widespread acceptance, but challenges such as the invasiveness of harvesting and limited cell supply persist. Therefore, we focused on the potential of human-induced pluripotent stem cell (hiPSC)-derived mesenchymal stem cells (iMSCs) for tracheal cartilage regeneration. In this study, we aimed to regenerate tracheal cartilage on an artificial trachea as a preliminary step to replace the polypropylene mesh. iMSCs were induced from hiPSCs through neural crest cells and transplanted with a polypropylene mesh covered with a collagen sponge into the damaged tracheal cartilage in immunodeficient rats. Human nuclear antigen (HNA)-positive cells were observed in all six rats at 4 weeks and in six out of seven rats at 12 weeks after transplantation, indicating that transplanted iMSCs survived within the tracheal cartilage defects of rats. The HNA-positive cells coexpressed SOX9, and type II collagen was detected around HNA-positive cells in four of six rats at 4 weeks and in three of seven rats at 12 weeks after transplantation, reflecting cartilage-like tissue regeneration. These results indicate that the transplanted iMSCs could differentiate into chondrogenic cells and promote tracheal cartilage regeneration. iMSC transplantation thus represents a promising approach for human tracheal reconstruction.
Collapse
Affiliation(s)
- Keisuke Mizuno
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroe Ohnishi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Kojima
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Fujimura
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Kawai
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Kitano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Eshraghi N, Javidan A, Al-Saeidi NN, Makuku R, Mortezaei A, Mirghaderi P. Mesenchymal Stem Cell–Derived Exosome Efficacy and Safety in Musculoskeletal Tissues: State of The Art and Future Directions. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2025. [DOI: 10.1007/s40883-025-00414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 03/25/2025] [Accepted: 04/05/2025] [Indexed: 06/04/2025]
|
4
|
Elhaieg A, Farag A, Koung Ngeun S, Kaneda M, Yokoi A, Mandour AS, Tanaka R. Therapeutic Potential of Local and Systemic Adipose-Derived Mesenchymal Stem Cell Injections in a Rat Model of Experimental Periodontitis: Implications for Cardiac Function. Int J Mol Sci 2025; 26:3984. [PMID: 40362223 PMCID: PMC12071214 DOI: 10.3390/ijms26093984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Periodontitis is a common inflammatory disease that not only damages periodontal tissues but also induces systemic effects, including cardiac dysfunction. Mesenchymal stem cells (MSCs) offer regenerative potential due to their ability to differentiate, modulate immune responses, and secrete anti-inflammatory factors. However, the relative efficacy of local versus systemic MSC administration remains unclear. This study evaluated the therapeutic effects of adipose-derived MSCs (AD-MSCs) in a rat model of experimental periodontitis, comparing local and systemic administration. AD-MSCs were characterized based on morphology, surface marker expression, and differentiation potential. Ligature-induced periodontitis was established over 60 days, after which AD-MSCs (1 × 106 cells) were administered either supraperiosteally (local group) or intravenously (systemic group). Periodontal regeneration was assessed through clinical, radiographic, and histopathological analyses, while cardiac function was evaluated using echocardiography and histopathological examinations. Results demonstrated that local AD-MSC administration provided superior therapeutic benefits compared to systemic delivery. Locally administered cells significantly enhanced bone regeneration, reduced inflammation, and improved periodontal tissue architecture. In contrast, systemic administration offered moderate benefits but was less effective in restoring periodontal integrity. Similarly, in the heart, local treatment resulted in greater improvements in systolic function, as indicated by enhanced ejection fraction and fractional shortening, along with reduced myocardial fibrosis. Although systemic administration also provided cardioprotective effects, diastolic dysfunction persisted in both treatment groups. In conclusion, local AD-MSC administration proved more effective in regenerating periodontal tissues and mitigating cardiac dysfunction, highlighting its potential as an optimized therapeutic strategy for periodontitis and its systemic complications.
Collapse
Affiliation(s)
- Asmaa Elhaieg
- Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (A.F.)
| | - Ahmed Farag
- Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (A.F.)
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sai Koung Ngeun
- Department of Neurophysiology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Aimi Yokoi
- Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (A.F.)
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ryou Tanaka
- Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (A.F.)
| |
Collapse
|
5
|
Keshavarz S, Alavi CE, Aghayan H, Jafari-Shakib R, Vojoudi E. Advancements in Degenerative Disc Disease Treatment: A Regenerative Medicine Approach. Stem Cell Rev Rep 2025:10.1007/s12015-025-10882-z. [PMID: 40232618 DOI: 10.1007/s12015-025-10882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Regenerative medicine represents a transformative approach to treating nucleus pulposus degeneration and offers hope for patients suffering from chronic low back pain due to disc degeneration. By focusing on restoring the natural structure and function of the nucleus pulposus rather than merely alleviating symptoms, these innovative therapies hold the potential to significantly improve patient outcomes. As research continues to advance in this field, we may soon witness a paradigm shift in how we approach spinal health and degenerative disc disease. The main purpose of this review is to provide an overview of the various regenerative approaches that target the restoration of the nucleus pulposus, a primary site for initiation of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Samaneh Keshavarz
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Cyrus Emir Alavi
- Department of Anesthesiology, Neuroscience Research Center, Avicenna University Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari-Shakib
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, P.O.Box 41635 - 3363, Rasht, Iran.
| | - Elham Vojoudi
- Regenerative Medicine, Organ Procurement and Transplantation Multidisciplinary Center, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Sakhare S, Sanap A, Bhonde R, Behera S, Potdar P, Kheur S, Kharat A. Dialysis and lyophilization of the mesenchymal stromal cell secretome for wound healing. Cytotherapy 2025; 27:544-551. [PMID: 39818643 DOI: 10.1016/j.jcyt.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND AIMS The clinical translation of mesenchymal stromal cell secretome (MSC-S) has been challenging owing to a lack of appropriate methods in downstream processing. Dialysis is an age-old method of protein purification by the exchange of small molecules through a semi-permeable membrane. In this study, we investigated the potential of three forms of umbilical cord-derived MSC secretome (UC-MSC-S)-native (S), dialyzed (DS), and lyophilized (LDS)-for wound healing applications. METHODS AND RESULTS We dialyzed the UC-MSC-S using Slide-A-Lyzer G3 Dialysis Cassettes (20K MWCO) and then lyophilized it to obtain secretome powder. The DS fraction exhibited an 86.01-fold decrease compared with S, whereas LDS showed a 613.71-fold increase in the total protein concentration. Growth factor analysis revealed a significant decrease in the levels of interleukin-6 (IL-6; 54.44-fold), angiopoietin-1 (79.56-fold), angiopoietin-2 (51.76-fold), IL-8 (54.4-fold), platelet endothelial cell adhesion molecule-1 (PECAM-1; 63.25-fold), phosphatidylinositol glycan anchor biosynthesis class F (PIGF; 40.42-fold), vascular endothelial growth factor (VEGF; 39.64-fold), and tumor necrosis factor alpha (TNF-α; 24.62-fold) after dialysis as analyzed by the LEGEND plex multi-analyte flow assay kit on a FACS analyzer. Post-lyophilization, the levels of IL-6 (392.21-fold), angiopoietin-1 (823.04-fold), angiopoietin-2 (397.69-fold), IL-8 (584.83-fold), PECAM-1 (341.28-fold), PIGF (342.85-fold), VEGF (2209.42-fold), and TNF-α (194.4-fold) were enriched in LDS. The highest wound closure (64.07%) and a significant increase in angiogenesis were seen in DLS at the concentration of 1 µg/µL of protein by wound scratch and in ovo yolk sac membrane assay, respectively. CONCLUSIONS Dialysis followed by lyophilization is a simple and cost-effective method to fractionate and enrich the bioactive components of MSC-S without compromising the bioactivity for tailor-made applications.
Collapse
Affiliation(s)
- Swapnali Sakhare
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India; Cellom Biologicals Pvt Ltd, Lab Bay 5, 100, NCL Innovation Park, Dr. Homi Bhaba Road, Pune 411008, India.
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India; Cellom Biologicals Pvt Ltd, Lab Bay 5, 100, NCL Innovation Park, Dr. Homi Bhaba Road, Pune 411008, India
| | - Shubhanath Behera
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | - Pranjali Potdar
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| |
Collapse
|
7
|
Gerini G, Mari E, Pontecorvi P, Camero S, Romano E, Ranieri D, Megiorni F, Fioramonti P, Angeloni A, Marchese C, Ceccarelli S. 3D culturing as a promising strategy to enhance the angiogenic potential of adipose stem cell-derived secretome: insights into the role of miR-145-5p/ANGPT2 axis. Stem Cell Res Ther 2025; 16:153. [PMID: 40155988 PMCID: PMC11951674 DOI: 10.1186/s13287-025-04277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cells (ASCs) represent a valid therapeutic option for clinical application in several diseases, mostly due to the paracrine activity of their secretome, exerting pro-angiogenic, antinflammatory and immunosuppressive effects. Recently, 3D culturing models has been shown to significantly influence the intrinsic characteristics of these cells, their gene expression and the secretome's composition, thus affecting ASC paracrine effects and clinical potential. This study aims to investigate the feasibility of exploiting 3D culturing as a tool to improve ASC secretome therapeutic efficacy. METHODS ASCs were cultured in monolayers via conventional two-dimensional (2D) methods or induced to form 3D spheroids by seeding them on 96-well ultra-low attachment (ULA) plates. The phenotypical characterization of 3D-ASCs was performed through immunofluorescence analyses. The composition and angiogenic potential of 3D-ASC-derived secretome was assessed by means of protein array and functional tube formation assay, respectively. We analyzed the expression profile of 92 angiogenesis-related genes in 2D versus 3D cultures through a qRT-PCR array, and GO term enrichment analysis followed by network analysis was applied to identify the top hub genes. The expression of specific angiomiRs in 3D-ASCs and their secretome was assessed by qRT-PCR. The role of miR-145-5p was investigated through transfection with specific mimics/anti-miR. RESULTS 3D-ASCs showed increased stemness, cell-cell and cell-ECM interactions with respect to 2D-cultured cells. 3D culturing increased the secretion of cytokines involved in the promotion of angiogenesis, resulting in improved angiogenic effects on HUVEC cells. Mechanistically, qRT-PCR array data indicated downregulation of angiopoietin-2 (ANGPT2) as a key factor in the 3D-ASC-secretome-induced angiogenesis. In addition, ANGPT2 was recognized as a predicted target of miR-145-5p, one of the angiomiRs found upregulated in 3D-ASCs. Depletion of miR-145-5p significantly altered ASC secretome angiogenic potential and ANGPT2 expression on HUVEC cells. CONCLUSIONS All these findings corroborate our hypothesis that 3D culturing is able to positively modulate ASC gene expression and secretome composition in terms of pro-angiogenic potential. Indeed, our study contributes to shed light on the role of the miR-145-5p/ANGPT2 axis in this process, opening the way to innovative potentiation strategies to implement secretome-based therapies, with broad clinical applications.
Collapse
Affiliation(s)
- G Gerini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - E Mari
- Department of Life Science, Health and Health Professions, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy
| | - P Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - S Camero
- Department of Life Science, Health and Health Professions, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy
| | - E Romano
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - D Ranieri
- Department of Life Science, Health and Health Professions, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy
| | - F Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - P Fioramonti
- Unit of Plastic Surgery "P. Valdoni", Department of Surgery "P. Valdoni", Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - A Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - C Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - S Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
8
|
Qiu Y, Gao S, Ding X, Lu J, Ji X, Hao W, Cheng S, Du H, Gu Y, Yu C, Cheng C, Gao X. Conditional Tnfaip6-Knockout in Inner Ear Hair Cells Does not Alter Auditory Function. Neurosci Bull 2025; 41:421-433. [PMID: 39688649 PMCID: PMC11876497 DOI: 10.1007/s12264-024-01326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/05/2024] [Indexed: 12/18/2024] Open
Abstract
Noise-induced hearing loss is a worldwide public health issue that is characterized by temporary or permanent changes in hearing sensitivity. This condition is closely linked to inflammatory responses, and interventions targeting the inflammatory gene tumor necrosis factor-alpha (TNFα) are known to mitigate cochlear noise damage. TNFα-induced proteins (TNFAIPs) are a family of translucent acidic proteins, and TNFAIP6 has a notable association with inflammatory responses. To date, there have been few reports on TNFAIP6 levels in the inner ear. To elucidate the precise mechanism, we generated transgenic mouse models with conditional knockout of Tnfaip6 (Tnfaip6 cKO). Evaluation of hair cell morphology and function revealed no significant differences in hair cell numbers or ribbon synapses between Tnfaip6 cKO and wild-type mice. Moreover, there were no notable variations in hair cell numbers or hearing function in noisy environments. Our results indicate that Tnfaip6 does not have a substantial impact on the auditory system.
Collapse
MESH Headings
- Animals
- Mice, Knockout
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Inner/pathology
- Mice
- Mice, Transgenic
- Hearing Loss, Noise-Induced
- Evoked Potentials, Auditory, Brain Stem/physiology
Collapse
Affiliation(s)
- Yue Qiu
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Song Gao
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoqiong Ding
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, 210008, China
| | - Jie Lu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Xinya Ji
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Wenli Hao
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Siqi Cheng
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Haolinag Du
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yajun Gu
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Chenjie Yu
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| | - Cheng Cheng
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| | - Xia Gao
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| |
Collapse
|
9
|
Hyun J, Lee SY, An J, Lee YB, Bhang SH. Strengthening the cellular function of dermal fibroblasts and dermal papilla cells using nanovesicles extracted from stem cells using blue light-based photobiomodulation technology. Biomater Sci 2025; 13:1209-1221. [PMID: 39902823 DOI: 10.1039/d4bm01591f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Human dermal fibroblasts (hDFs) play a critical role in skin health by producing extracellular matrix (ECM) components essential for structural stability, while hair follicle dermal papilla cells (HFDPCs) are key to hair follicle growth and regeneration. However, factors such as UV radiation, oxidative stress, and aging impair the functions of hDFs and HFDPCs, leading to decrement in ECM production and skin maintenance and hair loss conditions like alopecia. Recent advances in nanovesicles (NVs) derived from human adipose-derived stem cells (hADSCs) have shown an innovative way in the regenerative medicine field, particularly with promise for enhancing the functionality of diverse cell types. NVs, filled with diverse bioactive molecules, are non-immunogenic, biologically stable, and capable of promoting cellular activities. To further enhance the therapeutic potential of NVs, photobiomodulation (PBM) using blue light has emerged as a promising application. Optimized blue light irradiation can induce moderate levels of reactive oxygen species production in hADSCs, activating signaling pathways that upregulate angiogenic and regenerative markers in hADSCs. In this study, blue light-irradiated NVs demonstrated superior efficacy in promoting hDF proliferation, ECM synthesis, and the functionality of HFDPCs, resulting in enhanced skin maintenance and hair follicle regeneration. This approach presents a safer and more efficient way for treating skin and hair disorders, highlighting the potential use of blue light-irradiated NVs as an innovative therapeutic strategy.
Collapse
Affiliation(s)
- Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Sang Yoon Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jiseon An
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - You Bin Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
10
|
Didamoony MA, Soubh AA, Ahmed LA. Cutting-edge insights into liver fibrosis: advanced therapeutic strategies and future perspectives using engineered mesenchymal stem cell-derived exosomes. Drug Deliv Transl Res 2025:10.1007/s13346-024-01784-7. [PMID: 39853531 DOI: 10.1007/s13346-024-01784-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2024] [Indexed: 01/26/2025]
Abstract
Liver fibrosis is still a serious health concern worldwide, and there is increasing interest in mesenchymal stem cells (MSCs) with tremendous potential for treating this disease because of their regenerative and paracrine effects. Recently, many researches have focused on using the released exosomes (EXOs) from stem cells to treat liver fibrosis rather than using parent stem cells themselves. MSC-derived EXOs (MSC-EXOs) have demonstrated favourable outcomes similar to cell treatment in terms of regenerative, immunomodulatory, anti-apoptotic, anti-oxidant, anti-necroptotic, anti-inflammatory and anti-fibrotic actions in several models of liver fibrosis. EXOs are superior to their parent cells in several terms, including lower immunogenicity and risk of tumour formation. However, maintaining the stability and efficacy of EXOs after in vivo transplantation remains a major challenge in their clinical applicability. Therefore, several strategies have been applied in EXOs engineering, such as parental cell modification or modifying EXOs directly to achieve optimum performance of EXOs in treating liver fibrosis. Herein, we discuss the underlying mechanisms of liver fibrosis with an overview of the available therapies, among them EXOs. We also summarise the recent developments in improving the effectiveness of EXOs with the advantages and limitations of these approaches in terms of the upcoming clinical applications.
Collapse
Affiliation(s)
- Manar A Didamoony
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt.
| | - Ayman A Soubh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12451, Egypt
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
11
|
Da Silva K, Kumar P, Choonara YE. The paradigm of stem cell secretome in tissue repair and regeneration: Present and future perspectives. Wound Repair Regen 2025; 33:e13251. [PMID: 39780313 PMCID: PMC11711308 DOI: 10.1111/wrr.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
As the number of patients requiring organ transplants continues to rise exponentially, there is a dire need for therapeutics, with repair and regenerative properties, to assist in alleviating this medical crisis. Over the past decade, there has been a shift from conventional stem cell treatments towards the use of the secretome, the protein and factor secretions from cells. These components may possess novel druggable targets and hold the key to profoundly altering the field of regenerative medicine. Despite the progress in this field, clinical translation of secretome-containing products is limited by several challenges including but not limited to ensuring batch-to-batch consistency, the prevention of further heterogeneity, production of sufficient secretome quantities, product registration, good manufacturing practice protocols and the pharmacokinetic/pharmacodynamic profiles of all the components. Despite this, the secretome may hold the key to unlocking the regenerative blockage scientists have encountered for years. This review critically analyses the secretome derived from different cell sources and used in several tissues for tissue regeneration. Furthermore, it provides an overview of the current delivery strategies and the future perspectives for the secretome as a potential therapeutic. The success and possible shortcomings of the secretome are evaluated.
Collapse
Affiliation(s)
- Kate Da Silva
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
12
|
Wang Y, Xiong J, Ouyang K, Ling M, Luo J, Sun J, Xi Q, Chen T, Zhang Y. Extracellular vesicles: From large-scale production and engineering to clinical applications. J Tissue Eng 2025; 16:20417314251319474. [PMID: 40322740 PMCID: PMC12048759 DOI: 10.1177/20417314251319474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 05/08/2025] Open
Abstract
Extracellular vesicles (EVs) have emerged as a promising strategy for treating a wide spectrum of pathologies, as they can deliver their cargo to recipient cells and regulate the signaling pathway of these cells to modulate their fate. Despite the great potential of EVs in clinical applications, their low yield and the challenges of cargo loading remain significant obstacles, hindering their transition from experimental research to clinical practice. Therefore, promoting EV release and enhancing EV cargo-loading are promising fields with substantial research potential and broad application prospects. In this review, we summarize the clinical applications of EVs, the methods and technologies for their large-scale production, engineering, and modification, as well as the challenges that must be addressed during their development. We also discuss the future perspectives of this exciting field of research to facilitate its transformation from bench to clinical reality.
Collapse
Affiliation(s)
- Yuxuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiali Xiong
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Kun Ouyang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mingwang Ling
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junyi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiajie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Moratin H, Mache I, Goncalves M, Ehret Kasemo T, Stöth M, Meyer TJ, Hackenberg S, Scherzad A, Herrmann M. Preconditioning with Wound Fluid Enhances Immunosuppressive Properties of Mesenchymal Stromal Cells In Vitro. Int J Mol Sci 2024; 26:293. [PMID: 39796154 PMCID: PMC11719632 DOI: 10.3390/ijms26010293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Immunosuppression is one key feature of mesenchymal stromal cells (MSCs) that has high expectations for therapeutic use. The influence of pro-inflammatory stimuli can modify the characteristics of MSCs and enhance immunosuppressive properties. The local postoperative environment contains cytokines, MSCs, and immune cells in high quantities, and their mutual influence is still unclear. Knowledge of in vivo processes is pivotal for potential therapeutic applications, and therefore, the aim of this study was to investigate the influence of wound fluid (WF) on the immunomodulatory potential of MSCs. CD4+ cells were co-cultured with native or WF-preconditioned MSCs for 5 days. CFSE staining revealed significant suppression of T cell proliferation after co-culture that was even more distinct in co-culture with WF-MSCs. The concentration of IDO-1, TGF-β1 and IFN-γ was higher while TNF-α was reduced in co-culture supernatants, indicating a transition to an anti-inflammatory milieu. In summary, the results provide evidence that the influence of WF alters the immunomodulatory potential of MSCs. These findings should serve as the basis for further investigations with a focus on T cell subpopulations.
Collapse
Affiliation(s)
- Helena Moratin
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Isabel Mache
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Miguel Goncalves
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Totta Ehret Kasemo
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Manuel Stöth
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Till Jasper Meyer
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Marietta Herrmann
- IZKF Research Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany
- Department of Orthopedics, Bernhard-Heine-Center for Locomotion Research, University of Wuerzburg, D-97074 Wuerzburg, Germany
| |
Collapse
|
14
|
Roseti L, Cavallo C, Desando G, D’Alessandro M, Grigolo B. Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side. Pharmaceutics 2024; 16:1622. [PMID: 39771600 PMCID: PMC11677864 DOI: 10.3390/pharmaceutics16121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair. Objectives: This review aims to outline biological and clinical advances, from the use of mature adult chondrocytes to cell-derived products, going through progenitor cells derived from bone marrow or adipose tissue and their concentrates for articular cartilage repair. Moreover, it highlights the relevance of gene therapy as a valuable tool for successfully implementing current regenerative treatments, and overcoming the limitations of the local delivery of growth factors. Conclusions: Finally, this review concludes with an outlook on the importance of understanding the role and mechanisms of action of the different cell compounds with a view to implementing personalized treatments.
Collapse
Affiliation(s)
| | - Carola Cavallo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.); (G.D.); (M.D.); (B.G.)
| | | | | | | |
Collapse
|
15
|
Zhang S, Guo Y, Lu Y, Liu F, Heng BC, Deng X. The considerations on selecting the appropriate decellularized ECM for specific regeneration demands. Mater Today Bio 2024; 29:101301. [PMID: 39498148 PMCID: PMC11532911 DOI: 10.1016/j.mtbio.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
An ideal biomaterial should create a customized tissue-specific microenvironment that can facilitate and guide the tissue repair process. Due to its good biocompatibility and similar biochemical properties to native tissues, decellularized extracellular matrix (dECM) generally yields enhanced regenerative outcomes, with improved morphological and functional recovery. By utilizing various decellularization techniques and post-processing protocols, dECM can be flexibly prepared in different states from various sources, with specifically customized physicochemical properties for different tissues. To initiate a well-orchestrated tissue-regenerative response, dECM exerts multiple effects at the wound site by activating various overlapping signaling pathways to promote cell adhesion, proliferation, and differentiation, as well as suppressing inflammation via modulation of various immune cells, including macrophages, T cells, and mastocytes. Functional tissue repair is likely the main aim when employing the optimized dECM biomaterials. Here, we review the current applications of different kinds of dECMs in an attempt to improve the efficiency of tissue regeneration, highlighting key considerations on developing dECM for specific tissue engineering applications.
Collapse
Affiliation(s)
- Shihan Zhang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yixuan Lu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Fangyong Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- NMPA Key Laboratory for Dental Materials, Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
16
|
Zhang WJ, Chen D. Mesenchymal stem cell transplantation plays a role in relieving cancer pain. Front Pharmacol 2024; 15:1483716. [PMID: 39679363 PMCID: PMC11637888 DOI: 10.3389/fphar.2024.1483716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Tumors can invade, compress, and damage nerves, leading to persistent pain and seriously affecting the quality of life of patients. However, their treatment is challenging. Sensitization of peripheral receptors, abnormal activity of primary sensory neurons, activation of glial cells, enhanced inflammatory responses, and sensory information transmission contribute towards cancer pain. Therefore, considerable attention has been paid to exploring prospective methods to inhibit the occurrence of these factors and relieve cancer pain. Studies on different types of pains have revealed that the transplantation of functionally active cells into the host has the pharmacological effect of producing analgesia. Mesenchymal stem cells (MSCs) can act as small active pumps to reduce the expression of pain-related molecules and produce analgesic effects. Moreover, MSCs can establish complex communication networks with non-tumor and cancer cells in the microenvironment, interact with each other, and can be used as destinations for inflammation and tumor sites, affecting their potential for invasion and metastasis. This emphasizes the key role of MSCs in cancer and pain management. The pain relief mechanisms of MSCs include neuronutrition, neural protection, neural network reconstruction, immune regulation, and improvement of the inflammatory microenvironment around the nerve injury. All of these are beneficial for the recovery of injured or stimulated nerves and the reconstruction of neural function, and play a role in relieving pain. The pain treatment strategy of cell transplantation is to repair injured nerves and produce analgesic pharmacological properties that are different from those of painkillers and other physiotherapies. Although the therapeutic role of MSCs in cancer and pain is in its early stages, the therapeutic value of MSCs for cancer pain has great prospects. Therefore, in this study, we explored the possible mechanism between MSCs and cancer pain, the potential therapeutic role of therapeutic cells in cancer pain, and some problems and challenges.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| | - Dingyi Chen
- Emergency department, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| |
Collapse
|
17
|
Artamonov MY, Sokov EL. Intraosseous Delivery of Mesenchymal Stem Cells for the Treatment of Bone and Hematological Diseases. Curr Issues Mol Biol 2024; 46:12672-12693. [PMID: 39590346 PMCID: PMC11592824 DOI: 10.3390/cimb46110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Mesenchymal stem cells are used most in regenerative medicine due to their capacities in differentiation and immune modulation. The intraosseous injection of MSC into the bone has been recommended because of expected outcomes for retention, bioavailability, and enhanced therapeutic efficacy, particularly in conditions involving the bone, such as osteoporosis and osteonecrosis. A review of the intraosseous delivery of mesenchymal stem cells in comparison with intravenous and intra-arterial delivery methods will be subjected to critical examination. This delivery mode fares better regarding paracrine signaling and immunomodulation attributes, which are the cornerstone of tissue regeneration and inflammation reduction. The local complications and technical challenges still apply with this method. This study was more focused on further research soon to be conducted to further elucidate long-term safety and efficacy of intraosseous mesenchymal stem cell therapy. Though much has been achieved with very impressive progress in this field, it is worth noting that more studies need to be put into place so that this technique can be established as a routine approach, especially with further research in biomaterials, gene therapy, and personalized medicine.
Collapse
Affiliation(s)
| | - Evgeniy L. Sokov
- Department of Algology and Rehabilitation, Peoples’ Friendship University, Moscow 117198, Russia;
| |
Collapse
|
18
|
Hegde M, Singh AK, Kannan S, Kolkundkar U, Seetharam RN. Therapeutic Applications of Engineered Mesenchymal Stromal Cells for Enhanced Angiogenesis in Cardiac and Cerebral Ischemia. Stem Cell Rev Rep 2024; 20:2138-2154. [PMID: 39305405 PMCID: PMC11554727 DOI: 10.1007/s12015-024-10787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 11/12/2024]
Abstract
Ischemic diseases are characterized by obstruction of blood flow to the respective organs, of which ischemia of the heart and brain are the most prominent manifestations with shared pathophysiological mechanisms and risk factors. While most revascularization therapies aim to restore blood flow, this can be challenging due to the limited therapeutic window available for treatment approaches. For a very long time, mesenchymal stromal cells have been used to treat cerebral and cardiac ischemia. However, their application is restricted either by inefficient mode of delivery or the low cell survival rates following implantation into the ischemic microenvironment. Nonetheless, several studies are currently focusing on using of mesenchymal stromal cells engineered to overexpress therapeutic genes as a cell-based gene therapy to restore angiogenesis. This review delves into the utilization of MSCs for angiogenesis and the applications of engineered MSCs for the treatment of cardiac and cerebral ischemia. Moreover, the safety issues related to the genetic modification of MSCs have also been discussed.
Collapse
Affiliation(s)
- Madhavi Hegde
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Suresh Kannan
- Stempeutics Research Pvt. Ltd., 3rd Floor, Manipal Hospitals Whitefield #143, EPIP Industrial Area, ITPL Main Road, Bangalore, 560 048, India
| | - Udaykumar Kolkundkar
- Stempeutics Research Pvt. Ltd., 3rd Floor, Manipal Hospitals Whitefield #143, EPIP Industrial Area, ITPL Main Road, Bangalore, 560 048, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
19
|
Saikia B, Dhanushkodi A. Engineered exosome therapeutics for neurodegenerative diseases. Life Sci 2024; 356:123019. [PMID: 39209250 DOI: 10.1016/j.lfs.2024.123019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
An increase in life expectancy comes with a higher risk for age-related neurological and cognitive dysfunctions. Given the psycho-socioeconomic burden due to unhealthy aging in the coming decades, the United Nations has declared 2021-2030 as a decade of healthy aging. In this line, multipotent mesenchymal stromal cell-based therapeutics received special interest from the research community. Based on decades of research on cell therapy, a consensus has emerged that the therapeutic effects of cell therapy are due to the paracrine mechanisms rather than cell replacement. Exosomes, a constituent of the secretome, are nano-sized vesicles that have been a focus of intense research in recent years as a possible therapeutic agent or as a cargo to deliver drugs of interest into the central nervous system to induce neurogenesis, reduce neuroinflammation, confer neuroregeneration/neuroprotection, and improve cognitive and motor functions. In this review, we have discussed the neuroprotective properties of exosomes derived from adult mesenchymal stem cells, with a special focus on the role of exosomal miRNAs. We also reviewed various strategies to improve exosome production and their content for better therapeutic effects. Further, we discussed the utilization of ectomesenchymal stem cells like dental pulp stem cells and their exosomes in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Biplob Saikia
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, India
| | - Anandh Dhanushkodi
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
20
|
Lumban Gaol LM, Purba A, Diposarosa R, Pratiwi YS. Role of Hypoxic Secretome from Mesenchymal Stem Cells in Enhancing Tissue Repair: Regulatory Effects on HIF-1α, VEGF, and Fibroblast in a Sphincterotomy Rat Model. J Inflamm Res 2024; 17:7463-7484. [PMID: 39464333 PMCID: PMC11505569 DOI: 10.2147/jir.s480061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Background Fecal incontinence (FI) is the inability to control bowel movements, resulting in fecal leakage. If left untreated, FI can seriously impact the long-term well-being of individuals affected. Recently, using secretome has become a promising new treatment method. The secretome combines growth factors released outside cells during stem cell development, such as mesenchymal stem cells. It consists of soluble proteins, nucleic acids, fats, and extracellular vesicles, which contribute to different cell processes. The primary aim is to assess the impact of hypoxic secretome administration on accelerating wound healing through the HIF-1α pathway in a post-sphincterotomy rat model. Methods The study was conducted with two distinct groups of 10 rats each, the control and treatment groups, which were injected with hypoxic secretome at 0.3 mL. The inclusion criteria for the rats were as follows: male gender, belonging to the Sprague-Dawley strain, aged between 12 to 16 weeks, with an average body weight ranging from 240 to 250 grams. Results There was an increase in HIF-1α gene expression in both groups. The treatment group 37 was significantly higher on day 42 (p = 0.001). VEGF increased significantly in the treatment 38 group on day 42 (p = 0.015). The neovascularization score increased significantly in the treatment 39 group during the first 24 hours (p = 0.004). The fibroblast score increased significantly in the 40 treatment group in the first 24 hours (p = 0.000) and 42 days (p = 0.035). After being given secretome, there was a higher increase in % collagen area and collagen area (µm2) in the treatment group compared to the control group (27,77 vs 11.01) and (419.027,66 vs 186.694,16). Conclusion The use of hypoxic secretome has a significant effect as a choice for the treatment of anal sphincter injury after sphincterotomy through the HIF-1α-VEGF-Fibroblast pathway.
Collapse
Affiliation(s)
- Leecarlo Millano Lumban Gaol
- Faculty of Medicine Padjadjaran University, Bandung, Indonesia
- Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
- Faculty of Medicine Krida Wacana Christian University, Jakarta, Indonesia
| | - Ambrosius Purba
- Faculty of Medicine Padjadjaran University, Bandung, Indonesia
| | - Rizki Diposarosa
- Faculty of Medicine Padjadjaran University, Bandung, Indonesia
- Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | | |
Collapse
|
21
|
Castilla-Casadiego DA, Loh DH, Pineda-Hernandez A, Rosales AM. Stimuli-Responsive Substrates to Control the Immunomodulatory Potential of Stromal Cells. Biomacromolecules 2024; 25:6319-6337. [PMID: 39283807 PMCID: PMC11506505 DOI: 10.1021/acs.biomac.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Mesenchymal stromal cells (MSCs) have broad immunomodulatory properties that range from regulation, proliferation, differentiation, and immune cell activation to secreting bioactive molecules that inhibit inflammation and regulate immune response. These properties provide MSCs with high therapeutic potency that has been shown to be relevant to tissue engineering and regenerative medicine. Hence, researchers have explored diverse strategies to control the immunomodulatory potential of stromal cells using polymeric substrates or scaffolds. These substrates alter the immunomodulatory response of MSCs, especially through biophysical cues such as matrix mechanical properties. To leverage these cell-matrix interactions as a strategy for priming MSCs, emerging studies have explored the use of stimuli-responsive substrates to enhance the therapeutic value of stromal cells. This review highlights how stimuli-responsive materials, including chemo-responsive, microenvironment-responsive, magneto-responsive, mechano-responsive, and photo-responsive substrates, have specifically been used to promote the immunomodulatory potential of stromal cells by controlling their secretory activity.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Darren H Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Mand M, Hahn O, Meyer J, Peters K, Seitz H. Investigation of the Effect of High Shear Stress on Mesenchymal Stem Cells Using a Rotational Rheometer in a Small-Angle Cone-Plate Configuration. Bioengineering (Basel) 2024; 11:1011. [PMID: 39451387 PMCID: PMC11504001 DOI: 10.3390/bioengineering11101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Within the healthy human body, cells reside within the physiological environment of a tissue compound. Here, they are subject to constant low levels of mechanical stress that can influence the growth and differentiation of the cells. The liposuction of adipose tissue and the subsequent isolation of mesenchymal stem/stromal cells (MSCs), for example, are procedures that induce a high level of mechanical shear stress. As MSCs play a central role in tissue regeneration by migrating into regenerating areas and driving regeneration through proliferation and tissue-specific differentiation, they are increasingly used in therapeutic applications. Consequently, there is a strong interest in investigating the effects of shear stress on MSCs. In this study, we present a set-up for applying high shear rates to cells based on a rotational rheometer with a small-angle cone-plate configuration. This set-up was used to investigate the effect of various shear stresses on human adipose-derived MSCs in suspension. The results of the study show that the viability of the cells remained unaffected up to 18.38 Pa for an exposure time of 5 min. However, it was observed that intense shear stress damaged the cells, with longer treatment durations increasing the percentage of cell debris.
Collapse
Affiliation(s)
- Mario Mand
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany
| | - Olga Hahn
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany; (O.H.); (K.P.)
| | | | - Kirsten Peters
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany; (O.H.); (K.P.)
- Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| | - Hermann Seitz
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
23
|
Abid AI, Conzatti G, Toti F, Anton N, Vandamme T. Mesenchymal stem cell-derived exosomes as cell free nanotherapeutics and nanocarriers. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 61:102769. [PMID: 38914247 DOI: 10.1016/j.nano.2024.102769] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Many strategies for regenerating the damaged tissues or degenerating cells are employed in regenerative medicine. Stem cell technology is a modern strategy of the recent approaches, particularly the use of mesenchymal stem cells (MCSs). The ability of MSCs to differentiate as well as their characteristic behaviour as paracrine effector has established them as key elements in tissue repair. Recently, extracellular vesicles (EVs) shed by MSCs have emerged as a promising cell free therapy. This comprehensive review encompasses MSCs-derived exosomes and their therapeutic potential as nanotherapeutics. We also discuss their potency as drug delivery nano-carriers in comparison with liposomes. A better knowledge of EVs behaviour in vivo and of their mechanism of action are key to determine parameters of an optimal formulation in pilot studies and to establish industrial processes.
Collapse
Affiliation(s)
- Ali Imran Abid
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France
| | - Guillaume Conzatti
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France.
| | - Florence Toti
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Nicolas Anton
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Thierry Vandamme
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France.
| |
Collapse
|
24
|
Pinheiro-Machado E, Faas MM, de Haan BJ, Moers C, Smink AM. Culturing Conditions Dictate the Composition and Pathways Enrichment of Human and Rat Perirenal Adipose-Derived Stromal Cells' Secretomes. Stem Cell Rev Rep 2024; 20:1869-1888. [PMID: 38922529 PMCID: PMC11445368 DOI: 10.1007/s12015-024-10748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Understanding the impact of various culturing strategies on the secretome composition of adipose-derived stromal cells (ASC) enhances their therapeutic potential. This study investigated changes in the secretome of perirenal ASC (prASC) under different conditions: normoxia, cytokine exposure, high glucose, hypoxia, and hypoxia with high glucose. Using mass spectrometry and enrichment clustering analysis, we found that normoxia enriched pathways related to extracellular matrix (ECM) organization, platelet degranulation, and insulin-like growth factor (IGF) transport and uptake. Cytokine exposure influenced metabolism, vascular development, and protein processing pathways. High glucose affected the immune system, metabolic processes, and IGF transport and uptake. Hypoxia impacted immune and metabolic processes and protein processing. Combined hypoxia and high glucose influenced the immune system, IGF transport and uptake, and ECM organization. Our findings highlight the potential of manipulating culturing conditions to produce secretomes with distinct protein and functional profiles, tailoring therapeutic strategies accordingly.
Collapse
Affiliation(s)
- Erika Pinheiro-Machado
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen, 9713 GZ, The Netherlands
| | - Marijke M Faas
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen, 9713 GZ, The Netherlands
| | - Bart J de Haan
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen, 9713 GZ, The Netherlands
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen, 9713 GZ, The Netherlands.
| |
Collapse
|
25
|
Hung M, Sadri M, Katz M, Schwartz C, Mohajeri A. A Systematic Review of Stem Cell Applications in Maxillofacial Regeneration. Dent J (Basel) 2024; 12:315. [PMID: 39452443 PMCID: PMC11505667 DOI: 10.3390/dj12100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Regenerative medicine is revolutionizing oral and maxillofacial surgeries with stem cells, particularly mesenchymal stem cells, for tissue and bone regeneration. Despite promising in-vitro results, human trials are limited. A systematic review is needed to evaluate stem cell efficacy in maxillofacial issues, aiming to improve surgical outcomes and patient satisfaction. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines, this review included peer-reviewed articles (2013-2023) on stem cells in oral surgery, excluding non-English publications, abstracts, reviews, and opinion pieces. Searches were conducted in PubMed, Web of Science, OVID, Cochrane, Dentistry & Oral Sciences Source-Ebscohost, and Scopus. Two authors independently screened titles and abstracts, resolving disagreements by consensus. Full-text analysis involved extracting key data, verified by a secondary reviewer and additional quality checks. RESULTS From 3540 initial articles, 2528 were screened after removing duplicates, and 7 met the inclusion criteria after excluding irrelevant studies. Key themes included the safety and efficacy of stem cell therapy, and bone regeneration and quality. Studies predominantly used mesenchymal stem cells. Findings showed positive outcomes in clinical safety and effectiveness and significant potential for bone regeneration. CONCLUSIONS This systematic review highlights the potential of stem cell therapies in maxillofacial applications, supporting their safety, efficacy, and bone regeneration capabilities. Further research is needed to standardize protocols and confirm long-term benefits.
Collapse
Affiliation(s)
- Man Hung
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
- Division of Public Health, University of Utah, Salt Lake City, UT 84108, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
- The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mahsa Sadri
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Melanie Katz
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Connor Schwartz
- Library, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Amir Mohajeri
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| |
Collapse
|
26
|
Akabane M, Imaoka Y, Kawashima J, Endo Y, Schenk A, Sasaki K, Pawlik TM. Innovative Strategies for Liver Transplantation: The Role of Mesenchymal Stem Cells and Their Cell-Free Derivatives. Cells 2024; 13:1604. [PMID: 39404368 PMCID: PMC11475694 DOI: 10.3390/cells13191604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Despite being the standard treatment for end-stage liver disease, liver transplantation has limitations like donor scarcity, high surgical costs, and immune rejection risks. Mesenchymal stem cells (MSCs) and their derivatives offer potential for liver regeneration and transplantation. MSCs, known for their multipotency, low immunogenicity, and ease of obtainability, can differentiate into hepatocyte-like cells and secrete bioactive factors that promote liver repair and reduce immune rejection. However, the clinical application of MSCs is limited by risks such as aberrant differentiation and low engraftment rates. As a safer alternative, MSC-derived secretomes and extracellular vesicles (EVs) offer promising therapeutic benefits, including enhanced graft survival, immunomodulation, and reduced ischemia-reperfusion injury. Current research highlights the efficacy of MSC-derived therapies in improving liver transplant outcomes, but further studies are necessary to standardize clinical applications. This review highlights the potential of MSCs and EVs to address key challenges in liver transplantation, paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Miho Akabane
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yuki Imaoka
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Jun Kawashima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yutaka Endo
- Department of Transplant Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Austin Schenk
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Kazunari Sasaki
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| |
Collapse
|
27
|
Pi Y, Zuo H, Wang Y, Zheng W, Zhou H, Deng L, Song H. Oleanolic acid alleviating ischemia-reperfusion injury in rat severe steatotic liver via KEAP1/NRF2/ARE. Int Immunopharmacol 2024; 138:112617. [PMID: 38972213 DOI: 10.1016/j.intimp.2024.112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
Severe steatosis in donor livers is contraindicated for transplantation due to the high risk of ischemia-reperfusion injury (IRI). Although Ho-1 gene-modified bone marrow mesenchymal stem cells (HO-1/BMMSCs) can mitigate IRI, the role of gut microbiota and metabolites in this protection remains unclear. This study aimed to explore how gut microbiota and metabolites contribute to HO-1/BMMSCs-mediated protection against IRI in severe steatotic livers. Using rat models and cellular models (IAR20 and THLE-2 cells) of steatotic liver IRI, this study revealed that ischemia-reperfusion led to significant liver and intestinal damage, heightened immune responses, impaired liver function, and altered gut microbiota and metabolite profiles in rats with severe steatosis, which were partially reversed by HO-1/BMMSCs transplantation. Integrated microbiome and metabolome analyses identified gut microbial metabolite oleanolic acid as a potential protective agent against IRI. Experimental validation showed that oleanolic acid administration alone alleviated IRI and inhibited ferroptosis in both rat and cellular models. Network pharmacology and molecular docking implicated KEAP1/NRF2 pathway as a potential target of oleanolic acid. Indeed, OA experimentally upregulated NRF2 activity, which underlies its inhibition of ferroptosis and protection against IRI. The gut microbial metabolite OA protects against IRI in severe steatotic liver by promoting NRF2 expression and activity, thereby inhibiting ferroptosis.
Collapse
Affiliation(s)
- Yilin Pi
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China.
| | - Huaiwen Zuo
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China.
| | - Yuxin Wang
- School of Medicine, Nankai University, Tianjin 300071, PR China.
| | - Weiping Zheng
- Department of Liver Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory of Critical Care Medicine, Tianjin 300192, PR China.
| | - Huiyuan Zhou
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China.
| | - Lamei Deng
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China.
| | - Hongli Song
- Department of Liver Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, PR China; Tianjin Key Laboratory of Organ Transplantation, Tianjin 300192, PR China.
| |
Collapse
|
28
|
Khastar S, Sattari M. Examining the level of inflammatory cytokines TNF-α and IL-8 produced by osteoblasts differentiated from dental pulp stem cells. AMERICAN JOURNAL OF STEM CELLS 2024; 13:225-232. [PMID: 39308765 PMCID: PMC11411251 DOI: 10.62347/cbmw4366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND The use of dental pulp stem cells (DPSCs) in clinical applications instead of bone marrow stem cells is a very promising method capable of significantly changing the future of medical treatment. If further studies prove that DPSCs and the cells differentiated from them do not stimulate the immune system, these cells can be used more reliably in treatment of autoimmune diseases. METHODS In this research, we examined the isolated DPSCs and differentiated osteoblasts from them in medium without inflammatory stimulants in terms of TLR3 and TLR4 gene expression and inflammatory cytokines, including TNF-α and IL-8 using qRT-PCR, and measured the concentration of inflammatory cytokines IL-8 and TNF-α produced by these two types of cells through ELISA. RESULTS The obtained results showed that the expression level of inflammatory cytokines IL-8 and TNF-α in differentiated osteoblasts is significantly different as compared with DPSCs. However, no significant difference was observed in TLR-4 expression between two groups. An increase in TNF-α expression level was found to directly correlate with an increase in the expression of IL-8. The concentration of cytokine TNF-α in osteoblasts was significantly higher than that of IL-8 in DPSCs. CONCLUSION In comparison to DPSCs, osteoblast cells first lead to inflammatory responses. These responses reduce overtime. However, DPSCs retain their immunomodulatory properties and do not show inflammatory responses.
Collapse
Affiliation(s)
- Sahar Khastar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Mandana Sattari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences Tehran, Iran
| |
Collapse
|
29
|
Park SM, Oh YH, Lim GH, Yun GH, Kim KB, An JH, Seo KW, Youn HY. Deferoxamine preconditioning of canine stem cell derived extracellular vesicles alleviates inflammation in an EAE mouse model through STAT3 regulation. Sci Rep 2024; 14:19273. [PMID: 39164295 PMCID: PMC11335858 DOI: 10.1038/s41598-024-68853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Extracellular vesicles (EVs) from mesenchymal stem cells (MSCs), specifically those preconditioned with deferoxamine (DFO) in canine adipose tissue-derived MSCs (cAT-MSCs), were explored for treating autoimmune diseases. This study assessed the effects of DFO-preconditioned EVs (EVDFO) in an experimental autoimmune encephalomyelitis (EAE) mouse model. cAT-MSCs were treated with DFO for 48 h, after which EVs were isolated. EAE mice received intranasal EV or EVDFO treatments and were euthanized following histopathologic analysis; RNA and protein expression levels were measured. Histologically, EV and EVDFO groups showed a significant reduction in inflammatory cell infiltration and demyelination. Immunofluorescence revealed increased CD206 and Foxp3 expression, indicating elevated M2 macrophages and regulatory T (Treg) cells, particularly in the EVDFO group. Treg cells also notably increased in the spleen of EVDFO -treated mice. STAT3 and pSTAT3 proteins were upregulated in the EAE groups compared to the naïve group. However, following EV treatment, STAT3 expression decreased compared to the EAE group, whereas pSTAT3 expression was similar in both the EV and EAE groups. In conclusion, EVDFO treatment resulted in reduced STAT3 expression, suggesting its role in T cell regulation and the potential of EVDFO in modulating the STAT3 pathway for reducing inflammation more effectively than non-preconditioned EVs.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/transplantation
- STAT3 Transcription Factor/metabolism
- Mice
- Dogs
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Deferoxamine/pharmacology
- Deferoxamine/therapeutic use
- Mesenchymal Stem Cells/metabolism
- Inflammation/pathology
- Female
- Disease Models, Animal
Collapse
Affiliation(s)
- Su-Min Park
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong-Hun Oh
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ga-Hyun Lim
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ga-Hee Yun
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Bo Kim
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Kyung-Won Seo
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
30
|
He Y, Tang Y, Zeng B, Chen X, Yuan L, Lu Y, Du W, Li R, Han Y, Deng F, Yu D, Zhao W. Black phosphorus quantum dot-modified ADSCs as a novel therapeutic for periodontitis bone loss coupling of osteogenesis and osteoimmunomodulation. Mater Today Bio 2024; 27:101122. [PMID: 38975241 PMCID: PMC11225909 DOI: 10.1016/j.mtbio.2024.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 07/09/2024] Open
Abstract
Alveolar bone defect repair remains a persistent clinical challenge for periodontitis treatment. The use of peripheral functional seed cells is a hot topic in periodontitis. Herein, we explored the cellular behaviors and osteogenic ability of adipose-derived mesenchymal stem cells (ADSCs) treated with black phosphorus quantum dots (BPQDs). Additionally, macrophage polarization, osteogenic effects and angiogenesis were investigated through the paracrine pathway regulated by BPQD-modified ADSCs. Our results demonstrated that BPQDs showed good biocompatibility with ADSCs and BPQD-modified ADSCs could improve the bone repair in vivo inflammatory microenvironment by regulating osteogenesis and osteoimmunomodulation. The BPQDs increased the osteogenic differentiation of ADSCs via the Wnt/β-catenin and BMP2/SMAD5/Runx2 signaling pathway. In addition, BPQD-modified ADSCs promoted the osteogenic effect of BMSCs and facilitated the polarization of macrophages from M1 towards M2 phenotype transformation through the paracrine pathway in the periodontitis microenvironment. This strategy provides a novel idea for treatment of alveolar bone defects for periodontitis in the foreseeable future.
Collapse
Affiliation(s)
- Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuquan Tang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510080, China
| | - Binghui Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Xun Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Linyu Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunyang Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Weidong Du
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaolin Han
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
31
|
Ahmed LA, Al-Massri KF. Exploring the Role of Mesenchymal Stem Cell-Derived Exosomes in Diabetic and Chemotherapy-Induced Peripheral Neuropathy. Mol Neurobiol 2024; 61:5916-5927. [PMID: 38252384 PMCID: PMC11249772 DOI: 10.1007/s12035-024-03916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
Diabetic and chemotherapy-induced peripheral neuropathies are known for long-term complications that are associated with uncontrolled hyperglycemia and cancer treatment, respectively. Peripheral neuropathy often requires long-term therapy and could persist after treatment provoking detrimental effects on the patient's quality of life. Despite continuous drug discoveries, development of efficient therapies is still needed for the significant management of diabetic and chemotherapy-induced peripheral neuropathy. Exosomes are nanosized extracellular vesicles that show great promise recently in tissue regeneration and injury repair compared to their parent stem cells. Herein, we provided a summary for the use of mesenchymal stem cell-derived exosomes in diabetic and chemotherapy-induced peripheral neuropathy in addition to recent advancements and ways proposed for the enhancement of their efficacy in these diseases.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| | - Khaled F Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| |
Collapse
|
32
|
Esquivel D, Mishra R, Srivastava A. Potential use of stem cell therapies for treating osteoarthritis and rheumatoid arthritis. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:72. [PMID: 39118961 PMCID: PMC11304433 DOI: 10.21037/atm-23-1951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/13/2023] [Indexed: 08/10/2024]
Abstract
Arthritis, defined as a chronic inflammation often accompanied by swelling of one or more joints, encompasses more than 100 conditions that affect the joints, tissues around them as well as other connective tissues. This condition causes severe discomfort compromising the quality of life drastically, and thereby inflicts severe financial and social impact on the people affected. The incidence rate of arthritis is increasing all around the globe including the United States every year. In general, osteoarthritis (OA) affects more people in comparison to rheumatoid arthritis (RA). In the USA itself, more than 14 million people are affected by OA in comparison to 1.4 million people suffering from RA. In both conditions, elevated levels of proinflammatory cytokines have been recorded, this incidence generally precedes the cartilage degradation observed in the patients. The use of mesenchymal stem cells (MSCs) has proven to be a safe and efficient therapeutic option for treating many inflammation-rooted pathological conditions. Evidence suggests that MSCs down-regulate the effects of proinflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-1B, IL-2, and IL-17, and help restore the functions of immune cells. In addition, these cells promote the polarization of M2 phenotype macrophages, thus contributing to the suppression of the inflammatory process and consequentially to cartilage regeneration. Preclinical and clinical trials have proven the safety and effectiveness of this therapy, supported by the fact that these do not provoke any host immune response, and their influence on the cytokine profiles. An attempt to survey the results of stem cell therapy for treating arthritis has been carried out in this review.
Collapse
Affiliation(s)
- Diana Esquivel
- Global Institute of Stem Cell Therapy and Research, Los Algodones, Baja California, Mexico
| | - Rangnath Mishra
- Global Institute of Stem Cell Therapy and Research, Los Algodones, Baja California, Mexico
- Global Institute of Stem Cell Therapy and Research, San Diego, CA, USA
- Cellebrations Life Sciences Inc., San Diego, CA, USA
| | - Anand Srivastava
- Global Institute of Stem Cell Therapy and Research, Los Algodones, Baja California, Mexico
- Global Institute of Stem Cell Therapy and Research, San Diego, CA, USA
- Cellebrations Life Sciences Inc., San Diego, CA, USA
| |
Collapse
|
33
|
Zhang Z, Wu W, Li M, Du L, Li J, Yin X, Zhang W. Mesenchymal stem cell–derived extracellular vesicles: A novel nanoimmunoregulatory tool in musculoskeletal diseases. NANO TODAY 2024; 57:102343. [DOI: 10.1016/j.nantod.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Lin H, Zhou J, Ding T, Zhu Y, Wang L, Zhong T, Wang X. Therapeutic potential of extracellular vesicles from diverse sources in cancer treatment. Eur J Med Res 2024; 29:350. [PMID: 38943222 PMCID: PMC11212438 DOI: 10.1186/s40001-024-01937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Cancer, a prevalent and complex disease, presents a significant challenge to the medical community. It is characterized by irregular cell differentiation, excessive proliferation, uncontrolled growth, invasion of nearby tissues, and spread to distant organs. Its progression involves a complex interplay of several elements and processes. Extracellular vesicles (EVs) serve as critical intermediaries in intercellular communication, transporting critical molecules such as lipids, RNA, membrane, and cytoplasmic proteins between cells. They significantly contribute to the progression, development, and dissemination of primary tumors by facilitating the exchange of information and transmitting signals that regulate tumor growth and metastasis. However, EVs do not have a singular impact on cancer; instead, they play a multifaceted dual role. Under specific circumstances, they can impede tumor growth and influence cancer by delivering oncogenic factors or triggering an immune response. Furthermore, EVs from different sources demonstrate distinct advantages in inhibiting cancer. This research examines the biological characteristics of EVs and their involvement in cancer development to establish a theoretical foundation for better understanding the connection between EVs and cancer. Here, we discuss the potential of EVs from various sources in cancer therapy, as well as the current status and future prospects of engineered EVs in developing more effective cancer treatments.
Collapse
Affiliation(s)
- Haihong Lin
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Jun Zhou
- Department of Laboratory Medicine, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550000, China
| | - Tao Ding
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Yifan Zhu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China.
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China.
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
35
|
Ho TJ, Shanmugam T, Liao PH, Shibu MA, Chen WST, Lin KH, Lu SY, Kuo CH, Kuo WW, Huang CY. Renal protective effects of Alpinate Oxyphyllae Fructus and mesenchymal stem cells co-treatment against D- galactose induced renal deterioration. Int J Med Sci 2024; 21:1491-1499. [PMID: 38903928 PMCID: PMC11186433 DOI: 10.7150/ijms.96007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Age-related structural and functional changes in the kidney can eventually lead to development of chronic kidney disease, which is one of the leading causes of mortality among elderly people. For effective management of age-related kidney complications, it is important to identify new therapeutic interventions with minimal side-effects. The present study was designed to evaluate the synergistic effect of a traditional Chinese herb, Alpinate Oxyphyllae Fructus (AOF), and adipose-derived mesenchymal stem cells (ADMSCs) in ameliorating D-galactose (D-gal)-induced renal aging phenotypes in WKY rats. The study findings showed that D-gal-induced alteration in the kidney morphology was partly recovered by the AOF and ADMSC co-treatment. Moreover, the AOF and ADMSC co-treatment reduced the expression of proinflammatory mediators (NFkB, IL-6, and Cox2) and increased the expression of redox regulators (Nrf2 and HO-1) in the kidney, which were otherwise augmented by the D-gal treatment. Regarding kidney cell death, the AOF and ADMSC co-treatment was found to abolish the proapoptotic effects of D-gal by downregulating Bax and Bad expressions and inhibiting caspase 3 activation. Taken together, the study findings indicate that the AOF and ADMSC co-treatment protect the kidney from D-gal-induced aging by reducing cellular inflammation and oxidative stress and inhibiting renal cell death. This study can open up a new path toward developing novel therapeutic interventions using both AOF and ADMSC to effectively manage age-related renal deterioration.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tamilselvi Shanmugam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Po-Hsiang Liao
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - William Shao-Tsu Chen
- Department of Psychiatry, Tzu Chi General Hospital, 707, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
- School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shang-Yeh Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
36
|
Joshi R, Suryawanshi T, Mukherjee S, Shukla S, Majumder A. Chromatin Condensation Delays Senescence in Human Mesenchymal Stem Cells by Safeguarding Nuclear Damages during In Vitro Expansion. J Tissue Eng Regen Med 2024; 2024:1543849. [PMID: 40225747 PMCID: PMC11919206 DOI: 10.1155/2024/1543849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2025]
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells that differentiate into adipocytes, chondrocytes, and osteoblasts. Owing to their differentiation potential, hMSCs are among the cells most frequently used for therapeutic applications in tissue engineering and regenerative medicine. However, the number of cells obtained through isolation alone is insufficient for hMSC-based therapies and basic research, which necessitates in vitro expansion. Conventionally, this is often performed on rigid surfaces such as tissue culture plates (TCPs). However, during in vitro expansion, hMSCs lose their proliferative ability and multilineage differentiation potential, rendering them unsuitable for clinical use. Although multiple approaches have been attempted to maintain hMSC stemness during prolonged expansion, finding a suitable culture system remains an unmet need. Recently, a few research groups have shown that hMSCs maintain their stemness over long passages when cultured on soft substrates. In addition, it has been shown that hMSCs cultured on soft substrates have more condensed chromatin and lower levels of histone acetylation compared to those cultured on stiff substrates. Furthermore, it has also been shown that condensing/decondensing chromatin by deacetylation/acetylation can delay replicative senescence in hMSCs during long-term expansion on TCPs. However, the mechanism by which chromatin condensation/decondensation influences nuclear morphology and DNA damage, which are strongly related to the onset of senescence, remains unknown. To answer this question, we cultured hMSCs for long duration in the presence of epigenetic modifiers, histone acetyltransferase inhibitor (HATi), which promotes chromatin condensation by preventing histone acetylation, and histone deacetylase inhibitor (HDACi), which promotes chromatin decondensation, and investigated their effects on various nuclear markers related to senescence. We found that consistent acetylation causes severe nuclear abnormalities, whereas chromatin condensation by deacetylation helps to safeguard the nucleus from damage caused by in vitro expansion.
Collapse
Affiliation(s)
- Rohit Joshi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Tejas Suryawanshi
- Centre for Research in Nano Technology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sourav Mukherjee
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shobha Shukla
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
37
|
Deppen JN, Ginn SC, Tang EO, Wang L, Brockman ML, Levit RD. Alginate-Encapsulated Mesenchymal Stromal Cells Improve Hind Limb Ischemia in a Translational Swine Model. J Am Heart Assoc 2024; 13:e029880. [PMID: 38639336 PMCID: PMC11179867 DOI: 10.1161/jaha.123.029880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Cellular therapies have been investigated to improve blood flow and prevent amputation in peripheral artery disease with limited efficacy in clinical trials. Alginate-encapsulated mesenchymal stromal cells (eMSCs) demonstrated improved retention and survival and promoted vascular generation in murine hind limb ischemia through their secretome, but large animal evaluation is necessary for human applicability. We sought to determine the efficacy of eMSCs for peripheral artery disease-induced limb ischemia through assessment in our durable swine hind limb ischemia model. METHODS AND RESULTS Autologous bone marrow eMSCs or empty alginate capsules were intramuscularly injected 2 weeks post-hind limb ischemia establishment (N=4/group). Improvements were quantified for 4 weeks through walkway gait analysis, contrast angiography, blood pressures, fluorescent microsphere perfusion, and muscle morphology and histology. Capsules remained intact with mesenchymal stromal cells retained for 4 weeks. Adenosine-induced perfusion deficits and muscle atrophy in ischemic limbs were significantly improved by eMSCs versus empty capsules (mean±SD, 1.07±0.19 versus 0.41±0.16, P=0.002 for perfusion ratios and 2.79±0.12 versus 1.90±0.62 g/kg, P=0.029 for ischemic muscle mass). Force- and temporal-associated walkway parameters normalized (ratio, 0.63±0.35 at week 3 versus 1.02±0.19 preligation; P=0.17), and compensatory footfall patterning was diminished in eMSC-administered swine (12.58±8.46% versus 34.85±15.26%; P=0.043). Delivery of eMSCs was associated with trending benefits in collateralization, local neovascularization, and muscle fibrosis. Hypoxia-cultured porcine mesenchymal stromal cells secreted vascular endothelial growth factor and tissue inhibitor of metalloproteinase 2. CONCLUSIONS This study demonstrates the promise of the mesenchymal stromal cell secretome at improving peripheral artery disease outcomes and the potential for this novel swine model to serve as a component of the preclinical pipeline for advanced therapies.
Collapse
Affiliation(s)
- Juline N. Deppen
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Sydney C. Ginn
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Erica O. Tang
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Lanfang Wang
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | | | - Rebecca D. Levit
- Division of CardiologyEmory University School of MedicineAtlantaGA
| |
Collapse
|
38
|
Gheisari M, Nosrati S, Zare S, Dara M, Zolghadri S, Razeghian-Jahromi I. The impact of high nicotine concentrations on the viability and cardiac differentiation of mesenchymal stromal cells: a barrier to regenerative therapy for smokers. Front Cell Dev Biol 2024; 12:1323691. [PMID: 38638529 PMCID: PMC11024539 DOI: 10.3389/fcell.2024.1323691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Background: Current treatment methods are not successful in restoring the lost cardiomyocytes after injury. Stem cell-based strategies have attracted much attention in this regard. Smoking, as a strong cardiovascular risk factor, not only affects the cardiac cells adversely but also deteriorates the function of stem cells. Since mesenchymal stem cells (MSCs) are one of the popular candidates in cardiovascular disease (CVD) clinical trials, we investigated the impact of nicotine on the regenerative properties (viability and cardiac differentiation) of these cells. Methods: MSCs were isolated from rat bone marrow and characterized based on morphology, differentiation capability, and the expression of specific mesenchymal markers. The MTT assay was used to assess the viability of MSCs after being exposed to different concentrations of nicotine. Based on MTT findings and according to the concentration of nicotine in smokers' blood, the growth curve and population doubling time were investigated for eight consecutive days. Cells were treated with 5-azacytidine (an inducer of cardiac differentiation), and then the expressions of cardiac-specific markers were calculated by qPCR. Results: MSCs were spindle-shaped, capable of differentiating into adipocyte and osteocyte, and expressed CD73 and CD90. The viability of MSCs was reduced upon exposure to nicotine in a concentration- and time-dependent manner. The growth curve showed that nicotine reduced the proliferation of MSCs, and treated cells needed more time to double. In addition, the expressions of GATA4 and troponin were downregulated in nicotine-treated cells on day 3. However, these two cardiac markers were overexpressed on day 7. Conclusion: Nicotine decreased normal growth and reduced the expression of cardiac markers in MSCs. This aspect is of eminent importance to smokers with cardiovascular disease who are candidates for stem cell therapy.
Collapse
Affiliation(s)
- Maryam Gheisari
- Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Shadi Nosrati
- Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | |
Collapse
|
39
|
Zhang Y, Liu L, Wang X, Shen X, Pei Y, Liu Y. Bone marrow mesenchymal stem cells suppress activated CD4 + T cells proliferation through TGF-beta and IL10 dependent of autophagy in pathological hypoxic microenvironment. Biochem Biophys Res Commun 2024; 702:149591. [PMID: 38340652 DOI: 10.1016/j.bbrc.2024.149591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) mediated immunomodulation by secreting certain bioactive cytokines has been recognized as a promising approach for disease treatment. However, microenvironmental oxygen tension affect immunomodulatory functions and activate autophagy in BMSCs. The mechanism governing BMSCs immunomodulation in hypoxia hasn't been expounded clearly. The aim of this study is to investigate the function of pathological hypoxia on immunomodulatory properties of bone marrow mesenchymal stem cells and its possible mechanism. METHODS BMSCs were cultured in either normoxia (21 % oxygen) or hypoxia (0.1 % oxygen) for 24 h, then electron microscopy (EM) and immunofluorescence staining were used to detect the activation of autophagy. Besides autophagy-related markers were monitored by Western blotting. Atg5 siRNA induced autophagic inhibition. Additional, gene expression levels of Real-time fluorescence quantitative PCR and Western blot were used to detect BMSCs related cytokines. Both the proliferation and apoptosis of CD4+ T cell in co-culture were detected by flow cytometry. Exogenous anti-IL-10 antibody and anti-TGF-β1 antibody were used in co-cultured BMSCs-CM and CD4+ T cells, which enabled us to assess how autophagy affected BMSCs-mediated CD4+ T cell proliferation in low oxygen tension. RESULT Compared with normal BMSCs, Hypo-BMSCs enhanced the immunosuppressive effect of BMSCs on CD4+ T cell proliferation, while si-atg5 weakened the inhibition of Hypo-BMSCs. Furthermore, exogenous anti-TGF-β1 antibody and the addition of anti-TGF-β1 antibody reversed the immunosuppressive ability of Hypo-BMSCs. CONCLUSIONS Our findings reveal that BMSCs possess significant immunosuppression on CD4+T cell through IL-10 and TGF-β1 dependent of autophagy in hypoxic microenvironment.
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China; Beijing LUHE Hospital Capital Medical University, Beijing, China
| | - Liang Liu
- Orthopedic Center, Beijing LUHE Hospital Capital Medical University, Beijing, China
| | - Xiaobo Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuezhen Shen
- Orthopedic Center, Beijing LUHE Hospital Capital Medical University, Beijing, China
| | - Yilun Pei
- Orthopedic Center, Beijing LUHE Hospital Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
40
|
Taheri M, Tehrani HA, Dehghani S, Rajabzadeh A, Alibolandi M, Zamani N, Arefian E, Ramezani M. Signaling crosstalk between mesenchymal stem cells and tumor cells: Implications for tumor suppression or progression. Cytokine Growth Factor Rev 2024; 76:30-47. [PMID: 38341337 DOI: 10.1016/j.cytogfr.2024.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stem cells (MSCs) have been extensively used in various therapeutic applications over the last two decades, particularly in regenerative medicine and cancer treatment. MSCs have the ability to differentiate into mesodermal and non-mesodermal lineages, which makes them a popular choice in tissue engineering and regenerative medicine. Studies have shown that MSCs have inherent tumor-suppressive properties and can affect the behavior of multiple cells contributing to tumor development. Additionally, MSCs possess a tumor tropism property and have a hypoimmune nature. The intrinsic features of MSCs along with their potential to undergo genetic manipulation and be loaded with various anticancer therapeutics have motivated researchers to use them in different cancer therapy approaches without considering their complex dynamic biological aspects. However, despite their desirable features, several reports have shown that MSCs possess tumor-supportive properties. These contradictory results signify the sophisticated nature of MSCs and warn against the potential therapeutic applications of MSCs. Therefore, researchers should meticulously consider the biological properties of MSCs in preclinical and clinical studies to avoid any undesirable outcomes. This manuscript reviews preclinical studies on MSCs and cancer from the last two decades, discusses how MSC properties affect tumor progression and explains the mechanisms behind tumor suppressive and supportive functions. It also highlights critical cellular pathways that could be targeted in future studies to improve the safety and effectiveness of MSC-based therapies for cancer treatment. The insights obtained from this study will pave the way for further clinical research on MSCs and development of more effective cancer treatments.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Rajabzadeh
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nina Zamani
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Kim H, Kim Y, Yun SY, Lee BK. Efficacy of IFN-γ-Primed Umbilical Cord-Derived Mesenchymal Stem Cells on Temporomandibular Joint Osteoarthritis. Tissue Eng Regen Med 2024; 21:473-486. [PMID: 38190096 PMCID: PMC10987468 DOI: 10.1007/s13770-023-00620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease affecting the cartilage and subchondral bone, leading to temporomandibular joint pain and dysfunction. The complex nature of TMJOA warrants effective alternative treatments, and mesenchymal stem cells (MSCs) have shown promise in regenerative therapies. The aim of this study is twofold: firstly, to ascertain the optimal interferon-gamma (IFN-γ)-primed MSC cell line for TMJOA treatment, and secondly, to comprehensively evaluate the therapeutic efficacy of IFN-γ-primed mesenchymal stem cells derived from the human umbilical cord matrix in a rat model of TMJOA. METHODS We analyzed changes in the expression of several key genes associated with OA protection in MSC-secreted compounds. Following this, we performed co-culture experiments using a transwell system to predict gene expression changes in primed MSCs in the TMJOA environment. Subsequently, we investigated the efficacy of the selected IFN-γ-primed human umbilical cord matrix-derived MSCs (hUCM-MSCs) for TMJOA treatment in a rat model. RESULTS IFN-γ-primed MSCs exhibited enhanced expression of IDO, TSG-6, and FGF-2. Moreover, co-culturing with rat OA chondrocytes induced a decrease in pro-inflammatory and extracellular matrix degradation factors. In the rat TMJOA model, IFN-γ-primed MSCs with elevated IDO1, TSG-6, and FGF2 expression exhibited robust anti-inflammatory and therapeutic capacities, promoting the improvement of the inflammatory environment and cartilage regeneration. CONCLUSION These findings underscore the importance of prioritizing the mitigation of the inflammatory milieu in TMJOA treatment and highlight IFN-γ-primed MSCs secreting these three factors as a promising, comprehensive therapeutic strategy.
Collapse
Affiliation(s)
- Hyunjeong Kim
- Biomedical Engineering Research Center, Asan Medical Center, Asan Institute for Life Sciences, Seoul, Korea
| | - Yerin Kim
- Asan Medical Center, AMIST, College of Medicine, University of Ulsan, Seoul, Korea
| | - So-Yeon Yun
- Asan Medical Center, AMIST, College of Medicine, University of Ulsan, Seoul, Korea
| | - Bu-Kyu Lee
- Biomedical Engineering Research Center, Asan Medical Center, Asan Institute for Life Sciences, Seoul, Korea.
- Asan Medical Center, AMIST, College of Medicine, University of Ulsan, Seoul, Korea.
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
42
|
Abdallah AN, Shamaa AA, El-Tookhy OS, Bahr MM. Comparison between stem cell therapy and stem cell derived exosomes on induced multiple sclerosis in dogs. BMC Vet Res 2024; 20:90. [PMID: 38459498 PMCID: PMC10921795 DOI: 10.1186/s12917-024-03920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/08/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic condition that primarily manifests as demyelination of neuronal axons in the central nervous system, due to the loss or attack of oligodendroglia cells that form myelin. Stem cell therapy has shown promising results for the treatment of MS due to its capability to halt the immune attack, stop apoptosis and axonal degeneration, and differentiate into oligodendrocytes. Stem cell-derived Exosomes (Exosomes) have shown great capabilities for neuronal diseases as they have growth factors, complex sets of miRNA, enzymes, proteins, major peptides, lipids, and macromolecules with anti-inflammatory, angiogenesis, and neurogenesis activities. METHODS This study aimed to compare the healing properties of stem cells, against Exosomes for the treatment of an experimentally induced MS dog model. Dog models of MS received either a single treatment of stem cells or a single treatment of Exosomes intrathecally and the treatment process was evaluated clinically, radiologically, histopathologically, and electron microscopy and cerebrospinal fluid analysis. RESULTS showed marked amelioration of the clinical signs in both treated groups compared to the control one, magnetic resonance scans showed the resolution of the hyperintense lesions at the end of the study period, the histopathology and electron microscopy showed marked healing properties and remyelination in treated groups with superiority of the stem cells compared to Exosomes. CONCLUSIONS Although stem cell results were superior to Exosomes therapy; Exosomes have proven to be effective and safe important actors in myelin regeneration, and their use in diseases like MS helps to stimulate remyelination.
Collapse
Affiliation(s)
- Ahmed N Abdallah
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Center, Giza, Egypt
| | - Ashraf A Shamaa
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Omar S El-Tookhy
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed M Bahr
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
43
|
Arifin A, Purwanto B, Indarto D, Wasita B, Sumanjar T, Pamungkasari EP, Soetrisno S. Improvement of renal functions in mice with septic acute kidney injury using secretome of mesenchymal stem cells. Saudi J Biol Sci 2024; 31:103931. [PMID: 38304542 PMCID: PMC10831246 DOI: 10.1016/j.sjbs.2024.103931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Background A potentially fatal complication of sepsis is septic acute kidney injury. Stem cell therapy is a potential new method of treating sepsis and has been applied to treat some human diseases. Objectives This study investigated the effects of secretome-MSCs on NGAL, CRP, NF-κB, and MMP-9 proteins, and histopathology in mice with septic AKI. Methods A post-test-only group design was conducted in 30 Balb/C male mice, which were randomly assigned to five groups: the control group was intraperitoneally injected with 0.5 ml of 0.9 % NaCl, the septic AKI, and the treatment groups (T1, T2, and T3) were intraperitoneally injected with 0.5 ml of 0.9 % NaCl and 0.3 mg/kg BW LPS single dose for three days. Three-day treatments of 150, 300, and 600 µl secretome-MSCs were administered intraperitoneally into the treatment groups. Furthermore, kidney and blood samples were collected for biochemical and histopathological analyses. Results The T1, T2, and T3 groups had lower expression of NF-κB and MMP-9 and significantly lower CRP and NGAL levels than that of septic AKI group. T1 (1.21 ± 0.19), T2 (0.75 ± 0.22), and T3 (0.38 ± 0.14) groups demonstrated lower average scores for inflammation, necrosis, hemorrhage, and degeneration compared to septic AKI group (2.17 ± 0.13). Conclusions Administration of 600 µl/20 g BW secretome-MSCs suppresses NF-κB and MMP-9 expression and reduces CRP and NGAL levels. Meanwhile, the 150 and 300 µl/20 g BW doses also indicated a greater improvement in renal tissue damage of mice with septic AKI.
Collapse
Affiliation(s)
- Arifin Arifin
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Jl. Ir Sutami No 36A, Kentingan, Jebres, Surakarta 57126, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret/General Hospital Dr. Moewardi, Jl. Kolonel Sutarto No. 132, Jebres, Surakarta 57126, Indonesia
| | - Bambang Purwanto
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Jl. Ir Sutami No 36A, Kentingan, Jebres, Surakarta 57126, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret/General Hospital Dr. Moewardi, Jl. Kolonel Sutarto No. 132, Jebres, Surakarta 57126, Indonesia
| | - Dono Indarto
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Jl. Ir Sutami No 36A, Kentingan, Jebres, Surakarta 57126, Indonesia
- Department of Physiology and Biomedical Laboratory, Faculty of Medicine, Universitas Sebelas Maret, Jl. Ir Sutami No 36A, Kentingan, Jebres, Surakarta 57126, Indonesia
| | - Brian Wasita
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Jl. Ir Sutami No 36A, Kentingan, Jebres, Surakarta 57126, Indonesia
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Sebelas Maret, Jl. Ir Sutami No 36A, Kentingan, Jebres, Surakarta 57126, Indonesia
| | - Tatar Sumanjar
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Jl. Ir Sutami No 36A, Kentingan, Jebres, Surakarta 57126, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret/General Hospital Dr. Moewardi, Jl. Kolonel Sutarto No. 132, Jebres, Surakarta 57126, Indonesia
| | - Eti Poncorini Pamungkasari
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Jl. Ir Sutami No 36A, Kentingan, Jebres, Surakarta 57126, Indonesia
- Department of Public Health, Faculty of Medicine, Universitas Sebelas Maret, Jl. Ir Sutami No 36A, Kentingan, Jebres, Surakarta 57126, Indonesia
| | - Soetrisno Soetrisno
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Jl. Ir Sutami No 36A, Kentingan, Jebres, Surakarta 57126, Indonesia
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universitas Sebelas Maret, Jl. Ir Sutami No 36A, Kentingan, Jebres, Surakarta 57126, Indonesia
| |
Collapse
|
44
|
Pampanella L, Petrocelli G, Abruzzo PM, Zucchini C, Canaider S, Ventura C, Facchin F. Cytochalasins as Modulators of Stem Cell Differentiation. Cells 2024; 13:400. [PMID: 38474364 PMCID: PMC10931372 DOI: 10.3390/cells13050400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Regenerative medicine aims to identify new research strategies for the repair and restoration of tissues damaged by pathological or accidental events. Mesenchymal stem cells (MSCs) play a key role in regenerative medicine approaches due to their specific properties, such as the high rate of proliferation, the ability to differentiate into several cell lineages, the immunomodulatory potential, and their easy isolation with minimal ethical issues. One of the main goals of regenerative medicine is to modulate, both in vitro and in vivo, the differentiation potential of MSCs to improve their use in the repair of damaged tissues. Over the years, much evidence has been collected about the ability of cytochalasins, a large family of 60 metabolites isolated mainly from fungi, to modulate multiple properties of stem cells (SCs), such as proliferation, migration, and differentiation, by altering the organization of the cyto- and the nucleo-skeleton. In this review, we discussed the ability of two different cytochalasins, cytochalasins D and B, to influence specific SC differentiation programs modulated by several agents (chemical or physical) or intra- and extra-cellular factors, with particular attention to human MSCs (hMSCs).
Collapse
Affiliation(s)
- Luca Pampanella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| | - Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| | - Cinzia Zucchini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| | - Silvia Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| | - Carlo Ventura
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (P.M.A.); (C.Z.); (F.F.)
| |
Collapse
|
45
|
Leal Reis I, Lopes B, Sousa P, Sousa AC, Branquinho MV, Caseiro AR, Rêma A, Briote I, Mendonça CM, Santos JM, Atayde LM, Alvites RD, Maurício AC. Treatment of Equine Tarsus Long Medial Collateral Ligament Desmitis with Allogenic Synovial Membrane Mesenchymal Stem/Stromal Cells Enhanced by Umbilical Cord Mesenchymal Stem/Stromal Cell-Derived Conditioned Medium: Proof of Concept. Animals (Basel) 2024; 14:370. [PMID: 38338013 PMCID: PMC10854557 DOI: 10.3390/ani14030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Horses are high-performance athletes prone to sportive injuries such as tendonitis and desmitis. The formation of fibrous tissue in tendon repair remains a challenge to overcome. This impels regenerative medicine to develop innovative therapies that enhance regeneration, retrieving original tissue properties. Multipotent Mesenchymal Stem/Stromal Cells (MSCs) have been successfully used to develop therapeutic products, as they secrete a variety of bioactive molecules that play a pivotal role in tissue regeneration. These factors are released in culture media for producing a conditioned medium (CM). The aforementioned assumptions led to the formulation of equine synovial membrane MSCs (eSM-MSCs)-the cellular pool that naturally regenerates joint tissue-combined with a medium enriched in immunomodulatory factors (among other bioactive factors) produced by umbilical cord stroma-derived MSCs (eUC-MSCs) that naturally contribute to suppressing the immune rejection in the maternal-fetal barrier. A description of an equine sport horse diagnosed with acute tarsocrural desmitis and treated with this formulation is presented. Ultrasonographic ligament recovery occurred in a reduced time frame, reducing stoppage time and allowing for the horse's return to unrestricted competition after the completion of a physical rehabilitation program. This study focused on the description of the therapeutic formulation and potential in an equine desmitis treatment using the cells themselves and their secretomes.
Collapse
Affiliation(s)
- Inês Leal Reis
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Mariana V. Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal
- Centro de Investigação Vasco da Gama (CIVG), Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Inês Briote
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Carla M. Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Jorge Miguel Santos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís M. Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Rui D. Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| |
Collapse
|
46
|
Zhang X, Shi W, Wang X, Zou Y, Xiang W, Lu N. Evaluation of the Composite Skin Patch Loaded with Bioactive Functional Factors Derived from Multicellular Spheres of EMSCs for Regeneration of Full-thickness Skin Defects in Rats. Curr Stem Cell Res Ther 2024; 19:1142-1152. [PMID: 37694794 DOI: 10.2174/1574888x19666230908142426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Transplantation of stem cells/scaffold is an efficient approach for treating tissue injury including full-thickness skin defects. However, the application of stem cells is limited by preservation issues, ethical restriction, low viability, and immune rejection in vivo. The mesenchymal stem cell conditioned medium is abundant in bioactive functional factors, making it a viable alternative to living cells in regeneration medicine. METHODS Nasal mucosa-derived ecto-mesenchymal stem cells (EMSCs) of rats were identified and grown in suspension sphere-forming 3D culture. The EMSCs-conditioned medium (EMSCs-CM) was collected, lyophilized, and analyzed for its bioactive components. Next, fibrinogen and chitosan were further mixed and cross-linked with the lyophilized powder to obtain functional skin patches. Their capacity to gradually release bioactive substances and biocompatibility with epidermal cells were assessed in vitro. Finally, a full-thickness skin defect model was established to evaluate the therapeutic efficacy of the skin patch. RESULTS The EMSCs-CM contains abundant bioactive proteins including VEGF, KGF, EGF, bFGF, SHH, IL-10, and fibronectin. The bioactive functional composite skin patch containing EMSCs-CM lyophilized powder showed the network-like microstructure could continuously release the bioactive proteins, and possessed ideal biocompatibility with rat epidermal cells in vitro. Transplantation of the composite skin patch could expedite the healing of the full-thickness skin defect by promoting endogenous epidermal stem cell proliferation and skin appendage regeneration in rats. CONCLUSION In summary, the bioactive functional composite skin patch containing EMSCs-CM lyophilized powder can effectively accelerate skin repair, which has promising application prospects in the treatment of skin defects.
Collapse
Affiliation(s)
- Xuan Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Wentao Shi
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xun Wang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Central Hospital of Jiangnan University, Wuxi, China
| | - Yin Zou
- The Affiliated Children Hospital of Jiangnan University, Wuxi, China
| | - Wen Xiang
- School of Medicine, Nankai University, Tianjin, China
| | - Naiyan Lu
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| |
Collapse
|
47
|
Hopkinson A, Notara M, Cursiefen C, Sidney LE. Increased Anti-Inflammatory Therapeutic Potential and Progenitor Marker Expression of Corneal Mesenchymal Stem Cells Cultured in an Optimized Propagation Medium. Cell Transplant 2024; 33:9636897241241992. [PMID: 38602231 PMCID: PMC11010753 DOI: 10.1177/09636897241241992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
There is a huge unmet need for new treatment modalities for ocular surface inflammatory disorders (OSIDs) such as dry eye disease and meibomian gland dysfunction. Mesenchymal stem cell therapies may hold the answer due to their potent immunomodulatory properties, low immunogenicity, and ability to modulate both the innate and adaptive immune response. MSC-like cells that can be isolated from the corneal stroma (C-MSCs) offer a potential new treatment strategy; however, an optimized culture medium needs to be developed to produce the ideal phenotype for use in a cell therapy to treat OSIDs. The effects of in vitro expansion of human C-MSC in a medium of M199 containing fetal bovine serum (FBS) was compared to a stem cell medium (SCM) containing knockout serum replacement (KSR) with basic fibroblast growth factor (bFGF) and human leukemia inhibitory factor (LIF), investigating viability, protein, and gene expression. Isolating populations expressing CD34 or using siRNA knockdown of CD34 were investigated. Finally, the potential of C-MSC as a cell therapy was assessed using co-culture with an in vitro corneal epithelial cell injury model and the angiogenic effects of C-MSC conditioned medium were evaluated with blood and lymph endothelial cells. Both media supported proliferation of C-MSC, with SCM increasing expression of CD34, ABCG2, PAX6, NANOG, REX1, SOX2, and THY1, supported by increased associated protein expression. Isolating cell populations expressing CD34 protein made little difference to gene expression, however, knockdown of the CD34 gene led to decreased expression of progenitor genes. C-MSC increased viability of injured corneal epithelial cells whilst decreasing levels of cytotoxicity and interleukins-6 and -8. No pro-angiogenic effect of C-MSC was seen. Culture medium can significantly influence C-MSC phenotype and culture in SCM produced a cell phenotype more suitable for further consideration as an anti-inflammatory cell therapy. C-MSC show considerable potential for development as therapies for OSIDs, acting through anti-inflammatory action.
Collapse
Affiliation(s)
- Andrew Hopkinson
- Academic Ophthalmology, Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, UK
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Koln, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Koln, Germany
| | - Laura E. Sidney
- Academic Ophthalmology, Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, UK
- Regenerating and Modelling Tissues, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
48
|
Zheng L, Gong H, Zhang J, Guo L, Zhai Z, Xia S, Hu Z, Chang J, Jiang Y, Huang X, Ge J, Zhang B, Yan M. Strategies to improve the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicle (MSC-EV): a promising cell-free therapy for liver disease. Front Bioeng Biotechnol 2023; 11:1322514. [PMID: 38155924 PMCID: PMC10753838 DOI: 10.3389/fbioe.2023.1322514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Liver disease has emerged as a significant worldwide health challenge due to its diverse causative factors and therapeutic complexities. The majority of liver diseases ultimately progress to end-stage liver disease and liver transplantation remains the only effective therapy with the limitations of donor organ shortage, lifelong immunosuppressants and expensive treatment costs. Numerous pre-clinical studies have revealed that extracellular vesicles released by mesenchymal stem cells (MSC-EV) exhibited considerable potential in treating liver diseases. Although natural MSC-EV has many potential advantages, some characteristics of MSC-EV, such as heterogeneity, uneven therapeutic effect, and rapid clearance in vivo constrain its clinical translation. In recent years, researchers have explored plenty of ways to improve the therapeutic efficacy and rotation rate of MSC-EV in the treatment of liver disease. In this review, we summarized current strategies to enhance the therapeutic potency of MSC-EV, mainly including optimization culture conditions in MSC or modifications of MSC-EV, aiming to facilitate the development and clinical application of MSC-EV in treating liver disease.
Collapse
Affiliation(s)
- Lijuan Zheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Jing Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Linna Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Zhuofan Zhai
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Zhiyu Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Jing Chang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yizhu Jiang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinran Huang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jingyi Ge
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| |
Collapse
|
49
|
Nakao M, Matsui M, Kim K, Nishiyama N, Grainger DW, Okano T, Kanazawa H, Nagase K. Umbilical cord-derived mesenchymal stem cell sheets transplanted subcutaneously enhance cell retention and survival more than dissociated stem cell injections. Stem Cell Res Ther 2023; 14:352. [PMID: 38072920 PMCID: PMC10712142 DOI: 10.1186/s13287-023-03593-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) sheets have recently attracted attention as an alternative approach to injected cell suspensions for stem cell therapy. However, cell engraftment and cytokine expression levels between hUC-MSC sheets and their cell suspensions in vivo have not yet been compared. This study compares hUC-MSC in vivo engraftment efficacy and cytokine expression for both hUC-MSC sheets and cell suspensions. METHODS hUC-MSC sheets were prepared using temperature-responsive cell culture; two types of hUC-MSC suspensions were prepared, either by enzymatic treatment (trypsin) or by enzyme-free temperature reduction using temperature-responsive cell cultureware. hUC-MSC sheets and suspensions were transplanted subcutaneously into ICR mice through subcutaneous surgical placement and intravenous injection, respectively. hUC-MSC sheet engraftment after subcutaneous surgical transplantation was investigated by in vivo imaging while intravenously injected cell suspensions were analyzing using in vitro organ imaging. Cytokine levels in both transplant site tissues and blood were quantified by enzyme-linked immunosorbent assay. RESULTS After subcutaneous transplant, hUC-MSC sheets exhibited longer engraftment duration than hUC-MSC suspensions. This was attributed to extracellular matrix (ECM) and cell-cell junctions retained in sheets but enzymatically altered in suspensions. hUC-MSC suspensions harvested using enzyme-free temperature reduction exhibited relatively long engraftment duration after intravenous injection compared to suspensions prepared using trypsin, as enzyme-free harvest preserved cellular ECM. High HGF and TGF-β1 levels were observed in sheet-transplanted sites compared to hUC-MSC suspension sites. However, no differences in human cytokine levels in murine blood were detected, indicating that hUC-MSC sheets might exert local paracrine rather than endocrine effects. CONCLUSIONS hUC-MSC sheet transplantation could be a more effective cell therapeutic approach due to enhanced engraftment and secretion of therapeutic cytokines over injected hUC-MSC suspensions.
Collapse
Affiliation(s)
- Mitsuyoshi Nakao
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - David W Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
50
|
Anerillas LO, Wiberg M, Kingham PJ, Kelk P. Platelet lysate for expansion or osteogenic differentiation of bone marrow mesenchymal stem cells for 3D tissue constructs. Regen Ther 2023; 24:298-310. [PMID: 37588134 PMCID: PMC10425714 DOI: 10.1016/j.reth.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023] Open
Abstract
Background The use of mesenchymal stem cells (MSCs) for the development of tissue-engineered constructs has advanced in recent years. However, future clinically approved products require following good manufacturing practice (GMP) guidelines. This includes using alternatives to xenogeneic-derived cell culture supplements to avoid rejection of the transplants. Consequently, human platelet lysate (PLT) has been adopted as an affordable and effective alternative to foetal bovine serum (FBS) in traditional 2D cultures. However, little is known about its effect in more advanced 3D culture systems. Methods We evaluated bone marrow MSCs (BMSCs) proliferation and CD marker expression in cells expanded in FBS or PLT-supplemented media. Differentiation capacity of the BMSCs expanded in the presence of the different supplements was evaluated in 3D type I collagen hydrogels. Furthermore, the effects of the supplements on the process of differentiation were analyzed by using qPCR and histological staining. Results Cell proliferation was greater in PLT-supplemented media versus FBS. BMSCs expanded in PLT showed similar osteogenic differentiation capacity in 3D compared with FBS expanded cells. In contrast, when cells were 3D differentiated in PLT they showed lower osteogenesis versus the traditional FBS protocol. This was also the case for adipogenic differentiation, in which FBS supplementation was superior to PLT. Conclusions PLT is a superior alternative to FBS for the expansion of MSCs without compromising their subsequent differentiation capacity in 3D. However, differentiation in PLT is impaired. Thus, PLT can be used to reduce the time required to expand the necessary cell numbers for development of 3D tissue engineered MSC constructs.
Collapse
Affiliation(s)
| | - Mikael Wiberg
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Department of Surgical & Perioperative Sciences, Section for Hand and Plastic Surgery, Umeå University, 901 87 Umeå, Sweden
| | - Paul J. Kingham
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - Peyman Kelk
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|