1
|
Li L, Zhang T, Farhab M, Xia XX, Reza AMMT, Kyaw PO, Chen F, Aly Sayed Ismail E, Xue G, Zhong P, Cheng Y, Yuan YG. Comprehensive analysis of circRNAs and lncRNAs involvement in the development of skeletal muscle in myostatin-deficient rabbits. Anim Biotechnol 2025; 36:2465624. [PMID: 40009466 DOI: 10.1080/10495398.2025.2465624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/10/2024] [Indexed: 02/28/2025]
Abstract
Myostatin (MSTN) protein, lncRNAs, and circRNAs regulate skeletal muscle growth and development. This work aims to compare the expression patterns of circRNAs and lncRNAs in the gluteus maximus tissue of wild-type (WT) and MSTN gene knockout (KO) rabbits. Within the gluteus maximus tissue of three WT and four MSTN KO rabbits, we analyzed the expression profiles of circRNAs and lncRNAs. After identifying the differently expressed RNAs, the biological pathways implicated were ascertained by performing enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). We identified differences in the expression of 251 circRNAs (79 upregulated and 172 downregulated), 176 lncRNAs (53 upregulated and 123 downregulated), and 1178 mRNAs (408 upregulated and 770 downregulated) between WT and MSTN KO rabbits. Target genes were significantly enriched in pathways associated with protein synthesis and catabolism, such as oxidative phosphorylation, ubiquitin-mediated proteolysis, the FoxO signaling pathway, and the pentose phosphate pathway, as identified through GO and KEGG enrichment analyses. The constructed network indicates that a class of circRNAs and lncRNAs is engaged in MSTN-mediated regulation of skeletal muscle development. These findings provide valuable insights for innovative therapeutic, diagnostic, and preventive approaches to muscle disorders.
Collapse
Affiliation(s)
- Ling Li
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| | - Ting Zhang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Muhammad Farhab
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| | - Xiao-Xiao Xia
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| | - Abu Musa Md Talimur Reza
- Department of Molecular Biology and Genetics, Faculty of Basic Sciences, Gebze Technical University, Gebze, Kocaeli, Republic of Turkiye
| | - Paing Oo Kyaw
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| | - Fenglei Chen
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| | | | - Gang Xue
- Nantong City Haimen District Yangtze River Delta White Goat Breeding Research Institute, Jiangsu, Nantong, China
| | - Ping Zhong
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
| | - Yong Cheng
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
| | - Yu-Guo Yuan
- College of Veterinary Medicine/Key Laboratory of Animal Genetic Engineering, Yangzhou University, Jiangsu, Yangzhou, China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Jiangsu, Yangzhou, China
| |
Collapse
|
2
|
Kandettu A, Ghosal J, Tharayil JS, Kuthethur R, Mallya S, Narasimhamurthy RK, Mumbrekar KD, Subbannayya Y, Kumar NA, Radhakrishnan R, Kabekkodu SP, Chakrabarty S. Inhibition of mitochondrial genome-encoded mitomiR-3 contributes to ZEB1 mediated GPX4 downregulation and pro-ferroptotic lipid metabolism to induce ferroptosis in breast cancer cells. Free Radic Biol Med 2025; 234:151-168. [PMID: 40239722 DOI: 10.1016/j.freeradbiomed.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/04/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, represents a unique vulnerability in cancer cells. However, current ferroptosis-inducing therapies face clinical limitations due to poor cancer cell specificity, systemic toxicity, and off-target effects. Therefore, a deeper understanding of molecular regulators of ferroptosis sensitivity is critical for developing targeted therapies. The metabolic plasticity of cancer cells determines their sensitivity to ferroptosis. While mitochondrial dysfunction contributes to metabolic reprogramming in cancer, its role in modulating ferroptosis remains poorly characterized. Previously, studies have identified that mitochondrial genome also encodes several non-coding RNAs. We identified 13 novel mitochondrial genome-encoded miRNAs (mitomiRs) that are aberrantly overexpressed in triple-negative breast cancer (TNBC) cell lines and patient tumors. We observed higher levels of mitomiRs in basal-like triple-negative breast cancer (TNBC) cells compared to mesenchymal stem-like TNBC cells. Strikingly, 11 of these mitomiRs directly target the 3'UTR of ZEB1, a master regulator of epithelial-to-mesenchymal transition (EMT). Using mitomiR-3 mimic, inhibitor and sponges, we demonstrated its role as a key regulator of ZEB1 expression in TNBC cells. Inhibition of mitomiR-3 via sponge construct in basal-like TNBC, MDA-MB-468 cells, promoted ZEB1 upregulation and induced a mesenchymal phenotype. Further, mitomiR-3 inhibition in TNBC cells contributed to reduced cancer cell proliferation, migration, and invasion. Mechanistically, mitomiR-3 inhibition in TNBC cells promote metabolic reprogramming toward pro-ferroptotic pathways, including iron accumulation, increased polyunsaturated fatty acid (PUFA) metabolites, and lipid peroxidation, contributing to ferroptotic cell death via ZEB1-mediated downregulation of GPX4, a critical ferroptosis defense enzyme. We observed that mitomiR-3 inhibition significantly suppressed tumor growth in vivo. Our identified mitomiR-3 has low expression in normal breast cells, minimizing potential off-target toxicity, making them a promising target for pro-ferroptotic cancer therapy. Our study reveals a novel link between mitochondrial miRNAs and ferroptosis sensitivity in TNBC paving a way for miRNA-based therapeutics.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Joydeep Ghosal
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jesline Shaji Tharayil
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raviprasad Kuthethur
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rekha Koravadi Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Yashwanth Subbannayya
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Naveena An Kumar
- Department of Surgical Oncology, Manipal Comprehensive Cancer Care Centre, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Academic Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, S10TTA, UK; Academic Unit of Oral Biology and Oral Pathology, Oman Dental College, Wattayah 116, Muscat, Oman
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Zou J, Cui W, Deng N, Li C, Yang W, Ye X, Yao F, Zhang T, Xiao J, Ma C, Wu L, Dong D, Chen J, Guo C, Liu A, Wu H. Fate reversal: Exosome-driven macrophage rejuvenation and bacterial-responsive drug release for infection immunotherapy in diabetes. J Control Release 2025; 382:113730. [PMID: 40250625 DOI: 10.1016/j.jconrel.2025.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Superficial surgical site infection (SSI) is a significant risk factor for the development of periprosthetic joint infection (PJI), particularly in diabetic patients. A high-glucose microenvironment is observed to compromise phagocytosis by inducing cellular senescence, which leads to impaired antibacterial immune function. Exosomes derived from umbilical cord stem cells (H-Exos) can reverse the immunosuppressive microenvironment by rejuvenating senescent cells, thereby terminating excessive, persistent, and ineffective inflammatory responses. Thus, a novel exosome-based immunotherapeutic antibacterial strategy to reverse fate is proposed. Vancomycin & lysostaphin-loaded exosomes are incorporated in a customizable microneedle patch (ExoV-ExoL@MN) for controlled release, enabling tailored treatments for diverse clinical scenarios. While rejuvenating macrophage senescent phenotype, the antibiotics encapsulated within exosomes can be responsively released by the hemolysin secreted by bacteria, triggering rapid bacterial killing. Post-infection clearance, they induce a shift from M1 to M2 macrophage polarization, thereby enhancing anti-inflammatory and reparative responses. Furthermore, the components can be mixed on demand and at any time, allowing for real-time customization and fabrication directly at the clinic (fabrication@clinic). This strategy reverses the immunosuppressive microenvironment by rejuvenating senescent macrophages and effectively combats bacterial invasion into deep tissues through bacteria-responsive antibiotic release, providing a promising approach for preventing and treating SSI-induced PJI.
Collapse
Affiliation(s)
- Jiaxuan Zou
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Wushi Cui
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Niping Deng
- School of Engineering, Westlake University, Hangzhou 310024, PR China
| | - Congsun Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Weinan Yang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Xiaojun Ye
- Department of Ultrasound, Hangzhou Women's Hospital, Hangzhou 310008, PR China
| | - Feng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Tao Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China; Department of Orthopedics, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, PR China
| | - Jian Xiao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China; Department of Orthopedics, The First People's Hospital of Jiashan, Jiaxing 314100, PR China
| | - Chiyuan Ma
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Lingfeng Wu
- Department of Orthopedics, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, PR China
| | - Dahai Dong
- Department of Orthopedics, Suichang County People's Hospital in Zhejiang Province, Lishui 323300, PR China
| | - Jing Chen
- Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, PR China.
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou 310024, PR China.
| | - An Liu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China.
| | - Haobo Wu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China.
| |
Collapse
|
4
|
Fan Y, Pavani KC, Bogado Pascottini O, Broeckx BJG, Smits K, Van Soom A, Peelman L. Tracing the dynamic changes in the lncRNA-mediated competing endogenous RNA network during bovine preimplantation embryo development. J Dairy Sci 2025; 108:6367-6380. [PMID: 40139367 DOI: 10.3168/jds.2024-25919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/13/2025] [Indexed: 03/29/2025]
Abstract
Long noncoding RNAs (lncRNAs) can regulate gene expression by "sponging" microRNAs (miRNAs), reducing their inhibitory effects on mRNAs. However, this mechanism has been minimally investigated in preimplantation embryo development. In this study, we revisited existing RNA sequencing and small RNA sequencing data to investigate the role of lncRNAs in in vitro-produced bovine preimplantation embryos. Our findings revealed that although lncRNAs exhibit expression patterns similar to mRNAs, maternal lncRNAs degrade earlier than mRNAs during embryonic genome activation (EGA). Weighted gene co-expression network analysis identified 27 modules of mRNA and lncRNA, with enrichment analysis showing a significant negative correlation between the polycomb repressive complex pathway and blastocyst formation (R2 = -0.98). Additionally, bioinformatics analysis was used to predict and construct lncRNA-miRNA-mRNA networks, highlighting that lncRNAs bind more to miRNAs compared with mRNAs. Moreover, lncRNA-induced lncRNA-miRNA-mRNA axes participated in mRNA degradation and biogenesis around the EGA stage. These interactions became stronger after EGA, especially after the 16-cell stage. Overall, our study provides new insights into lncRNA-mediated regulatory networks during bovine preimplantation development.
Collapse
Affiliation(s)
- Yuan Fan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke-Melle, Belgium
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke-Melle, Belgium; Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke-Melle, Belgium; School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Bart J G Broeckx
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke-Melle, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke-Melle, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke-Melle, Belgium
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke-Melle, Belgium.
| |
Collapse
|
5
|
Bao X, Dun Y, Hu H, Tang Y, Liu F, Zhou J, Shen J. CD34 +CD45 + cells promote alveolar macrophage efferocytosis to alleviate phosgene-induced acute lung injury in rats. Int Immunopharmacol 2025; 160:114968. [PMID: 40449276 DOI: 10.1016/j.intimp.2025.114968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/05/2025] [Accepted: 05/25/2025] [Indexed: 06/03/2025]
Abstract
Phosgene is still widely used in industrial production nowadays. However, as a toxic gas, accidental exposure to phosgene can lead to acute lung injury (ALI). Our team previously identified a cell subpopulation as CD34+CD45+ cells in the bronchoalveolar lavage fluid (BALF) of rats. CD34+CD45+ cells were demonstrated to possess stem cell properties and alleviate pulmonary inflammation during phosgene-induced acute lung injury (P-ALI). However, how CD34+CD45+ cells contribute to the anti-inflammatory process remains unexplored. Rats with P-ALI were intratracheally administered with CD34+CD45+ cells, and it was found that both the infiltration of macrophages and apoptotic cells were reduced in the lung tissues. The macrophages were polarized to an anti-inflammatory CD45+CD3-CD163+MHC-IIlo phenotype and restored efferocytosis efficiency, with a decreased level of inflammatory cytokines in the BALF. Moreover, it was observed that CD34+CD45+ cells promoted macrophage efferocytosis ex vivo and in vitro. Exosomes derived from CD34+CD45+ cells were further demonstrated to mediate the enhancement of macrophage efferocytosis. The small RNA sequencing analysis suggested that exosomal rno-miR-149-5p contributed to the effect. The transfection of rno-miR-149-5p mimic induced the enhancement of efferocytosis in macrophages as the exosomes did, while rno-miR-149-5p inhibitor attenuated the effect by exosomes. Our findings provide convincing evidence that CD34+CD45+ cells can alleviate ALI by enhancing macrophage efferocytosis, offering valuable insights into their therapeutic potential in managing chemical-induced acute lung injuries.
Collapse
Affiliation(s)
- Xuanrong Bao
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Yu Dun
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Hanbing Hu
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Yuedong Tang
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Fuli Liu
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Jian Zhou
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie Shen
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China.
| |
Collapse
|
6
|
Dai X, Liu C, Bi W, Zheng G, Lv K, Xia Z. Estradiol and vitamin D exert a synergistic effect on preventing osteoporosis via the miR-351-5p/IRS1 axis and mTOR/NFκB signaling pathway. Sci Rep 2025; 15:18678. [PMID: 40436926 PMCID: PMC12119810 DOI: 10.1038/s41598-025-02808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 05/15/2025] [Indexed: 06/01/2025] Open
Abstract
This study aimed to investigate the antiosteoporotic effects and regulatory mechanisms of estradiol (E2) and vitamin D. MC3T3-E1 cells were treated with E2, vitamin D, or their combination, followed by a systematic assessment of cell proliferation and osteogenic differentiation capacity across the treatment groups. Subsequently, miRNA sequencing was performed to analyze differentially expressed miRNAs between the control and E2&vitamin D groups. The target relationship between miR-351-5p and IRS1 was validated, and the effects of the miR-351-5p/IRS1 axis on osteogenesis and mTOR/NFκB signaling pathway were determined after combination treatment. Additionally, an ovariectomized (OVX) osteoporosis mouse model was established to systematically examine the effects of E2, vitamin D, and their combination on osteoporosis and mTOR/NFκB signaling pathway. E2 and vitamin D synergistically promoted MC3T3-E1 cell proliferation and osteogenic differentiation. miR-351-5p was identified through miRNA sequencing analysis. miR-351-5p was downregulated in MC3T3-E1 cells after E2 and vitamin D combination treatment, and its overexpression partially reversed the effect of the combination treatment on osteogenesis. IRS1 was a target of miR-351-5p. When overexpressed, IRS1 partially mitigated the impact of miR-351-5p overexpression on osteogenesis and mTOR/NFκB signaling pathway under the combination treatment. Furthermore, in vivo experiments demonstrated that E2 and vitamin D could synergistically prevent osteoporosis in OVX mice by inhibiting the mTOR/NFκB signaling pathway. In conclusion, E2 and vitamin D exhibited a synergistic effect in preventing osteoporosis through the miR-351-5p/IRS1 axis and mTOR/NFκB signaling pathway. E2 and vitamin D combination treatment could be a potential anti-osteoporotic strategy for osteoporosis treatment.
Collapse
Affiliation(s)
- Xiaoyan Dai
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wenkai Bi
- Department of Nuclear Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guiwen Zheng
- Department of Nuclear Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Kuan Lv
- Department of Nuclear Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhiming Xia
- Department of Nuclear Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Anuarbekov A, Kléma J. Utilizing RNA-seq data in monotone iterative generalized linear model to elevate prior knowledge quality of the circRNA-miRNA-mRNA regulatory axis. BMC Bioinformatics 2025; 26:139. [PMID: 40426030 PMCID: PMC12117772 DOI: 10.1186/s12859-025-06161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Current experimental data on RNA interactions remain limited, particularly for non-coding RNAs, many of which have only recently been discovered and operate within complex regulatory networks. Researchers often rely on in-silico interaction detection algorithms, such as TargetScan, which are based on biochemical sequence alignment. However, these algorithms have limited performance. RNA-seq expression data can provide valuable insights into regulatory networks, especially for understudied interactions such as circRNA-miRNA-mRNA. By integrating RNA-seq data with prior interaction networks obtained experimentally or through in-silico predictions, researchers can discover novel interactions, validate existing ones, and improve interaction prediction accuracy. RESULTS This paper introduces Pi-GMIFS, an extension of the generalized monotone incremental forward stagewise (GMIFS) regression algorithm that incorporates prior knowledge. The algorithm first estimates prior response values through a prior-only regression, interpolates between these prior values and the original data, and then applies the GMIFS method. Our experimental results on circRNA-miRNA-mRNA regulatory interaction networks demonstrate that Pi-GMIFS consistently enhances precision and recall in RNA interaction prediction by leveraging implicit information from bulk RNA-seq expression data, outperforming the initial prior knowledge. CONCLUSION Pi-GMIFS is a robust algorithm for inferring acyclic interaction networks when the variable ordering is known. Its effectiveness was confirmed through extensive experimental validation. We proved that RNA-seq data of a representative size help infer previously unknown interactions available in TarBase v9 and improve the quality of circRNA disease annotation.
Collapse
Affiliation(s)
- Alikhan Anuarbekov
- Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 16627, Prague, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 16627, Prague, Czech Republic.
| |
Collapse
|
8
|
Zhou X, Guo L, Dai Y, Zhou K, Zuo J, Liu B, Song L, Wang W, Wang L, Song L. Cgi-miR-96P2m regulates haemocyte proliferation in the immune response of oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2025; 164:110437. [PMID: 40404029 DOI: 10.1016/j.fsi.2025.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/15/2025] [Accepted: 05/20/2025] [Indexed: 05/24/2025]
Abstract
Endogenous microRNAs have been reported to play critical roles in modulating immune response by regulating RNA silencing through cleavage or translational repression of target mRNAs. This study investigates the involvement of Cgi-miR-96P2m identified from oysters Crassostrea gigas in regulating haemocyte proliferation under Vibrio splendidus stimulation. Cgi-miR-96P2m shares a similar sequence with vertebrate miR-96 family members, while maintains an identical seed region similar to mollusk ones, highlighting its evolutionary conservation. The expression levels of Cgi-miR-96P2m in haemocytes significantly downregulated at 48 h after V. splendidus stimulation. The percentage of EdU + cells in haemocytes was significantly higher in the Cgi-miR-96P2m inhibitor + Vs group compared to the inhibitor NC + Vs group, while significantly lower in the Cgi-miR-96P2m mimics + Vs group compared to the mimics NC + Vs group. Binding sites of Cgi-miR-96P2m were predicted at 2383-2401 bp in the coding sequence region of CgVEGFR, and its binding activity with CgVEGFR mRNA was further proved by the dual-luciferase reporter assay. KEGG enrichment analysis revealed that target genes of Cgi-miR-96P2m are enriched in the MAPK signaling pathway and apoptosis process. Inhibition of Cgi-miR-96P2m resulted in upregulated expression of CgP38, cell cycle-related genes (CgCDK2, CgCDC45) and transcription factors (CgGATA, CgRunx), as well as apoptosis-associated genes such as CgBCL-2. These findings suggest that the Cgi-miR-96P2m negatively regulates haemocyte proliferation by targeting CgVEGFR and influencing the expression of cell cycle and apoptosis-related genes in the immune response of oysters.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lixin Guo
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuefeng Dai
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Keli Zhou
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiajun Zuo
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Buxin Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingyuan Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
9
|
Fan T, Su Z, Wang X, Wei T, Zhao L, Liu S. TarP: A microRNA target gene prediction tool utilizing a polymorphic structured alignment approach. Int J Biol Macromol 2025; 314:144320. [PMID: 40383335 DOI: 10.1016/j.ijbiomac.2025.144320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
MicroRNAs (miRNAs) represent a vital class of small non-coding RNAs that play key regulatory roles in gene expression. Accurate identification of miRNA-mRNA interactions is essential for understanding their biological functions. However, current computational prediction tools suffer from several limitations, including species-specific biases, suboptimal accuracy, high false discovery rates, and incomplete target gene coverage. To address these challenges, we present TarP, a novel miRNA target prediction algorithm employing a Polymorphic structured alignment (PMS) approach. Our method mimics the natural binding process between miRNAs and their target mRNAs by integrating key biological interaction features. The algorithm utilizes five distinct nucleotide-binding motifs to perform a structured decomposition and alignment of potential mRNA targets. Predictions are then rigorously evaluated through a dual scoring system: a Structure (St) coefficient assessing binding conformation and an Energy (En) coefficient evaluating thermodynamic stability, ensuring high-confidence target selection. Using experimentally validated human miRNA-mRNA interaction datasets, we benchmarked TarP against four widely used prediction tools (miRanda, RNAhybrid, PITA, and TargetScan). Comparative analyses demonstrate that TarP achieves superior performance in both sensitivity and specificity, exhibiting enhanced accuracy in positive target identification and improved discrimination between true and false interactions. The TarP algorithm is freely available at: https://github.com/Whimonk/TarP.
Collapse
Affiliation(s)
- Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Zhuanzhuan Su
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Xin Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
10
|
Sun D, Zhou X, Su Y, Gao B, Liu P, Lv J. Immunoregulatory mechanisms and cross-kingdom bacteriostatic effects of microRNAs in crustacean. Int J Biol Macromol 2025; 311:144079. [PMID: 40348231 DOI: 10.1016/j.ijbiomac.2025.144079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/19/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
MicroRNAs (miRNAs) are crucial regulators of gene expression, which contribute to immune response regulation in various organisms, including crustaceans. To investigate the immunoregulatory roles of miRNAs in Portunus trituberculatus, a comparative miRNAomic analysis of Vibrio parahaemolyticus infection was carried out. Through comparative miRNAomic analysis, we identified 17 differentially expressed miRNAs (DE-miRNAs), of which 12 were upregulated. Subsequently, miRNA-mRNA regulatory network analysis revealed that the DE-miRNAs were enriched in immune-related signaling pathways. Within the miRNA-mRNA regulatory network, miRNA novel0045 was identified as a crucial regulator of the tumor necrosis factor (TNF) pathway via targeting the TNF receptor-associated factor 6 gene. This result was corroborated by our RNA interference assay, confirming the significance of miRNA novel0045 in resistance to V. parahaemolyticus infection. Moreover, miRNA novel0294 was noted to possess cross-kingdom regulatory potential, translocating into bacterial cells and directly inhibiting V. parahaemolyticus proliferation. We validated this finding through fluorescence labeling and confocal microscopy, confirming effective internalization and presence of miRNA within bacterial. These results expand the current understanding of miRNA-mediated immune responses in crustaceans, highlighting the roles of miRNAs in host immune defense and cross-kingdom regulatory function in bacterial infection suppression, and have potential implications in the development of RNA-based antimicrobial strategies.
Collapse
Affiliation(s)
- Dongfang Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xianfa Zhou
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yichen Su
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Baoquan Gao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Ping Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianjian Lv
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
11
|
Shao Y, Ding JH, Miao WL, Wang YR, Pei MM, Sheng S, Gui ZZ. microRNA Targeting Cytochrome P450 Is Involved in Chlorfenapyr Tolerance in the Silkworm, Bombyx mori (Lepidoptera: Bombycidae). INSECTS 2025; 16:515. [PMID: 40429228 PMCID: PMC12112709 DOI: 10.3390/insects16050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025]
Abstract
We first measured the content of chlorfenapyr and tralopyril in silkworm larvae using HPLC, revealing that chlorfenapyr can be biotransformed into tralopyril in silkworms. Then, a differential transcriptomic database of small RNA was constructed through Illumina RNA-Sequencing. qRT-PCR was conducted to determine the expression levels of Bmo-miR-6497-5p and the target CYP450 gene, and Bmo-miR-6497-5p was significantly upregulated in the L3 silkworm larvae 24, 48, and 72 h after they were treated with chlorfenapyr. Furthermore, the target P450 gene CYP337A2 was downregulated at these time points. Dual-luciferase validation revealed that the luciferase activity significantly decreased after Bmo-miR-6497-5p bound to CYP337A2. In addition, miRNA mimics/inhibitor injection and bioassays of chlorfenapyr and tralopyril revealed that the mortality of third silkworm larvae injected with the antagomir of Bmo-miR-6497-5p was significantly increased after exposure to a sublethal concentration of chlorfenapyr. These results imply that Bmo-miR-6497-5p targets CYP337A2, regulating its expression. Also, silkworms increase their tolerance to chlorfenapyr by upregulating Bmo-miR-6497-5p expression, thereby inhibiting the biotransformation of chlorfenapyr to toxic tralopyril catalyzed by CYP337A2. The present study reveals the function of microRNA in silkworm tolerance to chlorfenapyr and improves understanding regarding insecticide resistance in Lepidopteran insects.
Collapse
Affiliation(s)
- Ying Shao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (J.-H.D.); (W.-L.M.); (Y.-R.W.); (M.-M.P.); (S.S.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jian-Hao Ding
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (J.-H.D.); (W.-L.M.); (Y.-R.W.); (M.-M.P.); (S.S.)
| | - Wang-Long Miao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (J.-H.D.); (W.-L.M.); (Y.-R.W.); (M.-M.P.); (S.S.)
| | - Yi-Ren Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (J.-H.D.); (W.-L.M.); (Y.-R.W.); (M.-M.P.); (S.S.)
| | - Miao-Miao Pei
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (J.-H.D.); (W.-L.M.); (Y.-R.W.); (M.-M.P.); (S.S.)
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (J.-H.D.); (W.-L.M.); (Y.-R.W.); (M.-M.P.); (S.S.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhong-Zheng Gui
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (J.-H.D.); (W.-L.M.); (Y.-R.W.); (M.-M.P.); (S.S.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
12
|
Wang M, Zheng S, Zhang Y, Zhang J, Lai F, Zhou C, Zhou Q, Li X, Li G. Transcriptome analysis reveals PTBP1 as a key regulator of circRNA biogenesis. BMC Biol 2025; 23:127. [PMID: 40350413 PMCID: PMC12067716 DOI: 10.1186/s12915-025-02233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 05/02/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a class of non-coding RNAs generated through back splicing. High expression of circRNAs is often associated with numerous abnormal cellular biological processes. However, the regulatory factors of circRNAs are not fully understood. RESULTS In this study, we identified PTBP1 as a crucial regulator of circRNA biogenesis through a comprehensive analysis of the whole transcriptome profiles across 10 diverse cell lines. Knockdown of PTBP1 led to a significant decrease in circRNA expression, concomitant with a distinct reduction in cell proliferation. To investigate the regulatory mechanism of PTBP1 on circRNA biogenesis, we constructed a minigene reporter based on SPPL3 gene. The results showed that PTBP1 can bind to the flanking introns of circSPPL3, and the mutation of PTBP1 motif impedes the back splicing of circSPPL3. Subsequently, to demonstrate that this observation is not an exception, the comprehensive regulatory effects of PTBP1 on circRNAs were confirmed by miniGFP, reflecting the necessity of the binding site in the flanking introns. Analysis of data from clinical samples showed that both PTBP1 and circRNAs exhibited substantial upregulation in acute myeloid leukemia, further demonstrating a potential role for PTBP1 in promoting circRNA biogenesis under in vivo conditions. Competitive endogenous RNA (ceRNA) network revealed that PTBP1-associated circRNAs participated in biological processes associated with cell proliferation. CONCLUSIONS In summary, our study is the first to identify the regulatory effect of PTBP1 on circRNA biogenesis and indicates a possible link between PTBP1 and circRNA expression in leukemia.
Collapse
Affiliation(s)
- Mohan Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shanshan Zheng
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingwen Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuming Lai
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cong Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiangwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming Technology for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Sullivan R, Becker JA, Samsing F. Integrative analysis of the microRNA and mRNA response of barramundi (Lates calcarifer) under acute cold stress and Vibrio harveyi challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 167:105385. [PMID: 40354847 DOI: 10.1016/j.dci.2025.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Barramundi (Lates calcarifer) are emerging as a key species in warm-water aquaculture worldwide; however, disease outbreaks caused by Vibrio spp. are impeding industry expansion. Climate change is expected to exacerbate this issue by intensifying extreme weather events, including unusually cold temperatures, thereby increasing the risk of disease. In this study, we investigated the combined effect of cold stress and V. harveyi infection on the early transcriptome (mRNA) and microRNA responses of juvenile barramundi to enhance our understanding of host-pathogen interactions. High levels of differential gene expression were observed in fish subjected to cold stress (22 °C) post-infection with V. harveyi, with 3231 differentially expressed genes and an extensive pro-inflammatory immune response. In contrast, most differentially expressed microRNAs were associated with fish infected with V. harveyi housed under optimal temperature conditions (30 °C). MicroRNAs play a crucial role in regulating gene expression, typically through downregulation of target mRNAs. The significant upregulation of miRNAs in barramundi kept at 30 °C, and the lack of miRNA upregulation in cold stressed fish, suggests that cold stress impaired the immune-regulatory capacity of affected fish, resulting in a hyper-inflammatory response that may account for the increased mortality observed. This study is the first dual study of the transcriptome and microRNA response of barramundi to V. harveyi infection and expands understanding of the innate immune response in barramundi and the regulatory role of microRNAs in teleost fish.
Collapse
Affiliation(s)
- Roisin Sullivan
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia; Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Joy A Becker
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Francisca Samsing
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia.
| |
Collapse
|
14
|
Han (韩郭皓) G, Yang (杨朋) P, Zhang (张永进) Y, Li (李巧伟) Q, Fan (范新浩) X, Chen (陈锐朴) R, Yan (闫超) C, Zeng (曾木) M, Yang (杨亚岚) Y, Tang (唐中林) Z. PIGOME: An Integrated and Comprehensive Multi-omics Database for Pig Functional Genomics Studies. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 23:qzaf016. [PMID: 40036767 PMCID: PMC12122082 DOI: 10.1093/gpbjnl/qzaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 01/29/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
In addition to being a major source of animal protein, pigs are an important model for studying development and diseases in humans. Over the past two decades, thousands of high-throughput sequencing studies in pigs have been performed using a variety of tissues from different breeds and developmental stages. However, multi-omics databases specifically designed for pig functional genomics research are still limited. Here, we present PIGOME, a user-friendly database of pig multi-omes. PIGOME currently contains seven types of pig omics datasets, including whole-genome sequencing (WGS), RNA sequencing (RNA-seq), microRNA sequencing (miRNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), assay for transposase-accessible chromatin sequencing (ATAC-seq), bisulfite sequencing (BS-seq), and methylated RNA immunoprecipitation sequencing (MeRIP-seq), from 6901 samples and 392 projects with manually curated metadata, integrated gene annotation, and quantitative trait locus information. Furthermore, various "Explore" and "Browse" functions have been established to provide user-friendly access to omics information. PIGOME implements several tools to visualize genomic variants, gene expression, and epigenetic signals of a given gene in the pig genome, enabling efficient exploration of spatiotemporal gene expression/epigenetic patterns, functions, regulatory mechanisms, and associated economic traits. Collectively, PIGOME provides valuable resources for pig breeding and is helpful for human biomedical research. PIGOME is available at https://pigome.com.
Collapse
Affiliation(s)
- Guohao Han (韩郭皓)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528225, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama 547500, China
| | - Peng Yang (杨朋)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528225, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama 547500, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Yongjin Zhang (张永进)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama 547500, China
| | - Qiaowei Li (李巧伟)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528225, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama 547500, China
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Xinhao Fan (范新浩)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528225, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama 547500, China
| | - Ruipu Chen (陈锐朴)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528225, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama 547500, China
| | - Chao Yan (闫超)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528225, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama 547500, China
| | - Mu Zeng (曾木)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528225, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama 547500, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yalan Yang (杨亚岚)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528225, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama 547500, China
| | - Zhonglin Tang (唐中林)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528225, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama 547500, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
15
|
Nian X, Wang B, Holford P, Beattie GAC, Tan S, Yuan W, Cen Y, He Y, Zhang S. Neuropeptide Ecdysis-Triggering Hormone and Its Receptor Mediate the Fecundity Improvement of 'Candidatus Liberibacter Asiaticus'-Infected Diaphorina citri Females and CLas Proliferation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412384. [PMID: 40112150 PMCID: PMC12079412 DOI: 10.1002/advs.202412384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/24/2024] [Indexed: 03/22/2025]
Abstract
The severe Asiatic form of huanglongbing (HLB), caused by "Candidatus Liberibacter asiaticus" (CLas), threatens global citrus production via the citrus psyllid, Diaphorina citri. Culturing challenges of CLas necessitate reducing D. citri populations for disease management. CLas boosts the fecundity of CLas-positive (CLas+) D. citri and fosters its own proliferation by modulating the insect host's juvenile hormone (JH), but the intricate endocrine regulatory mechanisms remain elusive. Here, it is reported that the D. citri ecdysis-triggering hormone (DcETH) and its receptor DcETHR play pivotal roles in the reciprocal benefits between CLas and D. citri within the ovaries, influencing energy metabolism and reproductive development in host insects; miR-210, negatively regulates DcETHR expression, contributing to this symbiotic interaction. CLas infection reduces 20-hydroxyecdysone (20E) levels and stimulates DcETH release, elevating JH production via DcETHR, enhancing fecundity and CLas proliferation. Furthermore, circulating JH levels suppress 20E production in CLas+ ovaries. Collectively, the orchestrated functional interplay involving 20E, ETH, and JH increases energy metabolism and promotes the fecundity of CLas+ D. citri and CLas proliferation. These insights not only broaden the knowledge of how plant pathogens manipulate the reproductive behavior of insect hosts but also offer novel targets and strategies for combatting HLB and D. citri.
Collapse
Affiliation(s)
- Xiaoge Nian
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural AffairsGuangdong Provincial Key Laboratory of High Technology for Plant ProtectionGuangzhou510640P.R. China
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Bo Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Paul Holford
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | | | - Shijian Tan
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Weiwei Yuan
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Yijing Cen
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Yurong He
- National Key Laboratory of Green PesticideDepartment of EntomologyCollege of Plant ProtectionSouth China Agricultural UniversityGuangzhou510642China
| | - Songdou Zhang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural AffairsGuangdong Provincial Key Laboratory of High Technology for Plant ProtectionGuangzhou510640P.R. China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| |
Collapse
|
16
|
Wang H, Zhang J, Li G, Liu B, Liu M, Tang H, Wen H, He F. Circular RNA transcriptome across various development periods of Paralichthys olivaceus reveal skeletal muscle-specific circchd6 regulating myogenesis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101518. [PMID: 40334353 DOI: 10.1016/j.cbd.2025.101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025]
Abstract
The Japanese flounder (Paralichthys olivaceus) is greatly influenced in terms of muscle quality and quantity by the development of skeletal muscle. While the mechanisms underlying skeletal muscle development are well-studied, the role of non-coding RNAs, particularly circRNAs, in the skeletal muscle development of Japanese flounder remains unclear. To investigate the expression patterns of circRNAs during different developmental stages (JP1: 7 days, JP2: 90 days, JP3: 24 months (female), JP4: 24 months (male)) in Japanese flounder, we performed transcriptome sequencing analysis. We identified a total of 3523 circRNAs, of which 10.19 % were differentially expressed. These differentially expressed (DE) circRNAs were studied, and their impacts on muscle development were analyzed. The RNA interaction network revealed that skeletal muscle-specific circchd6 targeted novel-miR-508 and further regulated dual specificity tyrosine-phosphorylation regulated kinase 2 (dyrk2). Functional analysis showed that overexpressed circchd6 and dyrk2 promoted myoblast proliferation and differentiation, while novel-miR-508 inhibited both. Our study identified the circchd6-novel-miR-508-dyrk2 axis as a regulatory mechanism and provided new evidence for the use of epigenetic approaches in genetic breeding.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Jingru Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Guangling Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Binghua Liu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Min Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Hengtai Tang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China
| | - Feng He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266000, China.
| |
Collapse
|
17
|
Meng L, Pan Y, Yonezawa R, Yang K, Bailey-Kobayashi N, Hashimoto N, Maeyama K, Yoshitake K, Kinoshita S, Yoshida T, Nagai K, Watabe S, Asakawa S. Identification and comparison of exosomal and non-exosomal microRNAs in mantle tissue of Pinctada fucata (Akoya pearl oyster). Int J Biol Macromol 2025; 309:142991. [PMID: 40210052 DOI: 10.1016/j.ijbiomac.2025.142991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
MicroRNAs (miRNA) are a class of endogenous non-coding small RNA molecules that are widely found in tissues, biological fluids, and vesicles such as exosomes. Exosomes are extracellular vesicles released from multivesicular bodies of various cell types. They are involved in intercellular communication and transport and immune regulation and may serve as potential biomarkers for diagnosis and monitoring. The function of exosomal miRNAs and their potential applications as biomarkers are a topic of interest. However, identification and comparison of miRNA expression in different biological sample types have rarely been studied. Therefore, in this study, the miRNA profiles of tissue- and tissue-derived exosomes of Pinctada fucata were characterized and compared to screen for differentially expressed miRNAs. The miRNAs functioned within tissues and were also packaged into exosomes. Simultaneously, some miRNAs were preferentially exported to exosomes for their biological functions. Functional analyses suggested that the predicted genes targeted by these differentially expressed miRNAs were extensively involved in intracellular vesicle trafficking and vesicle-mediated substrate transport. Overall, our findings provide insights into the roles of tissue-derived miRNAs and circulating exosomal miRNAs in cell communication and gene regulation. Moreover, this study serves as an additional reference for sample type selection for P. fucata small RNA analysis.
Collapse
Affiliation(s)
- Lingxin Meng
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Yida Pan
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Ryo Yonezawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan; Signal Peptidome Research Laboratory, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Kaiqiao Yang
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | - Naoki Hashimoto
- Pearl Research Institute, MIKIMOTO & CO., LTD., Osaki Hazako 923, Hamajima, Shima, Mie 517-0403, Japan
| | - Kaoru Maeyama
- Mikimoto Pharmaceutical CO., LTD., Kurose 1425, Ise, Mie 516-8581, Japan
| | - Kazutoshi Yoshitake
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Shigeharu Kinoshita
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Tetsuhiko Yoshida
- Institute for Advanced Sciences, TOAGOSEI CO., LTD., Tsukuba, Ibaraki 300-2611, Japan
| | - Kiyohito Nagai
- Pearl Research Institute, MIKIMOTO & CO., LTD., Osaki Hazako 923, Hamajima, Shima, Mie 517-0403, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0313, Japan
| | - Shuichi Asakawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan; Signal Peptidome Research Laboratory, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| |
Collapse
|
18
|
Zhao W, Wen JX, Niu Y, Yan L, Wang MY, Jiao W, Wang YF, Gao WH, Yang DN, Zheng WQ, Hu ZD. Exosomal miR-182-5p is a potential diagnostic marker for malignant pleural effusion. Transl Lung Cancer Res 2025; 14:1138-1148. [PMID: 40386717 PMCID: PMC12082201 DOI: 10.21037/tlcr-2024-1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/10/2025] [Indexed: 05/20/2025]
Abstract
Background Biomarkers in pleural fluid are the potential auxiliary diagnostic markers for malignant pleural effusion (MPE). Exosomal microRNAs (miRNAs) represent novel diagnostic markers for various diseases. The diagnostic performance of exosomal miRNAs for MPE remains unclear. Therefore, we examined the exosomal miRNAs profiles of both MPE and benign pleural effusion (BPE), aiming to study diagnostic performance of exosomal miRNAs for MPE. Methods We used next-generation sequencing (NGS) technology to analyze the pleural fluid exosomal miRNA profile in five MPE and 15 BPE cases. We analyzed the differentially expressed exosomal miRNAs by reverse transcription polymerase chain reaction (RT-PCR), with cel-miR-39 or snRNA U6 as internal references. We assessed the diagnostic accuracy of exosomal miRNA for MPE with a receiver operating characteristic (ROC) curve. We also analyzed whether exosomal miRNA could improve the diagnostic performance of pleural carcinoembryonic antigen (CEA). Results Fifty-eight miRNAs were up-regulated, and 35 miRNAs were down-regulated in MPE. We selected exosomal miR-182-5p for further study and analyzed miR-182-5p in 153 patients with undiagnosed pleural effusion. Exosomal miR-182-5p was undetectable in 32 participants. In the remaining participants with 49 MPE and 72 BPE cases, we found that the areas under the curve (AUCs) and their 95% confidence intervals (95% CIs) for exosomal miR-182-5p were 0.78 (95% CI: 0.69-0.86) when using cel-miR-39 as an internal reference, and 0.80 (95% CI: 0.73-0.88) when using snRNA U6. The combination of exosomal miR-182-5p and CEA can slightly improve the diagnostic accuracy of MPE, with an AUC of 0.91 (95% CI: 0.85-0.97). Conclusions Pleural miR-182-5p can assist in the diagnosis of MPE. Its diagnostic performance is slightly affected by internal reference.
Collapse
Affiliation(s)
- Wen Zhao
- Center for Clinical Epidemiology Research, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
- Department of Medical Experimental Center, Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Yan Niu
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
- Department of Medical Experimental Center, Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Li Yan
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Mei-Ying Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Wei Jiao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ya-Fei Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Wen-Hui Gao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Dan-Ni Yang
- Center for Clinical Epidemiology Research, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| | - Zhi-De Hu
- Center for Clinical Epidemiology Research, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
19
|
Wang Q, Lu H, Fan X, Zhu J, Shi J, Zhao W, Xiao Y, Xu Y, Chen J, Cui F. Extracellular vesicle-mediated plant miRNA trafficking regulates viral infection in insect vector. Cell Rep 2025; 44:115635. [PMID: 40293919 DOI: 10.1016/j.celrep.2025.115635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/03/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Extracellular vesicle (EV)-mediated small RNA trafficking plays an important role in intercellular and interspecies communication. Plant arboviruses keep homeostasis in insect vectors, thus ensuring vector survival and viral transmission. How plant EV-mediated cross-kingdom RNA interference participates in viral infection in insect vectors remains unknown. Here, we successfully isolate rice EVs and identify a batch of microRNAs (miRNAs) encapsulated in EVs. Two EV-enriched rice miRNAs, Osa-miR159a.1-1 and Osa-miR167a, are transported into midgut epithelial cells of small brown planthopper, which is a competent vector of rice stripe virus (RSV). Osa-miR159a.1-1 elevates the expression of a phospholipase C by enhancing its mRNA stability, inducing the downstream CSL expression to inhibit apoptosis for the benefit of RSV replication. On the other hand, Osa-miR167a directly binds RSV RdRp to suppress viral replication. This differential regulation of EV-mediated cross-kingdom RNA interference contributes to arbovirus homeostasis in insect vectors and the following efficient transmission.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Lu
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaoyue Fan
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jiaming Zhu
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianfei Shi
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan Zhao
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Xiao
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongyu Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jinfeng Chen
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Cui
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Han T, Li Y, Zhao H, Chen J, He C, Lu Z. In-depth single-cell transcriptomic exploration of the regenerative dynamics in stony coral. Commun Biol 2025; 8:652. [PMID: 40269231 PMCID: PMC12019164 DOI: 10.1038/s42003-025-08089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Coral reef ecosystems face escalating threats from anthropogenic global climate challenges, leading to frequent bleaching events. A key issue in coral transplantation is the inability of fragments to rapidly grow to sizes that can resist environmental pressures. The observation of accelerated growth during the early stages of coral regeneration provides new insights for addressing this challenge. To investigate the underlying molecular mechanisms, we study the fast-growing stony coral Acropora muricata. Using single-cell RNA sequencing, bulk RNA sequencing, and high-resolution micro-computed tomography, we identify a critical regeneration phase around 2-4 weeks post-injury. Single-cell transcriptome analysis reveals 11 function-specific cell clusters. Pseudotime analysis indicates epidermal cell differentiation into calicoblasts. Bulk RNA-seq results highlight a temporal limitation in coral's rapid regeneration. Through integrated multi-omics analysis, this study emphasizes the importance of a comprehensive understanding of coral regeneration, providing insights beyond fundamental knowledge and offering potential protective strategies to promote coral growth.
Collapse
Affiliation(s)
- Tingyu Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences; Shanxi Key Laboratory of Birth Defect and Cell Regeneration; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuanchao Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Hongwei Zhao
- School of Ecology, Hainan University, Haikou, 570228, China
| | - Junyuan Chen
- Nanjing Institute of Paleontology and Geology, Nanjing, 210008, China
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- National Graduate College for Elite Engineers, Southeast University, Nanjing, 210096, China.
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
21
|
Jia J, Nie H. Pathological and miRNA-mRNA Analyses Provide New Insights into the Immune Response of Clams to Vibrio Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:76. [PMID: 40266414 DOI: 10.1007/s10126-025-10454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
Manila clam plays a crucial role in China's marine aquaculture industry. However, frequent vibriosis outbreaks severely hinder sustainable and healthy development of the shellfish aquaculture industry. This study indicated markedly decreased clam survival rates after 48 h of Vibrio alginolyticus challenge. Gill and hepatopancreas damage was investigated through histological observation. The activity of lysozyme in the gills and hepatopancreas peaked at 12 and 24 h, respectively. V. alginolyticus showed a maximum bacterial load in the gills and hepatopancreas at 12 and 24 h, respectively. Additionally, transcriptome sequencing of hepatopancreas revealed ten differentially expressed miRNAs in Va and Cn after 48 h infection with V. alginolyticus, corresponding to 100 target genes, with eight upregulated and two downregulated DE miRNAs. Gene ontology (GO) enrichment analysis identified 50 known miRNAs and 111 novel miRNAs, thereby predicting a total of 1840 target genes. KEGG analysis revealed significant changes in multiple signaling pathways, involving lysosomes, apoptosis, amino acid metabolism, and endocytosis, in response to V. alginolyticus stimulation. This study provided new information regarding the immune regulation mechanisms of R. philippinarum in response to V. alginolyticus stress.
Collapse
Affiliation(s)
- Jianxin Jia
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
22
|
Ding W, Gong W, Bou T, Shi L, Lin Y, Wu H, Dugarjaviin M, Bai D. Pilot Study on the Profiling and Functional Analysis of mRNA, miRNA, and lncRNA in the Skeletal Muscle of Mongolian Horses, Xilingol Horses, and Grassland-Thoroughbreds. Animals (Basel) 2025; 15:1123. [PMID: 40281957 PMCID: PMC12024394 DOI: 10.3390/ani15081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Muscle fibers, as the fundamental units of muscle tissue, play a crucial role in determining skeletal muscle function through their growth, development, and composition. To investigate changes in muscle fiber types and their regulatory mechanisms in Mongolian horses (MG), Xilingol horses (XL), and Grassland-Thoroughbreds (CY), we conducted histological and bioinformatic analyses on the gluteus medius muscle of these three horse breeds. Immunofluorescence analysis revealed that Grassland-Thoroughbreds had the highest proportion of fast-twitch muscle fibers at 78.63%, while Mongolian horses had the lowest proportion at 57.54%. Whole-transcriptome analysis identified 105 differentially expressed genes (DEGs) in the CY vs. MG comparison and 104 DEGs in the CY vs. XL comparison. Time-series expression profiling grouped the DEGs into eight gene sets, with three sets showing significantly up-regulated or down-regulated expression patterns (p < 0.05). Additionally, 280 differentially expressed long non-coding RNAs (DELs) were identified in CY vs. MG, and 213 DELs were identified in CY vs. XL. A total of 32 differentially expressed microRNAs (DEMIRs) were identified in CY vs. MG, while 44 DEMIRs were found in CY vs. XL. Functional enrichment analysis indicated that the DEGs were significantly enriched in essential biological processes, such as actin filament organization, muscle contraction, and protein phosphorylation. KEGG pathway analysis showed their involvement in key signaling pathways, including the mTOR signaling pathway, FoxO signaling pathway, and HIF-1 signaling pathway. Furthermore, functional variation-based analyses revealed associations between non-coding RNAs and mRNAs, with some non-coding RNAs targeting genes potentially related to muscle function regulation. These findings provide valuable insights into the molecular basis for the environmental adaptability, athletic performance, and muscle characteristics in horses, offering new perspectives for the breeding of Grassland-Thoroughbreds.
Collapse
Affiliation(s)
- Wenqi Ding
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wendian Gong
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tugeqin Bou
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Shi
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanan Lin
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huize Wu
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongyi Bai
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
23
|
Sciaraffa N, Santoni D, Li Greci A, Genovese SI, Coronnello C, Arancio W. Transcripts derived from AmnSINE1 repetitive sequences are depleted in the cortex of autism spectrum disorder patients. FRONTIERS IN BIOINFORMATICS 2025; 5:1532981. [PMID: 40270680 PMCID: PMC12015672 DOI: 10.3389/fbinf.2025.1532981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Aims Autism spectrum disorder (ASD) is a brain developmental disability with a not-fully clarified etiogenesis. Current ASD research largely focuses on coding regions of the genome, but up to date much less is known about the contribution of non-coding elements to ASD risk. The non-coding genome is largely made of DNA repetitive sequences (RS). Although RS were considered slightly more than "junk DNA", today RS have a recognized role in almost every aspect of human biology, especially in developing human brain. Our aim was to test if RS transcription may play a role in ASD. Methods Global RS transcription was firstly investigated in postmortem dorsolateral prefrontal cortex of 13 ASD patients and 39 matched controls. Results were validated in independent datasets. Results AmnSINE1 was the only RS significantly downregulated in ASD specimens. The role of AmnSINE1 in ASD has been investigated at multiple levels, showing that the 1,416 genes containing AmnSINE1 are associated with nervous system development and autism susceptibility. This has been confirmed in a different experimental setting, such as in organoid models of the human cerebral cortex, harboring different ASD causative mutations. AmnSINE1 related genes are transcriptionally co-regulated and are involved not only in brain formation but can specifically be involved in ASD development. Looking for a possible direct role of AmnSINE1 non-coding transcripts in ASD, we report that AmnSINE1 transcripts may alter the miRNA regulatory landscape for genes involved in neurogenesis. Conclusion Our findings provide preliminary evidence supporting a role for AmnSINE1 in ASD development.
Collapse
Affiliation(s)
| | - Daniele Santoni
- Institute for System Analysis and Computer Science “Antonio Ruberti”, National Research Council of Italy (IASI-CNR), Rome, Italy
| | - Andrea Li Greci
- Advanced Data Analysis Group, Ri. MED Foundation, Palermo, Italy
| | | | | | - Walter Arancio
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| |
Collapse
|
24
|
Zhou Y, Mihail ES, Luo Z, Sood S, Islam MS, Wang J. Exploring Morphological, Transcriptomic, and Metabolomic Differences Between Two Sister Lines with Contrasting Resistance to Orange Rust Disease in Sugarcane. Int J Mol Sci 2025; 26:3490. [PMID: 40331937 PMCID: PMC12027349 DOI: 10.3390/ijms26083490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Sugarcane (Saccharum spp.) hybrid, one of the most important crops in Florida, has been affected by orange rust (OR) disease caused by Puccinia kuehnii since 2007, resulting in significant yield loss. Developing resistant cultivars to this disease has become an important goal in sugarcane breeding programs. However, the specific genes and molecular mechanisms underlying the resistance to OR disease in sugarcane are still not clear. In this study, we selected two sugarcane sister lines with different genotypes-showing contrasting resistance responses to the disease-from a major quantitative trait loci (QTL) region controlling OR disease resistance. Morphological and anatomical observations revealed that the resistant line (540) had significantly smaller stomatal size and lower stomatal density than the susceptible line (664). Transcriptomic analyses showed that resistant line 540 had increased cell surface modification activity, suggesting possible increased surface receptors. Differentially expressed gene and coexpression analyses also revealed key genes involved in the biosynthesis of anti-fungal molecules, such as hordatines, arabidopyrones, and alkaloids. They also showed a strong increase in long non-coding RNA expression, playing a role in transcriptional regulation. Transcriptomic-metabolomic joint analysis suggested that the biosynthesis of phenylpropanoid derivatives with purported antioxidant and anti-fungal capabilities increased in line 540, especially those deriving from ferulate. Genes, pathways, and some single-nucleotide polymorphisms identified in this study will provide fundamental information and resources to advance the knowledge of sugarcane molecular genetic mechanisms in relation to OR disease, supporting breeding programs in developing cultivars with improved resistance to OR.
Collapse
Affiliation(s)
- Yupeng Zhou
- Department of Agronomy, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.Z.); (E.S.M.); (Z.L.)
| | - Edvin Sebastian Mihail
- Department of Agronomy, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.Z.); (E.S.M.); (Z.L.)
| | - Ziliang Luo
- Department of Agronomy, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.Z.); (E.S.M.); (Z.L.)
| | - Sushma Sood
- Sugarcane Production Research Unit, USDA ARS SEA, 12990 US Hwy 441 N, Canal Point, FL 33438, USA;
| | - Md Sariful Islam
- Sugarcane Production Research Unit, USDA ARS SEA, 12990 US Hwy 441 N, Canal Point, FL 33438, USA;
| | - Jianping Wang
- Department of Agronomy, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.Z.); (E.S.M.); (Z.L.)
| |
Collapse
|
25
|
Lei Z, Chen X, Chen K, Liu P, Ao M, Gan L, Yu L. Exosome-like vesicles encapsulated with specific microRNAs accelerate burn wound healing and ameliorate scarring. J Nanobiotechnology 2025; 23:264. [PMID: 40176075 PMCID: PMC11963272 DOI: 10.1186/s12951-025-03337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/16/2025] [Indexed: 04/04/2025] Open
Abstract
Burn injuries are prevalent, yet effective treatments remain elusive. Exosomes derived from mesenchymal stem cells (MSC-Ex) possess remarkable pro-regenerative properties for wound healing. Despite their potential, the challenge of mass production limits their clinical application. To address this, preparing exosome-like vesicles has become an international trend. In this study, 28 key microRNAs (miRNAs) with significant pro-proliferation, anti-inflammation, and anti-fibrosis functions were screened from MSC-Ex. These miRNAs were encapsulated into liposomes and then hybridized with extracellular vesicles derived from watermelon to create synthetic exosome-like vesicles. The fabricated vesicles exhibited similar particle size and zeta potential to MSC-Ex, demonstrating high serum stability and effectively resisting the degradation of miRNA by RNase. They were efficiently internalized by cells and enabled a high rate of lysosomal escape for miRNAs post cellular uptake, thereby effectively exerting their pro-proliferative, anti-inflammatory, and anti-fibrotic functions. Further experiments demonstrated that these vesicles efficiently accelerated burn wound healing and reduced scarring, with effects comparable to those of natural MSC-Ex. Based on these findings, the exosome-like vesicles fabricated in this study present a promising alternative to MSC-Ex in burn wound treatment.
Collapse
Affiliation(s)
- Zhiyong Lei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Xiaojuan Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Kezhuo Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Pan Liu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingzhang Ao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China.
| |
Collapse
|
26
|
Yang J, Jin N, Zhang S, Tan Y, Chen Z, Huang X, Li G, Yu B, Shi J, Gu X, Cui Z, Xu L. Genome-wide profiling and functional characterization of circular RNAs in neural development and injury: insights from a rat model research. Cell Mol Life Sci 2025; 82:135. [PMID: 40169448 PMCID: PMC11961807 DOI: 10.1007/s00018-025-05665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/12/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025]
Abstract
Circular RNAs (circRNAs) have re-emerged as promising gene regulators in various physiological and pathological conditions. However, the expression patterns of circRNAs in the developing spinal cord of mammals and the comprehensive distribution of circRNAs across different tissues remain poorly understood. In this study, rats were used as the model organism. We conducted a comprehensive analysis of 15 RNA-Seq datasets comprising 217 rat samples and developed a web-based resource, CiRNat, to facilitate access to these data. We identified 15,251 credible circRNAs and validated them through experimental approaches. Notably, we observed two significant time points for circRNA increase during spinal cord development, approximately at embryonic day 14 (E14d) and postnatal week 4 (P4w). Analysis of circRNA expression in various rat tissues revealed higher expression levels in central nervous system tissues compared to peripheral nervous system tissues and other tissues. Furthermore, some highly abundant circRNAs exhibited tissue- and species-specific expression patterns and differed from their cognate linear RNAs, such as those derived from Gigyf2. Integrating polysome profiling and bioinformatic predictions suggested potential functions of certain circRNAs as miRNA sponges and translational templates. Collectively, this study provides the first comprehensive landscape of circRNAs in the developing spinal cord, offering an important resource and new insights for future exploration of functional circRNAs in central nervous system development and related diseases.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang, Sichuan, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
- Institute for Translational Neuroscience, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Shuqiang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Ya Tan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Xiaoli Huang
- Institute for Translational Neuroscience, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Jianhua Shi
- Institute for Translational Neuroscience, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China.
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
- Institute for Translational Neuroscience, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
27
|
Honecker B, Bärreiter VA, Höhn K, Horváth B, Harant K, Metwally NG, Marggraff C, Anders J, Leyk S, Martínez-Tauler MDP, Bea A, Hansen C, Fehling H, Lütkemeyer M, Lorenzen S, Franzenburg S, Lotter H, Bruchhaus I. Entamoeba histolytica extracellular vesicles drive pro-inflammatory monocyte signaling. PLoS Negl Trop Dis 2025; 19:e0012997. [PMID: 40208874 PMCID: PMC12052212 DOI: 10.1371/journal.pntd.0012997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/05/2025] [Accepted: 03/19/2025] [Indexed: 04/12/2025] Open
Abstract
The parasitic protozoan Entamoeba histolytica secretes extracellular vesicles (EVs), but so far little is known about their function in the interaction with the host immune system. Infection with E. histolytica trophozoites can lead to formation of amebic liver abscesses (ALAs), in which pro-inflammatory immune responses of Ly6Chi monocytes contribute to liver damage. Men exhibit a more severe pathology as the result of higher monocyte recruitment and a stronger immune response. To investigate the role of EVs and pathogenicity in the host immune response, we studied the effect of EVs secreted by low pathogenic EhA1 and highly pathogenic EhB2 amebae on monocytes. Size and quantity of isolated EVs from both clones were similar. However, they differed in their proteome and miRNA cargo, providing insight into factors potentially involved in amebic pathogenicity. In addition, EVs were enriched in proteins with signaling peptides compared with the total protein content of trophozoites. Exposure to EVs from both clones induced monocyte activation and a pro-inflammatory immune response as evidenced by increased surface presentation of the activation marker CD38 and upregulated gene expression of key signaling pathways (including NF-κB, IL-17 and TNF signaling). The release of pro-inflammatory cytokines was increased in EV-stimulated monocytes and more so in male- than in female-derived cells. While EhA1 EV stimulation caused elevated myeloperoxidase (MPO) release by both monocytes and neutrophils, EhB2 EV stimulation did not, indicating the protective role of MPO during amebiasis. Collectively, our results suggest that parasite-released EVs contribute to the male-biased immunopathology mediated by pro-inflammatory monocytes during ALA formation.
Collapse
Affiliation(s)
- Barbara Honecker
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- RG Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Valentin A. Bärreiter
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute for Infection Research and Vaccine Development, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Katharina Höhn
- Cellular Parasitology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Balázs Horváth
- Arbovirus and Entomology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Karel Harant
- Laboratory of Mass Spectrometry, BIOCEV, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Nahla Galal Metwally
- RG Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Claudia Marggraff
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Juliett Anders
- RG Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephanie Leyk
- RG Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria del Pilar Martínez-Tauler
- RG Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center (Airway Research Center North), German Centre for Lung Research, Borstel, Germany
| | - Annika Bea
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Charlotte Hansen
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Helena Fehling
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Melanie Lütkemeyer
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Lorenzen
- Department of Infection Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Hanna Lotter
- RG Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Iris Bruchhaus
- RG Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
28
|
Biswas T, Hassan H, Rohner N. Differentially expressed miRNAs offer new perspective into cave adaptation of Astyanax mexicanus. Ann N Y Acad Sci 2025; 1546:173-181. [PMID: 40082196 PMCID: PMC11998478 DOI: 10.1111/nyas.15300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Astyanax mexicanus, a species with both surface-dwelling and multiple cave-dwelling populations, offers a unique opportunity to study repeated adaptation to dark and resource-scarce environments. While previous work has identified large-scale gene expression changes between morphs under even identical laboratory conditions, the regulatory basis of these expression differences remains largely unexplored. In this study, we focus on microRNAs (miRNAs) as key regulators of gene expression. Our analysis identified 683 mature miRNAs, establishing the first comprehensive catalog of miRNAs for this species. We identified a unique subset of differentially expressed miRNAs common to all studied cave-dwelling populations, potentially orchestrating the nuanced gene expression patterns required for survival in the cave milieu. Furthermore, we performed in silico target prediction of these miRNAs, revealing possible roles in developmental and metabolic pathways pivotal for thriving in nutrient-limited cave conditions. Interestingly, we also observed that Molino, which is the "youngest" of the three cavefish analyzed in this study, exhibited the most abundant number of differentially expressed mature miRNAs among the cave morphs. The comprehensive miRNA catalog generated, along with the insight into their differential expression across different morphs, will guide future investigations into the intricate world of miRNA-mediated evolution of complex traits.
Collapse
Affiliation(s)
| | - Huzaifa Hassan
- Stowers Institute for Medical ResearchKansas CityMissouriUSA
| | - Nicolas Rohner
- Stowers Institute for Medical ResearchKansas CityMissouriUSA
- Institute for Integrative Cell Biology and PhysiologyUniversity of MünsterMünsterGermany
| |
Collapse
|
29
|
Cai W, Cole JB, Goddard ME, Li J, Zhang S, Song J. Mammary gland multi-omics data reveals new genetic insights into milk production traits in dairy cattle. PLoS Genet 2025; 21:e1011675. [PMID: 40245050 PMCID: PMC12054919 DOI: 10.1371/journal.pgen.1011675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 05/06/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
Although many sequence variants have been discovered in cattle, deciphering the relationship between genome and phenome remains a significant challenge. In this study, we identified functional classes, including mammary-specific genes, lactation-associated genes, novel long non-coding RNAs, miRNAs, RNA editing sites, DNA methylation, histone modifications, and expression quantitative trait loci. We estimated their contributions to genetic variance for milk production traits using 3 million variants in 23,566 Holstein bulls. Sequence variants in the 5'-UTR, synonymous, and splicing regions disproportionately contributed to genetic variance of milk production traits compared to other genomic regions. Genes specifically expressed in the mammary gland, particularly those active in lactating tissue (e.g., GLYCAM1, DGAT1), account for significantly more genetic variance of milk production traits than specific genes from non-mammary tissues. We identified 8,560 differentially expressed genes (DEGs) between lactating and non-lactating tissues. Among these, both up-regulated and small-fold changes of down-regulated DEGs exhibited greater genetic variance enrichment of milk production traits than other genes. Mammary enhancers (e.g., H3K27ac, H3K4Me1) explained more variance than repressive elements, while small changes in DNA methylation level (≤0.2) contributed more variance than that with larger changes (> 0.2). Notably, lactation-associated RNA editing sites in mammary explained more variance for milk production traits than expected by chance. We proposed a novel miRNA prioritization strategy for selecting candidate miRNAs related to milk production traits, based on the overlaps between significant enrichment tests of miRNA target correlations and the relatively large variance explained by these targets. Additionally, we integrated these nine functional classes into the variance component analysis simultaneously, revealing that sQTLs, histone modification and DEGs showed the highest per-SNP variance enrichment. Finally, we constructed a new 624K SNP panel, which improved the reliabilities of genomic predictions by 0.22%. Dividing routine SNPs into two groups based on functional classes improved the reliabilities by 0.21%, particularly for milk protein percentage (0.68% improvement). Overall, incorporating prior biological knowledge of the mammary gland directly enhances our understanding of milk production's genetic architecture and improves the reliability of genomic predictions for milk production traits. This integrative approach establishes a paradigm for translating biological knowledge into agricultural genomics applications.
Collapse
Affiliation(s)
- Wentao Cai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Animal and Avian Science, University of Maryland, College Park, Maryland, United States of America
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, USDA, Beltsville, Maryland, United States of America
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Michael E. Goddard
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Victoria, Australia
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengli Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiuzhou Song
- Department of Animal and Avian Science, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
30
|
Qiao H, Tong Z, Wang Y, Yang J, Sun Y, Shi H, Liu Z, Duan J, Li D, Kan Y. miR-34-5p mediates 20E-induced autophagy in the fat body of Bombyx mori by targeting Atg1. BMC Genomics 2025; 26:317. [PMID: 40165048 PMCID: PMC11956236 DOI: 10.1186/s12864-025-11499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND 20-Hydroxyecdysone (20E) is an important hormone that regulates insect development and metamorphosis. The fat body of insects plays a crucial role in nutrient storage and energy metabolism and is considered the exchange center for regulating insect development. The fat body undergoes remarkable transformation during insect metamorphosis and is primarily regulated by 20E. microRNAs (miRNAs) have been identified in different insects and have multiple functions in various physiological processes. However, the interaction of 20E and miRNAs in fat body regulation remains unclear. RESULTS We constructed six small RNA libraries using Bombyx mori fat body treated with 20E. Expression and functional analyses were conducted to identify 20E-responsive miRNAs. In total, 431 miRNAs were identified, including 389 known and 42 novel miRNAs. Differential expression analysis revealed significant expression changes in the expression of 40, 9, and 18 miRNAs at 2 h, 6 h, and 12 h after 20E treatment, respectively. The expression of 10 miRNAs was validated using quantitative real-time PCR. miR-34-5p is a highly conserved miRNA among the 10 validated miRNAs, and autophagy-related gene 1 (Atg1) was considered a target gene of miR-34-5p. The expression analysis of miR-34-5p and Atg1 exhibited an opposite expression pattern in the fat body after the 20E treatment. Dual-luciferase assay indicated that miR-34-5p could inhibit Atg1 expression by targeting a binding site in CDS region of Atg1. In larval fat body, overexpressing miR-34-5p by injecting miR-34-5p agomir suppressed the expression of Atg1 and autophagy, whereas knocking down miR-34-5p by injecting miR-34-5p antagomir induced the expression of Atg1 and autophagy. Meanwhile, Atg1 silencing by RNAi also inhibited autophagy. These results indicate that miR-34-5p participates in 20E-induced autophagy in B. mori fat body by interacting with Atg1. CONCLUSIONS We systematically identified and functionally characterized miRNAs associated with 20E regulation in the fat body of B. mori. miR-34-5p is involved in 20E-induced autophagy in B. mori by regulating its target gene Atg1. These results provide insight into the role of sophisticated interactions between miRNAs, 20E regulation, and autophagy in fat body remodeling and insect metamorphosis.
Collapse
Affiliation(s)
- Huili Qiao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China.
| | - Ziqian Tong
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Yuanzhuo Wang
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Juanjuan Yang
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Yanyan Sun
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Huixuan Shi
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Zhuo Liu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Jianping Duan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Dandan Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China.
- School of Resourses and Enviroment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
31
|
Huang J, Zhou M, She Z, Chen J, Ke C. Integrated Analysis of mRNA and miRNA Associated with Reproduction in Female and Male Gonads in Abalone ( Haliotis discus hannai). Int J Mol Sci 2025; 26:3235. [PMID: 40244070 PMCID: PMC11989308 DOI: 10.3390/ijms26073235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Reproduction and breeding are crucial to maintaining abalone aquaculture. Understanding the molecular underpinnings of sexual maturation is essential for advancing knowledge in reproductive biology. However, the molecular mechanisms of gonadal development in abalones remain poorly understood, particularly in microRNA (miRNA)-mediated regulation. Thus, this study conducted a comprehensive transcriptomic analysis of abalone Haliotis discus hannai (H. discus hannai) to identify genes and miRNAs associated with ovarian and testicular discovery. This study identified 685 differentially expressed (DE) genes between the H. discus hannai ovary (DD_ovary) and testis (DD_testis) groups, comprising 479 upregulated and 206 downregulated genes in the DD_ovary. Moreover, 137 miRNAs, including 83 novel and 54 known miRNAs, were detected, with 30 upregulated and 27 downregulated in the DD_ovary compared to the DD_testis. Bioinformatics analysis revealed that these miRNAs regulate key processes such as carbohydrate metabolic processes, kinase and hydrolase activity, and starch and sucrose metabolism, all potentially associated with reproductive traits. Further, key mRNA candidates, including Vitelline envelope sperm lysin receptor (Verl) and Testis-specific serine/threonine-protein kinase (Tssk) 1, and miRNAs such as novel_90 and novel_120, were identified as components of a functional miRNA-mRNA network associated with sexual maturity and sex determination. These key genes were verified using qRT-PCR and fluorescence in situ hybridization (FISH). These transcriptomic and miRNA datasets provide valuable resources for understanding abalone reproductive biology and may support molecular breeding strategies.
Collapse
Affiliation(s)
- Jianfang Huang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; (J.H.); (Z.S.)
| | - Mingcan Zhou
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
| | - Zhenghan She
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; (J.H.); (Z.S.)
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; (J.H.); (Z.S.)
| | - Caihuan Ke
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
| |
Collapse
|
32
|
Xi B, An X, Yue Y, Shen H, Han G, Yang Y, Zhao S. Identification and profiling of microRNAs during sheep's testicular development. Front Vet Sci 2025; 12:1538990. [PMID: 40230794 PMCID: PMC11994653 DOI: 10.3389/fvets.2025.1538990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/06/2025] [Indexed: 04/16/2025] Open
Abstract
The normal development of the testis is essential for male reproduction, as it is the site of sperm production and a prerequisite for spermatogenesis. MiRNAs play crucial roles in various testicular biological processes, including cell proliferation, spermatogenesis, hormone secretion, metabolism, and reproductive regulation. In this study, we utilized deep sequencing data to analyze the expression patterns of small RNAs in testicular tissues of Southern × Hu sheep F1 hybrids at 0, 3, 6 months, and 1 year of age, thereby exploring the functions of miRNAs in testicular development and spermatogenesis. A total of 787 known miRNAs and 415 novel miRNAs were identified. We identified 217, 254, 405, 130, 305, and 138 DE miRNAs in the testes of M0 vs. M3, M0 vs. M6, M0 vs. Y1, M3 vs. M6, M3 vs. Y1, and M6 vs. Y1, respectively. GO annotation and KEGG pathway analysis of DE miRNA target genes revealed that target genes such as YAP1, ITGB1, DOT1L, SMAD4, and SOX9 may be involved in various biological processes, including reproductive pathways such as FOXO, Hippo, Wnt, cAMP, Rap1, and MAPK signaling pathways. The expression levels of 12 randomly selected miRNAs in testes at 0, 3, 6 months, and 1 year of age were detected by qRT-PCR, and the results were consistent with the sequencing data. This study characterized and investigated the differential expression of miRNAs in sheep testes at different developmental stages using deep sequencing technology. These findings will contribute to a deeper understanding of the functions of miRNAs in regulating testicular development and enhancing reproductive performance in male sheep.
Collapse
Affiliation(s)
- Binpeng Xi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yaojing Yue
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haimiao Shen
- Dongxiang County Mutton Sheep Industry Research Center, Linxia, China
| | - Gaohui Han
- Dongxiang County Animal Husbandry Development Center, Linxia, China
| | - Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
33
|
Frank JK, Kampleitner C, Heimel P, Leinfellner G, Hanetseder D, Sperger S, Frischer A, Schädl B, Tangl S, Lindner C, Gamauf J, Grillari-Voglauer R, O’Brien FJ, Pultar M, Redl H, Hackl M, Grillari J, Marolt Presen D. Circulating miRNAs are associated with successful bone regeneration. Front Bioeng Biotechnol 2025; 13:1527493. [PMID: 40225119 PMCID: PMC11985807 DOI: 10.3389/fbioe.2025.1527493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Bone healing is a well-orchestrated process involving various bone cells and signaling pathways, where disruptions can result in delayed or incomplete healing. MicroRNAs (miRNAs) are small non-coding RNAs capable of influencing various cellular processes, including bone remodeling. Due to their biological relevance and stable presence in biofluids, miRNAs may serve as candidates for diagnosis and prognosis of delayed bone healing. The aim of the study was to investigate changes in miRNAs circulating in the blood during the healing of rat calvaria defects as biomarkers of successful bone regeneration. Methods Standardized calvaria defects were created in 36 Wistar rats with a trephine drill and treated with collagen hydroxyapatite (CHA) scaffolds. The treatment groups included CHA scaffolds only, CHA scaffolds containing a plasmid coding for bone morphogenetic protein 2 (BMP2) and miR-590-5p, CHA scaffolds containing mesenchymal stromal cell-derived extracellular vesicles, and empty defects as a control group. After 1, 4 and 8 weeks of healing, the animals were evaluated by microcomputed tomography (microCT), as well as subjected to histological analyses. Blood was sampled from the tail vein prior to surgeries and after 1, 4, and 8 weeks of healing. miRNAs circulating in the plasma were determined using next-generation sequencing. Results Variability of bone regeneration within the four groups was unexpectedly high and did not result in significant differences between the groups, as indicated by the microCT and histological analyses of the newly formed bone tissue. However, irrespective of the treatment group and regenerative activity, we identified miRNAs with distinct expression patterns of up- and downregulation at different time points. Furthermore, rats with high and low regenerative activity were characterized by distinct circulating miRNA profiles. miR-133-3p was identified as the top upregulated miRNA and miR-375-3p was identified as the top downregulated miRNA in animals exhibiting strong regeneration over all time points evaluated. Conclusion Our study indicates that regardless of the treatment group, success or lack of bone regeneration is associated with a distinct expression pattern of circulating microRNAs. Further research is needed to determine whether their levels in the blood can be used as predictive factors of successful bone regeneration.
Collapse
Affiliation(s)
- Julia K. Frank
- Herz Jesu Krankenhaus, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Carina Kampleitner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Gabriele Leinfellner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Dominik Hanetseder
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Simon Sperger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Amelie Frischer
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Schädl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Stefan Tangl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Claudia Lindner
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Evercyte GmbH, Vienna, Austria
| | - Johanna Gamauf
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Evercyte GmbH, Vienna, Austria
| | | | - Fergal J O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, Ireland
| | - Marianne Pultar
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- TAmiRNA GmbH, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Matthias Hackl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- TAmiRNA GmbH, Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Centre for the Technologies of Gene and Cell Therapy, The National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
34
|
Cao A, Zhao R, Chen C, Wu C, Zhang Y, Huang C, Zhu B. Circulating tsRNAs serve as potential biomarkers for predicting postoperative delirium in elderly patients receiving lower extremity orthopedic surgery. Front Psychiatry 2025; 16:1522984. [PMID: 40206643 PMCID: PMC11980442 DOI: 10.3389/fpsyt.2025.1522984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/24/2025] [Indexed: 04/11/2025] Open
Abstract
Background Postoperative delirium (POD) is a serious neuropsychiatric complication in elderly surgical patients, yet its pathogenesis remains incompletely understood. Transfer RNA-derived small RNAs (tsRNAs) have emerged as crucial regulators in neurological disorders. We investigated whether specific tsRNAs could serve as predictive biomarkers for POD. Methods This study conducted a prospective case-control study of 158 elderly patients (≥60 years) undergoing orthopedic surgery. Plasma samples were collected preoperatively and on postoperative day 3.tsRNA expression profiles were analyzed using RNA sequencing and validated by RT-qPCR. Propensity score matching was performed to balance demographic and clinical variables. The predictive value of candidate tsRNAs was assessed using ROC analysis, and their potential functions were explored through bioinformatic analyses. Results Among 128 non-POD and 30 POD patients, two tsRNAs (Other-14: 31-tRNA-Gly-CCC-3 and Other-39: 73-tRNA-Arg-TCG-5) showed significantly elevated preoperative levels in POD patients (p<0.001).ROC analysis revealed strong predictive performance (AUC=0.868 and 0.956, respectively).These differences persisted in the propensity-matched cohort (29 pairs).Bioinformatic analyses indicated enrichment in pathways related to neurotransmission, inflammation, and metabolism. Conclusion This study identified novel tsRNA biomarkers that robustly predict POD risk and provide insights into its molecular pathogenesis. These findings may facilitate early risk stratification and preventive interventions.
Collapse
Affiliation(s)
- Angyang Cao
- Department of Anesthesiology, The First Affliated Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Rui Zhao
- Department of Anesthesiology, The First Affliated Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Chunqu Chen
- School of Medicine, Ningbo University, Ningbo, China
- Department of imaging, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Can Wu
- School of Medicine, Ningbo University, Ningbo, China
- Department of Clinical laboratory, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Yiwei Zhang
- Department of Anesthesiology, The First Affliated Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Changshun Huang
- Department of Anesthesiology, The First Affliated Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Binbin Zhu
- Department of Anesthesiology, The First Affliated Hospital of Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
35
|
Ji XR, Wang RJ, Huang ZH, Wu HL, Huang XH, Bo H, Lin G, Zhu WB, Huang C. Sperm tRNA-derived fragments expression is potentially linked to abstinence-related improvement of sperm quality. Asian J Androl 2025:00129336-990000000-00295. [PMID: 40101124 DOI: 10.4103/aja2024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/06/2025] [Indexed: 03/20/2025] Open
Abstract
ABSTRACT Recent studies have shown that shorter periods of ejaculatory abstinence may enhance certain sperm parameters, but the molecular mechanisms underlying these improvements are still unclear. This study explored whether reduced abstinence periods could improve semen quality, particularly for use in assisted reproductive technologies (ART). We analyzed semen samples from men with normal sperm counts (n = 101) and those with low sperm motility or concentration (n = 53) after 3-7 days of abstinence and then after 1-3 h of abstinence, obtained from the Reproductive & Genetic Hospital of CITIC-Xiangya (Changsha, China). Physiological and biochemical sperm parameters were evaluated, and the dynamics of transfer RNA (tRNA)-derived fragments (tRFs) were analyzed using deep RNA sequencing in five consecutive samples from men with normal sperm counts. Our results revealed significant improvement in sperm motility and a decrease in the DNA fragmentation index after the 1- to 3-h abstinence period. Additionally, we identified 245 differentially expressed tRFs, and the mitogen-activated protein kinase (MAPK) signaling pathway was the most enriched. Further investigations showed significant changes in tRF-Lys-TTT and its target gene mitogen-activated protein kinase kinase 2 (MAP2K2), which indicates a role of tRFs in improving sperm function. These findings provide new insights into how shorter abstinence periods influence sperm quality and suggest that tRFs may serve as biomarkers for male fertility. This research highlights the potential for optimizing ART protocols and improving reproductive outcomes through molecular approaches that target sperm function.
Collapse
Affiliation(s)
- Xi-Ren Ji
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha 41008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| | - Rui-Jun Wang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha 41008, China
| | - Zeng-Hui Huang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| | - Hui-Lan Wu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| | - Xiu-Hai Huang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| | - Hao Bo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| | - Ge Lin
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha 41008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| | - Wen-Bing Zhu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha 41008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| | - Chuan Huang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha 41008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| |
Collapse
|
36
|
Guan L, Vaidhyanathan S, Grigoriev A. rRFtargetDB: a database of Ago1-mediated targets of ribosomal RNA fragments. RNA (NEW YORK, N.Y.) 2025; 31:486-496. [PMID: 39788736 PMCID: PMC11912905 DOI: 10.1261/rna.080285.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
rRNA-derived fragments (rRFs) are a class of emerging posttranscriptional regulators of gene expression likely binding to the transcripts of target genes. However, the lack of knowledge about such targets hinders our understanding of rRF functions or binding mechanisms. The paucity of resources supporting the identification of the targets of rRFs creates a bottleneck in the fast-developing field. We have previously analyzed chimeric reads in cross-linked Argonaute1-RNA complexes to help infer the guide-target pairs and binding mechanisms of multiple rRFs based on experimental data in human HEK293 cells. To efficiently disseminate these results to the research community, we designed a web-based database rRFtargetDB that preserves most of the experimental results after the removal of noise and has a user-friendly interface with flexible query options and filters allowing users to obtain comprehensive information on rRFs (or targets) of interest. rRFtargetDB is populated by ∼163,000 experimentally determined unique rRF-mRNA pairs (∼60,000 supported by ≥2 reads). Almost 30,000 rRF isoforms produced >385,000 (>156,000 with ≥2 reads) chimeras with all types of RNA targets (mRNAs and noncoding RNAs). Further analyses suggested hypothetical modes of interactions, supported by secondary structures of potential guide-target hybrids and binding motifs, essential for understanding the targeting mechanisms of rRFs. All these results (ranging from the weakest to the strongest experimental support) are presented in rRFtargetDB, whose goal is to provide a resource for building users' hypotheses on the potential roles of rRFs for experimental validation. Further, we illustrate the value/application of the database in several examples.rRFtargetDB is freely accessible at https://grigoriev-lab.camden.rutgers.edu/tardb.
Collapse
Affiliation(s)
- Lingyu Guan
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey 08102, USA
| | - Sathyanarayanan Vaidhyanathan
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey 08102, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey 08102, USA
| |
Collapse
|
37
|
Luo Z, Jin R, Pan F, Guo R, Li M, Zhang S, Shi J, Zheng J, Wang H, Yang X, Yang J, Yu G. Integration analysis of miRNA-mRNA uncovers the mechanisms of ochratoxin A-induced hepatotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118039. [PMID: 40086031 DOI: 10.1016/j.ecoenv.2025.118039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Ochratoxin A (OTA), the most toxic member of the ochratoxin family, is frequently detected in contaminated food and beverages, posing substantial health risks to both humans and animals, particularly due to its hepatotoxic effects. Although OTA is known to cause liver damage, the precise molecular mechanisms driving its toxicity remain poorly understood. In this study, we explored the hepatotoxic effects of OTA using LO2 cells and zebrafish models, combining miRNA and mRNA analyses to uncover the underlying mechanisms. Our results demonstrated that OTA significantly suppressed cell proliferation and viability, induced cell cycle arrest, triggered apoptosis and elevated reactive oxygen species (ROS) production in LO2 cells, with analogous apoptotic effects observed in zebrafish larvae. Additionally, miRNA-mRNA analysis revealed that differentially expressed genes (DEGs) and miRNAs (DEMs) were significantly enriched in pathways related to apoptosis, cell cycle regulation, and MAPK signaling. We constructed a potential regulatory network, identifying three key miRNAs (hsa-miR-3065-5p, hsa-miR-520g-3p, and hsa-miR-5698) and three associated hub mRNAs (CACNA1D, CDC6, and E2F1). Moreover, OTA treatment specifically induced p38 phosphorylation without significantly altering the phosphorylation levels of ERK or JNK. Collectively, this study established a comprehensive framework for understanding the hepatotoxic mechanisms of OTA at the miRNA and mRNA levels, providing critical insights into the pathogenesis of hepatotoxicity induced by ochratoxins and contributing to the prevention and management of related diseases.
Collapse
Affiliation(s)
- Zhiqiang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruyi Jin
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Fulu Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruofan Guo
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mengyu Li
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shuo Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiaru Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jingqi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huijie Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xinyu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Guohua Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
38
|
Liu Q, Sun Z, Liu Y, He X, Ren C, Wang X, Di R, Zhao Y, Zhang Z, Chu M. Whole transcriptome analysis in oviduct provides insight into microRNAs and ceRNA regulative networks that targeted reproduction of goat (Capra hircus). BMC Genomics 2025; 26:250. [PMID: 40087554 PMCID: PMC11907954 DOI: 10.1186/s12864-025-11438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Reproduction traits are crucial for livestock breeding and represent key economic indicators in the domestic goat (Capra hircus) industry. The oviduct, a critical organ in female mammals, plays a pivotal role in several reproductive processes; however, its molecular mechanisms remain largely unknown. Non-coding RNA and mRNAs are essential regulatory elements in reproductive processes; yet their specific roles and regulatory networks in goat oviducts remain unclear. RESULTS In this study, we conducted small RNA sequencing of the oviduct in high- and low-fecundity goats during the follicular (FH and FL groups, n = 10) and luteal (LH and LL groups, n = 10) phase, profiling 20 tissue samples. Combinatorial whole-transcriptome expression profiles were applied to the same samples to uncover the competitive endogenous RNA (ceRNA) regulation network associated with goat fecundity. RT-qPCR was employed to validate the miRNA profiling results, and ceRNA regulatory networks were analyzed through luciferase assay. Gene set enrichment analysis (GSEA) confirmed that the cytokine-cytokine receptor interaction and TGF-β signaling pathway, both related to embryonic development, were enriched in DEM target genes. Additionally, miR-328-3p, a core miRNA, targets SMAD3 and BOP1, which are involved in the negative regulation of cell growth and embryonic development. TOB1 and TOB2, targeted by miR-204-3p, regulate cell proliferation via the protein kinase C-activating G-protein coupled receptor signaling pathway. Analyses of ceRNA regulatory networks revealed that LNC_005981 - miR-328-3p - SMAD3 and circ_0021923 - miR-204-3p - DOT1L may affect goats' reproduction, findings that were validated using luciferase assay. CONCLUSION Analysis of whole-transcriptome profiling of goat oviducts identified several key miRNAs and ceRNAs that may regulate oocyte maturation, embryo development, and the interactions between the oviduct and gametes/early embryos, providing insights into the molecular mechanisms of reproductive regulatory networks.
Collapse
Affiliation(s)
- Qingqing Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Rd, Hefei, 230036, China
| | - Zhipeng Sun
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Rd, Hefei, 230036, China
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Chongqing, 400715, China
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Rd, Hefei, 230036, China
| | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Ran Di
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Yongju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Chongqing, 400715, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Rd, Hefei, 230036, China.
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
39
|
O’Dowd K, Vatandour S, Ahamed SS, Boulianne M, Dozois CM, Gagnon CA, Barjesteh N, Abdul-Careem MF. Characterization of microRNA candidates at the primary site of infectious bronchitis virus infection: A comparative study of in vitro and in vivo avian models. PLoS One 2025; 20:e0319153. [PMID: 40067877 PMCID: PMC11896067 DOI: 10.1371/journal.pone.0319153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/28/2025] [Indexed: 03/15/2025] Open
Abstract
Infectious bronchitis virus (IBV) is an important avian pathogen with a positive-sense single-stranded RNA genome. IBV is the causative agent of infectious bronchitis (IB), a primarily respiratory disease affecting chickens, with the ability to disseminate to other organ systems, such as the gastrointestinal, renal, lymphoid, and reproductive systems. Tracheal epithelial cells are the primary target of IBV, and these cells play a vital role in the effective induction of the antiviral response and eventual clearance of IBV. The host immune system is regulated by a number of different molecular players, including micro-ribonucleic acids (microRNAs), which are small, conserved, non-coding RNA molecules that regulate gene expression of complementary messenger RNA (mRNA) sequences, resulting in gene silencing through translational repression or target degradation. The goal of this study was to characterize and compare the microRNA expression profiles in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo upon IBV Delmarva/1639 (DMV/1639) or IBV Massachusetts 41 (Mass41) infections. We hypothesized that IBV infection influences the expression of the host microRNA expression profiles. cTECs and young specific pathogen-free (SPF) chickens were infected with IBV DMV/1639 or IBV Mass41 and the microRNA expression at 3 and 18 hours post-infection (hpi) in the cTECs and at 4 and 11 days post-infection (dpi) in the trachea were determined using small RNA-sequencing (RNA-seq). We found that the profile of differentially expressed (DE) microRNAs is largely dependent on the IBV strain and time point of sample collection. Furthermore, we predicted the interaction between host microRNA and IBV viral RNA using microRNA-RNA interaction prediction platforms. We identified several candidate microRNAs suitable for future functional studies, such as gga-miR-155, gga-miR-1388a, gga-miR-7/7b and gga-miR-21-5p. Characterizing the interaction between IBV and the host cells at the level of microRNA regulation provides further insight into the regulatory mechanisms involved in viral infection and host defense in chickens following IBV infection.
Collapse
Affiliation(s)
- Kelsey O’Dowd
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Safieh Vatandour
- Department of Animal and Poultry Science, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Mazandaran, Iran
| | - Sadhiya S. Ahamed
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Martine Boulianne
- Swine and Poultry Infectious Diseases Research Centre – Fonds de recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Charles M. Dozois
- Swine and Poultry Infectious Diseases Research Centre – Fonds de recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Institut National de Recherche Scientifique-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Carl A. Gagnon
- Swine and Poultry Infectious Diseases Research Centre – Fonds de recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Molecular Diagnostic and Virology Laboratories, Centre de diagnostic vétérinaire de l’Université de Montréal (CDVUM), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Neda Barjesteh
- Swine and Poultry Infectious Diseases Research Centre – Fonds de recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Mohamed Faizal Abdul-Careem
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Fan B, Zhang R, Kang Y, Mao X, Shi X, Guo J, Wang Z. Analysis of circRNA expression profile of Litopenaeus vannamei under pH and alkalinity interactive stress and verification of novel_circ_021024 and novel_circ_004981 regulating stress compounds metabolism. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101469. [PMID: 40080954 DOI: 10.1016/j.cbd.2025.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
The global issue of salinization has made the use of saline-alkaline water in aquaculture increasingly vital. CircRNAs are a new type of endogenous non-coding RNA. Under high saline-alkaline stress, how circRNAs regulate the stress response of Litopenaeus vannamei, especially the mechanism of its immune and metabolic functions, is still unclear. This study aimed to analyze the expression profile of circRNAs and explore their response mechanisms in L. vannamei under the combined influence of high alkalinity and high pH. The results indicated that 127, 157, and 146 differentially expressed circRNAs (DECs) and 1401, 1547, and 1540 differentially expressed mRNAs (DEGs) were identified in the high-pH, alkalinity, and interaction groups, respectively. KEGG enrichment analysis revealed that DECs were mainly enriched in pathways such as sulfur metabolism, glycerophospholipids, and oxidative phosphorylation. The activities of antioxidant-related enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GSH - PX), increased, while the activities of energy - metabolism-related enzymes, like hexokinase (HK) and pyruvate kinase (PK), decreased. By combining weighted gene-related network analysis (WGCNA) with circRNA - mRNA data, it was found that the expression levels of essential genes related to metabolisms, such as novel_circ_007011, novel_circ_004981, and novel_circ_021024, declined. Gene-silencing experiments demonstrated that novel_circ_004981 and novel_circ_021024 could regulate the expression of glutathione peroxidase (GPx) and carbonic anhydrase - 3 (cah - 3) and further regulate the metabolic pathway and antioxidant system of L. vannamei. This study provides theoretical support for further understanding the stress-response mechanisms of circRNAs in L. vannamei under high-pH and alkalinity stress and offers a scientific basis for the development of saline-alkali aquaculture.
Collapse
Affiliation(s)
- Baoyi Fan
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmeng village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Ruiqi Zhang
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmeng village, Anning District, Lanzhou 730070, Gansu Province, China.
| | - Yujun Kang
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmeng village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Xue Mao
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmeng village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Xiang Shi
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmeng village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Jintao Guo
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmeng village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Ziguo Wang
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmeng village, Anning District, Lanzhou 730070, Gansu Province, China
| |
Collapse
|
41
|
Mohebbi M, Manzourolajdad A, Bennett E, Williams P. A Multi-Input Neural Network Model for Accurate MicroRNA Target Site Detection. Noncoding RNA 2025; 11:23. [PMID: 40126347 PMCID: PMC11932204 DOI: 10.3390/ncrna11020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
(1) Background: MicroRNAs are non-coding RNA sequences that regulate cellular functions by targeting messenger RNAs and inhibiting protein synthesis. Identifying their target sites is vital to understanding their roles. However, it is challenging due to the high cost and time demands of experimental methods and the high false-positive rates of computational approaches. (2) Methods: We introduce a Multi-Input Neural Network (MINN) algorithm that integrates diverse biologically relevant features, including the microRNA duplex structure, substructures, minimum free energy, and base-pairing probabilities. For each feature derived from a microRNA target-site duplex, we create a corresponding image. These images are processed in parallel by the MINN algorithm, allowing it to learn a comprehensive and precise representation of the underlying biological mechanisms. (3) Results: Our method, on an experimentally validated test set, detects target sites with an AUPRC of 0.9373, Precision of 0.8725, and Recall of 0.8703 and outperforms several commonly used computational methods of microRNA target-site predictions. (4) Conclusions: Incorporating diverse biologically explainable features, such as duplex structure, substructures, their MFEs, and binding probabilities, enables our model to perform well on experimentally validated test data. These features, rather than nucleotide sequences, enhance our model to generalize beyond specific sequence contexts and perform well on sequentially distant samples.
Collapse
Affiliation(s)
- Mohammad Mohebbi
- Department of Computer Science and Information Science, University of North Georgia, Dahlonega, GA 30597, USA; (E.B.); (P.W.)
| | | | - Ethan Bennett
- Department of Computer Science and Information Science, University of North Georgia, Dahlonega, GA 30597, USA; (E.B.); (P.W.)
| | - Phillip Williams
- Department of Computer Science and Information Science, University of North Georgia, Dahlonega, GA 30597, USA; (E.B.); (P.W.)
| |
Collapse
|
42
|
Luo M, Zhao J, Merilä J, Barrett RDH, Guo B, Hu J. The interplay between epigenomic and transcriptomic variation during ecotype divergence in stickleback. BMC Biol 2025; 23:70. [PMID: 40038570 PMCID: PMC11881503 DOI: 10.1186/s12915-025-02176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Populations colonizing contrasting environments are likely to undergo adaptive divergence and evolve ecotypes with locally adapted phenotypes. While diverse molecular mechanisms underlying ecotype divergence have been identified, less is known about their interplay and degree of divergence. RESULTS Here we integrated epigenomic and transcriptomic data to explore the interactions among gene expression, alternative splicing, DNA methylation, and microRNA expression to gauge the extent to which patterns of divergence at the four molecular levels are aligned in a case of postglacial divergence between marine and freshwater ecotypes of nine-spined sticklebacks (Pungitius pungitius). Despite significant genome-wide associations between epigenomic and transcriptomic variation, we found largely non-parallel patterns of ecotype divergence across epigenomic and transcriptomic levels, with predominantly nonoverlapping (ranging from 43.40 to 87.98%) sets of differentially expressed, spliced and methylated genes, and candidate genes targeted by differentially expressed miRNA between the ecotypes. Furthermore, we found significant variation in the extent of ecotype divergence across different molecular mechanisms, with differential methylation and differential splicing showing the highest and lowest extent of divergence between ecotypes, respectively. Finally, we found a significant enrichment of genes associated with ecotype divergence in differential methylation. CONCLUSIONS Our results suggest a nuanced relationship between epigenomic and transcriptomic processes, with alignment at the genome-wide level masking relatively independent effects of different molecular mechanisms on ecotype divergence at the gene level.
Collapse
Affiliation(s)
- Man Luo
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Junjie Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Area of Ecology and Biodiversity, The School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | | | - Baocheng Guo
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management & Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
43
|
Wang P, Zhu J, Chen H, Hu Q, Chen Z, Li W, Yang T, Zhu J, Yan B, Gao H, Xing C. Study on the Regulatory Mechanisms of Carapace Marking Formation in Marsupenaeus japonicus. Animals (Basel) 2025; 15:727. [PMID: 40076010 PMCID: PMC11899420 DOI: 10.3390/ani15050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/23/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
There are two phenotypes in the natural populations of Marsupenaeus japonicus, which is an ideal model for studying the formation of markings and body color in crustaceans. In a previous study, we used comparative transcriptome technology to screen some functional genes related to body color regulation. Here, high-throughput sequencing technology was used to perform microRNA (miRNA) sequencing analysis on the exoskeleton of M. japonicus with two types of carapace markings, and functional studies of related genes were performed. A total of 687 mature miRNAs belonging to 135 miRNA families were identified in this study, and 111 novel miRNAs were found. Through stringent screening conditions, a total of 18 differentially expressed miRNAs were identified, including 14 with upregulated expression and 4 with downregulated expression. Multiple target genes were predicted for almost all of the differentially expressed miRNAs. The expression levels of several target genes, such as those related to cytoplasmic microtubule organization, transmembrane transportation, and signal transduction, were confirmed using qRT-PCR. This study revealed that both the CRCN A2 and CRCN C1 genes were highly expressed in type I individuals, while the expression levels of their related miRNAs in type I individuals were lower than those in type II individuals, which is consistent with the mechanism of miRNAs negatively regulating mRNA expression. Through interference with the CRCN A2 and CRCN C1 genes, a clear regulatory relationship was found between the two genes, and the dendritic xanthophores in the carapace of M. japonicus gradually changed from bright yellow to dark black, with obvious shrinkage. In summary, our studies provide references for the regulatory mechanisms of marking formation in M. japonicus.
Collapse
Affiliation(s)
- Panpan Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Jiawei Zhu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Huanyu Chen
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Qingyuan Hu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Zhenxiang Chen
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Wenjia Li
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Ting Yang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Jin Zhu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Chaofan Xing
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (P.W.); (J.Z.); (H.C.); (Q.H.); (Z.C.); (W.L.); (T.Y.); (J.Z.); (B.Y.); (H.G.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
44
|
Liu X, Geng S, Ye D, Xu W, Zheng Y, Wang F, Lei J, Wu Y, Jiang H, Hu Y, Chen D, Yan T, Guo R, Qiu J. Global discovery, expression pattern, and regulatory role of miRNA-like RNAs in Ascosphaera apis infecting the Asian honeybee larvae. Front Microbiol 2025; 16:1551625. [PMID: 40104596 PMCID: PMC11914139 DOI: 10.3389/fmicb.2025.1551625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Ascosphaera apis, a specialized fungal pathogen, causes lethal infection in honeybee larvae. miRNA-like small RNAs (milRNAs) are fungal small non-coding RNAs similar to miRNAs, which have been shown to regulate fungal hyphal growth, spore formation, and pathogenesis. Based on the transcriptome data, differentially expressed miRNA-like RNAs (DEmilRNAs) in A. apis infecting the Apis cerana cerana worker 4-, 5-, and 6-day-old larvae (Aa-4, Aa-5, and Aa-6) were screened and subjected to trend analysis, followed by target prediction and annotation as well as investigation of regulatory networks, with a focus on sub-networks relative to MAPK signaling pathway, glycerolipid metabolism, superoxide dismutase, and enzymes related to chitin synthesis and degradation. A total of 606 milRNAs, with a length distribution ranging from 18 nt to 25 nt, were identified. The first nucleotide of these milRNAs presented a bias toward U, and the bias patterns across bases of milRNAs were similar in the aforementioned three groups. There were 253 milRNAs, of which 68 up-and 54 down-regulated milRNAs shared by these groups. Additionally, the expression and sequences of three milRNAs were validated by stem-loop RT-PCR and Sanger sequencing. Trend analysis indicated that 79 DEmilRNAs were classified into three significant profiles (Profile4, Profile6, and Profile7). Target mRNAs of DEmilRNAs in these three significant profiles were engaged in 42 GO terms such as localization, antioxidant activity, and nucleoid. These targets were also involved in 120 KEGG pathways including lysine biosynthesis, pyruvate metabolism, and biosynthesis of antibiotics. Further investigation suggested that DEmilRNA-targeted mRNAs were associated with the MAPK signaling pathway, glycerolipid metabolism, superoxide dismutase, and enzymes related to chitin synthesis and degradation. Moreover, the binding relationships between aap-milR10516-x and ChsD as well as between aap-milR-2478-y and mkh1 were confirmed utilizing a combination of dual-luciferase reporter gene assay and RT-qPCR. Our data not only provide new insights into the A. apis proliferation and invasion, but also lay a basis for illustrating the DEmilRNA-modulated mechanisms underlying the A. apis infection.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sihai Geng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Daoyou Ye
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhua Xu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yidi Zheng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fangji Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianpeng Lei
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jiling, China
| | - Haibin Jiang
- Apiculture Science Institute of Jilin Province, Jiling, China
| | - Ying Hu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Tizhen Yan
- Dongguan Maternal and Children Health Hospital, Dongguan, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Jianfeng Qiu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| |
Collapse
|
45
|
Zhou M, Zhang X, Chen S, Xin Z, Zhang J. Non-coding RNAs and regulatory networks involved in the Ameson portunus (Microsporidia)-Portunus trituberculatus interaction. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110162. [PMID: 39884408 DOI: 10.1016/j.fsi.2025.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Ameson portunus, the causative agent of "toothpaste disease" in Portunus trituberculatus and "slurry-like syndrome" in Scylla paramamosain, has resulted in considerable economic losses in the marine crab aquaculture industry in China. Practical control strategies are yet unavailable. Non-coding RNAs (ncRNAs) are crucial components of gene regulation of intracellular parasites, however, their roles in regulating the microsporidia-host interaction remain limited. Here we conducted a whole-transcriptome RNA-seq analysis to identify ncRNAs and to establish the interaction regulatory networks to get further insights into the A. portunus-P. trituberculatus interaction. Totally, 2805 mRNAs, 484 lncRNAs, 5 circRNAs, and 496 miRNAs were identified from A. portunus. These ncRNAs are possibly important regulators for its own energy and substrate metabolism, thereby supporting the intracellular survival and proliferation of A. portunus. DNA replication-associated mRNAs were significantly up-regulated after P. trituberculatus infection with A. portunus. It can be hypothesized that up-regulated lncRNAs may be responsible for the up-regulation of these DNA replication-related genes by miRNAs in P. trituberculatus. The downregulation of metabolic pathways is one of possible strategies of P. trituberculatus to respond the infection of A. portunus. Cross-species miRNAs were suggested to play important roles in the cross-talk of P. trituberculatus-A. portunus, e.g. the disruption of the cytoskeletal organization and normal cell function of host by this microsporidian. The results enrich the knowledge of ncRNAs in microsporidia and offer new insights into microsporidia-host interactions.
Collapse
Affiliation(s)
- Min Zhou
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Xintong Zhang
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Shuqi Chen
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Zhaozhe Xin
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Jinyong Zhang
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
46
|
Li X, He X, Li G, Wang Z, Huang F, Chen J, Song Y, Liu T, Chen Z, Wang X, Hu J, He H, Liu H, Li L, Wang J, Hu S. Identification of the crucial circ-mi-mRNA interaction networks regulating testicular development and spermatogenesis in ganders. Poult Sci 2025; 104:104863. [PMID: 39904178 PMCID: PMC11847062 DOI: 10.1016/j.psj.2025.104863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Semen quality has an important impact on the reproductive performance of ganders, and the quantity and quality of spermatozoa in semen are the determinants of semen quality. In our practical work, a small number of azoospermic ganders were observed in adult goose breeding populations, but the underlying regulatory mechanisms remain unknown. In the present study, we firstly compared the morphological and histological differences in the testes of ganders from normozoospermic group (NG) and azoospermic group (AG), and then analyzed the testicular expression patterns of circRNAs, miRNAs, and mRNAs between the two groups by using whole-transcriptome sequencing technology. Results from histomorphological analysis demonstrated that the body weight alone was not accountable for the occurrence of gander azoospermia, and the possible cause might be the observed testicular abnormalities. At the morphological level, the left, right, and bilateral testicular weights, the right and bilateral testicular organ indexes, and the long, short, and dorsoventral diameters of the left, right and bilateral testes were significantly lower in AG than in NG (P < 0.05). At the histological level, most testicular histological parameters, such as the testicular parenchymal area, the diameter of seminiferous tubules, and the number of germ cells, were significantly higher (P < 0.05) in NG than in AG. The RNA-seq results showed that a total of 683 differentially expressed circRNAs (DEcircRNAs), 24 differentially expressed miRNAs (DEmiRNAs), and 1,118 differentially expressed Genes (DEGs) were identified in the gander testes between NG and AG. Subsequent functional enrichment analysis revealed that most of the DEGs and the target genes of DEcircRNAs and DEmiRNAs were significantly enriched in either the biological processes related to male gonad development, spermatid development, and regulation of cell differentiation or the KEGG terms including the MAPK, TGF-beta, Wnt, and cell cycle signaling pathways. By constructing the core ceRNA regulatory networks, several key DEcircRNAs, including 1:98100313|98104995, 1:171413706|171419341, 6:3414226|3418193, and 2:115876735|115880760, were identified to regulate the expression of TGFB2 and BCL2 through interactions with specific miRNAs such as novel-miR-265 and novel-miR-266, and such interactions could play crucial roles in regulating the gander testicular cell apoptosis, proliferation, and spermatogenesis. This study provides novel insights into the function and molecular mechanisms of ceRNAs in regulating the gander testicular development and semen quality.
Collapse
Affiliation(s)
- Xiaopeng Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaoyong He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Guibi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhujun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Fuli Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jiasen Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yang Song
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Tanze Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhaoyan Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiangfeng Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Hua He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Hehe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jiwen Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Shenqiang Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| |
Collapse
|
47
|
Tan H, Wang C, Li F, Peng Y, Sima J, Li Y, Deng L, Wu K, Xu Z, Zhang Z. Cross-kingdom regulation of gene expression in giant pandas via plant-derived miRNA. Front Vet Sci 2025; 12:1509698. [PMID: 40093621 PMCID: PMC11906662 DOI: 10.3389/fvets.2025.1509698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/07/2025] [Indexed: 03/19/2025] Open
Abstract
Giant pandas (Ailuropoda melanoleuca) belong to the order Carnivora, but they mainly feed on bamboo, and their unique dietary adaptability has always been the focus of research. Recent research indicates that plant-derived microRNAs (miRNAs) can be delivered to animal organisms via exosomes and exert cross-kingdom regulatory effects on gene expression. To explore the role of plant-derived miRNAs in the dietary adaptation of giant pandas, we collected peripheral blood samples from three groups of pandas: juvenile females, adult females, and adult males-and extracted exosomes from the blood for small RNA sequencing. Additionally, three types of bamboo (shoots, stems, and leaves) consumed by the pandas were sampled for miRNA sequencing. Through comparative analysis, we identified 57 bamboo-derived miRNAs in the extracellular exosomes of giant panda peripheral blood. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses of the target genes for these miRNAs revealed their involvement in various pathways, including taste and olfactory signal transduction, digestion and absorption, and hormonal signal transduction. Furthermore, we found that plant-derived miRNAs can modulate dopamine metabolism in giant pandas, thereby influencing their food preferences. This study shows that plant-derived miRNAs can enter the bloodstream of giant pandas and exert cross-kingdom regulatory effects, potentially playing a vital role in their dietary adaptation process.
Collapse
Affiliation(s)
- Helin Tan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Giant Panda, China West Normal University, Nanchong, China
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China West Normal University, Nanchong, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Key Laboratory of SFGA on the Giant Panda, Chengdu, China
| | - Feng Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Giant Panda, China West Normal University, Nanchong, China
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China West Normal University, Nanchong, China
| | - Yue Peng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Giant Panda, China West Normal University, Nanchong, China
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China West Normal University, Nanchong, China
| | - Jiacheng Sima
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Giant Panda, China West Normal University, Nanchong, China
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China West Normal University, Nanchong, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Sciences and Technology, Foshan University, Foshan, China
| | - Linhua Deng
- China Conservation and Research Center for the Giant Panda, Key Laboratory of SFGA on the Giant Panda, Chengdu, China
| | - Kai Wu
- China Conservation and Research Center for the Giant Panda, Key Laboratory of SFGA on the Giant Panda, Chengdu, China
| | - Zhongxian Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Giant Panda, China West Normal University, Nanchong, China
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China West Normal University, Nanchong, China
| | - Zejun Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Giant Panda, China West Normal University, Nanchong, China
- Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, China West Normal University, Nanchong, China
| |
Collapse
|
48
|
Cuinat C, Pan J, Comelli EM. Host-dependent alteration of the gut microbiota: the role of luminal microRNAs. MICROBIOME RESEARCH REPORTS 2025; 4:15. [PMID: 40207285 PMCID: PMC11977366 DOI: 10.20517/mrr.2024.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 04/11/2025]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs that play gene expression regulatory roles in eukaryotes. MiRNAs are also released in body fluids, and in the intestine, they are found in the lumen and feces. Here, together with exogenous dietary-derived miRNAs, they constitute the fecal miRNome. Several miRNAs were identified in the feces of healthy adults, including, as shown here, core miRNAs hsa-miR-21-5p and hsa-miR-1246. These miRNAs are important for intestinal homeostasis. Recent evidence suggests that miRNAs may interact with gut bacteria. This represents a new avenue to understand host-bacteria crosstalk in the gut and its role in health and disease. This review provides a comprehensive overview of current knowledge on fecal miRNAs, their representation across individuals, and their effects on the gut microbiota. It also discusses existing evidence on potential mechanisms of uptake and interaction with bacterial genomes, drawing from knowledge of prokaryotic small RNAs (sRNAs) regulation of gene expression. Finally, we review in silico and experimental approaches for profiling miRNA-mRNA interactions in bacterial species, highlighting challenges in target validation. This work emphasizes the need for further research into host miRNA-bacterial interactions to better understand their regulatory roles in the gut ecosystem and support their exploitation for disease prevention and treatment.
Collapse
Affiliation(s)
- Céline Cuinat
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada
- Authors contributed equally
| | - Jiali Pan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada
- Authors contributed equally
| | - Elena M. Comelli
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada
- Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada
| |
Collapse
|
49
|
Wu WS, Lee DE, Chung CJ, Lu SY, Brown JS, Zhang D, Lee HC. Analysis of crosslinking sites suggests C. elegnas PIWI Argonaute exhibits flexible conformations for target recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638322. [PMID: 39990337 PMCID: PMC11844481 DOI: 10.1101/2025.02.14.638322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Small RNAs play critical roles in gene regulation in diverse processes across organisms. Crosslinking, ligation, and analyses of sequence hybrid (CLASH) experiments have shown PIWI and Argonaute proteins bind to diverse mRNA targets, raising questions about their functional relevance and the degree of flexibility in target recognition. As crosslinking-induced mutations (CIMs) provides nucleotide-resolution of RNA binding sites, we developed MUTACLASH to systematically analyze CIMs in piRNA and miRNA CLASH data in C. elegans . We found CIMs are enriched at the nucleotide positions of mRNA corresponding to the center of targeting piRNAs and miRNAs. Notably, CIMs are also enriched at nucleotides with local pairing mismatches to piRNA. In addition, distinct patterns of CIMs are observed between canonical and non-canonical base pairing interactions, suggesting that the worm PIWI Argonaute PRG-1 adopts distinct conformations for canonical vs. non-canonical interactions. Critically, non-canonical miRNA or piRNA binding sites with CIMs exhibit more regulatory effects than those without CIMs, demonstrating CIM analysis as a valuable approach in assessing functional significance of small RNA targeting sites in CLASH data. Together, our analyses reveal the landscapes of Argonaute crosslinking sites on mRNAs and highlight MUTACLASH as an advanced tool in analyzing CLASH data.
Collapse
|
50
|
Fu G, Qiu L, Wang J, Li S, Tian J, Wu J, Lin X, Zhu Y, Liu Z, Luo L, Wang K, Zhao F, Kuang J, Liang S, Liang S, Guo Y, Hong Y, Yi Y, Huang J, Niu Y, Kang K, Gou D. Genome-wide characterization of circular RNAs in three rat models of pulmonary hypertension reveals distinct pathological patterns. BMC Genomics 2025; 26:127. [PMID: 39930385 PMCID: PMC11812181 DOI: 10.1186/s12864-025-11239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a devastating disease marked by elevated pulmonary artery pressure, resulting in right ventricular (RV) failure and mortality. Despite the identification of several dysregulated genes in PH, the involvement of circular RNAs (circRNAs), a subset of long noncoding RNAs, remains largely unknown. METHODS In this study, high-throughput RNA sequencing was performed to analyze the genome-wide expression patterns of circRNAs in pulmonary arteries from three models of PH rats induced by hypoxia (Hyp), hypoxia/Sugen5416 (HySu), and monocrotaline (MCT). Differentially expressed circRNAs (DEcircRNAs) were identified, and a weighted gene coexpression network was constructed to explore circRNA networks associated with PH pathogenesis. A circRNA-miRNA-mRNA regulatory network was built, and the functional significance of targeted mRNAs was evaluated. Single-cell RNA sequencing provided insights into the distribution of cell type-specific circRNAs across PH progression. RESULTS Our analysis revealed 45 circRNAs exhibiting significant changes across all three PH rat models, with their host genes participating in the calcium signaling and muscle contraction. We identified 372 PH-related circRNA-miRNA-mRNA interactions, shedding light on the regulatory networks during PH development. Furthermore, we uncovered 186, 195 and 311 Hyp-, Hysu- and MCT-specific circRNAs, respectively. These circRNAs were enriched in distinct biological processes, emphasizing their unique regulatory roles. Single-cell spatial distribution analysis of these circRNAs in the pulmonary arteries of PH patients revealed that Hyp-specific circRNA predominantly appeared in the pulmonary vascular structural cells, while HySu- and MCT-specific circRNAs exhibited broader distribution, including significant enrichment in immune-related cells. CONCLUSION Our study presents the first comprehensive view of circRNA regulatory networks in the pulmonary arteries of three PH rat models. We provide insights into PH-associated circRNAs, particularly their involvement in calcium signaling and muscle contraction.
Collapse
Affiliation(s)
- Gaohui Fu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lin Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Shujin Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jinglin Tian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Jiayu Wu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xinyang Lin
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Yiheng Zhu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zixin Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lingjie Luo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Ku Wang
- College of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Feilong Zhao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jiahao Kuang
- College of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Shuangqing Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Shiran Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Yuqing Guo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Yuping Hong
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Yonghao Yi
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jinyong Huang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Kang Kang
- College of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|