1
|
Yazdani A, Khamesi N, Keyhani A, Nasibi S, Mohammadi MA, Mousavi SM, Derakhshani A, Fasihi Harandi M. Comparative Analysis of Nanos and Ago Genes Expression in the Germinative Cells Isolated from Germinal Layer and the Neck Region of Echinococcus granulosus. IRANIAN JOURNAL OF PARASITOLOGY 2024; 19:131-139. [PMID: 39011528 PMCID: PMC11246205 DOI: 10.18502/ijpa.v19i2.15849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/09/2024] [Indexed: 07/17/2024]
Abstract
Background We aimed to evaluate the differential expression of nanos and ago genes in the protoscoleces, germinal layer, the neck, and the sucker regions of adult Echinococcus granulosus. Methods The study was conducted in 2018 at the Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran. In the present study E. granulosus protoscoleces were cultured in a di-phasic medium to obtain strobilated worms. The strobilated worms were harvested and using a sterile razor blade, the neck region was separated. In the molecular study the neck sections were compared with the tissues derived from the suckers from the same worm. The primers were specifically designed for RT-qPCR on nanos and ago. The germinative cells were isolated from the cyst germinal layer and cultured in DMEM for further molecular studies. The Immunohisto-chemical profile was designed to explore the nature of nanos protein in the strobilated worms. Differences between and within groups were statistically assessed relative to the protoscoleces. Results An increasing nanos gene expressions were found in sucker, neck, cells and germinal layer in comparison to the protoscoleces. The expression of ago gene was decreased in sucker, cell and germinal layer, and increased in the neck region in comparison to the protoscoleces. The results showed that both genes were expressed in all developmental stages of E. granulosus. Conclusion nanos and ago genes were differentially expressed at different developmental stages of E. granulosus and may contribute to differentiation of the parasite.
Collapse
Affiliation(s)
- Amin Yazdani
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Narges Khamesi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeid Nasibi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Ali Mohammadi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Mohammad Mousavi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Derakhshani
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Gambino G, Iacopetti P, Ippolito C, Salvetti A, Rossi L. Starvation resistance in planarians: multiple strategies to get a thrifty phenotype. FEBS J 2024; 291:965-985. [PMID: 38037534 DOI: 10.1111/febs.17020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/11/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
Starvation resistance is a life-saving mechanism for many organisms facing food availability fluctuation in the natural environment. Different strategies have been episodically identified for some model organisms, the first of which was the ability to suppress metabolic rate. Among the identified strategies, the ability of planarians to shrink their body under fasting conditions and revert the process after feeding (the growth-degrowth process) represents a fascinating mechanism to face long periods of fasting. The growth-degrowth process is strictly related to the capability of planarians to continuously maintain tissue homeostasis and body proportions even in challenging conditions, thanks to the presence of a population of pluripotent stem cells. Here, we take advantage of several previous studies describing the growth-degrowth process and of recent progress in the understanding of planarian homeostasis mechanisms, to identify tissue-selective transcriptional downregulation as a driving strategy for the development of a thrifty phenotype, and the p53 transcription factor as a player in adjusting tissue homeostasis in accordance with food availability.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Paola Iacopetti
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
3
|
Hulett RE, Kimura JO, Bolaños DM, Luo YJ, Rivera-López C, Ricci L, Srivastava M. Acoel single-cell atlas reveals expression dynamics and heterogeneity of adult pluripotent stem cells. Nat Commun 2023; 14:2612. [PMID: 37147314 PMCID: PMC10163032 DOI: 10.1038/s41467-023-38016-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
Adult pluripotent stem cell (aPSC) populations underlie whole-body regeneration in many distantly-related animal lineages, but how the underlying cellular and molecular mechanisms compare across species is unknown. Here, we apply single-cell RNA sequencing to profile transcriptional cell states of the acoel worm Hofstenia miamia during postembryonic development and regeneration. We identify cell types shared across stages and their associated gene expression dynamics during regeneration. Functional studies confirm that the aPSCs, also known as neoblasts, are the source of differentiated cells and reveal transcription factors needed for differentiation. Subclustering of neoblasts recovers transcriptionally distinct subpopulations, the majority of which are likely specialized to differentiated lineages. One neoblast subset, showing enriched expression of the histone variant H3.3, appears to lack specialization. Altogether, the cell states identified in this study facilitate comparisons to other species and enable future studies of stem cell fate potentials.
Collapse
Affiliation(s)
- Ryan E Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Julian O Kimura
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - D Marcela Bolaños
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Yi-Jyun Luo
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Carlos Rivera-López
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
4
|
Rinkevich B, Ballarin L, Martinez P, Somorjai I, Ben‐Hamo O, Borisenko I, Berezikov E, Ereskovsky A, Gazave E, Khnykin D, Manni L, Petukhova O, Rosner A, Röttinger E, Spagnuolo A, Sugni M, Tiozzo S, Hobmayer B. A pan-metazoan concept for adult stem cells: the wobbling Penrose landscape. Biol Rev Camb Philos Soc 2022; 97:299-325. [PMID: 34617397 PMCID: PMC9292022 DOI: 10.1111/brv.12801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Loriano Ballarin
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Pedro Martinez
- Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaAv. Diagonal 643Barcelona08028Spain
- Institut Català de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys 23Barcelona08010Spain
| | - Ildiko Somorjai
- School of BiologyUniversity of St AndrewsSt Andrews, FifeKY16 9ST, ScotlandUK
| | - Oshrat Ben‐Hamo
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Ilya Borisenko
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon UniversityJardin du Pharo, 58 Boulevard Charles LivonMarseille13007France
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesUlitsa Vavilova, 26Moscow119334Russia
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques MonodParisF‐75006France
| | - Denis Khnykin
- Department of PathologyOslo University HospitalBygg 19, Gaustad Sykehus, Sognsvannsveien 21Oslo0188Norway
| | - Lucia Manni
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Olga Petukhova
- Collection of Vertebrate Cell CulturesInstitute of Cytology, Russian Academy of SciencesTikhoretsky Ave. 4St. Petersburg194064Russia
| | - Amalia Rosner
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN)Nice06107France
- Université Côte d'Azur, Federative Research Institute – Marine Resources (IFR MARRES)28 Avenue de ValroseNice06103France
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| | - Michela Sugni
- Department of Environmental Science and Policy (ESP)Università degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV)06234 Villefranche‐sur‐MerVillefranche sur MerCedexFrance
| | - Bert Hobmayer
- Institute of Zoology and Center for Molecular Biosciences, University of InnsbruckTechnikerstrInnsbruck256020Austria
| |
Collapse
|
5
|
Gambino G, Ippolito C, Evangelista M, Salvetti A, Rossi L. Sub-Lethal 5-Fluorouracil Dose Challenges Planarian Stem Cells Promoting Transcriptional Profile Changes in the Pluripotent Sigma-Class Neoblasts. Biomolecules 2021; 11:biom11070949. [PMID: 34206807 PMCID: PMC8301986 DOI: 10.3390/biom11070949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Under physiological conditions, the complex planarian neoblast system is a composite of hierarchically organized stem cell sub-populations with sigma-class neoblasts, including clonogenic neoblasts, endowed with larger self-renewal and differentiation capabilities, thus generating all the other sub-populations and dominating the regenerative process. This complex system responds to differentiated tissue demands, ensuring a continuous cell turnover in a way to replace aged specialized cells and maintain tissue functionality. Potency of the neoblast system can be appreciated under challenging conditions in which these stem cells are massively depleted and the few remaining repopulate the entire body, ensuring animal resilience. These challenging conditions offer the possibility to deepen the relationships among different neoblast sub-populations, allowing to expose uncanonical properties that are negligible under physiological conditions. In this paper, we employ short, sub-lethal 5-fluorouracil treatment to specifically affect proliferating cells passing through the S phase and demonstrate that S-phase slowdown triggers a shift in the transcriptional profile of sigma neoblasts, which reduces the expression of their hallmark sox-P1. Later, some cells reactivate sox-P1 expression, suggesting that some neoblasts in the earlier steps of commitment could modulate their expression profile, reacquiring a wider differentiative potential.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.G.); (C.I.); (L.R.)
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.G.); (C.I.); (L.R.)
| | | | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.G.); (C.I.); (L.R.)
- Correspondence: ; Tel.: +39-0502219108
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.G.); (C.I.); (L.R.)
| |
Collapse
|
6
|
Pryszlak M, Wiggans M, Chen X, Jaramillo JE, Burns SE, Richards LM, Pugh TJ, Kaplan DR, Huang X, Dirks PB, Pearson BJ. The DEAD-box helicase DDX56 is a conserved stemness regulator in normal and cancer stem cells. Cell Rep 2021; 34:108903. [PMID: 33789112 DOI: 10.1016/j.celrep.2021.108903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/28/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Across the animal kingdom, adult tissue homeostasis is regulated by adult stem cell activity, which is commonly dysregulated in human cancers. However, identifying key regulators of stem cells in the milieu of thousands of genes dysregulated in a given cancer is challenging. Here, using a comparative genomics approach between planarian adult stem cells and patient-derived glioblastoma stem cells (GSCs), we identify and demonstrate the role of DEAD-box helicase DDX56 in regulating aspects of stemness in four stem cell systems: planarians, mouse neural stem cells, human GSCs, and a fly model of glioblastoma. In a human GSC line, DDX56 localizes to the nucleolus, and using planarians, when DDX56 is lost, stem cells dysregulate expression of ribosomal RNAs and lose nucleolar integrity prior to stem cell death. Together, a comparative genomic approach can be used to uncover conserved stemness regulators that are functional in both normal and cancer stem cells.
Collapse
Affiliation(s)
- Michael Pryszlak
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Mallory Wiggans
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Xin Chen
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada
| | - Julia E Jaramillo
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Sarah E Burns
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada
| | - Laura M Richards
- Department of Medical Biophysics, University of Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Trevor J Pugh
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Medical Biophysics, University of Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - David R Kaplan
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Xi Huang
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON M5G 0A4, Canada
| | - Peter B Dirks
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON M5G 0A4, Canada
| | - Bret J Pearson
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
| |
Collapse
|
7
|
Wiggans M, Pearson BJ. One stem cell program to rule them all? FEBS J 2020; 288:3394-3406. [PMID: 33063917 DOI: 10.1111/febs.15598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Many species of animals have stem cells that they maintain throughout their lives, which suggests that stem cells are an ancestral feature of all animals. From this, we take the viewpoint that cells with the biological properties of 'stemness'-self-renewal and multipotency-may share ancestral genetic circuitry. However, in practice is it very difficult to identify and compare stemness gene signatures across diverse animals and large evolutionary distances? First, it is critical to experimentally demonstrate self-renewal and potency. Second, genomic methods must be used to determine specific gene expression in stem cell types compared with non-stem cell types to determine stem cell gene enrichment. Third, gene homology must be mapped between diverse animals across large evolutionary distances. Finally, conserved genes that fulfill these criteria must be tested for role in stem cell function. It is our viewpoint that by comparing stem cell-specific gene signatures across evolution, ancestral programs of stemness can be uncovered, and ultimately, the dysregulation of stemness programs drives the state of cancer stem cells.
Collapse
Affiliation(s)
- Mallory Wiggans
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, ON, Canada
| | - Bret J Pearson
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada
| |
Collapse
|
8
|
Salvetti A, Gambino G, Rossi L, De Pasquale D, Pucci C, Linsalata S, Degl'Innocenti A, Nitti S, Prato M, Ippolito C, Ciofani G. Stem cell and tissue regeneration analysis in low-dose irradiated planarians treated with cerium oxide nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111113. [DOI: 10.1016/j.msec.2020.111113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
|
9
|
Gambino G, Ippolito C, Modeo L, Salvetti A, Rossi L. 5-Fluorouracil-treated planarians, a versatile model system for studying stem cell heterogeneity and tissue aging. Biol Cell 2020; 112:335-348. [PMID: 32640042 DOI: 10.1111/boc.202000040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION Planarians are a sound, well-established model system for molecular studies in the field of stem cells, cell differentiation, developmental biology and translational research. Treated stem cell-less planarians produced by X-ray treatment are commonly used to study stem cell transcriptional profile and their role in planarian biological processes. X-ray induces oxidative and DNA damage to differentiated cells, requires expensive radiation machines that are not available in most of the research centres and demand rigorous risk management and dedicated staff. RESULTS We tested the use of the well-known antimetabolite genotoxic drug 5-fluorouracil which mainly affects proliferating cells in way to demonstrate its use in replacing X-ray treatment. We succeeded in demonstrating ability of high doses of 5-fluorouracil to deplete Dugesia japonica stem cells and in identifying a 5-fluorouracil transiently resistant population of lineage committed stem cells. CONCLUSIONS AND SIGNIFICANCE Our results encourage the use of 5-fluorouracil-treated planarians as a model system for studying mechanisms of resistance to genotoxicants, planarian stem cell heterogeneity and molecular cascades of tissue aging.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Letizia Modeo
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, 56126, Italy
| | - Alessandra Salvetti
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Leonardo Rossi
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| |
Collapse
|
10
|
Matthews H, Noulin F. Unexpected encounter of the parasitic kind. World J Stem Cells 2019; 11:904-919. [PMID: 31768219 PMCID: PMC6851008 DOI: 10.4252/wjsc.v11.i11.904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/10/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Both parasitology and stem cell research are important disciplines in their own right. Parasites are a real threat to human health causing a broad spectrum of diseases and significant annual rates morbidity and mortality globally. Stem cell research, on the other hand, focuses on the potential for regenerative medicine for a range of diseases including cancer and regenerative therapies. Though these two topics might appear distant, there are some “unexpected encounters”. In this review, we summarise the various links between parasites and stem cells. First, we discuss how parasites’ own stem cells represent interesting models of regeneration that can be translated to human stem cell regeneration. Second, we explore the interactions between parasites and host stem cells during the course of infection. Third, we investigate from a clinical perspective, how stem cell regeneration can be exploited to help circumvent the damage induced by parasitic infection and its potential to serve as treatment options for parasitic diseases in the future. Finally, we discuss the importance of screening for pathogens during organ transplantation by presenting some clinical cases of parasitic infection following stem cell therapy.
Collapse
Affiliation(s)
- Holly Matthews
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele ST5 5BG, United Kingdom
| | - Florian Noulin
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele ST5 5BG, United Kingdom
| |
Collapse
|
11
|
Alessandra S, Rossi L. Planarian Stem Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:39-54. [PMID: 31016594 DOI: 10.1007/978-3-030-11096-3_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Planarian (Platyhelminthes, Triclads) are free-living flatworms endowed with extraordinary regenerative capabilities, i.e., the ability to rebuild any missing body parts also from small fragments. Planarian regenerative capabilities fascinated scientific community since early 1800, including high-standing scientists such as J.T. Morgan and C. M. Child. Today, it is known that planarian regeneration is due to the presence of a wide population of stem cells, the so-called neoblasts. However, the understanding of the nature of cells orchestrating planarian regeneration was a long journey, and several questions still remain unanswered. In this chapter, beginning from the definition of the classical concept of neoblast, we review progressive discoveries that have brought to the modern view of these cells as a highly heterogeneous population of stem cells including pluripotent stem cells and undifferentiated populations of committed progenies.
Collapse
Affiliation(s)
- Salvetti Alessandra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
12
|
Insight into stem cell regulation from sub-lethally irradiated worms. Gene 2018; 662:37-45. [PMID: 29627527 DOI: 10.1016/j.gene.2018.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/24/2018] [Accepted: 04/05/2018] [Indexed: 12/30/2022]
Abstract
Despite the significant advances in the comprehension of stem cell control network, the nature of extrinsic signals regulating their dynamic remains to be understood. In this paper, we take advantage of the stem cell repopulation process that follows low-dose X-ray treatment in planarians to identify genes, preferentially enriched in differentiated cells, whose expression is activated during the process. Genetic silencing of some of them impaired the stem cell repopulation, suggesting a tight extrinsic control of stem cell activity.
Collapse
|
13
|
Neoblast-enriched zinc finger protein FIR1 triggers local proliferation during planarian regeneration. Protein Cell 2018; 10:43-59. [PMID: 29557542 PMCID: PMC6321819 DOI: 10.1007/s13238-018-0512-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/09/2018] [Indexed: 11/30/2022] Open
Abstract
Regeneration, relying mainly on resident adult stem cells, is widespread. However, the mechanism by which stem cells initiate proliferation during this process in vivo is unclear. Using planarian as a model, we screened 46 transcripts showing potential function in the regulation of local stem cell proliferation following 48 h regeneration. By analyzing the regeneration defects and the mitotic activity of animals under administration of RNA interference (RNAi), we identified factor for initiating regeneration 1 (Fir1) required for local proliferation. Our findings reveal that Fir1, enriched in neoblasts, promotes planarian regeneration in any tissue-missing context. Further, we demonstrate that DIS3 like 3′-5′ exoribonuclease 2 (Dis3l2) is required for Fir1 phenotype. Besides, RNAi knockdown of Fir1 causes a decrease of neoblast wound response genes following amputation. These findings suggest that Fir1 recognizes regenerative signals and promotes DIS3L2 proteins to trigger neoblast proliferation following amputation and provide a mechanism critical for stem cell response to injury.
Collapse
|
14
|
Rink JC. Stem Cells, Patterning and Regeneration in Planarians: Self-Organization at the Organismal Scale. Methods Mol Biol 2018; 1774:57-172. [PMID: 29916155 DOI: 10.1007/978-1-4939-7802-1_2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The establishment of size and shape remains a fundamental challenge in biological research that planarian flatworms uniquely epitomize. Planarians can regenerate complete and perfectly proportioned animals from tiny and arbitrarily shaped tissue pieces; they continuously renew all organismal cell types from abundant pluripotent stem cells, yet maintain shape and anatomy in the face of constant turnover; they grow when feeding and literally degrow when starving, while scaling form and function over as much as a 40-fold range in body length or an 800-fold change in total cell numbers. This review provides a broad overview of the current understanding of the planarian stem cell system, the mechanisms that pattern the planarian body plan and how the interplay between patterning signals and cell fate choices orchestrates regeneration. What emerges is a conceptual framework for the maintenance and regeneration of the planarian body plan on basis of the interplay between pluripotent stem cells and self-organizing patterns and further, the general utility of planarians as model system for the mechanistic basis of size and shape.
Collapse
Affiliation(s)
- Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
15
|
Davies EL, Lei K, Seidel CW, Kroesen AE, McKinney SA, Guo L, Robb SM, Ross EJ, Gotting K, Alvarado AS. Embryonic origin of adult stem cells required for tissue homeostasis and regeneration. eLife 2017; 6:21052. [PMID: 28072387 PMCID: PMC5293490 DOI: 10.7554/elife.21052] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/04/2017] [Indexed: 11/13/2022] Open
Abstract
Planarian neoblasts are pluripotent, adult somatic stem cells and lineage-primed progenitors that are required for the production and maintenance of all differentiated cell types, including the germline. Neoblasts, originally defined as undifferentiated cells residing in the adult parenchyma, are frequently compared to embryonic stem cells yet their developmental origin remains obscure. We investigated the provenance of neoblasts during Schmidtea mediterranea embryogenesis, and report that neoblasts arise from an anarchic, cycling piwi-1+ population wholly responsible for production of all temporary and definitive organs during embryogenesis. Early embryonic piwi-1+ cells are molecularly and functionally distinct from neoblasts: they express unique cohorts of early embryo enriched transcripts and behave differently than neoblasts in cell transplantation assays. Neoblast lineages arise as organogenesis begins and are required for construction of all major organ systems during embryogenesis. These subpopulations are continuously generated during adulthood, where they act as agents of tissue homeostasis and regeneration.
Collapse
Affiliation(s)
- Erin L Davies
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
| | - Kai Lei
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
| | - Christopher W Seidel
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
| | - Amanda E Kroesen
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
| | - Sean A McKinney
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
| | - Longhua Guo
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
| | - Sofia Mc Robb
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
| | - Eric J Ross
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
| | - Kirsten Gotting
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
| | | |
Collapse
|
16
|
Grudniewska M, Mouton S, Simanov D, Beltman F, Grelling M, de Mulder K, Arindrarto W, Weissert PM, van der Elst S, Berezikov E. Transcriptional signatures of somatic neoblasts and germline cells in Macrostomum lignano. eLife 2016; 5. [PMID: 27997336 PMCID: PMC5173321 DOI: 10.7554/elife.20607] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022] Open
Abstract
The regeneration-capable flatworm Macrostomum lignano is a powerful model organism to study the biology of stem cells in vivo. As a flatworm amenable to transgenesis, it complements the historically used planarian flatworm models, such as Schmidtea mediterranea. However, information on the transcriptome and markers of stem cells in M. lignano is limited. We generated a de novo transcriptome assembly and performed the first comprehensive characterization of gene expression in the proliferating cells of M. lignano, represented by somatic stem cells, called neoblasts, and germline cells. Knockdown of a selected set of neoblast genes, including Mlig-ddx39, Mlig-rrm1, Mlig-rpa3, Mlig-cdk1, and Mlig-h2a, confirmed their crucial role for the functionality of somatic neoblasts during homeostasis and regeneration. The generated M. lignano transcriptome assembly and gene expression signatures of somatic neoblasts and germline cells will be a valuable resource for future molecular studies in M. lignano. DOI:http://dx.doi.org/10.7554/eLife.20607.001
Collapse
Affiliation(s)
- Magda Grudniewska
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stijn Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Daniil Simanov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Frank Beltman
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Margriet Grelling
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katrien de Mulder
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Wibowo Arindrarto
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Philipp M Weissert
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan van der Elst
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
17
|
Abstract
Alveolar and cystic echinococcosis, caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively, are life-threatening diseases and very difficult to treat. The introduction of benzimidazole-based chemotherapy, which targets parasite β-tubulin, has significantly improved the life-span and prognosis of echinococcosis patients. However, benzimidazoles show only parasitostatic activity, are associated with serious adverse side effects and have to be administered for very long time periods, underlining the need for new drugs. Very recently, the nuclear genomes of E. multilocularis and E. granulosus have been characterised, revealing a plethora of data for gaining a deeper understanding of host-parasite interaction, parasite development and parasite evolution. Combined with extensive transcriptome analyses of Echinococcus life cycle stages these investigations also yielded novel clues for targeted drug design. Recent years also witnessed significant advancements in the molecular and cellular characterisation of the Echinococcus 'germinative cell' population, which forms a unique stem cell system that differs from stem cells of other organisms in the expression of several genes associated with the maintenance of pluripotency. As the only parasite cell type capable of undergoing mitosis, the germinative cells are central to all developmental transitions of Echinococcus within the host and to parasite expansion via asexual proliferation. In the present article, we will briefly introduce and discuss recent advances in Echinococcus genomics and stem cell research in the context of drug design and development. Interestingly, it turns out that benzimidazoles seem to have very limited effects on Echinococcus germinative cells, which could explain the high recurrence rates observed after chemotherapeutic treatment of echinococcosis patients. This clearly indicates that future efforts into the development of parasitocidal drugs should also target the parasite's stem cell system.
Collapse
Affiliation(s)
- U Koziol
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany; Sección Bioquímica, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - K Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany.
| |
Collapse
|
18
|
Rossi L, Bonuccelli L, Iacopetti P, Evangelista M, Ghezzani C, Tana L, Salvetti A. Prohibitin 2 regulates cell proliferation and mitochondrial cristae morphogenesis in planarian stem cells. Stem Cell Rev Rep 2015; 10:871-87. [PMID: 24974103 DOI: 10.1007/s12015-014-9540-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prohibitins are pleiotropic proteins, whose multiple roles are emerging as key elements in the regulation of cell survival and proliferation. Indeed, prohibitins interact with several intracellular proteins strategically involved in the regulation of cell cycle progression in response to extracellular growth signals. Prohibitins also have regulatory functions in mitochondrial fusion and cristae morphogenesis, phenomena related to the ability of self-renewing embryonic stem cells to undergo differentiation, during which mitochondria develop numerous cristae, increase in number, and generate an extensive reticular network. We recently identified a Prohibitin 2 homolog (DjPhb2) that is expressed in adult stem cells (neoblasts) of planarians, a well-known model system for in vivo studies on stem cells and tissue regeneration. Here, we show that in DjPhb2 silenced planarians, most proliferating cells disappear, with the exception of a subpopulation of neoblasts localized along the dorsal body midline. Neoblast depletion impairs regeneration and, finally, leads animals to death. Our in vivo findings demonstrate that prohibitin 2 plays an important role in regulating stem cell biology, being involved in both the control of cell cycle progression and mitochondrial cristae morphogenesis.
Collapse
Affiliation(s)
- Leonardo Rossi
- Unit of Experimental Biology and Genetics, Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Rodríguez-Esteban G, González-Sastre A, Rojo-Laguna JI, Saló E, Abril JF. Digital gene expression approach over multiple RNA-Seq data sets to detect neoblast transcriptional changes in Schmidtea mediterranea. BMC Genomics 2015; 16:361. [PMID: 25952370 PMCID: PMC4494696 DOI: 10.1186/s12864-015-1533-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/13/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The freshwater planarian Schmidtea mediterranea is recognised as a valuable model for research into adult stem cells and regeneration. With the advent of the high-throughput sequencing technologies, it has become feasible to undertake detailed transcriptional analysis of its unique stem cell population, the neoblasts. Nonetheless, a reliable reference for this type of studies is still lacking. RESULTS Taking advantage of digital gene expression (DGE) sequencing technology we compare all the available transcriptomes for S. mediterranea and improve their annotation. These results are accessible via web for the community of researchers. Using the quantitative nature of DGE, we describe the transcriptional profile of neoblasts and present 42 new neoblast genes, including several cancer-related genes and transcription factors. Furthermore, we describe in detail the Smed-meis-like gene and the three Nuclear Factor Y subunits Smed-nf-YA, Smed-nf-YB-2 and Smed-nf-YC. CONCLUSIONS DGE is a valuable tool for gene discovery, quantification and annotation. The application of DGE in S. mediterranea confirms the planarian stem cells or neoblasts as a complex population of pluripotent and multipotent cells regulated by a mixture of transcription factors and cancer-related genes.
Collapse
Affiliation(s)
- Gustavo Rodríguez-Esteban
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Alejandro González-Sastre
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - José Ignacio Rojo-Laguna
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Emili Saló
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Josep F Abril
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| |
Collapse
|
20
|
Salvetti A, Rossi L, Iacopetti P, Li X, Nitti S, Pellegrino T, Mattoli V, Golberg D, Ciofani G. In vivo biocompatibility of boron nitride nanotubes: effects on stem cell biology and tissue regeneration in planarians. Nanomedicine (Lond) 2015; 10:1911-22. [PMID: 25835434 DOI: 10.2217/nnm.15.46] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIM Boron nitride nanotubes (BNNTs) represent an extremely interesting class of nanomaterials, and recent findings have suggested a number of applications in the biomedical field. Anyhow, extensive biocompatibility investigations are mandatory before any further advancement toward preclinical testing. MATERIALS & METHODS Here, we report on the effects of multiwalled BNNTs in freshwater planarians, one of the best-characterized in vivo models for developmental biology and regeneration research. RESULTS & DISCUSSION Obtained results indicate that BNNTs are biocompatible in the investigated model, since they do not induce oxidative DNA damage and apoptosis, and do not show adverse effects on planarian stem cell biology and on de novo tissue regeneration. In summary, collected findings represent another important step toward BNNT realistic applications in nanomedicine.
Collapse
Affiliation(s)
- Alessandra Salvetti
- Department of Clinical & Experimental Medicine, University of Pisa, Via Alessandro Volta 4, 56126 Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical & Experimental Medicine, University of Pisa, Via Alessandro Volta 4, 56126 Pisa, Italy
| | - Paola Iacopetti
- Department of Clinical & Experimental Medicine, University of Pisa, Via Alessandro Volta 4, 56126 Pisa, Italy
| | - Xia Li
- National Institute for Materials Science (NIMS), International Center for Materials Nanoarchitectonics (MANA), Namiki 1-1, 305-0044 Tsukuba (Ibaraki), Japan
| | - Simone Nitti
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Dmitri Golberg
- National Institute for Materials Science (NIMS), International Center for Materials Nanoarchitectonics (MANA), Namiki 1-1, 305-0044 Tsukuba (Ibaraki), Japan
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| |
Collapse
|
21
|
Chen X, Xu C. Protein expression profiling in head fragments during planarian regeneration after amputation. Dev Genes Evol 2015; 225:79-93. [PMID: 25697422 DOI: 10.1007/s00427-015-0494-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
Following amputation, a planarian tail fragment can regrow into a complete organism including a well-organized brain within about 2-3 weeks, thus restoring the structure and function to presurgical levels. Despite the enormous potential of these animals for regenerative medicine, our understanding of the exact mechanism of planarian regeneration is incomplete. To better understand the molecular nature of planarian head regeneration, we applied two-dimensional electrophoresis (2-DE)/matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)/time-of-flight mass spectrometry (TOF MS) technique to analyze the dynamic proteomic expression profiles over the course of 6 to 168 h post-decapitation. This approach identified a total of 141 differentially expressed proteins, 47 of which exhibited exceptionally high fold changes (≥3-fold change). Of these, Rx protein, an important regulator of head and brain development, was considered to be closely related to planarian head regeneration because of its exceptional high expression almost throughout the time course of regeneration process. Functional annotation analysis classified the 141 proteins into eight categories: (1) signaling, (2) Ca(2+) binding and translocation, (3) transcription and translation, (4) cytoskeleton, (5) metabolism, (6) cell protection, (7) tissue differentiation, and (8) cell cycle. Signaling pathway analysis indicated that Wnt1/Ca(2+) signaling pathway was activated during head regeneration. Integrating the analyses of proteome expression profiling, functional annotation, and signaling pathway, amputation-induced head reformation requires some mechanisms to promote cell proliferation and differentiation, including differential regulation of proapoptotic and antiapoptotic proteins, and the regulation of proliferation and differentiation-related proteins. Importantly, Wnt1/Ca(2+) signaling pathway upregulates Rx expression, finally facilitating the differentiation of neoblasts into various cell types. Taken together, our study demonstrated that proteomic analysis approach used by us is a powerful tool in understanding molecular process related to head regeneration of planarian.
Collapse
Affiliation(s)
- Xiaoguang Chen
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, 471003, China
| | | |
Collapse
|
22
|
Natarajan N, Ramakrishnan P, Lakshmanan V, Palakodeti D, Rangiah K. A quantitative metabolomics peek into planarian regeneration. Analyst 2015; 140:3445-64. [PMID: 25815385 DOI: 10.1039/c4an02037e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The fresh water planarian species Schmidtea mediterranea is an emerging stem cell model because of its capability to regenerate a whole animal from a small piece of tissue. It is one of the best model systems to address the basic mechanisms essential for regeneration. Here, we are interested in studying the roles of various amines, thiols and nucleotides in planarian regeneration, stem cell function and growth. We developed mass spectrometry based quantitative methods and validated the differential enrichment of 35 amines, 7 thiol metabolites and 4 nucleotides from both intact and regenerating planarians. Among the amines, alanine in sexual and asparagine in asexual are the highest (>1000 ng/mg) in the intact planarians. The levels of thiols such as cysteine and GSH are 651 and 1107 ng mg(-1) in planarians. Among the nucleotides, the level of cGMP is the lowest (0.03 ng mg(-1)) and the level of AMP is the highest (187 ng mg(-1)) in both of the planarian strains. We also noticed increasing levels of amines in both anterior and posterior regenerating planarians. The blastema from day 3 regenerating planarians also showed higher amounts of many amines. Interestingly, the thiol (cysteine and GSH) levels are well maintained during planarian regeneration. This suggests an inherent and effective mechanism to control induced oxidative stress because of the robust regeneration and stem cell proliferation. Like in intact planarians, the level of cGMP is also very low in regenerating planarians. Surprisingly, the levels of amines and thiols in head regenerating blastemas are ∼3 times higher compared to those for tail regenerating blastemas. Thus our results strongly indicate the potential roles of amines, thiols and nucleotides in planarian regeneration.
Collapse
Affiliation(s)
- Nivedita Natarajan
- Metabolomics Facility, Centre for Cellular and Molecular Platforms, GKVK, Bellary Road, Bangalore-560065, India.
| | | | | | | | | |
Collapse
|
23
|
Rouhana L, Weiss JA, King RS, Newmark PA. PIWI homologs mediate histone H4 mRNA localization to planarian chromatoid bodies. Development 2014; 141:2592-601. [PMID: 24903754 DOI: 10.1242/dev.101618] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histone mRNAs are a common component of chromatoid bodies. Our experiments also demonstrate that accumulation of histone mRNAs, which is typically restricted to the S phase of eukaryotic cells, is extended during the cell cycle of neoblasts. The planarian PIWI homologs SMEDWI-1 and SMEDWI-3 are required for proper localization of germinal histone H4 (gH4) mRNA to chromatoid bodies. The association between histone mRNA and chromatoid body components extends beyond gH4 mRNA, since transcripts of other core histone genes were also found in these structures. Additionally, piRNAs corresponding to loci of every core histone type have been identified. Altogether, this work provides evidence that links PIWI proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells. The molecular similarities between neoblasts and undifferentiated cells of other organisms raise the possibility that PIWI proteins might also regulate histone mRNAs in stem cells and germ cells of other metazoans.
Collapse
Affiliation(s)
- Labib Rouhana
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Jennifer A Weiss
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Ryan S King
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Phillip A Newmark
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| |
Collapse
|
24
|
Berberine exposure triggers developmental effects on planarian regeneration. Sci Rep 2014; 4:4914. [PMID: 24810466 PMCID: PMC4014983 DOI: 10.1038/srep04914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/17/2014] [Indexed: 01/02/2023] Open
Abstract
The mechanisms of action underlying the pharmacological properties of the natural alkaloid berberine still need investigation. Planarian regeneration is instrumental in deciphering developmental responses following drug exposure. Here we report the effects of berberine on regeneration in the planarian Dugesia japonica. Our findings demonstrate that this compound perturbs the regenerative pattern. By real-time PCR screening for the effects of berberine exposure on gene expression, we identified alterations in the transcriptional profile of genes representative of different tissues, as well as of genes involved in extracellular matrix (ECM) remodeling. Although berberine does not influence cell proliferation/apoptosis, our experiments prove that this compound causes abnormal regeneration of the planarian visual system. Potential berberine-induced cytotoxic effects were noticed in the intestine. Although we were unable to detect abnormalities in other structures, our findings, sustained by RNAi-based investigations, support the possibility that berberine effects are critically linked to anomalous ECM remodeling in treated planarians.
Collapse
|
25
|
Koziol U, Rauschendorfer T, Zanon Rodríguez L, Krohne G, Brehm K. The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis. EvoDevo 2014; 5:10. [PMID: 24602211 PMCID: PMC4015340 DOI: 10.1186/2041-9139-5-10] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/30/2014] [Indexed: 12/15/2022] Open
Abstract
Background It is believed that in tapeworms a separate population of undifferentiated cells, the germinative cells, is the only source of cell proliferation throughout the life cycle (similar to the neoblasts of free living flatworms). In Echinococcus multilocularis, the metacestode larval stage has a unique development, growing continuously like a mass of vesicles that infiltrate the tissues of the intermediate host, generating multiple protoscoleces by asexual budding. This unique proliferation potential indicates the existence of stem cells that are totipotent and have the ability for extensive self-renewal. Results We show that only the germinative cells proliferate in the larval vesicles and in primary cell cultures that undergo complete vesicle regeneration, by using a combination of morphological criteria and by developing molecular markers of differentiated cell types. The germinative cells are homogeneous in morphology but heterogeneous at the molecular level, since only sub-populations express homologs of the post-transcriptional regulators nanos and argonaute. Important differences are observed between the expression patterns of selected neoblast marker genes of other flatworms and the E. multilocularis germinative cells, including widespread expression in E. multilocularis of some genes that are neoblast-specific in planarians. Hydroxyurea treatment results in the depletion of germinative cells in larval vesicles, and after recovery following hydroxyurea treatment, surviving proliferating cells grow as patches that suggest extensive self-renewal potential for individual germinative cells. Conclusions In E. multilocularis metacestodes, the germinative cells are the only proliferating cells, presumably driving the continuous growth of the larval vesicles. However, the existence of sub-populations of the germinative cells is strongly supported by our data. Although the germinative cells are very similar to the neoblasts of other flatworms in function and in undifferentiated morphology, their unique gene expression pattern and the evolutionary loss of conserved stem cells regulators suggest that important differences in their physiology exist, which could be related to the unique biology of E. multilocularis larvae.
Collapse
Affiliation(s)
| | | | | | | | - Klaus Brehm
- Institute of Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany.
| |
Collapse
|
26
|
Domínguez MF, Koziol U, Porro V, Costábile A, Estrade S, Tort J, Bollati-Fogolin M, Castillo E. A new approach for the characterization of proliferative cells in cestodes. Exp Parasitol 2014; 138:25-9. [PMID: 24468551 DOI: 10.1016/j.exppara.2014.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/08/2014] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
Abstract
Cestodes show a remarkable proliferative capability that sustains the constant growth and differentiation of proglottids essential for their lifestyle. It is believed that a separate population of undifferentiated stem cells (the so-called germinative cells) are the only cells capable of proliferation during growth and development. The study of this particular cell subpopulation is hampered by the current lack of methods to isolate it. In this work, we developed a reproducible flow cytometry and cell sorting method to quantify and isolate the proliferating cells in the tetrathyridia larvae of the model cestode Mesocestoides corti, based on the DNA content of the cells. The isolated cells display the typical germinative cell morphology, and can be used for RNA isolation with a yield in the ng to μg range. We expect that this approach may facilitate the characterization of the germinative cells in M. corti and other model tapeworms.
Collapse
Affiliation(s)
- M F Domínguez
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - U Koziol
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - V Porro
- Unidad de Biología Celular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - A Costábile
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - S Estrade
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - J Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - M Bollati-Fogolin
- Unidad de Biología Celular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - E Castillo
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
27
|
How might flukes and tapeworms maintain genome integrity without a canonical piRNA pathway? Trends Parasitol 2014; 30:123-9. [PMID: 24485046 DOI: 10.1016/j.pt.2014.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/29/2013] [Accepted: 01/06/2014] [Indexed: 12/31/2022]
Abstract
Surveillance by RNA interference is central to controlling the mobilization of transposable elements (TEs). In stem cells, Piwi argonaute (Ago) proteins and associated proteins repress mobilization of TEs to maintain genome integrity. This defense mechanism targeting TEs is termed the Piwi-interacting RNA (piRNA) pathway. In this opinion article, we draw attention to the situation that the genomes of cestodes and trematodes have lost the piwi and vasa genes that are hallmark characters of the germline multipotency program. This absence of Piwi-like Agos and Vasa helicases prompts the question: how does the germline of these flatworms withstand mobilization of TEs? Here, we present an interpretation of mechanisms likely to defend the germline integrity of parasitic flatworms.
Collapse
|
28
|
Zeng A, Li YQ, Wang C, Han XS, Li G, Wang JY, Li DS, Qin YW, Shi Y, Brewer G, Jing Q. Heterochromatin protein 1 promotes self-renewal and triggers regenerative proliferation in adult stem cells. ACTA ACUST UNITED AC 2013; 201:409-25. [PMID: 23629965 PMCID: PMC3639387 DOI: 10.1083/jcb.201207172] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Adult stem cells (ASCs) capable of self-renewal and differentiation confer the potential of tissues to regenerate damaged parts. Epigenetic regulation is essential for driving cell fate decisions by rapidly and reversibly modulating gene expression programs. However, it remains unclear how epigenetic factors elicit ASC-driven regeneration. In this paper, we report that an RNA interference screen against 205 chromatin regulators identified 12 proteins essential for ASC function and regeneration in planarians. Surprisingly, the HP1-like protein SMED-HP1-1 (HP1-1) specifically marked self-renewing, pluripotent ASCs, and HP1-1 depletion abrogated self-renewal and promoted differentiation. Upon injury, HP1-1 expression increased and elicited increased ASC expression of Mcm5 through functional association with the FACT (facilitates chromatin transcription) complex, which consequently triggered proliferation of ASCs and initiated blastema formation. Our observations uncover an epigenetic network underlying ASC regulation in planarians and reveal that an HP1 protein is a key chromatin factor controlling stem cell function. These results provide important insights into how epigenetic mechanisms orchestrate stem cell responses during tissue regeneration.
Collapse
Affiliation(s)
- An Zeng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao-Tong University School of Medicine, 200025 Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Elliott SA, Sánchez Alvarado A. The history and enduring contributions of planarians to the study of animal regeneration. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2013; 2:301-26. [PMID: 23799578 PMCID: PMC3694279 DOI: 10.1002/wdev.82] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Having an almost unlimited capacity to regenerate tissues lost to age and injury, planarians have long fascinated naturalists. In the Western hemisphere alone, their documented history spans more than 200 years. Planarians were described in the early 19th century as being 'immortal under the edge of the knife', and initial investigation of these remarkable animals was significantly influenced by studies of regeneration in other organisms and from the flourishing field of experimental embryology in the late 19th and early 20th centuries. This review strives to place the study of planarian regeneration into a broader historical context by focusing on the significance and evolution of knowledge in this field. It also synthesizes our current molecular understanding of the mechanisms of planarian regeneration uncovered since this animal's relatively recent entrance into the molecular-genetic age.
Collapse
Affiliation(s)
- Sarah A Elliott
- Howard Hughes Medical Institute and Stowers Institute for Medical Research, Kansas City, MO, USA.
| | | |
Collapse
|
30
|
Abstract
Planarians are members of the Platyhelminthes (flatworms). These animals have evolved a remarkable stem cell system. A single pluripotent adult stem cell type ("neoblast") gives rise to the entire range of cell types and organs in the planarian body plan, including a brain, digestive-, excretory-, sensory- and reproductive systems. Neoblasts are abundantly present throughout the mesenchyme and divide continuously. The resulting stream of progenitors and turnover of differentiated cells drive the rapid self-renewal of the entire animal within a matter of weeks. Planarians grow and literally de-grow ("shrink") by the food supply-dependent adjustment of organismal turnover rates, scaling body plan proportions over as much as a 50-fold size range. Their dynamic body architecture further allows astonishing regenerative abilities, including the regeneration of complete and perfectly proportioned animals even from tiny tissue remnants. Planarians as an experimental system, therefore, provide unique opportunities for addressing a spectrum of current problems in stem cell research, including the evolutionary conservation of pluripotency, the dynamic organization of differentiation lineages and the mechanisms underlying organismal stem cell homeostasis. The first part of this review focuses on the molecular biology of neoblasts as pluripotent stem cells. The second part examines the fascinating mechanistic and conceptual challenges posed by a stem cell system that epitomizes a universal design principle of biological systems: the dynamic steady state.
Collapse
Affiliation(s)
- Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
31
|
Isolani ME, Abril JF, Saló E, Deri P, Bianucci AM, Batistoni R. Planarians as a model to assess in vivo the role of matrix metalloproteinase genes during homeostasis and regeneration. PLoS One 2013; 8:e55649. [PMID: 23405188 PMCID: PMC3566077 DOI: 10.1371/journal.pone.0055649] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/28/2012] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies.
Collapse
Affiliation(s)
- Maria Emilia Isolani
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Pisa, Italy
| | - Josep F. Abril
- Departament de Genètica, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Emili Saló
- Departament de Genètica, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Paolo Deri
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | | | | |
Collapse
|
32
|
Chiodin M, Børve A, Berezikov E, Ladurner P, Martinez P, Hejnol A. Mesodermal gene expression in the acoel Isodiametra pulchra indicates a low number of mesodermal cell types and the endomesodermal origin of the gonads. PLoS One 2013; 8:e55499. [PMID: 23405161 PMCID: PMC3566195 DOI: 10.1371/journal.pone.0055499] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 12/23/2012] [Indexed: 01/23/2023] Open
Abstract
Acoelomorphs are bilaterally symmetric small marine worms that lack a coelom and possess a digestive system with a single opening. Two alternative phylogenetic positions of this group within the animal tree are currently debated. In one view, Acoelomorpha is the sister group to all remaining Bilateria and as such, is a morphologically simple stepping stone in bilaterian evolution. In the other, the group is a lineage within the Deuterostomia, and therefore, has derived a simple morphology from a more complex ancestor. Acoels and the closely related Nemertodermatida and Xenoturbellida, which together form the Acoelomorpha, possess a very limited number of cell types. To further investigate the diversity and origin of mesodermal cell types we describe the expression pattern of 12 orthologs of bilaterian mesodermal markers including Six1/2, Twist, FoxC, GATA4/5/6, in the acoel Isodiametra pulchra. All the genes are expressed in stem cells (neoblasts), gonads, and at least subsets of the acoel musculature. Most are expressed in endomesodermal compartments of I. pulchra developing embryos similar to what has been described in cnidarians. Our molecular evidence indicates a very limited number of mesodermal cell types and suggests an endomesodermal origin of the gonads and the stem cell system. We discuss our results in light of the two prevailing phylogenetic positions of Acoelomorpha.
Collapse
Affiliation(s)
- Marta Chiodin
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
| | - Aina Børve
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Peter Ladurner
- Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Pedro Martinez
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
33
|
Franco C, Soares R, Pires E, Koci K, Almeida AM, Santos R, Coelho AV. Understanding regeneration through proteomics. Proteomics 2013; 13:686-709. [DOI: 10.1002/pmic.201200397] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 12/29/2022]
Affiliation(s)
- Catarina Franco
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Renata Soares
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Elisabete Pires
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Kamila Koci
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - André M. Almeida
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
- Instituto de Investigação Científica Tropical; Lisboa Portugal
| | - Romana Santos
- Unidade de Investigação em Ciências Orais e Biomédicas, Faculdade de Medicina Dentária; Universidade de Lisboa; Portugal
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| |
Collapse
|
34
|
Hubert A, Henderson JM, Ross KG, Cowles MW, Torres J, Zayas RM. Epigenetic regulation of planarian stem cells by the SET1/MLL family of histone methyltransferases. Epigenetics 2012; 8:79-91. [PMID: 23235145 PMCID: PMC3549883 DOI: 10.4161/epi.23211] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chromatin regulation is a fundamental mechanism underlying stem cell pluripotency, differentiation, and the establishment of cell type-specific gene expression profiles. To examine the role of chromatin regulation in stem cells in vivo, we study regeneration in the freshwater planarian Schmidtea mediterranea. These animals possess a high concentration of pluripotent stem cells, which are capable of restoring any damaged or lost tissues after injury or amputation. Here, we identify the S. mediterranea homologs of the SET1/MLL family of histone methyltransferases and COMPASS and COMPASS-like complex proteins and investigate their role in stem cell function during regeneration. We identified six S. mediterranea homologs of the SET1/MLL family (set1, mll1/2, trr-1, trr-2, mll5–1 and mll5–2), characterized their patterns of expression in the animal, and examined their function by RNAi. All members of this family are expressed in the stem cell population and differentiated tissues. We show that set1, mll1/2, trr-1, and mll5–2 are required for regeneration and that set1, trr-1 and mll5–2 play roles in the regulation of mitosis. Most notably, knockdown of the planarian set1 homolog leads to stem cell depletion. A subset of planarian homologs of COMPASS and COMPASS-like complex proteins are also expressed in stem cells and implicated in regeneration, but the knockdown phenotypes suggest that some complex members also function in other aspects of planarian biology. This work characterizes the function of the SET1/MLL family in the context of planarian regeneration and provides insight into the role of these enzymes in adult stem cell regulation in vivo.
Collapse
Affiliation(s)
- Amy Hubert
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNAseq, RNA interference and irradiation approach. Genome Biol 2012; 13:R19. [PMID: 22439894 PMCID: PMC3439970 DOI: 10.1186/gb-2012-13-3-r19] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 03/08/2012] [Accepted: 03/22/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Planarian stem cells, or neoblasts, drive the almost unlimited regeneration capacities of freshwater planarians. Neoblasts are traditionally described by their morphological features and by the fact that they are the only proliferative cell type in asexual planarians. Therefore, they can be specifically eliminated by irradiation. Irradiation, however, is likely to induce transcriptome-wide changes in gene expression that are not associated with neoblast ablation. This has affected the accurate description of their specific transcriptomic profile. RESULTS We introduce the use of Smed-histone-2B RNA interference (RNAi) for genetic ablation of neoblast cells in Schmidtea mediterranea as an alternative to irradiation. We characterize the rapid, neoblast-specific phenotype induced by Smed-histone-2B RNAi, resulting in neoblast ablation. We compare and triangulate RNA-seq data after using both irradiation and Smed-histone-2B RNAi over a time course as means of neoblast ablation. Our analyses show that Smed-histone-2B RNAi eliminates neoblast gene expression with high specificity and discrimination from gene expression in other cellular compartments. We compile a high confidence list of genes downregulated by both irradiation and Smed-histone-2B RNAi and validate their expression in neoblast cells. Lastly, we analyze the overall expression profile of neoblast cells. CONCLUSIONS Our list of neoblast genes parallels their morphological features and is highly enriched for nuclear components, chromatin remodeling factors, RNA splicing factors, RNA granule components and the machinery of cell division. Our data reveal that the regulation of planarian stem cells relies on posttranscriptional regulatory mechanisms and suggest that planarians are an ideal model for this understudied aspect of stem cell biology.
Collapse
|
36
|
Wagner DE, Ho JJ, Reddien PW. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell 2012; 10:299-311. [PMID: 22385657 DOI: 10.1016/j.stem.2012.01.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/30/2011] [Accepted: 01/23/2012] [Indexed: 12/24/2022]
Abstract
Pluripotency is a central, well-studied feature of embryonic development, but the role of pluripotent cell regulation in somatic tissue regeneration remains poorly understood. In planarians, regeneration of entire animals from tissue fragments is promoted by the activity of adult pluripotent stem cells (cNeoblasts). We utilized transcriptional profiling to identify planarian genes expressed in adult proliferating, regenerative cells (neoblasts). We also developed quantitative clonal analysis methods for expansion and differentiation of cNeoblast descendants that, together with RNAi, revealed gene roles in stem cell biology. Genes encoding two zinc finger proteins, Vasa, a LIM domain protein, Sox and Jun-like transcription factors, two candidate RNA-binding proteins, a Setd8-like protein, and PRC2 (Polycomb) were required for proliferative expansion and/or differentiation of cNeoblast-derived clones. These findings suggest that planarian stem cells utilize molecular mechanisms found in germ cells and other pluripotent cell types and identify genetic regulators of the planarian stem cell system.
Collapse
Affiliation(s)
- Daniel E Wagner
- Howard Hughes Medical Institute, MIT Biology, Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
37
|
A lack of commitment for over 500 million years: conserved animal stem cell pluripotency. EMBO J 2012; 31:2747-9. [PMID: 22562151 DOI: 10.1038/emboj.2012.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stem cells, both adult and germline, are the key cells underpinning animal evolution. Yet, surprisingly little is known about the evolution of their shared key feature: pluripotency. Now using genome-wide expression profiling of pluripotent planarian adult stem cells (pASCs), Önal et al (2012) present evidence for deep molecular conservation of pluripotency. They characterise the expression profile of pASCs and identify conserved expression profiles and functions for genes required for mammalian pluripotency. Their analyses suggest that molecular pluripotency mechanisms may be conserved, and tantalisingly that pluripotency in germ stem cells (GSCs) and somatic stem cells (SSCs) may have had shared common evolutionary origins.
Collapse
|
38
|
Onal P, Grün D, Adamidi C, Rybak A, Solana J, Mastrobuoni G, Wang Y, Rahn HP, Chen W, Kempa S, Ziebold U, Rajewsky N. Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. EMBO J 2012; 31:2755-69. [PMID: 22543868 DOI: 10.1038/emboj.2012.110] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/02/2012] [Indexed: 12/13/2022] Open
Abstract
Freshwater planaria possess extreme regeneration capabilities mediated by abundant, pluripotent stem cells (neoblasts) in adult animals. Although planaria emerged as an attractive in vivo model system for stem cell biology, gene expression in neoblasts has not been profiled comprehensively and it is unknown how molecular mechanisms for pluripotency in neoblasts relate to those in mammalian embryonic stem cells (ESCs). We purified neoblasts and quantified mRNA and protein expression by sequencing and shotgun proteomics. We identified ∼4000 genes specifically expressed in neoblasts, including all ∼30 known neoblast markers. Genes important for pluripotency in ESCs, including regulators as well as targets of OCT4, were well conserved and upregulated in neoblasts. We found conserved expression of epigenetic regulators and demonstrated their requirement for planarian regeneration by knockdown experiments. Post-transcriptional regulatory genes characteristic for germ cells were also enriched in neoblasts, suggesting the existence of a common ancestral state of germ cells and ESCs. We conclude that molecular determinants of pluripotency are conserved throughout evolution and that planaria are an informative model system for human stem cell biology.
Collapse
Affiliation(s)
- Pinar Onal
- Laboratory of Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Romero BT, Evans DJ, Aboobaker AA. FACS analysis of the planarian stem cell compartment as a tool to understand regenerative mechanisms. Methods Mol Biol 2012; 916:167-79. [PMID: 22914940 DOI: 10.1007/978-1-61779-980-8_13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Planarians provide a relatively simple model system in which to study stem cell dynamics and regenerative phenomena. As with other systems understanding the dynamics of stem cell and stem cell progeny is crucial in order to get at the molecular mechanisms orchestrating stem cell biology. Planarians have an abundant adult stem cell population that can be observed using Fluorescence-Activated Cell Sorting (FACS). This approach allows different subpopulations of stem cells and their progeny to be monitored and sorted for downstream studies in response to different regenerative scenarios, drug treatments, or RNAi knockdown of genes required for regenerative events.
Collapse
Affiliation(s)
- Belen Tejada Romero
- Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
40
|
Hayashi T, Motoishi M, Yazawa S, Itomi K, Tanegashima C, Nishimura O, Agata K, Tarui H. A LIM-homeobox gene is required for differentiation of Wnt-expressing cells at the posterior end of the planarian body. Development 2011; 138:3679-88. [PMID: 21828095 DOI: 10.1242/dev.060194] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Planarians have high regenerative ability, which is dependent on pluripotent adult somatic stem cells called neoblasts. Recently, canonical Wnt/β-catenin signaling was shown to be required for posterior specification, and Hedgehog signaling was shown to control anterior-posterior polarity via activation of the Djwnt1/P-1 gene at the posterior end of planarians. Thus, various signaling molecules play an important role in planarian stem cell regulation. However, the molecular mechanisms directly involved in stem cell differentiation have remained unclear. Here, we demonstrate that one of the planarian LIM-homeobox genes, Djislet, is required for the differentiation of Djwnt1/P-1-expressing cells from stem cells at the posterior end. RNA interference (RNAi)-treated planarians of Djislet [Djislet(RNAi)] show a tail-less phenotype. Thus, we speculated that Djislet might be involved in activation of the Wnt signaling pathway in the posterior blastema. When we carefully examined the expression pattern of Djwnt1/P-1 by quantitative real-time PCR during posterior regeneration, we found two phases of Djwnt1/P-1 expression: the first phase was detected in the differentiated cells in the old tissue in the early stage of regeneration and then a second phase was observed in the cells derived from stem cells in the posterior blastema. Interestingly, Djislet is expressed in stem cell-derived DjPiwiA- and Djwnt1/P-1-expressing cells, and Djislet(RNAi) only perturbed the second phase. Thus, we propose that Djislet might act to trigger the differentiation of cells expressing Djwnt1/P-1 from stem cells.
Collapse
Affiliation(s)
- Tetsutaro Hayashi
- Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tasaki J, Shibata N, Nishimura O, Itomi K, Tabata Y, Son F, Suzuki N, Araki R, Abe M, Agata K, Umesono Y. ERK signaling controls blastema cell differentiation during planarian regeneration. Development 2011; 138:2417-27. [PMID: 21610023 DOI: 10.1242/dev.060764] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The robust regenerative ability of planarians depends on a population of somatic stem cells called neoblasts, which are the only mitotic cells in adults and are responsible for blastema formation after amputation. The molecular mechanism underlying neoblast differentiation associated with blastema formation remains unknown. Here, using the planarian Dugesia japonica we found that DjmkpA, a planarian mitogen-activated protein kinase (MAPK) phosphatase-related gene, was specifically expressed in blastema cells in response to increased extracellular signal-related kinase (ERK) activity. Pharmacological and genetic [RNA interference (RNAi)] approaches provided evidence that ERK activity was required for blastema cells to exit the proliferative state and undergo differentiation. By contrast, DjmkpA RNAi induced an increased level of ERK activity and rescued the differentiation defect of blastema cells caused by pharmacological reduction of ERK activity. These observations suggest that ERK signaling plays an instructive role in the cell fate decisions of blastema cells regarding whether to differentiate or not, by inducing DjmkpA as a negative regulator of ERK signaling during planarian regeneration.
Collapse
Affiliation(s)
- Junichi Tasaki
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sandmann T, Vogg MC, Owlarn S, Boutros M, Bartscherer K. The head-regeneration transcriptome of the planarian Schmidtea mediterranea. Genome Biol 2011; 12:R76. [PMID: 21846378 PMCID: PMC3245616 DOI: 10.1186/gb-2011-12-8-r76] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/13/2011] [Accepted: 08/16/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Planarian flatworms can regenerate their head, including a functional brain, within less than a week. Despite the enormous potential of these animals for medical research and regenerative medicine, the mechanisms of regeneration and the molecules involved remain largely unknown. RESULTS To identify genes that are differentially expressed during early stages of planarian head regeneration, we generated a de novo transcriptome assembly from more than 300 million paired-end reads from planarian fragments regenerating the head at 16 different time points. The assembly yielded 26,018 putative transcripts, including very long transcripts spanning multiple genomic supercontigs, and thousands of isoforms. Using short-read data from two platforms, we analyzed dynamic gene regulation during the first three days of head regeneration. We identified at least five different temporal synexpression classes, including genes specifically induced within a few hours after injury. Furthermore, we characterized the role of a conserved Runx transcription factor, smed-runt-like1. RNA interference (RNAi) knockdown and immunofluorescence analysis of the regenerating visual system indicated that smed-runt-like1 encodes a transcriptional regulator of eye morphology and photoreceptor patterning. CONCLUSIONS Transcriptome sequencing of short reads allowed for the simultaneous de novo assembly and differential expression analysis of transcripts, demonstrating highly dynamic regulation during head regeneration in planarians.
Collapse
Affiliation(s)
- Thomas Sandmann
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
- CellNetworks Cluster of Excellence, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Matthias C Vogg
- Max Planck Research Group Stem Cells and Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany
| | - Suthira Owlarn
- Max Planck Research Group Stem Cells and Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
- Department of Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Kerstin Bartscherer
- Max Planck Research Group Stem Cells and Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany
| |
Collapse
|
43
|
Forsthoefel DJ, Park AE, Newmark PA. Stem cell-based growth, regeneration, and remodeling of the planarian intestine. Dev Biol 2011; 356:445-59. [PMID: 21664348 PMCID: PMC3490491 DOI: 10.1016/j.ydbio.2011.05.669] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
Abstract
Although some animals are capable of regenerating organs, the mechanisms by which this is achieved are poorly understood. In planarians, pluripotent somatic stem cells called neoblasts supply new cells for growth, replenish tissues in response to cellular turnover, and regenerate tissues after injury. For most tissues and organs, however, the spatiotemporal dynamics of stem cell differentiation and the fate of tissue that existed prior to injury have not been characterized systematically. Utilizing in vivo imaging and bromodeoxyuridine pulse-chase experiments, we have analyzed growth and regeneration of the planarian intestine, the organ responsible for digestion and nutrient distribution. During growth, we observe that new gut branches are added along the entire anteroposterior axis. We find that new enterocytes differentiate throughout the intestine rather than in specific growth zones, suggesting that branching morphogenesis is achieved primarily by remodeling of differentiated intestinal tissues. During regeneration, we also demonstrate a previously unappreciated degree of intestinal remodeling, in which pre-existing posterior gut tissue contributes extensively to the newly formed anterior gut, and vice versa. By contrast to growing animals, differentiation of new intestinal cells occurs at preferential locations, including within newly generated tissue (the blastema), and along pre-existing intestinal branches undergoing remodeling. Our results indicate that growth and regeneration of the planarian intestine are achieved by co-ordinated differentiation of stem cells and the remodeling of pre-existing tissues. Elucidation of the mechanisms by which these processes are integrated will be critical for understanding organogenesis in a post-embryonic context.
Collapse
Affiliation(s)
- David J. Forsthoefel
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
| | - Amanda E. Park
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
| | - Phillip A. Newmark
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
44
|
Mashanov VS, García-Arrarás JE. Gut regeneration in holothurians: a snapshot of recent developments. THE BIOLOGICAL BULLETIN 2011; 221:93-109. [PMID: 21876113 DOI: 10.1086/bblv221n1p93] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Visceral regeneration in sea cucumbers has been studied since early last century; however, it is only within the last 15 years that real progress has been made in understanding the cellular and molecular events involved. In the present review, we bring together these recent studies, providing readers with basic information on the anatomy and histology of the normal gut and detailing the changes in tissue organization and gene expression that occur during the regenerative process. We discuss the nature and possible sources of cells involved in the formation of the intestinal regenerate as well as the role of cell death and proliferation in this process. In addition, we compare gut formation during regeneration and during embryogenesis. Finally, we describe the molecular studies that have helped advance regenerative studies in holothurians and integrate the gene expression information with data on cellular events. Studies on visceral regeneration in these echinoderms provide a unique view that complements regeneration studies in other animal phyla, which are mainly focused on whole-animal regeneration or appendage regeneration.
Collapse
Affiliation(s)
- V S Mashanov
- Department of Biology, University of Puerto Rico, San Juan
| | | |
Collapse
|
45
|
Aboobaker AA. Planarian stem cells: a simple paradigm for regeneration. Trends Cell Biol 2011; 21:304-11. [PMID: 21353778 DOI: 10.1016/j.tcb.2011.01.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 01/08/2023]
Abstract
Planarians are capable of profound regenerative feats dependent upon a population of self-renewing adult stem cells called neoblasts. The key features of neoblasts are their capacity for indefinite self-renewal, their totipotency and the ability of their progeny to interpret differentiation and polarity signals and correctly replace lost structures after tissue damage. Regeneration in planarians offers a paradigm for understanding the molecular and cellular control of the repair and regeneration of animal tissues, and could provide valuable insights for the safe use of stem cells to repair damaged, diseased and ageing human tissues with little or no regenerative capacities. Here, I review recent progress in understanding neoblasts in regeneration and the growing potential this research has to be broadly informative for human biology.
Collapse
Affiliation(s)
- A Aziz Aboobaker
- Evolutionary Developmental Biology Group, Centre for Genetics and Genomics, University of Nottingham NG7 2UH, UK.
| |
Collapse
|
46
|
A small scale expression screen identifies tissue specific markers in the Dugesia japonica strain Pek-1. J Genet Genomics 2011; 37:621-35. [PMID: 20933215 DOI: 10.1016/s1673-8527(09)60081-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/23/2010] [Accepted: 04/27/2010] [Indexed: 11/20/2022]
Abstract
Freshwater planaria has tremendous capacity to reform the missing part of the body and therefore is considered as one of the most important model organism for regeneration study. At present, Schmidtea mediterranea and Dugesia japonica are the two major species utilized for laboratory manipulations. Dugesia japonica flatworms are widely distributed in the Far East including Cherry Valley region in the north-west area of Beijing, China. We reported here the establishment of an asexual Dugesia japonica strain Pek-1, as a suitable system for regeneration study. Using morphological, karyotypical as well as phylogenetic analyses, we confirmed that these flatworms indeed belonged to Dugesia japonica. We went on to show that the commonly used in situ probes and immunohistochemistry reagents and protocols were applicable to the Pek-1 strain. Using this strain, we carried out small scale analysis on EST, RNAi and gene expression. We identified 193 unique EST sequences and 65 of them had not been reported in planarian. By RNAi analysis, we showed that 48 genes, when down-regulated individually, had no effect on regeneration. Furthermore, we identified 3 groups of tissue specific expressing genes that were useful for cell lineage analysis. We concluded that the Dugesia japonica Pek-1 strain could be another suitable animal model to regeneration research.
Collapse
|
47
|
Fernández-Taboada E, Rodríguez-Esteban G, Saló E, Abril JF. A proteomics approach to decipher the molecular nature of planarian stem cells. BMC Genomics 2011; 12:133. [PMID: 21356107 PMCID: PMC3058083 DOI: 10.1186/1471-2164-12-133] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 02/28/2011] [Indexed: 01/07/2023] Open
Abstract
Background In recent years, planaria have emerged as an important model system for research into stem cells and regeneration. Attention is focused on their unique stem cells, the neoblasts, which can differentiate into any cell type present in the adult organism. Sequencing of the Schmidtea mediterranea genome and some expressed sequence tag projects have generated extensive data on the genetic profile of these cells. However, little information is available on their protein dynamics. Results We developed a proteomic strategy to identify neoblast-specific proteins. Here we describe the method and discuss the results in comparison to the genomic high-throughput analyses carried out in planaria and to proteomic studies using other stem cell systems. We also show functional data for some of the candidate genes selected in our proteomic approach. Conclusions We have developed an accurate and reliable mass-spectra-based proteomics approach to complement previous genomic studies and to further achieve a more accurate understanding and description of the molecular and cellular processes related to the neoblasts.
Collapse
Affiliation(s)
- Enrique Fernández-Taboada
- Departament de Genètica and Institute of Biomedicine, Universitat de Barcelona, Avenida Diagonal 645, Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
48
|
Abstract
Over the past decades, genetic analyses performed in vertebrate and invertebrate organisms deciphered numerous cellular and molecular mechanisms deployed during sexual development and identified genetic circuitries largely shared among bilaterians. In contrast, the functional analysis of the mechanisms that support regenerative processes in species randomly scattered among the animal kingdom, were limited by the lack of genetic tools. Consequently, unifying principles explaining how stress and injury can lead to the reactivation of a complete developmental program with restoration of original shape and function remained beyond reach of understanding. Recent data on cell plasticity suggest that beside the classical developmental approach, the analysis of homeostasis and asexual reproduction in adult organisms provides novel entry points to dissect the regenerative potential of a given species, a given organ or a given tissue. As a clue, both tissue homeostasis and regeneration dynamics rely on the availability of stem cells and/or on the plasticity of differentiated cells to replenish the missing structure. The freshwater Hydra polyp provides us with a unique model system to study the intricate relationships between the mechanisms that regulate the maintenance of homeostasis, even in extreme conditions (starvation and overfeeding) and the reactivation of developmental programs after bisection or during budding. Interestingly head regeneration in Hydra can follow several routes according to the level of amputation, suggesting that indeed the homeostatic background dramatically influences the route taken to bridge injury and regeneration.
Collapse
Affiliation(s)
- Brigitte Galliot
- Faculty of Sciences, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
49
|
Conte M, Isolani ME, Deri P, Mannini L, Batistoni R. Expression of hsp90 mediates cytoprotective effects in the gastrodermis of planarians. Cell Stress Chaperones 2011; 16:33-9. [PMID: 20706815 PMCID: PMC3024083 DOI: 10.1007/s12192-010-0218-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 01/01/2023] Open
Abstract
Heat shock proteins (HSPs) play a crucial role in the protection of cells. In the present study, we have identified an hsp90-related gene (Djhsp90) encoding a cytosolic form of HSP90 that is primarily expressed in gastrodermis of the planarian Dugesia japonica. Djhsp90 becomes significantly induced after traumatic amputation or other stress stimuli, such as exposure to X-ray or ultraviolet radiations, heat shock, or prolonged starvation. When Djhsp90 is silenced by ribonucleic acid interference (RNAi), planarians dramatically decrease in size, becoming unable to eat, and die in a few weeks. Our results indicate that this gene plays an essential cytoprotective role in the gastrodermis of planarians and suggest that this chaperone can be involved in autophagic processes that are activated by this tissue.
Collapse
Affiliation(s)
- Maria Conte
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Paolo Deri
- Department of Biology, University of Pisa, Pisa, Italy
| | - Linda Mannini
- Department of Biology, University of Pisa, Pisa, Italy
| | - Renata Batistoni
- Department of Biology, University of Pisa, Pisa, Italy
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, S. S. Abetone e Brennero, 4, 56127 Pisa, Italy
| |
Collapse
|
50
|
Abril JF, Cebrià F, Rodríguez-Esteban G, Horn T, Fraguas S, Calvo B, Bartscherer K, Saló E. Smed454 dataset: unravelling the transcriptome of Schmidtea mediterranea. BMC Genomics 2010; 11:731. [PMID: 21194483 PMCID: PMC3022928 DOI: 10.1186/1471-2164-11-731] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/31/2010] [Indexed: 01/04/2023] Open
Abstract
Background Freshwater planarians are an attractive model for regeneration and stem cell research and have become a promising tool in the field of regenerative medicine. With the availability of a sequenced planarian genome, the recent application of modern genetic and high-throughput tools has resulted in revitalized interest in these animals, long known for their amazing regenerative capabilities, which enable them to regrow even a new head after decapitation. However, a detailed description of the planarian transcriptome is essential for future investigation into regenerative processes using planarians as a model system. Results In order to complement and improve existing gene annotations, we used a 454 pyrosequencing approach to analyze the transcriptome of the planarian species Schmidtea mediterranea Altogether, 598,435 454-sequencing reads, with an average length of 327 bp, were assembled together with the ~10,000 sequences of the S. mediterranea UniGene set using different similarity cutoffs. The assembly was then mapped onto the current genome data. Remarkably, our Smed454 dataset contains more than 3 million novel transcribed nucleotides sequenced for the first time. A descriptive analysis of planarian splice sites was conducted on those Smed454 contigs that mapped univocally to the current genome assembly. Sequence analysis allowed us to identify genes encoding putative proteins with defined structural properties, such as transmembrane domains. Moreover, we annotated the Smed454 dataset using Gene Ontology, and identified putative homologues of several gene families that may play a key role during regeneration, such as neurotransmitter and hormone receptors, homeobox-containing genes, and genes related to eye function. Conclusions We report the first planarian transcript dataset, Smed454, as an open resource tool that can be accessed via a web interface. Smed454 contains significant novel sequence information about most expressed genes of S. mediterranea. Analysis of the annotated data promises to contribute to identification of gene families poorly characterized at a functional level. The Smed454 transcriptome data will assist in the molecular characterization of S. mediterranea as a model organism, which will be useful to a broad scientific community.
Collapse
Affiliation(s)
- Josep F Abril
- Departament de Genètica, Facultat de Biología, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
| | | | | | | | | | | | | | | |
Collapse
|