1
|
Ionescu A, Baird P, Patel S, Howell G, Hoyland JA, Richardson SM. CD24 Positive Nucleus Pulposus Cells in Adult Human Intervertebral Discs Maintain a More Notochordal Phenotype Than GD2 Positive Cells. JOR Spine 2024; 7:e70029. [PMID: 39717383 PMCID: PMC11664240 DOI: 10.1002/jsp2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/17/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
Background Notochordal cells (NCs) present in the nucleus pulposus (NP) of the developing human intervertebral disc (IVD) disappear during the first decade of life. This loss coincides with the onset of IVD degeneration, therefore these cells are hypothesized to be important in NP homeostasis. Putative NC-derived (CD24+) and progenitor (TIE2+/GD2+) cell sub-populations have previously been identified in the adult human NP, but their characteristics have yet to be compared. Here, we used CD24, TIE2 and GD2 to identify and then isolate discrete cell sub-populations to assess cell phenotype. Methods CD24, GD2 and TIE2 positivity was assessed in a cohort of human pediatric and adult NP samples across a range of ages and histological degeneration grades using immunohistochemistry and flow cytometry. FACS sorting was used to isolate different cell sub-populations (CD24+/GD2+; CD24+/GD2-; CD24-/GD2+; CD24-/GD2-). Cell phenotype was assessed using qPCR for known NC and NP markers as well as catabolic genes. Results CD24+ and GD2+ cells were localized in all samples, irrespective of age or degeneration grade, while TIE2+ cell number was consistently very low. The same positivity trend was confirmed using flow cytometry. A small CD24+/GD2+ sub-population was present and maintained marker expression with time in culture. CD24+ subpopulations showed a significantly higher expression of NC markers than the CD24- subpopulations and unsorted samples, suggesting a healthier phenotype in the CD24+ cells. GD2 did not appear to influence gene expression. Conclusions This study provides a better understanding of different cell sub-populations present in the adult NP, with identification of CD24+/GD2+ cells that are maintained with aging and degeneration. Healthy, NC-like phenotypic profiles appeared reliant on CD24, rather than GD2. The study highlights the importance of studying discrete cell sub-populations, especially CD24+ NP cells to better understand their role in NP homeostasis.
Collapse
Affiliation(s)
- Andra‐Maria Ionescu
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - Pauline Baird
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - Sonal Patel
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - Gareth Howell
- Flow Cytometry Core Facility, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
- Manchester Cell‐Matrix Centre, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| |
Collapse
|
2
|
Elmounedi N, Bahloul W, Keskes H. Current Therapeutic Strategies of Intervertebral Disc Regenerative Medicine. Mol Diagn Ther 2024; 28:745-775. [PMID: 39158834 DOI: 10.1007/s40291-024-00729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/20/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the most frequent causes of low back pain. No treatment is currently available to delay the progression of IDD. Conservative treatment or surgical interventions is only used to target the symptoms of IDD rather than treat the underlying cause. Currently, numerous potential therapeutic strategies are available, including molecular therapy, gene therapy, and cell therapy. However, the hostile environment of degenerated discs is a major problem that has hindered the clinical applicability of such approaches. In this regard, the design of drugs using alternative delivery systems (macro-, micro-, and nano-sized particles) may resolve this problem. These can protect and deliver biomolecules along with helping to improve the therapeutic effect of drugs via concentrating, protecting, and prolonging their presence in the degenerated disc. This review summarizes the research progress of diagnosis and the current options for treating IDD.
Collapse
Affiliation(s)
- Najah Elmounedi
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia.
| | - Walid Bahloul
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Hassib Keskes
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
3
|
Chen Y, Zhang L, Shi X, Han J, Chen J, Zhang X, Xie D, Li Z, Niu X, Chen L, Yang C, Sun X, Zhou T, Su P, Li N, Greenblatt MB, Ke R, Huang J, Chen Z, Xu R. Characterization of the Nucleus Pulposus Progenitor Cells via Spatial Transcriptomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303752. [PMID: 38311573 PMCID: PMC11095158 DOI: 10.1002/advs.202303752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/11/2024] [Indexed: 02/06/2024]
Abstract
Loss of refreshment in nucleus pulposus (NP) cellularity leads to intervertebral disc (IVD) degeneration. Nevertheless, the cellular sequence of NP cell differentiation remains unclear, although an increasing body of literature has identified markers of NP progenitor cells (NPPCs). Notably, due to their fragility, the physical enrichment of NP-derived cells has limited conventional transcriptomic approaches in multiple studies. To overcome this limitation, a spatially resolved transcriptional atlas of the mouse IVD is generated via the 10x Genomics Visium platform dividing NP spots into two clusters. Based on this, most reported NPPC-markers, including Cathepsin K (Ctsk), are rare and predominantly located within the NP-outer subset. Cell lineage tracing further evidence that a small number of Ctsk-expressing cells generate the entire adult NP tissue. In contrast, Tie2, which has long suggested labeling NPPCs, is actually neither expressed in NP subsets nor labels NPPCs and their descendants in mouse models; consistent with this, an in situ sequencing (ISS) analysis validated the absence of Tie2 in NP tissue. Similarly, no Tie2-cre-mediated labeling of NPPCs is observed in an IVD degenerative mouse model. Altogether, in this study, the first spatial transcriptomic map of the IVD is established, thereby providing a public resource for bone biology.
Collapse
Affiliation(s)
- Yu Chen
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Long Zhang
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Xueqing Shi
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Jie Han
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Jingyu Chen
- Gene Denovo Biotechnology CoGuangzhou510006China
| | - Xinya Zhang
- School of Medicine and School of Biomedical SciencesHuaqiao UniversityQuanzhou362000China
| | - Danlin Xie
- School of Medicine and School of Biomedical SciencesHuaqiao UniversityQuanzhou362000China
- School of Life SciencesWestlake UniversityHangzhou310030China
| | - Zan Li
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Xing Niu
- China Medical UniversityShenyangLiaoning110122China
| | - Lijie Chen
- China Medical UniversityShenyangLiaoning110122China
| | - Chaoyong Yang
- Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiujie Sun
- Department of Obstetrics and GynecologySchool of MedicineXiang'an Hospital of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Taifeng Zhou
- Department of Spine SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080China
| | - Peiqiang Su
- Department of Spine SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080China
| | - Na Li
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory MedicineWeill Cornell Medical CollegeNew YorkNY10065USA
- Research DivisionHospital for Special SurgeryNew YorkNY10065USA
| | - Rongqin Ke
- School of Medicine and School of Biomedical SciencesHuaqiao UniversityQuanzhou362000China
| | - Jianming Huang
- Department of OrthopedicsChengong Hospital (the 73th Group Military Hospital of People's Liberation Army) affiliated to Xiamen UniversityXiamen361000China
| | - Zhe‐Sheng Chen
- College of Pharmacy and Health SciencesSt. John's UniversityNew YorkNY11439USA
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| |
Collapse
|
4
|
Ambrosio L, Schol J, Ruiz-Fernandez C, Tamagawa S, Soma H, Tilotta V, Di Giacomo G, Cicione C, Nakayama S, Kamiya K, Papalia R, Sato M, Vadalà G, Watanabe M, Denaro V, Sakai D. ISSLS PRIZE in Basic Science 2024: superiority of nucleus pulposus cell- versus mesenchymal stromal cell-derived extracellular vesicles in attenuating disc degeneration and alleviating pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1713-1727. [PMID: 38416190 DOI: 10.1007/s00586-024-08163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE To investigate the therapeutic potential of extracellular vesicles (EVs) derived from human nucleus pulposus cells (NPCs), with a specific emphasis on Tie2-enhanced NPCs, compared to EVs derived from human bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a coccygeal intervertebral disc degeneration (IDD) rat model. METHODS EVs were isolated from healthy human NPCs cultured under standard (NPCSTD-EVs) and Tie2-enhancing (NPCTie2+-EVs) conditions. EVs were characterized, and their potential was assessed in vitro on degenerative NPCs in terms of cell proliferation and senescence, with or without 10 ng/mL interleukin (IL)-1β. Thereafter, 16 Sprague-Dawley rats underwent annular puncture of three contiguous coccygeal discs to develop IDD. Phosphate-buffered saline, NPCSTD-EVs, NPCTie2+-EVs, or BM-MSC-derived EVs were injected into injured discs, and animals were followed for 12 weeks until sacrifice. Behavioral tests, radiographic disc height index (DHI) measurements, evaluation of pain biomarkers, and histological analyses were performed to assess the outcomes of injected EVs. RESULTS NPC-derived EVs exhibited the typical exosomal morphology and were efficiently internalized by degenerative NPCs, enhancing cell proliferation, and reducing senescence. In vivo, a single injection of NPC-derived EVs preserved DHI, attenuated degenerative changes, and notably reduced mechanical hypersensitivity. MSC-derived EVs showed marginal improvements over sham controls across all measured outcomes. CONCLUSION Our results underscore the regenerative potential of young NPC-derived EVs, particularly NPCTie2+-EVs, surpassing MSC-derived counterparts. These findings raise questions about the validity of MSCs as both EV sources and cellular therapeutics against IDD. The study emphasizes the critical influence of cell type, source, and culture conditions in EV-based therapeutics.
Collapse
Affiliation(s)
- Luca Ambrosio
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Jordy Schol
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Clara Ruiz-Fernandez
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
- NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Shota Tamagawa
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hazuki Soma
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Veronica Tilotta
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giuseppina Di Giacomo
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Claudia Cicione
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Shunya Nakayama
- Department of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Kosuke Kamiya
- Department of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Masato Sato
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Gianluca Vadalà
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan.
| |
Collapse
|
5
|
Zhang C, Gordon MD, Joseph KM, Diaz‐Hernandez ME, Drissi H, Illien‐Jünger S. Differential efficacy of two small molecule PHLPP inhibitors to promote nucleus Pulposus cell health. JOR Spine 2024; 7:e1306. [PMID: 38222816 PMCID: PMC10782076 DOI: 10.1002/jsp2.1306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 01/16/2024] Open
Abstract
Background Intervertebral disc (IVD) degeneration is associated with chronic back pain. We previously demonstrated that the phosphatase pleckstrin homology domain and leucine-rich repeat protein phosphatase (PHLPP) 1 was positively correlated with IVD degeneration and its deficiency decelerated IVD degeneration in both mouse IVDs and human nucleus pulposus (NP) cells. Small molecule PHLPP inhibitors may offer a translatable method to alleviate IVD degeneration. In this study, we tested the effectiveness of the two PHLPP inhibitors NSC117079 and NSC45586 in promoting a healthy NP phenotype. Methods Tail IVDs of 5-month-old wildtype mice were collected and treated with NSC117079 or NSC45586 under low serum conditions ex vivo. Hematoxylin & eosin staining was performed to examine IVD structure and NP cell morphology. The expression of KRT19 was analyzed through immunohistochemistry. Cell apoptosis was assessed by TUNEL assay. Human NP cells were obtained from patients with IVD degeneration. The gene expression of KRT19, ACAN, SOX9, and MMP13 was analyzed via real time qPCR, and AKT phosphorylation and the protein expression of FOXO1 was analyzed via immunoblot. Results In a mouse IVD organ culture model, NSC45586, but not NSC117079, preserved vacuolated notochordal cell morphology and KRT19 expression while suppressing cell apoptosis, counteracting the degenerative changes induced by serum deprivation, especially in males. Likewise, in degenerated human NP cells, NSC45586 increased cell viability and the expression of KRT19, ACAN, and SOX9 and reducing the expression of MMP13, while NSC117079 treatment only increased KRT19 expression. Mechanistically, NSC45586 treatment increased FOXO1 protein expression in NP cells, and inhibiting FOXO1 offset NSC45586-induced regenerative potential, especially in males. Conclusions Our study indicates that NSC45586 was effective in promoting NP cell health, especially in males, suggesting that PHLPP plays a key role in NP cell homeostasis and that NSC45586 might be a potential drug candidate in treating IVD degeneration.
Collapse
Affiliation(s)
- Changli Zhang
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Madeleine D. Gordon
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Katherine M. Joseph
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | | | - Hicham Drissi
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
- Atlanta VA Health Care SystemDecaturGeorgiaUSA
| | - Svenja Illien‐Jünger
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
6
|
Zhang J, Zhang W, Sun T, Wang J, Li Y, Liu J, Li Z. The Influence of Intervertebral Disc Microenvironment on the Biological Behavior of Engrafted Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:8671482. [PMID: 36387746 PMCID: PMC9663214 DOI: 10.1155/2022/8671482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2024] Open
Abstract
Intervertebral disc degeneration is the main cause of low back pain. Traditional treatment methods cannot repair degenerated intervertebral disc tissue. The emergence of stem cell therapy makes it possible to regenerate and repair degenerated intervertebral disc tissue. At present, mesenchymal stem cells are the most studied, and different types of mesenchymal stem cells have their own characteristics. However, due to the harsh and complex internal microenvironment of the intervertebral disc, it will affect the biological behaviors of the implanted mesenchymal stem cells, such as viability, proliferation, migration, and chondrogenic differentiation, thereby affecting the therapeutic effect. This review is aimed at summarizing the influence of each intervertebral disc microenvironmental factor on the biological behavior of mesenchymal stem cells, so as to provide new ideas for using tissue engineering technology to assist stem cells to overcome the influence of the microenvironment in the future.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Wentao Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Ying Li
- Stem Cell Clinical Research Centers, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021 Liaoning, China
| | - Jing Liu
- Stem Cell Clinical Research Centers, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021 Liaoning, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
- Stem Cell Clinical Research Centers, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021 Liaoning, China
| |
Collapse
|
7
|
Fan P, Yu XY, Chen CH, Gao JW, Xu YZ, Xie XH, Wang YT. Parkin-mediated mitophagy protects against TNF-α-induced stress in bone marrow mesenchymal stem cells. Exp Gerontol 2022; 164:111829. [DOI: 10.1016/j.exger.2022.111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
|
8
|
Zhu K, Zhao R, Ye Y, Xu G, Zhang C. Effect of lentivirus-mediated growth and differentiation factor-5 transfection on differentiation of rabbit nucleus pulposus mesenchymal stem cells. Eur J Med Res 2022; 27:5. [PMID: 35022077 PMCID: PMC8756615 DOI: 10.1186/s40001-021-00624-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a natural progression of age-related processes. Associated with IDD, degenerative disc disease (DDD) is a pathologic condition implicated as a major cause of chronic lower back pain, which can have a severe impact on the quality of life of patients. As degeneration progression is associated with elevated levels of inflammatory cytokines, enhanced aggrecan and collagen degradation, and changes in the disc cell phenotype. The purpose of this study was to investigate the biological and cytological characteristics of rabbit nucleus pulposus mesenchymal stem cells (NPMSCs)—a key factor in IDD—and to determine the effect of the growth and differentiation factor-5 (GDF5) on the differentiation of rabbit NPMSCs transduced with a lentivirus vector. Methods An in vitro culture model of rabbit NPMSCs was established and NPMSCs were identified by flow cytometry (FCM) and quantitative real-time PCR (qRT-PCR). Subsequently, NPMSCs were randomly divided into three groups: a transfection group (the lentiviral vector carrying GDF5 gene used to transfect NPMSCs); a control virus group (the NPMSCs transfected with an ordinary lentiviral vector); and a normal group (the NPMSCs alone). FCM, qRT-PCR, and western blot (WB) were used to detect the changes in NPMSCs. Results The GDF5-transfected NPMSCs displayed an elongated shape, with decreased cell density, and significantly increased GDF5 positivity rate in the transfected group compared to the other two groups (P < 0.01). The mRNA levels of Krt8, Krt18, and Krt19 in the transfected group were significantly higher in comparison with the other two groups (P < 0.01), and the WB results were consistent with that of qRT-PCR. Conclusions GDF5 could induce the differentiation of NPMSCs. The lentiviral vector carrying the GDF5 gene could be integrated into the chromosome genome of NPMSCs and promoted differentiation of NPMSCs into nucleus pulposus cells. Our findings advance the development of feasible and effective therapies for IDD. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-021-00624-5.
Collapse
Affiliation(s)
- Kun Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, China
| | - Rui Zhao
- Department of General Medicine, Bengbu Medical College, Bengbu, China
| | - Yuchen Ye
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, China
| | - Gang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, China.
| | - Changchun Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, China.
| |
Collapse
|
9
|
Pei YA, Pei M. Hypoxia Modulates Regenerative Potential of Fetal Stem Cells. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:363. [PMID: 36660242 PMCID: PMC9846719 DOI: 10.3390/app12010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Adult mesenchymal stem cells (MSCs) are prone to senescence, which limits the scope of their use in tissue engineering and regeneration and increases the likelihood of post-implantation failure. As a robust alternative cell source, fetal stem cells can prevent an immune reaction and senescence. However, few studies use this cell type. In this study, we sought to characterize fetal cells' regenerative potential in hypoxic conditions. Specifically, we examined whether hypoxic exposure during the expansion and differentiation phases would affect human fetal nucleus pulposus cell (NPC) and fetal synovium-derived stem cell (SDSC) plasticity and three-lineage differentiation potential. We concluded that fetal NPCs represent the most promising cell source for chondrogenic differentiation, as they are more responsive and display stronger phenotypic stability, particularly when expanded and differentiated in hypoxic conditions. Fetal SDSCs have less potential for chondrogenic differentiation compared to their adult counterpart. This study also indicated that fetal SDSCs exhibit a discrepancy in adipogenic and osteogenic differentiation in response to hypoxia.
Collapse
Affiliation(s)
- Yixuan Amy Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
10
|
Xuan A, Ruan D, Wang C, He Q, Wang D, Hou L, Zhang C, Li C, Ji W, Wen T, Xu C, Zhu Z. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:490-503. [PMID: 35427416 PMCID: PMC9154349 DOI: 10.1093/stcltm/szac013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
The treatment of intervertebral disc degeneration (IVDD) is still a huge challenge for clinical updated surgical techniques and basic strategies of intervertebral disc regeneration. Few studies have ever tried to combine surgery and cell therapy to bridge the gap between clinical and basic research. A prospective clinical study with a 72-month follow-up was conducted to assess the safety and feasibility of autologous discogenic cells transplantation combined with discectomy in the treatment of lumbar disc herniation (LDH) and to evaluate the regenerative ability of discogenic cells in IVDD. Forty patients with LDH who were scheduled to have discectomy enrolled in our study and were divided into the observed group (transplantation of autologous discogenic cells after discectomy) and control group (only-discectomy). Serial MRI and X-ray were used to evaluate the degenerative extent of index discs, and clinical scores were used to determine the symptomatic improvement. No adverse events were observed in the observed group, and seven patients in the control group underwent revisions. Both groups had significant improvement of all functional scores post-operatively, with the observed group improving more considerably at 36-month and 72-month follow-up. The height and water content of discs in both groups decreased significantly since 36 months post-op with the control group decreased more obviously. Discectomy combined with autologous discogenic cells transplantation is safe and feasible in the treatment of LDH. Radiological analysis demonstrated that discogenic cells transplantation could slow down the further degeneration of index discs and decrease the complications of discectomy.
Collapse
Affiliation(s)
- Anwu Xuan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Dike Ruan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
- Corresponding author: Dike Ruan, MD, The Second School of Clinical Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, People’s Republic of China, and the Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, 6 Fucheng Road, Haidian District, Beijing 100048, People’s Republic of China.
| | - Chaofeng Wang
- Department of Orthopedics, Xi’an Honghui Hospital, Xi’an, People’s Republic of China
| | - Qing He
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Deli Wang
- Department of Orthopedics, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Lisheng Hou
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Chao Zhang
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Chao Li
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Wei Ji
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Tianyong Wen
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Cheng Xu
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Zhenbiao Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Intervertebral Disc Stem/Progenitor Cells: A Promising "Seed" for Intervertebral Disc Regeneration. Stem Cells Int 2021; 2021:2130727. [PMID: 34367292 PMCID: PMC8342144 DOI: 10.1155/2021/2130727] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is considered to be the primary reason for low back pain (LBP), which has become more prevalent from 21 century, causing an enormous economic burden for society. However, in spite of remarkable improvements in the basic research of IVD degeneration (IVDD), the effects of clinical treatments of IVDD are still leaving much to be desired. Accumulating evidence has proposed the existence of endogenous stem/progenitor cells in the IVD that possess the ability of proliferation and differentiation. However, few studies have reported the biological properties and potential application of IVD progenitor cells in detail. Even so, these stem/progenitor cells have been consumed as a promising cell source for the regeneration of damaged IVD. In this review, we will first introduce IVD, describe its physiology and stem/progenitor cell niche, and characterize IVDSPCs between homeostasis and IVD degeneration. We will then summarize recent studies on endogenous IVDSPC-based IVD regeneration and exogenous cell-based therapy for IVDD. Finally, we will discuss the potential applications and future developments of IVDSPC-based repair of IVD degeneration.
Collapse
|
12
|
Zhang Q, Shen Y, Zhao S, Jiang Y, Zhou D, Zhang Y. Exosomes miR-15a promotes nucleus pulposus-mesenchymal stem cells chondrogenic differentiation by targeting MMP-3. Cell Signal 2021; 86:110083. [PMID: 34252537 DOI: 10.1016/j.cellsig.2021.110083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022]
Abstract
The physiology of the nucleus pulposus (NP) in intervertebral disc degeneration (IVD) has been studied widely. However, interactions involving nucleus pulposus -mesenchymal stem cells (NP-MSCs) are less understood. MicroRNA 15a (miR-15a) is known to target and modulate genes involved in cellular proliferation and apoptosis. This study aimed to understand the interactions and impact of miR-15a and NP-MSCs on chondrogenic differentiation and IVD degeneration. Exosomes secreted by NP cells were purified by differential centrifugation and identified by transmission electron microscopy and exosomal markers. Further, by co-culture these exosomes were re-introduced into the NP-MSC cells, which were confirmed by fluorescence confocal microscopy. NP-MSCs treated with exo-miR-15a increases aggrecan and collagen II mRNA and protein levels while decreasing mRNA and protein levels of ADAMTS4/5 and MMP-3/-13. Toluidine blue staining confirmed that chondrogenic differentiation was increased in NP-MSCs treated with exo-miR-15a. NP-MSCs treated with exo-anti-miR-15a inhibit aggrecan and collagen II expression while increasing ADAMTS4/5 and MMP-3/-13 expression and decreasing chondrogenic differentiation. Dual-luciferase reporter assays revealed that miR-15a directly targets MMP-3 and downregulates its expression. Overexpression of miR-15a increased proliferation and colony formation, whereas combinatorial overexpression with MMP3, suppressed miR-15a's effects. This was also evident through the decreased phosphorylation of PI3K and Akt, upregulation of Wnt3a and β-catenin in the presence of miR-15a, but overexpression of MMP3 indicated an opposite effect. Overall, these data demonstrate that exo-miR-15a promotes NP-MSCs chondrogenic differentiation by downregulating MMP-3 through PI3K/Akt and Wnt3a/β-catenin axis.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Yifei Shen
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Shujie Zhao
- Department of Orthopedics, The People's Hospital of Jiangsu Province, Nanjing, Jiangsu 210029, China
| | - Yuqing Jiang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Dong Zhou
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213003, China.
| | - Yunkun Zhang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
13
|
Wang L, He T, Liu J, Tai J, Wang B, Zhang L, Quan Z. Revealing the Immune Infiltration Landscape and Identifying Diagnostic Biomarkers for Lumbar Disc Herniation. Front Immunol 2021; 12:666355. [PMID: 34122424 PMCID: PMC8190407 DOI: 10.3389/fimmu.2021.666355] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Intervertebral disc (IVD) degeneration and its inflammatory microenvironment ultimately led to discogenic pain, which is thought to originate in the nucleus pulposus (NP). In this study, key genes involved in NP tissue immune infiltration in lumbar disc herniation (LDH) were identified by bioinformatic analysis. Gene expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. The CIBERSORT algorithm was used to analyze the immune infiltration into NP tissue between the LDH and control groups. Hub genes were identified by the WGCNA R package in Bioconductor and single-cell sequencing data was analyzed using R packages. Gene expression levels were evaluated by quantitative real-time polymerase chain reaction. The immune infiltration profiles varied significantly between the LDH and control groups. Compared with control tissue, LDH tissue contained a higher proportion of regulatory T cells and macrophages, which are associated with the macrophage polarization process. The most significant module contained three hub genes and four subclusters of NP cells. Functional analysis of these genes was performed, the hub gene expression pattern was confirmed by PCR, and clinical features of the patients were investigated. Finally, we identified TGF-β and MAPK signaling pathways as crucial in this process and these pathways may provide diagnostic markers for LDH. We hypothesize that the hub genes expressed in the specific NP subclusters, along with the infiltrating macrophages play important roles in the pathogenesis of IVD degeneration and ultimately, disc herniation.
Collapse
Affiliation(s)
- Linbang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao He
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingkun Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jiaojiao Tai
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bing Wang
- Laboratory of Environmental Monitoring, Shaanxi Province Health Inspection Institution, Xi'an, China
| | - Lanyue Zhang
- Traditional Chinese Medicine Department, Chongqing Medical University, Chongqing, China
| | - Zhengxue Quan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Wang Q, Wang J, Gu X, Feng D, Li D, Jiang T. MicroRNA-124-3p inhibits the differentiation of precartilaginous stem cells into nucleus pulposus-like cells via targeting FSTL1. Exp Ther Med 2021; 22:725. [PMID: 34007334 PMCID: PMC8120511 DOI: 10.3892/etm.2021.10157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/18/2021] [Indexed: 11/05/2022] Open
Abstract
MicroRNA (miRNA/miR)-124-3p has been extensively studied in tumor biology and stem cells. However, little is known regarding its functional roles in the differentiation of precartilaginous stem cells (PSCs) into nucleus pulposus-like cells (NPLCs). In the present study, using miRNA microarray screening, it was demonstrated that the miRNA expression profiles differed between rat primary PSCs and TGF-β1-induced differentiated NPLCs, and that miR-124-3p was significantly differentially expressed during the differentiation of PSCs to NPLCs. Furthermore, RT-qPCR analysis verified that miR-124-3p expression was decreased during PSC differentiation, with the lowest levels being detected at the later stages. Subsequent experiments revealed that miR-124-3p overexpression significantly decreased the expression of the extracellular matrix proteins, aggrecan and collagen type II, which was accompanied by a significant decrease in follistatin-related protein 1 (FSTL1) expression levels. Moreover, bioinformatics analysis indicated that FSTL1 was a potential target of miR-124-3p, which was additionally verified using luciferase reporter assays. Taken together, these data revealed a specific regulatory pathway of miR-124-3p, which negatively regulated its target gene, FSTL1, during the differentiation of PSCs to NPLCs, and suggested a functional role for miR-124-3p in the differentiation of PSCs.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Junfang Wang
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Xiaofeng Gu
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Dehong Feng
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Ding Li
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Tao Jiang
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
15
|
Sako K, Sakai D, Nakamura Y, Schol J, Matsushita E, Warita T, Horikita N, Sato M, Watanabe M. Effect of Whole Tissue Culture and Basic Fibroblast Growth Factor on Maintenance of Tie2 Molecule Expression in Human Nucleus Pulposus Cells. Int J Mol Sci 2021; 22:ijms22094723. [PMID: 33946902 PMCID: PMC8124367 DOI: 10.3390/ijms22094723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Previous work showed a link between Tie2+ nucleus pulposus progenitor cells (NPPC) and disc degeneration. However, NPPC remain difficult to maintain in culture. Here, we report whole tissue culture (WTC) combined with fibroblast growth factor 2 (FGF2) and chimeric FGF (cFGF) supplementation to support and enhance NPPC and Tie2 expression. We also examined the role of PI3K/Akt and MEK/ERK pathways in FGF2 and cFGF-induced Tie2 expression. Young herniating nucleus pulposus tissue was used. We compared WTC and standard primary cell culture, with or without 10 ng/mL FGF2. PI3K/Akt and MEK/ERK signaling pathways were examined through western blotting. Using WTC and primary cell culture, Tie2 positivity rates were 7.0 ± 2.6% and 1.9 ± 0.3% (p = 0.004), respectively. Addition of FGF2 in WTC increased Tie2 positivity rates to 14.2 ± 5.4% (p = 0.01). FGF2-stimulated expression of Tie2 was reduced 3-fold with the addition of the MEK inhibitor PD98059 (p = 0.01). However, the addition of 1 μM Akt inhibitor, 124015-1MGCN, only reduced small Tie2 expression (p = 0.42). cFGF similarly increased the Tie2 expression, but did not result in significant phosphorylation in both the MEK/ERK and PI3K/Akt pathways. WTC with FGF2 addition significantly increased Tie2 maintenance of human NPPC. Moreover, FGF2 supports Tie2 expression via MEK/ERK and PI3K/Akt signals. These findings offer promising tools and insights for the development of NPPC-based therapeutics.
Collapse
Affiliation(s)
- Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Correspondence: (K.S.); (D.S.)
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
- Correspondence: (K.S.); (D.S.)
| | - Yoshihiko Nakamura
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Jordy Schol
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Erika Matsushita
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Takayuki Warita
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Natsumi Horikita
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
16
|
Vadalà G, Ambrosio L, Russo F, Papalia R, Denaro V. Stem Cells and Intervertebral Disc Regeneration Overview-What They Can and Can't Do. Int J Spine Surg 2021; 15:40-53. [PMID: 34376495 DOI: 10.14444/8054] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Low back pain (LPB) is the main cause of disability worldwide with enormous socioeconomic burdens. A major cause of LBP is intervertebral disc degeneration (IDD): a chronic, progressive process associated with exhaustion of the resident cell population, tissue inflammation, degradation of the extracellular matrix and dehydration of the nucleus pulposus. Eventually, IDD may lead to serious sequelae including chronic LBP, disc herniation, segmental instability, and spinal stenosis, which may require invasive surgical interventions. However, no treatment is actually able to directly tackle IDD and hamper the degenerative process. In the last decade, the intradiscal injection of stem cells is raising as a promising approach to regenerate the intervertebral disc. This review aims to describe the rationale behind a regenerative stem cell therapy for IDD as well as the effect of stem cells following their implantation in the disc environment according to preclinical studies. Furthermore, actual clinical evidence and ongoing trials will be discussed, taking into account the future perspective and current limitations of this cutting-edge therapy. METHODS A literature analysis was performed for this narrative review. A database search of PubMed, Scopus and ClinicalTrials.gov was conducted using "stem cells" combined with "intervertebral disc", "degeneration" and "regeneration" without exclusion based on publication date. Articles were firstly screened on a title-abstract basis and, subsequently, full-text were reviewed. Both preclinical and clinical studies have been included. RESULTS The database search yielded recent publications from which the narrative review was completed. CONCLUSIONS Based on available evidence, intradiscal stem cell therapy has provided encouraging results in terms of regenerative effects and reduction of LBP. However, multicenter, prospective randomized trials are needed in order confirm the safety, efficacy and applicability of such a promising treatment.
Collapse
Affiliation(s)
- Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Luca Ambrosio
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Fabrizio Russo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Rocco Papalia
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
17
|
Luo L, Gong J, Zhang H, Qin J, Li C, Zhang J, Tang Y, Zhang Y, Chen J, Zhou Y, Tian Z, Liu Y, Liu M. Cartilage Endplate Stem Cells Transdifferentiate Into Nucleus Pulposus Cells via Autocrine Exosomes. Front Cell Dev Biol 2021; 9:648201. [PMID: 33748142 PMCID: PMC7970302 DOI: 10.3389/fcell.2021.648201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Stem cells derived from cartilage endplate (CEP) cells (CESCs) repair intervertebral disc (IVD) injury; however, the mechanism remains unclear. Here, we evaluated whether CESCs could transdifferentiate into nucleus pulposus cells (NPCs) via autocrine exosomes and subsequently inhibit IVD degeneration. Exosomes derived from CESCs (CESC-Exos) were extracted and identified by ultra-high-speed centrifugation and transmission electron microscopy. The effects of exosomes on the invasion, migration, and differentiation of CESCs were assessed. The exosome-activating hypoxia-inducible factor (HIF)-1α/Wnt pathway was investigated using lenti-HIF-1α and Wnt agonists/inhibitors in cells and gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis in normal and degenerated human CEP tissue. The effects of GATA binding protein 4 (GATA4) on transforming growth factor (TGF)-β expression and on the invasion, migration, and transdifferentiation of CESCs were investigated using lenti-GATA4, TGF-β agonists, and inhibitors. Additionally, IVD repair was investigated by injecting CESCs overexpressing GATA4 into rats. The results indicated that CESC-Exos promoted the invasion, migration, and differentiation of CESCs by autocrine exosomes via the HIF-1α/Wnt pathway. Additionally, increased HIF-1α enhanced the activation of Wnt signaling and activated GATA4 expression. GATA4 effectively promoted TGF-β secretion and enhanced the invasion, migration, and transdifferentiation of CESCs into NPCs, resulting in promotion of rat IVD repair. CESCs were also converted into NPCs as endplate degeneration progressed in human samples. Overall, we found that CESC-Exos activated HIF-1α/Wnt signaling via autocrine mechanisms to increase the expression of GATA4 and TGF-β1, thereby promoting the migration of CESCs into the IVD and the transformation of CESCs into NPCs and inhibiting IVDD.
Collapse
Affiliation(s)
- Liwen Luo
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China.,Institute of Immunology, PLA, Army Medical University, Third Military Medical University, Chongqing, China
| | - Junfeng Gong
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Hongyu Zhang
- Department of Emergency, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinghao Qin
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Changqing Li
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yu Tang
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Yang Zhang
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Jian Chen
- Institute of Immunology, PLA, Army Medical University, Third Military Medical University, Chongqing, China
| | - Yue Zhou
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Army Medical University, Third Military Medical University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - MingHan Liu
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
Guerrero J, Häckel S, Croft AS, Albers CE, Gantenbein B. The effects of 3D culture on the expansion and maintenance of nucleus pulposus progenitor cell multipotency. JOR Spine 2021; 4:e1131. [PMID: 33778405 PMCID: PMC7984018 DOI: 10.1002/jsp2.1131] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Low back pain (LBP) is a global health concern. Increasing evidence implicates intervertebral disk (IVD) degeneration as a major contributor. In this respect, tissue-specific progenitors may play a crucial role in tissue regeneration, as these cells are perfectly adapted to their niche. Recently, a novel progenitor cell population was described in the nucleus pulposus (NP) that is positive for Tie2 marker. These cells have self-renewal capacity and in vitro multipotency potential. However, extremely low numbers of the NP progenitors limit the feasibility of cell therapy strategies. OBJECTIVE Here, we studied the influence of the culture method and of the microenvironment on the proliferation rate and the differentiation potential of human NP progenitors in vitro. METHOD Cells were obtained from human NP tissue from trauma patients. Briefly, the NP tissue cells were cultured in two-dimensional (2D) (monolayer) or three-dimensional (3D) (alginate beads) conditions. After 1 week, cells from 2D or 3D culture were expanded on fibronectin-coated flasks. Subsequently, expanded NP cells were then characterized by cytometry and tri-lineage differentiation, which was analyzed by qPCR and histology. Moreover, experiments using Tie2+ and Tie2- NP cells were also performed. RESULTS The present study aims to demonstrate that 3D expansion of NP cells better preserves the Tie2+ cell populations and increases the chondrogenic and osteogenic differentiation potential compared to 2D expansion. Moreover, the cell sorting experiments reveal that only Tie2+ cells were able to maintain the pluripotent gene expression if cultured in 3D within alginate beads. Therefore, our results highly suggest that the maintenance of the cell's multipotency is mainly, but not exclusively, due to the higher presence of Tie2+ cells due to 3D culture. CONCLUSION This project not only might have a scientific impact by evaluating the influence of a two-step expansion protocol on the functionality of NP progenitors, but it could also lead to an innovative clinical approach.
Collapse
Affiliation(s)
- Julien Guerrero
- Tissue Engineering for Orthopaedics & Mechanobiology, Department for BioMedical Research (DBMR) of the Faculty of Medicine of the University of BernUniversity of BernSwitzerland
| | - Sonja Häckel
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University HospitalBernSwitzerland
| | - Andreas S. Croft
- Tissue Engineering for Orthopaedics & Mechanobiology, Department for BioMedical Research (DBMR) of the Faculty of Medicine of the University of BernUniversity of BernSwitzerland
| | - Christoph E. Albers
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University HospitalBernSwitzerland
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Department for BioMedical Research (DBMR) of the Faculty of Medicine of the University of BernUniversity of BernSwitzerland
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University HospitalBernSwitzerland
| |
Collapse
|
19
|
Zhang Y, Hu Y, Wang W, Guo Z, Yang F, Cai X, Xiong L. Current Progress in the Endogenous Repair of Intervertebral Disk Degeneration Based on Progenitor Cells. Front Bioeng Biotechnol 2021; 8:629088. [PMID: 33553131 PMCID: PMC7862573 DOI: 10.3389/fbioe.2020.629088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disk (IVD) degeneration is one of the most common musculoskeletal disease. Current clinical treatment paradigms for IVD degeneration cannot completely restore the structural and biomechanical functions of the IVD. Bio-therapeutic techniques focused on progenitor/stem cells, especially IVD progenitor cells, provide promising options for the treatment of IVD degeneration. Endogenous repair is an important self-repair mechanism in IVD that can allow the IVD to maintain a long-term homeostasis. The progenitor cells within IVD play a significant role in IVD endogenous repair. Improving the adverse microenvironment in degenerative IVD and promoting progenitor cell migration might be important strategies for implementation of the modulation of endogenous repair of IVD. Here, we not only reviewed the research status of treatment of degenerative IVD based on IVD progenitor cells, but also emphasized the concept of endogenous repair of IVD and discussed the potential new research direction of IVD endogenous repair.
Collapse
Affiliation(s)
- Yanbin Zhang
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wentian Wang
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zijun Guo
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xianyi Cai
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Xiong
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Nan LP, Wang F, Liu Y, Wu Z, Feng XM, Liu JJ, Zhang L. 6-gingerol protects nucleus pulposus-derived mesenchymal stem cells from oxidative injury by activating autophagy. World J Stem Cells 2020; 12:1603-1622. [PMID: 33505603 PMCID: PMC7789124 DOI: 10.4252/wjsc.v12.i12.1603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/30/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To date, there has been no effective treatment for intervertebral disc degeneration (IDD). Nucleus pulposus-derived mesenchymal stem cells (NPMSCs) showed encouraging results in IDD treatment, but the overexpression of reactive oxygen species (ROS) impaired the endogenous repair abilities of NPMSCs. 6-gingerol (6-GIN) is an antioxidant and anti-inflammatory reagent that might protect NPMSCs from injury.
AIM To investigate the effect of 6-GIN on NPMSCs under oxidative conditions and the potential mechanism.
METHODS The cholecystokinin-8 assay was used to evaluate the cytotoxicity of hydrogen peroxide and the protective effects of 6-GIN. ROS levels were measured by 2´7´-dichlorofluorescin diacetate analysis. Matrix metalloproteinase (MMP) was detected by the tetraethylbenzimidazolylcarbocyanine iodide assay. TUNEL assay and Annexin V/PI double-staining were used to determine the apoptosis rate. Additionally, autophagy-related proteins (Beclin-1, LC-3, and p62), apoptosis-associated proteins (Bcl-2, Bax, and caspase-3), and PI3K/Akt signaling pathway-related proteins (PI3K and Akt) were evaluated by Western blot analysis. Autophagosomes were detected by transmission electron microscopy in NPMSCs. LC-3 was also detected by immunofluorescence. The mRNA expression of collagen II and aggrecan was evaluated by real-time polymerase chain reaction (RT-PCR), and the changes in collagen II and MMP-13 expression were verified through an immunofluorescence assay.
RESULTS 6-GIN exhibited protective effects against hydrogen peroxide-induced injury in NPMSCs, decreased hydrogen peroxide-induced intracellular ROS levels, and inhibited cell apoptosis. 6-GIN could increase Bcl-2 expression and decrease Bax and caspase-3 expression. The MMP, Annexin V-FITC/PI flow cytometry and TUNEL assay results further confirmed that 6-GIN treatment significantly inhibited NPMSC apoptosis induced by hydrogen peroxide. 6-GIN treatment promoted extracellular matrix (ECM) expression by reducing the oxidative stress injury-induced increase in MMP-13 expression. 6-GIN activated autophagy by increasing the expression of autophagy-related markers (Beclin-1 and LC-3) and decreasing the expression of p62. Autophagosomes were visualized by transmission electron microscopy. Pretreatment with 3-MA and BAF further confirmed that 6-GIN-mediated stimulation of autophagy did not reduce autophagosome turnover but increased autophagic flux. The PI3K/Akt pathway was also found to be activated by 6-GIN. 6-GIN inhibited NPMSC apoptosis and ECM degeneration, in which autophagy and the PI3K/Akt pathway were involved.
CONCLUSION 6-GIN efficiently decreases ROS levels, attenuates hydrogen peroxide-induced NPMSCs apoptosis, and protects the ECM from degeneration. 6-GIN is a promising candidate for treating IDD.
Collapse
Affiliation(s)
- Li-Ping Nan
- Department of Orthopedic, Tongji University School of Medicine, Shanghai Tenth People’s Hospital, Tenth People’s Hospital of Tongji University, Shanghai 200072, China
| | - Feng Wang
- Department of Spine Surgery, Tongji University School of Medicine, Shanghai East Hospital, Shanghai 200120, China
| | - Yang Liu
- Department of Orthopedic, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Zhong Wu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Jun-Jian Liu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| |
Collapse
|
21
|
Li Z, Chen S, Ma K, He R, Xiong L, Hu Y, Deng X, Yang A, Ma X, Shao Z. Comparison of different methods for the isolation and purification of rat nucleus pulposus-derived mesenchymal stem cells. Connect Tissue Res 2020; 61:426-434. [PMID: 31203667 DOI: 10.1080/03008207.2019.1611793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Recently, nucleus pulposus-derived mesenchymal stem cells (NPMSCs) have been identified and have shown good prospects for the repair of degenerative intervertebral discs. However, there is no consensus about the methods for the isolation and purification of NPMSCs. Therefore, a reliable and efficient isolation and purification method is potentially needed. We aimed to compare different methods and to identify an optimal method for isolating and purifying NPMSCs. METHODS NPMSCs were isolated and purified using two common methods (a low-density culture (LD) method and a mesenchymal stem cell complete medium culture (MSC-CM) method) and two novel methods (a cloning cylinder (CC) method and a combination of the CC and MSC-CM methods (MSC-CM+CC)). The morphology, MSC-specific surface markers (CD44, CD73, CD90, CD105, CD34 and HLA-DR), multiple-lineage differentiation potential, colony formation ability, and stemness gene (Oct4, Nanog, and Sox2) expression were evaluated and compared. RESULTS NPMSCs isolated from nucleus pulposus (NP) tissues via the four methods met the criteria stated by the International Society of Cell Therapy (ISCT) for MSCs, including adherent growth ability, MSC-specific surface antigen expression, and multi-lineage differentiation potential. In particular, the MSC-CM+CC method yielded a relatively higher quality of NPMSCs in terms of cell surface markers, multiple-lineage differentiation potential, colony formation ability, and stemness gene expression. CONCLUSIONS Our results indicated that NPMSCs can be obtained via all four methods and that the MSC-CM+CC method is more reliable and efficient than the other three methods. The findings from this study provide an alternative option for isolating and purifying NPMSCs.
Collapse
Affiliation(s)
- Zhiliang Li
- Department of Orthopedics, Renmin Hospital of Wuhan University , Wuhan, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Ruijun He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Liming Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xiangyu Deng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Aoxue Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xuan Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| |
Collapse
|
22
|
Frapin L, Clouet J, Chédeville C, Moraru C, Samarut E, Henry N, André M, Bord E, Halgand B, Lesoeur J, Fusellier M, Guicheux J, Le Visage C. Controlled release of biological factors for endogenous progenitor cell migration and intervertebral disc extracellular matrix remodelling. Biomaterials 2020; 253:120107. [PMID: 32450408 DOI: 10.1016/j.biomaterials.2020.120107] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
The recent description of resident stem/progenitor cells in degenerated intervertebral discs (IVDs) supports the notion that their regenerative capacities could be harnessed to stimulate endogenous repair of the nucleus pulposus (NP). In this study, we developed a delivery system based on pullulan microbeads (PMBs) for sequential release of the chemokine CCL-5 to recruit these disc stem/progenitor cells to the NP tissue, followed by the release of the growth factors TGF-β1 and GDF-5 to induce the synthesis of a collagen type II- and aggrecan-rich extracellular matrix (ECM). Bioactivity of released CCL5 on human adipose-derived stem cells (hASCs), selected to mimic disc stem/progenitors, was demonstrated using a Transwell® chemotaxis assay. The regenerative effects of loaded PMBs were investigated in ex vivo spontaneously degenerated ovine IVDs. Fluorescent hASCs were seeded on the top cartilaginous endplates (CEPs); the degenerated NPs were injected with PMBs loaded with CCL5, TGF-β1, and GDF-5; and the IVDs were then cultured for 3, 7, and 28 days to allow for cell migration and disc regeneration. The PMBs exhibited sustained release of biological factors for 21 days. Ex vivo migration of seeded hASCs from the CEP toward the NP was demonstrated, with the cells migrating a significantly greater distance when loaded PMBs were injected (5.8 ± 1.3 mm vs. 3.5 ± 1.8 mm with no injection of PMBs). In ovine IVDs, the overall NP cellularity, the collagen type II and the aggrecan staining intensities, and the Tie2+ progenitor cell density in the NP were increased at day 28 compared to the control groups. Considered together, PMBs loaded with CCL5/TGF-β1/GDF-5 constitute an innovative and promising strategy for controlled release of growth factors to promote cell recruitment and extracellular matrix remodelling.
Collapse
Affiliation(s)
- Leslie Frapin
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France
| | - Johann Clouet
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes, F-44093, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes, F-44035, France
| | - Claire Chédeville
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France
| | - Constantin Moraru
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Edouard Samarut
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Nina Henry
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France
| | - Manon André
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; SC3M -"Electron Microscopy, Microcharacterization, and Functional Morphohistology Imaging" Core Facility, Structure Fédérative de Recherche François Bonamy, INSERM - UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, Nantes, F-04402, France
| | - Eric Bord
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Boris Halgand
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France
| | - Julie Lesoeur
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; SC3M -"Electron Microscopy, Microcharacterization, and Functional Morphohistology Imaging" Core Facility, Structure Fédérative de Recherche François Bonamy, INSERM - UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, Nantes, F-04402, France
| | - Marion Fusellier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; Department of Diagnostic Imaging, CRIP, National Veterinary School (ONIRIS), Nantes, F-44307, France
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; SC3M -"Electron Microscopy, Microcharacterization, and Functional Morphohistology Imaging" Core Facility, Structure Fédérative de Recherche François Bonamy, INSERM - UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, Nantes, F-04402, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France.
| | - Catherine Le Visage
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France.
| |
Collapse
|
23
|
Liu Y, Li Y, Nan LP, Wang F, Zhou SF, Feng XM, Liu H, Zhang L. Insights of stem cell-based endogenous repair of intervertebral disc degeneration. World J Stem Cells 2020; 12:266-276. [PMID: 32399135 PMCID: PMC7202923 DOI: 10.4252/wjsc.v12.i4.266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Low back pain has become more prevalent in recent years, causing enormous economic burden for society and government. Common therapies used in clinics including conservative treatment and surgery can only relieve pain. Subsequent cell-based treatment such as mesenchymal stem cell transplantation poses problems such as short duration of therapeutic effect and tumorigenesis. Recently, the discovery and identification of stem cell niche and stem/progenitor cells in intervertebral disc bring increased attention to endogenous repair strategy. Therefore, we review the studies involving endogenous repair strategy and present the characteristics and current status of this treatment. Meanwhile, we also discuss the strategy and perspective of endogenous repair strategy in future.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Yan Li
- Department of Oncology, The Affiliated Cancer Hospital, School of Medicine, UESTC, Chengdu 610000, Sichuan Province, China
| | - Li-Ping Nan
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Feng Wang
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Shi-Feng Zhou
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Hao Liu
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| |
Collapse
|
24
|
Puerarin Relieved Compression-Induced Apoptosis and Mitochondrial Dysfunction in Human Nucleus Pulposus Mesenchymal Stem Cells via the PI3K/Akt Pathway. Stem Cells Int 2020; 2020:7126914. [PMID: 32399049 PMCID: PMC7201526 DOI: 10.1155/2020/7126914] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/04/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Puerarin (PUR), an 8-C-glucoside of daidzein extracted from Pueraria plants, is closely related to autophagy, reduced reactive oxygen species (ROS) production, and anti-inflammatory effects, but its effects on human nucleus pulposus mesenchymal stem cells (NPMSCs) have not yet been identified. In this study, NPMSCs were cultured in a compression apparatus to simulate the microenvironment of the intervertebral disc under controlled pressure (1.0 MPa), and we found that cell viability was decreased and apoptosis level was gradually increased as compression duration was prolonged. After PUR administration, apoptosis level evaluated by flow cytometry and caspase-3 activity was remitted, and protein levels of Bas as well as cleaved caspase-3 were decreased, while elevated Bcl-2 level was identified. Moreover, ATP production detection, ROS, and JC-1 fluorography as well as quantitative analysis suggested that PUR could attenuate intercellular ROS accumulation and mitochondrial dysfunction. Besides, the rat tail compression model was utilized, which indicated that PUR could restore impaired nucleus pulposus degeneration induced by compression. The PI3K/Akt pathway was identified to be deactivated after compression stimulation by western blot, and PUR could rescue the phosphorylation of Akt, thus reactivating the pathway. The effects of PUR, such as antiapoptosis, cell viability restoration, antioxidation, and mitochondrial maintenance, were all counteracted by application of the PI3K/Akt pathway inhibitor (LY294002). Summarily, PUR could alleviate compression-induced apoptosis and cell death of human NPMSCs in vitro as well as on the rat compression model and maintain intracellular homeostasis by stabilizing mitochondrial membrane potential and attenuating ROS accumulation through activating the PI3K/Akt pathway.
Collapse
|
25
|
Sun Z, Liu B, Luo ZJ. The Immune Privilege of the Intervertebral Disc: Implications for Intervertebral Disc Degeneration Treatment. Int J Med Sci 2020; 17:685-692. [PMID: 32210719 PMCID: PMC7085207 DOI: 10.7150/ijms.42238] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
The intervertebral disc (IVD) is the largest avascular organ of the body. It is composed of three parts: the nucleus pulposus (NP), the annulus fibrosus (AF) and the cartilaginous endplate (CEP). The central NP is surrounded by the AF and sandwiched by the two CEPs ever since its formation. This unique structure isolates the NP from the immune system of the host. Additionally, molecular factors expressed in IVD have been shown inhibitive effect on immune cells and cytokines infiltration. Therefore, the IVD has been identified as an immune privilege organ. The steady state of immune privilege is fundamental to the homeostasis of the IVD. The AF and the CEP, along with the immunosuppressive molecular factors are defined as the blood-NP barrier (BNB), which establishes a strong barrier to isolate the NP from the host immune system. When the BNB is damaged, the auto-immune response of the NP occurs with various downstream cascade reactions. This effect plays an important role in the whole process of IVD degeneration and related complications, such as herniation, sciatica and spontaneous herniated NP regression. Taken together, an enhanced understanding of the immune privilege of the IVD could provide new targets for the treatment of symptomatic IVD disease. However, the underlying mechanism above is still not fully clarified. Accordingly, the current study will extensively review and discuss studies regarding the immune privilege of the IVD.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University. Western Changle Road, Xi'an, 710032, Shannxi Provence, P. R. China
| | - Bing Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University. Western Changle Road, Xi'an, 710032, Shannxi Provence, P. R. China
| | - Zhuo-Jing Luo
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University. Western Changle Road, Xi'an, 710032, Shannxi Provence, P. R. China
| |
Collapse
|
26
|
Mesenchymal Stem Cell Homing Into Intervertebral Discs Enhances the Tie2-positive Progenitor Cell Population, Prevents Cell Death, and Induces a Proliferative Response. Spine (Phila Pa 1976) 2019; 44:1613-1622. [PMID: 31730570 PMCID: PMC6867676 DOI: 10.1097/brs.0000000000003150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experimental study with human mesenchymal stem cells (MSCs) and intervertebral disc (IVD) tissue samples. OBJECTIVE This study aimed to characterize the effect of MSC homing on the Tie2-positive IVD progenitor cell population, IVD cell survival, and proliferation. SUMMARY OF BACKGROUND DATA Homing of human MSCs has been described as potential alternative to MSC injection, aiming to enhance the regenerative capacity of the IVD. IVD cells expressing Tie2 (also known as CD202b or Angiopoietin-1 receptor TEK tyrosine kinase) represent a progenitor cell population with discogenic differentiation potential. However, the fraction of Tie2-positive progenitor cells decreases with aging and degree of IVD degeneration, resulting in a potential loss of the IVD's regenerative capacity. METHODS Human MSCs, isolated from vertebral bone marrow aspirates, were labeled and seeded onto the endplate of bovine IVDs and human IVD tissue. Following MSC migration for 5 days, IVD cells were isolated by tissue digestion. The fractions of Tie2-positive, dead, apoptotic, and proliferative IVD cells were evaluated by flow cytometry and compared to untreated IVDs. For human IVDs, 3 groups were investigated: nondegenerated (organ donors), IVDs of patients suffering from spinal trauma, and degenerative IVD tissue samples. RESULTS MSC homing enhanced the fraction of Tie2-positive IVD cells in bovine and human IVD samples. Furthermore, a proliferative response and lower fraction of dead cells were observed after MSC homing in both bovine and human IVD tissues. CONCLUSION Our findings indicate that MSC homing enhances the survival and regenerative capability of IVD cells, which may be mediated by intercellular communication. MSC homing could represent a potential treatment strategy to prevent the onset of the degenerative cascade in IVDs at risk such as IVDs adjacent to a fused segment or IVDs after herniation. LEVEL OF EVIDENCE N/A.
Collapse
|
27
|
Li X, Wu A, Han C, Chen C, Zhou T, Zhang K, Yang X, Chen Z, Qin A, Tian H, Zhao J. Bone marrow-derived mesenchymal stem cells in three-dimensional co-culture attenuate degeneration of nucleus pulposus cells. Aging (Albany NY) 2019; 11:9167-9187. [PMID: 31666429 PMCID: PMC6834418 DOI: 10.18632/aging.102390] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022]
Abstract
Intervertebral disc degeneration (IDD) is an irreversible aging-associated clinical condition of unclear etiology. Mesenchymal stem cells (MSCs) have the potential to delay IDD, but the mechanisms by which MSCs attenuate senescence-related degeneration of nucleus pulposus cells (NPCs) remain uncertain. The present study employed a three-dimensional (3D) co-culture system to explore the influence of MSCs on NPC degeneration induced by TNF-α in rat cells. We found that co-culture with bone marrow-derived MSCs (BMSCs) reduced senescence-associated β-galactosidase expression, increased cell proliferation, decreased matrix metalloproteinase 9, increased Coll-IIa production, and reduced TGFβ/NF-κB signaling in senescent NPCs. In addition, expression of zinc metallopeptidase STE24 (ZMPSTE24), whose dysfunction is related to premature cell senescence and aging, was decreased in senescent NPCs but restored upon BMSC co-culture. Accordingly, ZMPSTE24 overexpression in NPCs inhibited the pro-senescence effects of TGFβ/NF-κB activation upon TNF-α stimulation, while both CRISPR/Cas9-mediated silencing and pharmacological ZMPSTE24 inhibition prevented those effects. Ex-vivo experiments on NP explants provided supporting evidence for the protective effect of MSCs against NPC senescence and IDD. Although further molecular studies are necessary, our results suggest that MSCs may attenuate or prevent NP fibrosis and restore the viability and functional status of NPCs through upregulation of ZMPSTE24.
Collapse
Affiliation(s)
- Xunlin Li
- Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, P. R. China
| | - Aimin Wu
- Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, P. R. China.,Department of Spine Surgery, Zhejiang Spine Surgery Centre, Orthopaedic Hospital, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, The Second School of Medicine Wenzhou Medical University, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, P. R. China
| | - Chen Han
- Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, P. R. China
| | - Chen Chen
- Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, P. R. China
| | - Tangjun Zhou
- Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, P. R. China
| | - Kai Zhang
- Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, P. R. China
| | - Xiao Yang
- Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, P. R. China
| | - Zhiqian Chen
- Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, P. R. China
| | - An Qin
- Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, P. R. China
| | - Haijun Tian
- Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, P. R. China
| | - Jie Zhao
- Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai, P. R. China
| |
Collapse
|
28
|
Interaction between Mesenchymal Stem Cells and Intervertebral Disc Microenvironment: From Cell Therapy to Tissue Engineering. Stem Cells Int 2019; 2019:2376172. [PMID: 32587618 PMCID: PMC7294366 DOI: 10.1155/2019/2376172] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/20/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Low back pain (LBP) in one of the most disabling symptoms affecting nearly 80% of the population worldwide. Its primary cause seems to be intervertebral disc degeneration (IDD): a chronic and progressive process characterized by loss of viable cells and extracellular matrix (ECM) breakdown within the intervertebral disc (IVD) especially in its inner region, the nucleus pulposus (NP). Over the last decades, innovative biological treatments have been investigated in order to restore the original healthy IVD environment and achieve disc regeneration. Mesenchymal stem cells (MSCs) have been widely exploited in regenerative medicine for their capacity to be easily harvested and be able to differentiate along the osteogenic, chondrogenic, and adipogenic lineages and to secrete a wide range of trophic factors that promote tissue homeostasis along with immunomodulation and anti-inflammation. Several in vitro and preclinical studies have demonstrated that MSCs are able to acquire a NP cell-like phenotype and to synthesize structural components of the ECM as well as trophic and anti-inflammatory mediators that may support resident cell activity. However, due to its unique anatomical location and function, the IVD presents distinctive features: avascularity, hypoxia, low glucose concentration, low pH, hyperosmolarity, and mechanical loading. Such conditions establish a hostile microenvironment for both resident and exogenously administered cells, which limited the efficacy of intradiscal cell therapy in diverse investigations. This review is aimed at describing the characteristics of the healthy and degenerated IVD microenvironment and how such features influence both resident cells and MSC viability and biological activity. Furthermore, we focused on how recent research has tried to overcome the obstacles coming from the IVD microenvironment by developing innovative cell therapies and functionalized bioscaffolds.
Collapse
|
29
|
Frapin L, Clouet J, Delplace V, Fusellier M, Guicheux J, Le Visage C. Lessons learned from intervertebral disc pathophysiology to guide rational design of sequential delivery systems for therapeutic biological factors. Adv Drug Deliv Rev 2019; 149-150:49-71. [PMID: 31445063 DOI: 10.1016/j.addr.2019.08.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/05/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022]
Abstract
Intervertebral disc (IVD) degeneration has been associated with low back pain, which is a major musculoskeletal disorder and socio-economic problem that affects as many as 600 million patients worldwide. Here, we first review the current knowledge of IVD physiology and physiopathological processes in terms of homeostasis regulation and consecutive events that lead to tissue degeneration. Recent progress with IVD restoration by anti-catabolic or pro-anabolic approaches are then analyzed, as are the design of macro-, micro-, and nano-platforms to control the delivery of such therapeutic agents. Finally, we hypothesize that a sequential delivery strategy that i) firstly targets the inflammatory, pro-catabolic microenvironment with release of anti-inflammatory or anti-catabolic cytokines; ii) secondly increases cell density in the less hostile microenvironment by endogenous cell recruitment or exogenous cell injection, and finally iii) enhances cellular synthesis of extracellular matrix with release of pro-anabolic factors, would constitute an innovative yet challenging approach to IVD regeneration.
Collapse
|
30
|
Clouet J, Fusellier M, Camus A, Le Visage C, Guicheux J. Intervertebral disc regeneration: From cell therapy to the development of novel bioinspired endogenous repair strategies. Adv Drug Deliv Rev 2019; 146:306-324. [PMID: 29705378 DOI: 10.1016/j.addr.2018.04.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
Abstract
Low back pain (LBP), frequently associated with intervertebral disc (IVD) degeneration, is a major public health concern. LBP is currently managed by pharmacological treatments and, if unsuccessful, by invasive surgical procedures, which do not counteract the degenerative process. Considering that IVD cell depletion is critical in the degenerative process, the supplementation of IVD with reparative cells, associated or not with biomaterials, has been contemplated. Recently, the discovery of reparative stem/progenitor cells in the IVD has led to increased interest in the potential of endogenous repair strategies. Recruitment of these cells by specific signals might constitute an alternative strategy to cell transplantation. Here, we review the status of cell-based therapies for treating IVD degeneration and emphasize the current concept of endogenous repair as well as future perspectives. This review also highlights the challenges of the mobilization/differentiation of reparative progenitor cells through the delivery of biologics factors to stimulate IVD regeneration.
Collapse
Affiliation(s)
- Johann Clouet
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes F-44093, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes F-44035, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Marion Fusellier
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Department of Diagnostic Imaging, CRIP, National Veterinary School (ONIRIS), Nantes F-44307, France
| | - Anne Camus
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Catherine Le Visage
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Jérôme Guicheux
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France.
| |
Collapse
|
31
|
Cheng S, Li X, Jia Z, Lin L, Ying J, Wen T, Zhao Y, Guo Z, Zhao X, Li D, Ji W, Wang D, Ruan D. The inflammatory cytokine TNF-α regulates the biological behavior of rat nucleus pulposus mesenchymal stem cells through the NF-κB signaling pathway in vitro. J Cell Biochem 2019; 120:13664-13679. [PMID: 30938863 DOI: 10.1002/jcb.28640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/17/2019] [Accepted: 02/28/2019] [Indexed: 12/27/2022]
Abstract
Nucleus pulposus (NP) mesenchymal stem cells (NPMSCs) are a potential cell source for intervertebral disc (IVD) regeneration; however, little is known about their response to tumor necrosis factor-α (TNF-α), a critical inflammation factor contributing to accelerating IVD degeneration. Accordingly, the aim of this study was to investigate the regulatory effects of TNF-α at high and low concentrations on the biological behaviors of healthy rat NPMSCs, including proliferation, migration, and NP differentiation. In this study, NPMSCs were treated with different concentration of TNF-α (0-200 ng/mL). Then we used annexin V/propidium iodide flow cytometry analysis to detect the apoptosis rate of NPMSCs. Cell Counting Kit-8, Edu assay, and cell cycle test were used to examine the proliferation of NPMSCs. Migration ability of NPMSCs was detected by wound healing assay and transwell migration assay. Pellets method was used to induce NP differentiation of NPMSCs, and immunohistochemical staining, real-time polymerase chain reaction, and Western blot analysis were used to examine the NPC phenotypic genes and proteins. The cells were further treated with the nuclear factor-κB (NF-κB) pathway inhibitor Bay 11-7082 to determine the role of the NF-κB pathway in the mechanism underlying the differentiation process. Results showed that treatment with a high concentration of TNF-α (50-200 ng/mL) could induce apoptosis of NPMSCs, whereas a relatively low TNF-α concentration (0.1-10 ng/mL) promoted the proliferation and migration of NPMSCs, but inhibited their differentiation toward NP cells. Moreover, we identified that the NF-κB signaling pathway is activated during the TNF-α-inhibited differentiation of NPMSCs, and the NF-κB signal inhibitor Bay 11-7082 could partially eliminate the adverse effect of TNF-α on the differentiation of NPMSCs. Therefore, our findings provide important insight into the dynamic biological behavior reactivity of NPMSCs to TNF-α during IVD degeneration process, thus may help us understanding the underlying mechanism of IVD degeneration.
Collapse
Affiliation(s)
- Shi Cheng
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China.,The Second Clinical College, Southern Medical University, Guangzhou, China
| | - Xiaochuan Li
- Department of Orthopedic Surgery, The People's Hospital of Gaozhou, Guangdong, China
| | - Zhiwei Jia
- Department of Orthopedics, The 306th Hospital of People's Liberation Army, Beijing, China
| | - Linghan Lin
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China
| | - Jinwei Ying
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China
| | - Tianyong Wen
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China
| | - Yachao Zhao
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China
| | - Ziming Guo
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China
| | - Xiyan Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dandan Li
- The Second Clinical College, Southern Medical University, Guangzhou, China
| | - Wei Ji
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China
| | - Deli Wang
- Department of Orthopedic Surgery, Peking University Shenzhen Hospital, Guangdong, China
| | - Dike Ruan
- Department of Orthopedic Surgery, Navy General Hospital, Beijing, China
| |
Collapse
|
32
|
Buser Z, Chung AS, Abedi A, Wang JC. The future of disc surgery and regeneration. INTERNATIONAL ORTHOPAEDICS 2018; 43:995-1002. [PMID: 30506089 DOI: 10.1007/s00264-018-4254-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/25/2018] [Indexed: 12/21/2022]
Abstract
Low back and neck pain are among the top contributors for years lived with disability, causing patients to seek substantial non-operative and operative care. Intervertebral disc herniation is one of the most common spinal pathologies leading to low back pain. Patient comorbidities and other risk factors contribute to the onset and magnitude of disc herniation. Spine fusions have been the treatment of choice for disc herniation, due to the conflicting evidence on conservative treatments. However, re-operation and costs have been among the main challenges. Novel technologies including cage surface modifications, biologics, and 3D printing hold a great promise. Artificial disc replacement has demonstrated reduced rates of adjacent segment degeneration, need for additional surgery, and better outcomes. Non-invasive biological approaches are focused on cell-based therapies, with data primarily from preclinical settings. High-quality comparative studies are needed to evaluate the efficacy and safety of novel technologies and biological therapies.
Collapse
Affiliation(s)
- Zorica Buser
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA.
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo St, HC4 - #5400A, Los Angeles, CA, 90033, USA.
| | | | - Aidin Abedi
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey C Wang
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
33
|
Séguin CA, Chan D, Dahia CL, Gazit Z. Latest advances in intervertebral disc development and progenitor cells. JOR Spine 2018; 1:e1030. [PMID: 30687811 PMCID: PMC6338208 DOI: 10.1002/jsp2.1030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
This paper is a concise review aiming to assemble the most relevant topics presented by the authors at ORS-Philadelphia Spine Research Society Fourth International Spine Research Symposium. It centers on the latest advances in disc development, its main structural entities, and the populating cells, with emphasis on the advances in pivotal molecular pathways responsible for forming the intervertebral discs (IVD). The objective of finding and emphasizing pathways and mechanisms that function to control tissue formation is to identify and to explore modifications occurring during normal aging, disease, and tissue repair. Thus, to comprehend that the cellular and molecular basis of tissue degeneration are crucial in the study of the dynamic interplay that includes cell-cell communication, gene regulation, and growth factors required to form a healthy and functional tissue during normal development.
Collapse
Affiliation(s)
- Cheryle A Séguin
- Schulich School of Medicine and Dentistry Bone and Joint Institute, The University of Western Ontario London ON Canada
| | - Danny Chan
- School of Biomedical Sciences LKS Faculty of Medicine, The University of Hong Kong Hong Kong China
| | - Chitra L Dahia
- Hospital for Special Surgery Weill Cornell Medical College New York New York
| | - Zulma Gazit
- Department of Surgery Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles California
| |
Collapse
|
34
|
Li XC, Wang MS, Liu W, Zhong CF, Deng GB, Luo SJ, Huang CM. Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence. Stem Cell Res Ther 2018; 9:171. [PMID: 29941029 PMCID: PMC6019307 DOI: 10.1186/s13287-018-0919-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/26/2018] [Accepted: 06/05/2018] [Indexed: 01/07/2023] Open
Abstract
Background Cell therapy for the treatment of intervertebral disc degeneration (IDD) faces serious barriers since tissue-specific adult cells such as nucleus pulposus cells (NPCs) have limited proliferative ability and poor regenerative potential; in addition, it is difficult for exogenous adult stem cells to survive the harsh environment of the degenerated intervertebral disc. Endogenous repair by nucleus pulposus mesenchymal stem cells (NPMSCs) has recently shown promising regenerative potential for the treatment of IDD. Notochordal cells (NCs) and NC-conditioned medium (NCCM) have been proven to possess regenerative ability for the treatment of IDD, but this approach is limited by the isolation and passaging of NCs. Our previous study demonstrated that modified notochordal cell-rich nucleus pulposus (NC-rich NP) has potential for the repair of IDD. However, whether this can protect NPMSCs during IDD has not been evaluated. Methods In the current study, tumor necrosis factor (TNF)-α was used to mimic the inflammatory environment of IDD. Human NPMSCs were cocultured with NC-rich NP explants from healthy rabbit lumbar spine with or without TNF-α. Cell proliferation and senescence were analyzed to investigate the effect of NC-rich NP explants on TNF-α-treated NPMSCs. The expression of mRNA encoding proteins related to matrix macromolecules (such as aggrecan, Sox-9, collagen Iα, and collagen IIα), markers related to the nucleus pulposus cell phenotype (including CA12, FOXF1, PAX1, and HIF-1α), and senescence markers (such as p16, p21, and p53), senescence-associated proinflammatory cytokines (IL-6), and extracellular proteases (MMP-13, ADAMTS-5) was assessed. The protein expression of CA12 and collagen II was also evaluated. Results After a 7-day treatment, the NC-rich NP explant was found to enhance cell proliferation, decrease cellular senescence, promote glycosaminoglycan (GAG), collagen II, and CA12 production, upregulate the expression of extracellular matrix (ECM)-related genes (collagen I, collagen II, SOX9, and ACAN), and enhance the expression of nucleus pulposus cell (NPC) markers (HIF-1α, FOXF1, PAX1, and CA12). Conclusion Modified NC-rich NP explants can attenuate TNF-α-induced degeneration and senescence of NPMSCs in vitro. Our findings provide new insights into the therapeutic potential of NC-rich NP for the treatment of IDD.
Collapse
|
35
|
Sakai D, Schol J, Bach FC, Tekari A, Sagawa N, Nakamura Y, Chan SC, Nakai T, Creemers LB, Frauchiger DA, May RD, Grad S, Watanabe M, Tryfonidou MA, Gantenbein B. Successful fishing for nucleus pulposus progenitor cells of the intervertebral disc across species. JOR Spine 2018; 1:e1018. [PMID: 31463445 PMCID: PMC6686801 DOI: 10.1002/jsp2.1018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Recently, Tie2/TEK receptor tyrosine kinase (Tie2 or syn. angiopoietin-1 receptor) positive nucleus pulposus progenitor cells were detected in human, cattle, and mouse. These cells show remarkable multilineage differentiation capacity and direct correlation with intervertebral disc (IVD) degeneration and are therefore an interesting target for regenerative strategies. Nevertheless, there remains controversy over the presence and function of these Tie2+ nucleus pulposus cells (NPCs), in part due to the difficulty of identification and isolation. PURPOSE Here, we present a comprehensive protocol for sorting of Tie2+ NPCs from human, canine, bovine, and murine IVD tissue. We describe enhanced conditions for expansion and an optimized fluorescence-activated cell sorting-based methodology to sort and analyze Tie2+ NPCs. METHODS We present flow cytometry protocols to isolate the Tie2+ cell population for the aforementioned species. Moreover, we describe crucial pitfalls to prevent loss of Tie2+ NPCs from the IVD cell population during the isolation process. A cross-species phylogenetic analysis of Tie2 across species is presented. RESULTS Our protocols are efficient towards labeling and isolation of Tie2+ NPCs. The total flow cytometry procedure requires approximately 9 hours, cell isolation 4 to 16 hours, cell expansion can take up to multiple weeks, dependent on the application, age, disease state, and species. Phylogenetic analysis of the TEK gene revealed a strong homology among species. CONCLUSIONS Current identification of Tie2+ cells could be confirmed in bovine, canine, mouse, and human specimens. The presented flow cytometry protocol can successfully sort these multipotent cells. The biological function of isolated cells based on Tie2+ expression needs to be confirmed by functional assays such as in vitro differentiation. in vitro culture conditions to maintain and their possible proliferation of the Tie2+ fraction is the subject of future research.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department for Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
- Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Jordy Schol
- Department for Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
- Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Adel Tekari
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, Medical FacultyUniversity of BernBernSwitzerland
- Laboratory of Molecular and Cellular Screening ProcessesCentre of Biotechnology of Sfax, University of SfaxSfaxTunisia
| | - Nobuho Sagawa
- Department for Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Yoshihiko Nakamura
- Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Samantha C.W. Chan
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, Medical FacultyUniversity of BernBernSwitzerland
| | - Tomoko Nakai
- Department for Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Laura B. Creemers
- Department of Orthopaedic SurgeryUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Daniela A. Frauchiger
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, Medical FacultyUniversity of BernBernSwitzerland
| | - Rahel D. May
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, Medical FacultyUniversity of BernBernSwitzerland
| | - Sibylle Grad
- AO Spine Research Network, AO Spine InternationalDavosSwitzerland
- Department of Musculoskeletal Regeneration, AO Research InstituteDavosSwitzerland
| | - Masahiko Watanabe
- Department for Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
- Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Benjamin Gantenbein
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, Medical FacultyUniversity of BernBernSwitzerland
- AO Spine Research Network, AO Spine InternationalDavosSwitzerland
| |
Collapse
|