1
|
Shelest A, Alaburda A, Vaiciuleviciute R, Uzieliene I, Bialaglovyte P, Bernotiene E. The Effect of TGF-β3 and IL-1β on L-Type Voltage-Operated Calcium Channels and Calcium Ion Homeostasis in Osteoarthritic Chondrocytes and Human Bone Marrow-Derived Mesenchymal Stem Cells During Chondrogenesis. Pharmaceutics 2025; 17:343. [PMID: 40143007 PMCID: PMC11945166 DOI: 10.3390/pharmaceutics17030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Transforming growth factor-β (TGF-β) and interleukin 1β (IL-1β) are key regulators of the chondrogenic differentiation, physiology and pathology of cartilage tissue, with TGF-β promoting chondrogenesis and matrix formation, while IL-1β exerts catabolic effects, inhibiting chondrogenesis and contributing to cartilage degradation. Both cytokines alter the intracellular calcium ion (iCa2+) levels; however, the exact pathways are not known. Objectives: This study aimed to evaluate the impact of TGF-β3 and IL-1β on calcium homeostasis in human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and chondrocytes during chondrogenesis. Results: TGF-β3 increased iCa2+ levels in both hBM-MSCs and chondrocytes. Furthermore, TGF-β3 increased the functional activity of L-type voltage-operated calcium channels (L-VOCCs) in hBM-MSCs but not in chondrocytes. TGF-β3 and IL-1β reduced L-VOCCs subunit CaV1.2 (CACNA1C) gene expression in chondrocytes. In hBM-MSCs, TGF-β3 and IL-1β increased SERCA pump (ATP2A2) gene expression, while in chondrocytes, this effect was observed only with TGF-β3. Conclusions: TGF-β3 increases iCa2+ both in osteoarthritic chondrocytes and hBM-MSCs during chondrogenesis. In hBM-MSCs, TGF-β3-mediated elevation in iCa2+ is related to the increased functional activity of L-VOCCs. IL-1β does not change iCa2+ in osteoarthritic chondrocytes and hBM-MSCs; however, it initiates the mechanisms leading to further downregulation of iCa2+ in both types of cells. The differential and cell-specific roles of TGF-β3 and IL-1β in the calcium homeostasis of osteoarthritic chondrocytes and hBM-MSCs during chondrogenesis may provide a new insight into future strategies for cartilage repair and osteoarthritis treatment.
Collapse
Affiliation(s)
- Anastasiia Shelest
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aidas Alaburda
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (I.U.); (P.B.); (E.B.)
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (I.U.); (P.B.); (E.B.)
| | - Paulina Bialaglovyte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (I.U.); (P.B.); (E.B.)
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (I.U.); (P.B.); (E.B.)
- VilniusTech Faculty of Fundamental Sciences, Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| |
Collapse
|
2
|
Esa A, Ahmed N, Elsheikh MF, Ahmed H, Cherif RA, Archer C. Isolation and Analysis of Matched Osteoarthritic Cartilage Progenitor Cells and Bone Marrow Mesenchymal Stem Cells. Cureus 2025; 17:e80844. [PMID: 40255792 PMCID: PMC12007902 DOI: 10.7759/cureus.80844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a chronic degenerative disorder that impacts synovial joints, leading to the degradation of articular cartilage and alterations in bone structure. As the most prevalent type of polyarthritis, its occurrence is increasing, particularly in Western countries. Current treatment options for OA involve various pharmacological therapies and prosthetic devices, which come with numerous limitations. Consequently, there is a growing interest among both patients and health care professionals in biological therapies, particularly the use of stem and progenitor cells for cartilage regeneration. METHODS We extract articular cartilage progenitor cells (CPCs) and bone marrow mesenchymal stem cells (MSCs) from the femoral side of the knee joint of OA patients undergoing total knee arthroplasty. To isolate CPCs, digested full-depth chondrocytes from the femoral condyle undergo a fibronectin adhesion assay, while we separate bone marrow MSCs using the Ficoll™ density gradient centrifugation method. We expand both cell types in culture and measure their growth kinetics over 80 days. Additionally, we evaluate proliferation potential and senescence through bromodeoxyuridine incorporation and the senescence-associated β-galactosidase assay, respectively. Further, we analyze the expression of specific MSC markers in articular CPCs and bone marrow MSCs using flow cytometry. Results: We successfully isolated CPCs and bone marrow MSCs from matched osteoarthritic donors. The isolated CPCs and MSCs exhibit similar morphology and proliferation ability. Moreover, both cell types show positive expression for MSC markers CD-90, CD-105, and CD-166, while expressing low or no levels of CD-34 (a marker for hematopoietic stem cells) and exhibiting tri-lineage differentiation potential. Conclusion: We successfully isolate CPCs and bone marrow MSCs from the knee joints of osteoarthritic donors. Our findings indicate that both cell types demonstrate comparable morphology and growth kinetics, concurrently marking for classical MSC markers and exhibiting differentiation potential. These results are promising for the field of regenerative medicine. In this study, we outline the isolation of a rare group of matching mesenchymal stem/progenitor cells collected from the articular cartilage and bone marrow of patients undergoing total knee arthroplasty. This discovery lays the groundwork for comparative analyses, in that these cell types are primary candidates for cartilage-based regenerative therapies.
Collapse
Affiliation(s)
- Adam Esa
- Trauma and Orthopedics, Cardiff University, Cardiff, GBR
| | - Naveed Ahmed
- Trauma and Orthopedics, Prince Charles Hospital, Merthyr Tydfil, GBR
| | | | - Hesham Ahmed
- College of Medicine, Cardiff University, Cardiff, GBR
| | | | | |
Collapse
|
3
|
Xiao M, Yue Q, Qin Z, Hang X, Chen X, Ni S. Unbalanced occlusal loading elicited remodeling responses in growing rat temporomandibular joints and Notch1/Hes1 signaling pathway expression. BMC Oral Health 2025; 25:267. [PMID: 39972323 PMCID: PMC11841241 DOI: 10.1186/s12903-025-05631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
OBJECTIVE We aimed to assess the impact of unbalanced occlusal loading on the TMJ and the expression of the Notch1/Hes1 signaling pathway using a unilateral occlusal loss rat model. METHODS We established a unilateral occlusal defect animal model. At three different times, all female Wistar rats were randomized into three groups (4 weeks, 6 weeks, and 10 weeks): (1) unilateral occlusal loss experiment group (extraction of the left mandibular molars and trimming of the left mandibular incisors every other day), (2) restoring incisal occlusion experiment group (extraction of the left mandibular molars and trimming of the left mandibular incisors every other day for 4 weeks, and then the incisor trimming was stopped until 10 weeks), (3) control group (normal loading). Micro-CT, histological staining, immunofluorescence, immunohistochemistry, and real-time quantitative polymerase chain reaction were used to identify changes in condylar cartilage, subchondral bone, and articular discs. RESULTS Temporomandibular joint condylar cartilage degradation was induced by unbalanced occlusal loading, especially on the extraction side. The dropped cartilage thickness, Cyclin D1 positive chondrocytes, TB staining and collagen II positive areas, the decreased expression levels of Notch1, Jagged1, and Hes1 in condylar cartilage, the loss of TMJ subchondral bone were all reversed in the restoring incisal occlusion experiment group at 6 weeks. The experiment group exhibited catabolic degradative alterations at the molecular level in TMJ discs, showing a notable decrease in the mRNA expression levels of Col I, Col II, and ALP. CONCLUSIONS The growing rat TMJ condyle exhibits a significant remodeling capacity in altered occlusal loading, which can be degenerative and recuperative, respectively, in reaction to decreased occlusal loading and restored occlusal loading. Appropriate occlusal loading is essential for transducing the Notch1/Hes1 signaling pathway and normal metabolism of the TMJ disc.
Collapse
Affiliation(s)
- Miao Xiao
- The First Department of Oral and Maxillofacial Surgery & Oral Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Qinghua Road 1500 of Chaoyang District, Changchun, China
| | - Qi Yue
- The First Department of Oral and Maxillofacial Surgery & Oral Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Qinghua Road 1500 of Chaoyang District, Changchun, China
| | - Zhenyao Qin
- The First Department of Oral and Maxillofacial Surgery & Oral Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Qinghua Road 1500 of Chaoyang District, Changchun, China
| | - Xinyue Hang
- The First Department of Oral and Maxillofacial Surgery & Oral Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Qinghua Road 1500 of Chaoyang District, Changchun, China
| | - Xin Chen
- The First Department of Oral and Maxillofacial Surgery & Oral Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Qinghua Road 1500 of Chaoyang District, Changchun, China
| | - Shilei Ni
- The First Department of Oral and Maxillofacial Surgery & Oral Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Qinghua Road 1500 of Chaoyang District, Changchun, China.
| |
Collapse
|
4
|
Toegel S, Martelanz L, Alphonsus J, Hirtler L, Gruebl-Barabas R, Cezanne M, Rothbauer M, Heuberer P, Windhager R, Pauzenberger L. The degenerated glenohumeral joint. Bone Joint Res 2024; 13:596-610. [PMID: 39428110 PMCID: PMC11491170 DOI: 10.1302/2046-3758.1310.bjr-2024-0026.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Aims This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated. Methods Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA). Results Cartilage degeneration of the humeral head was associated with the histological presentation of: 1) pannus overgrowing the cartilage surface; 2) pores in the subchondral bone plate; and 3) chondrocyte clusters in OmA patients. In contrast, hyperplasia of the synovial lining layer was revealed as a significant indicator of inflammatory processes predominantly in CTA. The abundancy of collagen I, collagen II, and the C1,2C neoepitope correlated significantly with the histopathological degeneration of humeral head cartilage. No evidence for differences in MMP levels between OmA and CTA patients was found. Conclusion This study provides a comprehensive histological characterization of humeral cartilage and synovial tissue within the glenohumeral joint, both in normal and diseased states. It highlights synovitis and pannus formation as histopathological hallmarks of OmA and CTA, indicating their roles as drivers of joint inflammation and cartilage degradation, and as targets for therapeutic strategies such as rotator cuff reconstruction and synovectomy.
Collapse
Affiliation(s)
- Stefan Toegel
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Luca Martelanz
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Vienna, Austria
| | - Juergen Alphonsus
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Vienna, Austria
| | - Lena Hirtler
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Ruth Gruebl-Barabas
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Vienna, Austria
| | - Melanie Cezanne
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Vienna, Austria
| | - Mario Rothbauer
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Vienna, Austria
| | | | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Karl Chiari Lab for Orthopaedic Biology, Medical University of Vienna, Vienna, Austria
| | - Leo Pauzenberger
- healthPi, Vienna, Austria
- Orthopaedic Department, Evangelisches Krankenhaus Wien, Vienna, Austria
| |
Collapse
|
5
|
Jovic TH, Thomson EJ, Jones N, Thornton CA, Doak SH, Whitaker IS. Nasoseptal chondroprogenitors isolated through fibronectin-adherence confer no biological advantage for cartilage tissue engineering compared to nasoseptal chondrocytes. Front Bioeng Biotechnol 2024; 12:1421111. [PMID: 39391600 PMCID: PMC11464323 DOI: 10.3389/fbioe.2024.1421111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction The ability to bioprint facial cartilages could revolutionise reconstructive surgery, but identifying the optimum cell source remains one of the great challenges of tissue engineering. Tissue specific stem cells: chondroprogenitors, have been extracted previously using preferential adhesion to fibronectin based on the expression of CD49e: a perceived chondroprogenitor stem cell marker present on <1% of cartilage cells. This study sought to determine whether these fibronectin-adherent chondroprogenitor cells could be exploited for cartilage tissue engineering applications in isolation, or combined with differentiated chondrocytes. Methods Nasoseptal cartilage samples from 20 patients (10 male, 10 female) were digested to liberate cartilage-derived cells (CDCs) from extracellular matrix. Total cell number was counted using the Trypan Blue exclusion assay and added to fibronectin coated plates for 20 min, to determine the proportion of fibronectin-adherent (FAC) and non-adherent cells (NFACs). All populations underwent flow cytometry to detect mesenchymal stem/progenitor cell markers and were cultured in osteogenic, chondrogenic and adipogenic media to determine trilineage differentiation potential. Cell adherence and growth kinetics of the different populations were compared using iCELLigence growth assays. Chondrogenic gene expression was assessed using RT-qPCR for Type 2 collagen, aggrecan and SOX9 genes. Varying proportions of NFAC and FACs were cultured in alginate beads to assess tissue engineering potential. Results 52.6% of cells were fibronectin adherent in males and 57.7% in females, yet on flow cytometrical analysis, only 0.19% of cells expressed CD49e. Moreover, all cells (CDC, FAC and NFACs) demonstrated an affinity for trilineage differentiation by first passage and the expression of stem/progenitor cell markers increased significantly from digest to first passage (CD29, 44, 49e, 73 and 90, p < 0.0001). No significant differences were seen in adhesion or growth rates. Collagen and aggrecan gene expression was higher in FACs than CDCs (2-fold higher, p = 0.008 and 0.012 respectively), but no differences in chondrogenic potential were seen in any cell mixtures in 3D culture models. Conclusion The fibronectin adhesion assay does not appear to reliably isolate a chondroprogenitor cell population from nasoseptal cartilage, and these cells confer no advantageous properties for cartilage tissue engineering. Refinement of cell isolation methods and chondroprogenitor markers is warranted for future nasoseptal cartilage tissue engineering efforts.
Collapse
Affiliation(s)
- Thomas H. Jovic
- Reconstructive Surgery and Regenerative Medicine Research Centre, Institute of Life Sciences, Swansea University, Swansea, United Kingdom
- Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Emman J. Thomson
- Reconstructive Surgery and Regenerative Medicine Research Centre, Institute of Life Sciences, Swansea University, Swansea, United Kingdom
- Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Nick Jones
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Catherine A. Thornton
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Shareen H. Doak
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Iain S. Whitaker
- Reconstructive Surgery and Regenerative Medicine Research Centre, Institute of Life Sciences, Swansea University, Swansea, United Kingdom
- Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| |
Collapse
|
6
|
Cao Y, Boss AL, Bolam SM, Munro JT, Crawford H, Dalbeth N, Poulsen RC, Matthews BG. In Vitro Cell Surface Marker Expression on Mesenchymal Stem Cell Cultures does not Reflect Their Ex Vivo Phenotype. Stem Cell Rev Rep 2024; 20:1656-1666. [PMID: 38837115 PMCID: PMC11319515 DOI: 10.1007/s12015-024-10743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Cell surface marker expression is one of the criteria for defining human mesenchymal stem or stromal cells (MSC) in vitro. However, it is unclear if expression of markers including CD73 and CD90 reflects the in vivo origin of cultured cells. We evaluated expression of 15 putative MSC markers in primary cultured cells from periosteum and cartilage to determine whether expression of these markers reflects either the differentiation state of cultured cells or the self-renewal of in vivo populations. Cultured cells had universal and consistent expression of various putative stem cell markers including > 95% expression CD73, CD90 and PDPN in both periosteal and cartilage cultures. Altering the culture surface with extracellular matrix coatings had minimal effect on cell surface marker expression. Osteogenic differentiation led to loss of CD106 and CD146 expression, however CD73 and CD90 were retained in > 90% of cells. We sorted freshly isolated periosteal populations capable of CFU-F formation on the basis of CD90 expression in combination with CD34, CD73 and CD26. All primary cultures universally expressed CD73 and CD90 and lacked CD34, irrespective of the expression of these markers ex vivo indicating phenotypic convergence in vitro. We conclude that markers including CD73 and CD90 are acquired in vitro in most 'mesenchymal' cells capable of expansion. Overall, we demonstrate that in vitro expression of many cell surface markers in plastic-adherent cultures is unrelated to their expression prior to culture.
Collapse
Affiliation(s)
- Ye Cao
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand
| | - Anna L Boss
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Scott M Bolam
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Jacob T Munro
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | | | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Raewyn C Poulsen
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Brya G Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand.
| |
Collapse
|
7
|
Shao Z, Wang B, Gao H, Zhang S. Microenvironmental interference with intra-articular stem cell regeneration influences the onset and progression of arthritis. Front Genet 2024; 15:1380696. [PMID: 38841721 PMCID: PMC11150611 DOI: 10.3389/fgene.2024.1380696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Studies have indicated that the preservation of joint health and the facilitation of damage recovery are predominantly contingent upon the joint's microenvironment, including cell-cell interactions, the extracellular matrix's composition, and the existence of local growth factors. Mesenchymal stem cells (MSCs), which possess the capacity to self-renew and specialize in many directions, respond to cues from the microenvironment, and aid in the regeneration of bone and cartilage, are crucial to this process. Changes in the microenvironment (such as an increase in inflammatory mediators or the breakdown of the extracellular matrix) in the pathological context of arthritis might interfere with stem cell activation and reduce their ability to regenerate. This paper investigates the potential role of joint microenvironmental variables in promoting or inhibiting the development of arthritis by influencing stem cells' ability to regenerate. The present status of research on stem cell activity in the joint microenvironment is also outlined, and potential directions for developing new treatments for arthritis that make use of these intervention techniques to boost stem cell regenerative potential through altering the intra-articular environment are also investigated. This review's objectives are to investigate these processes, offer fresh perspectives, and offer a solid scientific foundation for the creation of arthritic treatment plans in the future.
Collapse
Affiliation(s)
| | | | | | - Shenqi Zhang
- Department of Joint and Sports Medicine, Zaozhuang Municipal Hospital Affiliated to Jining Medical University, Zaozhuang, Shandong, China
| |
Collapse
|
8
|
Tang S, Zhang R, Bai H, Shu R, Chen D, He L, Zhou L, Liao Z, Chen M, Pei F, Mao JJ, Shi X. Endogenus chondrocytes immobilized by G-CSF in nanoporous gels enable repair of critical-size osteochondral defects. Mater Today Bio 2024; 24:100933. [PMID: 38283982 PMCID: PMC10819721 DOI: 10.1016/j.mtbio.2023.100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Injured articular cartilage is a leading cause for osteoarthritis. We recently discovered that endogenous stem/progenitor cells not only reside in the superficial zone of mouse articular cartilage, but also regenerated heterotopic bone and cartilage in vivo. However, whether critical-size osteochondral defects can be repaired by pure induced chemotatic cell homing of these endogenous stem/progenitor cells remains elusive. Here, we first found that cells in the superficial zone of articular cartilage surrounding surgically created 3 × 1 mm defects in explant culture of adult goat and rabbit knee joints migrated into defect-filled fibrin/hylaro1nate gel, and this migration was significantly more robust upon delivery of exogenous granulocyte-colony stimulating factor (G-CSF). Remarkably, G-CSF-recruited chondrogenic progenitor cells (CPCs) showed significantly stronger migration ability than donor-matched chondrocytes and osteoblasts. G-CSF-recruited CPCs robustly differentiated into chondrocytes, modestly into osteoblasts, and barely into adipocytes. In vivo, critical-size osteochondral defects were repaired by G-CSF-recruited endogenous cells postoperatively at 6 and 12 weeks in comparison to poor healing by gel-only group or defect-only group. ICRS and O'Driscoll scores of articular cartilage were significantly higher for both 6- and 12-week G-CSF samples than corresponding gel-only and defect-only groups. Thus, endogenous stem/progenitor cells may be activated by G-CSF, a Food and Drug Administration (FDA)-cleared bone-marrow stimulating factor, to repair osteochondral defects.
Collapse
Affiliation(s)
- Shangkun Tang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruinian Zhang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanying Bai
- Center for Craniofacial Regeneration, Columbia University, New York, NY, 10032, USA
| | - Rui Shu
- Center for Craniofacial Regeneration, Columbia University, New York, NY, 10032, USA
- West China School/Hospital of Stomatology, Sichuan University, Chengdu,610041, China
| | - Danying Chen
- Center for Craniofacial Regeneration, Columbia University, New York, NY, 10032, USA
| | - Ling He
- Center for Craniofacial Regeneration, Columbia University, New York, NY, 10032, USA
| | - Ling Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, China
| | - Zheting Liao
- Center for Craniofacial Regeneration, Columbia University, New York, NY, 10032, USA
| | - Mo Chen
- Center for Craniofacial Regeneration, Columbia University, New York, NY, 10032, USA
| | - Fuxing Pei
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jeremy J. Mao
- Center for Craniofacial Regeneration, Columbia University, New York, NY, 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Xiaojun Shi
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Cao Y, Bolam SM, Boss AL, Murray HC, Munro JT, Poulsen RC, Dalbeth N, Brooks AES, Matthews BG. Characterization of adult human skeletal cells in different tissues reveals a CD90 +CD34 + periosteal stem/progenitor population. Bone 2024; 178:116926. [PMID: 37793499 DOI: 10.1016/j.bone.2023.116926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
The periosteum plays a crucial role in bone healing and is an important source of skeletal stem and progenitor cells. Recent studies in mice indicate that diverse populations of skeletal progenitors contribute to growth, homeostasis and healing. Information about the in vivo identity and diversity of skeletal stem and progenitor cells in different compartments of the adult human skeleton is limited. In this study, we compared non-hematopoietic populations in matched tissues from the femoral head and neck of 21 human participants using spectral flow cytometry of freshly isolated cells. High-dimensional clustering analysis indicated significant differences in marker distribution between periosteum, articular cartilage, endosteum and bone marrow populations, and identified populations that were highly enriched or unique to specific tissues. Periosteum-enriched markers included CD90 and CD34. Articular cartilage, which has very poor regenerative potential, showed enrichment of multiple markers, including the PDPN+CD73+CD164+CD146- population previously reported to represent human skeletal stem cells. We further characterized periosteal populations by combining CD90 with other strongly expressed markers. CD90+CD34+ cells sorted directly from periosteum showed significant colony-forming unit fibroblasts (CFU-F) enrichment, rapid expansion, and consistent multi-lineage differentiation of clonal populations in vitro. In situ, CD90+CD34+ cells include a perivascular population in the outer layer of the periosteum and non-perivascular cells closer to the bone surface. CD90+ cells are also highly enriched for CFU-F in bone marrow and endosteum, but not articular cartilage. In conclusion, our study indicates considerable diversity in the non-hematopoietic cell populations in different tissue compartments within the adult human skeleton, and suggests that periosteal progenitor cells reside within the CD90+CD34+ population.
Collapse
Affiliation(s)
- Ye Cao
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Scott M Bolam
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Anna L Boss
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Helen C Murray
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Jacob T Munro
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Raewyn C Poulsen
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Brya G Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
10
|
Xu X, Xu L, Xia J, Wen C, Liang Y, Zhang Y. Harnessing knee joint resident mesenchymal stem cells in cartilage tissue engineering. Acta Biomater 2023; 168:372-387. [PMID: 37481194 DOI: 10.1016/j.actbio.2023.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Osteoarthritis (OA) is a widespread clinical disease characterized by cartilage degeneration in middle-aged and elderly people. Currently, there is no effective treatment for OA apart from total joint replacement in advanced stages. Mesenchymal stem cells (MSCs) are a type of adult stem cell with diverse differentiation capabilities and immunomodulatory potentials. MSCs are known to effectively regulate the cartilage microenvironment, promote cartilage regeneration, and alleviate OA symptoms. As a result, they are promising sources of cells for OA therapy. Recent studies have revealed the presence of resident MSCs in synovial fluid, synovial membrane, and articular cartilage, which can be collected as knee joint-derived MSCs (KJD-MSC). Several preclinical and clinical studies have demonstrated that KJD-MSCs have great potential for OA treatment, whether applied alone, in combination with biomaterials, or as exocrine MSCs. In this article, we will review the characteristics of MSCs in the joints, including their cytological characteristics, such as proliferation, cartilage differentiation, and immunomodulatory abilities, as well as the biological function of MSC exosomes. We will also discuss the use of tissue engineering in OA treatment and introduce the concept of a new generation of stem cell-based tissue engineering therapy, including the use of engineering, gene therapy, and gene editing techniques to create KJD-MSCs or KJD-MSC derivative exosomes with improved functionality and targeted delivery. These advances aim to maximize the efficiency of cartilage tissue engineering and provide new strategies to overcome the bottleneck of OA therapy. STATEMENT OF SIGNIFICANCE: This research will provide new insights into the medicinal benefit of Joint resident Mesenchymal Stem Cells (MSCs), specifically on its cartilage tissue engineering ability. Through this review, the community will further realize promoting joint resident mesenchymal stem cells, especially cartilage progenitor/MSC-like progenitor cells (CPSC), as a preventive measure against osteoarthritis and cartilage injury. People and medical institutions may also consider cartilage derived MSC as an alternative approach against cartilage degeneration. Moreover, the discussion presented in this study will convey valuable information for future research that will explore the medicinal benefits of cartilage derived MSC.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Limei Xu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Yujie Liang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
11
|
He S, Deng H, Li P, Hu J, Yang Y, Xu Z, Liu S, Guo W, Guo Q. Arthritic Microenvironment-Dictated Fate Decisions for Stem Cells in Cartilage Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207715. [PMID: 37518822 PMCID: PMC10520688 DOI: 10.1002/advs.202207715] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/05/2023] [Indexed: 08/01/2023]
Abstract
The microenvironment and stem cell fate guidance of post-traumatic articular cartilage regeneration is primarily the focus of cartilage tissue engineering. In articular cartilage, stem cells are characterized by overlapping lineages and uneven effectiveness. Within the first 12 weeks after trauma, the articular inflammatory microenvironment (AIME) plays a decisive role in determining the fate of stem cells and cartilage. The development of fibrocartilage and osteophyte hyperplasia is an adverse outcome of chronic inflammation, which results from an imbalance in the AIME during the cartilage tissue repair process. In this review, the sources for the different types of stem cells and their fate are summarized. The main pathophysiological events that occur within the AIME as well as their protagonists are also discussed. Additionally, regulatory strategies that may guide the fate of stem cells within the AIME are proposed. Finally, strategies that provide insight into AIME pathophysiology are discussed and the design of new materials that match the post-traumatic progress of AIME pathophysiology in a spatial and temporal manner is guided. Thus, by regulating an appropriately modified inflammatory microenvironment, efficient stem cell-mediated tissue repair may be achieved.
Collapse
Affiliation(s)
- Songlin He
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Haotian Deng
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Peiqi Li
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Jingjing Hu
- Department of GastroenterologyInstitute of GeriatricsChinese PLA General HospitalBeijing100853China
| | - Yongkang Yang
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Ziheng Xu
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Shuyun Liu
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Weimin Guo
- Department of Orthopaedic SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510080China
| | - Quanyi Guo
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| |
Collapse
|
12
|
Thoene M, Bejer-Olenska E, Wojtkiewicz J. The Current State of Osteoarthritis Treatment Options Using Stem Cells for Regenerative Therapy: A Review. Int J Mol Sci 2023; 24:ijms24108925. [PMID: 37240271 DOI: 10.3390/ijms24108925] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Articular cartilage has very low metabolic activity. While minor injuries may be spontaneously repaired within the joint by chondrocytes, there is very little chance of a severely impaired joint regenerating itself when damaged. Therefore, any significant joint injury has little chance of spontaneously healing without some type of therapy. This article is a review that will examine the causes of osteoarthritis, both acute and chronic, and how it may be treated using traditional methods as well as with the latest stem cell technology. The latest regenerative therapy is discussed, including the use and potential risks of mesenchymal stem cells for tissue regeneration and implantation. Applications are then discussed for the treatment of OA in humans after using canine animal models. Since the most successful research models of OA were dogs, the first applications for treatment were veterinary. However, the treatment options have now advanced to the point where patients suffering from osteoarthritis may be treated with this technology. A survey of the literature was performed in order to determine the current state of stem cell technology being used in the treatment of osteoarthritis. Then, the stem cell technology was compared with traditional treatment options.
Collapse
Affiliation(s)
- Michael Thoene
- Department of Medical Biology, School of Public Health, University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland
| | - Ewa Bejer-Olenska
- Department of Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
13
|
Xu X, Zhang Y, Zhang J, Wang D, Yang H, Liu Q, Zhou P, Wang Y, Yang L, Wang M. Zonal interdependence in the temporomandibular joint cartilage. FASEB J 2023; 37:e22888. [PMID: 36961420 PMCID: PMC11977522 DOI: 10.1096/fj.202201662rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023]
Abstract
The temporomandibular joint (TMJ) cartilage is biomechanical sensitive. Cells in TMJ cartilage are zonally arranged, earlier differentiated in the super zone and late differentiated in the deep zone. The purpose was to detect the zonal interdependence in TMJ cartilage under dental biomechanical stimulations. Here, we obtained the Sox9CreER ; Rosa26tdTomato and Col10CreER ; Rosa26tdTomato mice to label super zone Sox9-expressing (Sox9+ ) or deep zone Col10-expressing (Col10+ ) cells by tdTomato (TdT), and Sox9CreER ; Rosa26DTA and Col10CreER ; Rosa26DTA mice to ablate Sox9+ or Col10+ cells selectively. These mice were subjected to unilateral anterior crossbite (UAC) or bilateral anterior elevation (BAE) dental stimulation, which promoted terminal differentiation or proliferation of TMJ chondrocytes, respectively. In both UAC and BAE models, the Sox9-TdT+ cells performed as proliferation and mature differentiation, showing as expressing Ki67 and Col-X, respectively; while the Col10-TdT+ cells performed as terminal differentiation, showing as expressing osteocalcin (OCN). In both Sox9+ - and Col10+ -cells ablation groups, there were reductions in cell number, cartilage thickness and matrix amount, subchondral bone loss, and condylar deformation. The UAC-promoted terminal differentiation was enhanced, and the BAE-promoted cellular proliferation was ruined. Impressively, when Col10+ cells were ablated, the UAC-promoted DAP3 expression, an anoikis marker, was further increased, while the BAE-suppressed DAP3 expression was instead greatly increased. These findings demonstrated that the cartilage zones function interdependently. The super zone harbors the cells that undergo differentiation to deep zone cells, the deep zone contains load-bearing matrix which is structural essential for the cells located inside or superficial.
Collapse
Affiliation(s)
- Xiaojie Xu
- School of StomatologyThe Third Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- College of Life SciencesNorthwest UniversityXi'anChina
| | - Yuejiao Zhang
- Shanghai Key Laboratory of Craniomaxillofacial Development and DiseasesShanghai Stomatological Hospital, Fudan UniversityShanghaiChina
| | - Jing Zhang
- Department of Oral Anatomy and Physiology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Dongmei Wang
- School of StomatologyThe Third Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Hongxu Yang
- Department of Oral Anatomy and Physiology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Qian Liu
- Department of Oral Anatomy and Physiology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Peng Zhou
- Shanghai Key Laboratory of Craniomaxillofacial Development and DiseasesShanghai Stomatological Hospital, Fudan UniversityShanghaiChina
- Department of Oral Anatomy and Physiology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Meiqing Wang
- School of StomatologyThe Third Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Shanghai Key Laboratory of Craniomaxillofacial Development and DiseasesShanghai Stomatological Hospital, Fudan UniversityShanghaiChina
- Department of Oral Anatomy and Physiology, School of StomatologyThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
14
|
Gerwin N, Scotti C, Halleux C, Fornaro M, Elliott J, Zhang Y, Johnson K, Shi J, Walter S, Li Y, Jacobi C, Laplanche N, Belaud M, Paul J, Glowacki G, Peters T, Wharton KA, Vostiar I, Polus F, Kramer I, Guth S, Seroutou A, Choudhury S, Laurent D, Gimbel J, Goldhahn J, Schieker M, Brachat S, Roubenoff R, Kneissel M. Angiopoietin-like 3-derivative LNA043 for cartilage regeneration in osteoarthritis: a randomized phase 1 trial. Nat Med 2022; 28:2633-2645. [PMID: 36456835 PMCID: PMC9800282 DOI: 10.1038/s41591-022-02059-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/28/2022] [Indexed: 12/02/2022]
Abstract
Osteoarthritis (OA) is a common, debilitating, chronic disease with no disease-modifying drug approved to date. We discovered LNA043-a derivative of angiopoietin-like 3 (ANGPTL3)-as a potent chondrogenesis inducer using a phenotypic screen with human mesenchymal stem cells. We show that LNA043 promotes chondrogenesis and cartilage matrix synthesis in vitro and regenerates hyaline articular cartilage in preclinical OA and cartilage injury models in vivo. LNA043 exerts at least part of these effects through binding to the fibronectin receptor, integrin α5β1 on mesenchymal stem cells and chondrocytes. In a first-in-human (phase 1), randomized, double-blinded, placebo-controlled, single ascending dose, single-center trial ( NCT02491281 ; sponsored by Novartis Pharmaceuticals), 28 patients with knee OA were injected intra-articularly with LNA043 or placebo (3:1 ratio) either 2 h, 7 d or 21 d before total knee replacement. LNA043 met its primary safety endpoint and showed short serum pharmacokinetics, cartilage penetration and a lack of immunogenicity (secondary endpoints). Post-hoc transcriptomics profiling of cartilage revealed that a single LNA043 injection reverses the OA transcriptome signature over at least 21 d, inducing the expression of hyaline cartilage matrix components and anabolic signaling pathways, while suppressing mediators of OA progression. LNA043 is a novel disease-modifying OA drug candidate that is currently in a phase 2b trial ( NCT04864392 ) in patients with knee OA.
Collapse
Affiliation(s)
- Nicole Gerwin
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | | | | - Mara Fornaro
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jimmy Elliott
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Yunyu Zhang
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Jian Shi
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Sandra Walter
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Yufei Li
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Carsten Jacobi
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nelly Laplanche
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Magali Belaud
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Thomas Peters
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Igor Vostiar
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Florine Polus
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ina Kramer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sabine Guth
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Didier Laurent
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Jörg Goldhahn
- Institute for Translational Medicine, ETH Zürich, Zürich, Switzerland
| | | | - Sophie Brachat
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | |
Collapse
|
15
|
Teunissen M, Meij B, Snel L, Coeleveld K, Popov-Celeketic J, Ludwig I, Broere F, Lafeber F, Tryfonidou M, Mastbergen S. The catabolic-to-anabolic shift seen in the canine osteoarthritic cartilage treated with knee joint distraction occurs after the distraction period. J Orthop Translat 2022; 38:44-55. [PMID: 36313973 PMCID: PMC9589009 DOI: 10.1016/j.jot.2022.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Methods Results Conclusion The Translational Potential of this Article
Collapse
Affiliation(s)
- M. Teunissen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht the Netherlands
| | - B.P. Meij
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht the Netherlands
| | - L. Snel
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht the Netherlands
| | - K. Coeleveld
- Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht the Netherlands
| | - J. Popov-Celeketic
- Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht the Netherlands
| | - I.S. Ludwig
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht the Netherlands
| | - F. Broere
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht the Netherlands,Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht the Netherlands
| | - F.P.J.G. Lafeber
- Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht the Netherlands
| | - M.A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht the Netherlands
| | - S.C. Mastbergen
- Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht the Netherlands,Corresponding author. Rheumatology & Clinical Immunology, UMC Utrecht, F02.127, PO Box 85500, 3508 GA Utrecht, the Netherlands.
| |
Collapse
|
16
|
Liu W, Feng M, Xu P. From regeneration to osteoarthritis in the knee joint: The role shift of cartilage-derived progenitor cells. Front Cell Dev Biol 2022; 10:1010818. [PMID: 36340024 PMCID: PMC9630655 DOI: 10.3389/fcell.2022.1010818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
A mount of growing evidence has proven that cartilage-derived progenitor cells (CPCs) harbor strong proliferation, migration, andmultiple differentiation potentials over the past 2 decades. CPCs in the stage of immature tissue play an important role in cartilage development process and injured cartilage repair in the young and active people. However, during maturation and aging, cartilage defects cannot be completely repaired by CPCs in vivo. Recently, tissue engineering has revealed that repaired cartilage defects with sufficient stem cell resources under good condition and bioactive scaffolds in vitro and in vivo. Chronic inflammation in the knee joint limit the proliferation and chondrogenesis abilities of CPCs, which further hampered cartilage healing and regeneration. Neocartilage formation was observed in the varus deformity of osteoarthritis (OA) patients treated with offloading technologies, which raises the possibility that organisms could rebuild cartilage structures spontaneously. In addition, nutritionmetabolismdysregulation, including glucose and free fatty acid dysregulation, could influence both chondrogenesis and cartilage formation. There are a few reviews about the advantages of CPCs for cartilage repair, but few focused on the reasons why CPCs could not repair the cartilage as they do in immature status. A wide spectrum of CPCs was generated by different techniques and exhibited substantial differences. We recently reported that CPCs maybe are as internal inflammation sources during cartilage inflammaging. In this review, we further streamlined the changes of CPCs from immature development to maturation and from healthy status to OA advancement. The key words including “cartilage derived stem cells”, “cartilage progenitor cells”, “chondroprogenitor cells”, “chondroprogenitors” were set for latest literature searching in PubMed and Web of Science. The articles were then screened through titles, abstracts, and the full texts in sequence. The internal environment including long-term inflammation, extendedmechanical loading, and nutritional elements intake and external deleterious factors were summarized. Taken together, these results provide a comprehensive understanding of the underlying mechanism of CPC proliferation and differentiation during development, maturation, aging, injury, and cartilage regeneration in vivo.
Collapse
Affiliation(s)
- Wenguang Liu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Meng Feng
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Peng Xu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Peng Xu,
| |
Collapse
|
17
|
RORβ modulates a gene program that is protective against articular cartilage damage. PLoS One 2022; 17:e0268663. [PMID: 36227956 PMCID: PMC9560479 DOI: 10.1371/journal.pone.0268663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic joint disease which increases in frequency with age eventually impacting most people over the age of 65. OA is the leading cause of disability and impaired mobility, yet the pathogenesis of OA remains unclear. Treatments have focused mainly on pain relief and reducing joint swelling. Currently there are no effective treatments to slow the progression of the disease and to prevent irreversible loss of cartilage. Here we demonstrate that stable expression of RORβ in cultured cells results in alteration of a gene program that is supportive of chondrogenesis and is protective against development of OA. Specifically, we determined that RORβ alters the ratio of expression of the FGF receptors FGFR1 (associated with cartilage destruction) and FGFR3 (associated with cartilage protection). Additionally, ERK1/2-MAPK signaling was suppressed and AKT signaling was enhanced. These results suggest a critical role for RORβ in chondrogenesis and suggest that identification of mechanisms that control the expression of RORβ in chondrocytes could lead to the development of disease modifying therapies for the treatment of OA.
Collapse
|
18
|
The synovial microenvironment suppresses chondrocyte hypertrophy and promotes articular chondrocyte differentiation. NPJ Regen Med 2022; 7:51. [PMID: 36114234 PMCID: PMC9481641 DOI: 10.1038/s41536-022-00247-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
During the development of the appendicular skeleton, the cartilaginous templates undergo hypertrophic differentiation and remodels into bone, except for the cartilage most adjacent to joint cavities where hypertrophic differentiation and endochondral bone formation are prevented, and chondrocytes instead form articular cartilage. The mechanisms that prevent hypertrophic differentiation and endochondral bone formation of the articular cartilage have not been elucidated. To explore the role of the synovial microenvironment in chondrocyte differentiation, osteochondral allografts consisting of articular cartilage, epiphyseal bone, and growth plate cartilage from distal femoral epiphyses of inbred Lewis rats expressing enhanced green fluorescent protein from a ubiquitous promoter were transplanted either in inverted or original (control) orientation to matching sites in wildtype littermates, thereby allowing for tracing of transplanted cells and their progenies. We found that no hypertrophic differentiation occurred in the growth plate cartilage ectopically placed at the joint surface. Instead, the transplanted growth plate cartilage, with time, remodeled into articular cartilage. This finding suggests that the microenvironment at the articular surface inhibits hypertrophic differentiation and supports articular cartilage formation. To explore this hypothesis, rat chondrocyte pellets were cultured with and without synoviocyte-conditioned media. Consistent with the hypothesis, hypertrophic differentiation was inhibited and expression of the articular surface marker lubricin (Prg4) was dramatically induced when chondrocyte pellets were exposed to synovium- or synoviocyte-conditioned media, but not to chondrocyte- or osteoblast-conditioned media. Taken together, we present evidence for a novel mechanism by which synoviocytes, through the secretion of a factor or factors, act directly on chondrocytes to inhibit hypertrophic differentiation and endochondral bone formation and promote articular cartilage formation. This mechanism may have important implications for articular cartilage development, maintenance, and regeneration.
Collapse
|
19
|
Gene Expression and Chondrogenic Potential of Cartilage Cells: Osteoarthritis Grade Differences. Int J Mol Sci 2022; 23:ijms231810610. [PMID: 36142513 PMCID: PMC9504485 DOI: 10.3390/ijms231810610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Recent data suggest that cells isolated from osteoarthritic (OA) cartilage express mesenchymal progenitor cell (MPC) markers that have the capacity to form hyaline-like cartilage tissue. Whether or not these cells are influenced by the severity of OA remains unexplored. Therefore, we analyzed MPC marker expression and chondrogenetic potential of cells from mild, moderate and severe OA tissue. Human osteoarthritic tibial plateaus were obtained from 25 patients undergoing total knee replacement. Each sample was classified as mild, moderate or severe OA according to OARSI scoring. mRNA expression levels of MPC markers—CD105, CD166, Notch 1, Sox9; mature chondrocyte markers—Aggrecan (Acan), Col II A1, hypertrophic chondrocyte and osteoarthritis-related markers—Col I A1, MMP-13 and ALPL were measured at the tissue level (day 0), after 2 weeks of in vitro expansion (day 14) and following chondrogenic in vitro re-differentiation (day 35). Pellet matrix composition after in vitro chondrogenesis of different OA-derived cells was tested for proteoglycans, collagen II and I by safranin O and immunofluorescence staining. Multiple MPC markers were found in OA cartilage resident tissue within a single OA joint with no significant difference between grades except for Notch1, which was higher in severe OA tissues. Expression levels of CD105 and Notch 1 were comparable between OA cartilage-derived cells of different disease grades and bone marrow mesenchymal stem cell (BM-MSC) line (healthy control). However, the MPC marker Sox 9 was conserved after in vitro expansion and significantly higher in OA cartilage-derived cells compared to its levels in the BM-MSC. The in vitro expansion of cartilage-derived cells resulted in enrichment while re–differentiation in reduction of MPC markers for all three analyzed grades. However, only moderate OA-derived cells after the in vitro chondrogenesis resulted in the formation of hyaline cartilage-like tissue. The latter tissue samples were also highly positive for collagen II and proteoglycans with no expression of osteoarthritis-related markers (collagen I, ALPL and MMP13). MPC marker expression did not differ between OA grades at the tissue level. Interestingly after in vitro re-differentiation, only moderate OA-derived cells showed the capacity to form hyaline cartilage-like tissue. These findings may have implications for clinical practice to understand the intrinsic repair capacity of articular cartilage in OA tissues and raises the possibility of these progenitor cells as a candidate for articular cartilage repair.
Collapse
|
20
|
Roles of Cartilage-Resident Stem/Progenitor Cells in Cartilage Physiology, Development, Repair and Osteoarthritis. Cells 2022; 11:cells11152305. [PMID: 35892602 PMCID: PMC9332847 DOI: 10.3390/cells11152305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that causes irreversible destruction of articular cartilage for which there is no effective treatment at present. Although articular cartilage lacks intrinsic reparative capacity, numerous studies have confirmed the existence of cartilage-resident stem/progenitor cells (CSPCs) in the superficial zone (SFZ) of articular cartilage. CSPCs are characterized by the expression of mesenchymal stromal cell (MSC)-related surface markers, multilineage differentiation ability, colony formation ability, and migration ability in response to injury. In contrast to MSCs and chondrocytes, CSPCs exhibit extensive proliferative and chondrogenic potential with no signs of hypertrophic differentiation, highlighting them as suitable cell sources for cartilage repair. In this review, we focus on the organizational distribution, markers, cytological features and roles of CSPCs in cartilage development, homeostasis and repair, and the application potential of CSPCs in cartilage repair and OA therapies.
Collapse
|
21
|
Campbell TM, Dilworth FJ, Allan DS, Trudel G. The Hunt Is On! In Pursuit of the Ideal Stem Cell Population for Cartilage Regeneration. Front Bioeng Biotechnol 2022; 10:866148. [PMID: 35711627 PMCID: PMC9196866 DOI: 10.3389/fbioe.2022.866148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/27/2022] [Indexed: 01/15/2023] Open
Abstract
Cartilage injury and degeneration are hallmarks of osteoarthritis (OA), the most common joint disease. OA is a major contributor to pain, loss of function, and reduced quality of life. Over the last decade, considerable research efforts have focused on cell-based therapies, including several stem cell-derived approaches to reverse the cartilage alterations associated with OA. Although several tissue sources for deriving cell-based therapies have been identified, none of the resident stem cell populations have adequately fulfilled the promise of curing OA. Indeed, many cell products do not contain true stem cells. As well, issues with aggressive marketing efforts, combined with a lack of evidence regarding efficacy, lead the several national regulatory bodies to discontinue the use of stem cell therapy for OA until more robust evidence becomes available. A review of the evidence is timely to address the status of cell-based cartilage regeneration. The promise of stem cell therapy is not new and has been used successfully to treat non-arthritic diseases, such as hematopoietic and muscle disorders. These fields of regenerative therapy have the advantage of a considerable foundation of knowledge in the area of stem cell repair mechanisms, the role of the stem cell niche, and niche-supporting cells. This foundation is lacking in the field of cartilage repair. So, where should we look for the ideal stem cell to regenerate cartilage? It has recently been discovered that cartilage itself may contain a population of SC-like progenitors. Other potential tissues include stem cell-rich dental pulp and the adolescent growth plate, the latter of which contains chondrocyte progenitors essential for producing the cartilage scaffold needed for bone growth. In this article, we review the progress on stem cell therapies for arthritic disorders, focusing on the various stem cell populations previously used for cartilage regeneration, successful cases of stem cell therapies in muscle and hemopoietic disorders, some of the reasons why these other fields have been successful (i.e., "lessons learned" to be applied to OA stem cell therapy), and finally, novel potential sources of stem cells for regenerating damaged cartilage in vivo.
Collapse
Affiliation(s)
- T Mark Campbell
- Elisabeth Bruyère Hospital, Ottawa, ON, Canada
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - F Jeffrey Dilworth
- Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David S Allan
- Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Immunology and Microbiology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
Jacob J, Aggarwal A, Aggarwal A, Bhattacharyya S, Kumar V, Sharma V, Sahni D. Senescent chondrogenic progenitor cells derived from articular cartilage of knee osteoarthritis patients contributes to senescence-associated secretory phenotype via release of IL-6 and IL-8. Acta Histochem 2022; 124:151867. [PMID: 35192993 DOI: 10.1016/j.acthis.2022.151867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Despite the presence of chondrogenic progenitor cells (CPCs) in knee osteoarthritis patients they are unable to repair the damaged cartilage. This study aimed to evaluate the oxidative stress, cellular senescence, and senescence-associated secretory phenotype (SASP) in the CPCs derived from osteoarthritic cartilage and compare with the CPCs of healthy articular cartilage. METHODS Isolated CPCs were characterized based on phenotypic expression of stem cell markers, clonogenicity, and tri-lineage differentiation assay. Production of ROS was measured using DCFDA assay. Cellular senescence in CPCs was assessed by senescence-associated beta-galactosidase assay and expression of senescence markers at the gene level using real-time PCR. Morphological features associated with senescent OA-CPCs were studied using scanning electron microscopy. To study SASP, the production of inflammatory cytokines was assessed in the culture supernatant using a flow-cytometer based cytometric bead array. RESULTS OA-CPCs exhibited elevated ROS levels along with a relatively high percentage of senescent cells compared to non-OA CPCs, and a positive correlation exists between ROS production and senescence. The morphological assessment of senescent CPCs revealed increased cell size and multiple nuclei in senescent OA-CPCs. These results were further validated by elevated expression of senescence genes p16, p21, and p53. Additionally, culture supernatant of senescent OA-CPCs expressed IL-6 and IL-8 cytokines indicative of SASP. CONCLUSIONS Despite exhibiting similar expression of stem cell markers and clonogenicity, CPCs undergo oxidative stress in diseased knee joint leading to increased production of intracellular ROS in chondrogenic progenitor cells that support cellular senescence. Further, senescence in OA-CPCs is mediated via the release of pro-inflammatory cytokines, IL-6 and IL-8.
Collapse
Affiliation(s)
- Justin Jacob
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Anjali Aggarwal
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Aditya Aggarwal
- Department of Orthopedics, Nehru Hospital, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Vishal Kumar
- Department of Orthopedics, Nehru Hospital, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Vinit Sharma
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Daisy Sahni
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
23
|
Liu Y, Schwam J, Chen Q. Senescence-Associated Cell Transition and Interaction (SACTAI): A Proposed Mechanism for Tissue Aging, Repair, and Degeneration. Cells 2022; 11:1089. [PMID: 35406653 PMCID: PMC8997723 DOI: 10.3390/cells11071089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is a broad process that occurs as a time-dependent functional decline and tissue degeneration in living organisms. On a smaller scale, aging also exists within organs, tissues, and cells. As the smallest functional unit in living organisms, cells "age" by reaching senescence where proliferation stops. Such cellular senescence is achieved through replicative stress, telomere erosion and stem cell exhaustion. It has been shown that cellular senescence is key to tissue degradation and cell death in aging-related diseases (ARD). However, senescent cells constitute only a small percentage of total cells in the body, and they are resistant to death during aging. This suggests that ARD may involve interaction of senescent cells with non-senescent cells, resulting in senescence-triggered death of non-senescent somatic cells and tissue degeneration in aging organs. Here, based on recent research evidence from our laboratory and others, we propose a mechanism-Senescence-Associated Cell Transition and Interaction (SACTAI)-to explain how cell heterogeneity arises during aging and how the interaction between somatic cells and senescent cells, some of which are derived from aging somatic cells, results in cell death and tissue degeneration.
Collapse
Affiliation(s)
| | | | - Qian Chen
- Laboratory of Molecular Biology and Nanomedicine, Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (Y.L.); (J.S.)
| |
Collapse
|
24
|
Shiromoto Y, Niki Y, Kikuchi T, Yoshihara Y, Oguma T, Nemoto K, Chiba K, Kanaji A, Matsumoto M, Nakamura M. Increased migratory activity and cartilage regeneration by superficial-zone chondrocytes in enzymatically treated cartilage explants. BMC Musculoskelet Disord 2022; 23:256. [PMID: 35296296 PMCID: PMC8925221 DOI: 10.1186/s12891-022-05210-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Background Limited chondrocyte migration and impaired cartilage-to-cartilage healing is a barrier in cartilage regenerative therapy. Collagenase treatment and delivery of a chemotactic agent may play a positive role in chondrocyte repopulation at the site of cartilage damage. This study evaluated chondrocyte migratory activity after enzymatic treatment in cultured cartilage explant. Differential effects of platelet-derived growth factor (PDGF) dimeric isoforms on the migratory activity were investigated to define major chemotactic factors for cartilage. Methods Full-thickness cartilage (4-mm3 blocks) were harvested from porcine femoral condyles and subjected to explant culture. After 15 min or 60 min of actinase and collagenase treatments, chondrocyte migration and infiltration into a 0.5-mm cartilage gap was investigated. Cell morphology and lubricin, keratan sulfate, and chondroitin 4 sulfate expression in superficial- and deep-zone chondrocytes were assessed. The chemotactic activities of PDGF-AA, −AB, and -BB were measured in each zone of chondrocytes, using a modified Boyden chamber assay. The protein and mRNA expression and histological localization of PDGF-β were analyzed by western blot analysis, real-time reverse transcription polymerase chain reaction (RT-PCR), and immunohistochemistry, and results in each cartilage zone were compared. Results Superficial-zone chondrocytes had higher migratory activity than deep-zone chondrocytes and actively bridged the cartilage gap, while metachromatic staining by toluidine blue and immunoreactivities of keratan sulfate and chondroitin 4 sulfate were detected around the cells migrating from the superficial zone. These superficial-zone cells with weak immunoreactivity for lubricin tended to enter the cartilage gap and possessed higher migratory activity, while the deep-zone chondrocytes remained in the lacuna and exhibited less migratory activity. Among PDGF isoforms, PDGF-AB maximized the degree of chemotactic activity of superficial zone chondrocytes. Increased expression of PDGF receptor-β was associated with higher migratory activity of the superficial-zone chondrocytes. Conclusions In enzymatically treated cartilage explant culture, chondrocyte migration and infiltration into the cartilage gap was higher in the superficial zone than in the deep zone. Preferential expression of PDGF receptor-β combined with the PDGF-AB dimeric isoform may explain the increased migratory activity of the superficial-zone chondrocytes. Cells migrating from superficial zone may contribute to cartilage regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05210-2.
Collapse
Affiliation(s)
- Yuichiro Shiromoto
- Department of Orthopedic Surgery, School of Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Orthopedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama, 359-8513, Japan
| | - Yasuo Niki
- Department of Orthopedic Surgery, School of Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Toshiyuki Kikuchi
- Department of Orthopedic Surgery, National Hospital Organization, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama City, Tokyo, 208-0011, Japan
| | - Yasuo Yoshihara
- Department of Orthopedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama, 359-8513, Japan.,Department of Orthopedic Surgery, National Hospital Organization, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama City, Tokyo, 208-0011, Japan
| | - Takemi Oguma
- Department of Orthopedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama, 359-8513, Japan
| | - Koichi Nemoto
- Department of Orthopedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama, 359-8513, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama, 359-8513, Japan
| | - Arihiko Kanaji
- Department of Orthopedic Surgery, School of Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, School of Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, School of Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
25
|
The clinical potential of articular cartilage-derived progenitor cells: a systematic review. NPJ Regen Med 2022; 7:2. [PMID: 35013329 PMCID: PMC8748760 DOI: 10.1038/s41536-021-00203-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
Over the past two decades, evidence has emerged for the existence of a distinct population of endogenous progenitor cells in adult articular cartilage, predominantly referred to as articular cartilage-derived progenitor cells (ACPCs). This progenitor population can be isolated from articular cartilage of a broad range of species, including human, equine, and bovine cartilage. In vitro, ACPCs possess mesenchymal stromal cell (MSC)-like characteristics, such as colony forming potential, extensive proliferation, and multilineage potential. Contrary to bone marrow-derived MSCs, ACPCs exhibit no signs of hypertrophic differentiation and therefore hold potential for cartilage repair. As no unique cell marker or marker set has been established to specifically identify ACPCs, isolation and characterization protocols vary greatly. This systematic review summarizes the state-of-the-art research on this promising cell type for use in cartilage repair therapies. It provides an overview of the available literature on endogenous progenitor cells in adult articular cartilage and specifically compares identification of these cell populations in healthy and osteoarthritic (OA) cartilage, isolation procedures, in vitro characterization, and advantages over other cell types used for cartilage repair. The methods for the systematic review were prospectively registered in PROSPERO (CRD42020184775).
Collapse
|
26
|
Mantripragada VP, Csorba A, Bova W, Boehm C, Piuzzi NS, Bullen J, Midura RJ, Muschler GF. Assessment of Clinical, Tissue, and Cell-Level Metrics Identify Four Biologically Distinct Knee Osteoarthritis Patient Phenotypes. Cartilage 2022; 13:19476035221074003. [PMID: 35109693 PMCID: PMC9137310 DOI: 10.1177/19476035221074003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Clinical heterogeneity of primary osteoarthritis (OA) is a major challenge in understanding pathogenesis and development of targeted therapeutic strategies. This study aims to (1) identify OA patient subgroups phenotypes and (2) determine predictors of OA severity and cartilage-derived stem/progenitor concentration using clinical-, tissue-, and cell- level metrics. DESIGN Cartilage, synovium (SYN) and infrapatellar fatpad (IPFP) were collected from 90 total knee arthroplasty patients. Clinical metrics (patient demographics, radiograph-based joint space width (JSW), Kellgren and Lawrence score (KL)), tissue metrics (cartilage histopathology grade, glycosaminoglycans (GAGs)) and cell-based metrics (cartilage-, SYN-, and IPFP-derived cell concentration ([Cell], cells/mg), connective tissue progenitor (CTP) prevalence (PCTP, CTPs/million cells plated), CTP concentration, [CTP], CTPs/mg)) were assessed using k-mean clustering and linear regression model. RESULTS Four patient subgroups were identified. Clusters 1 and 2 comprised of younger, high body mass index (BMI) patients with healthier cartilage, where Cluster 1 had high CTP in cartilage, SYN, and IPFP, and Cluster 2 had low [CTP] in cartilage, SYN, and IPFP. Clusters 3 and 4 comprised of older, low BMI patients with diseased cartilage where Cluster 3 had low [CTP] in SYN, IPFP but high [CTP] in cartilage, and Cluster 4 had high [CTP] in SYN, IPFP but low [CTP] in cartilage. Age (r = 0.23, P = 0.026), JSW (r = 0.28, P = 0.007), KL (r = 0.26, P = 0.012), GAG/mg cartilage tissue (r = -0.31, P = 0.007), and SYN-derived [Cell] (r = 0.25, P = 0.049) were weak but significant predictors of OA severity. Cartilage-derived [Cell] (r = 0.38, P < 0.001) and PCTP (r = 0.9, P < 0.001) were moderate/strong predictors of cartilage-derived [CTP]. CONCLUSION Initial findings suggests the presence of OA patient subgroups that could define opportunities for more targeted patient-specific approaches to prevention and treatment.
Collapse
Affiliation(s)
- Venkata P. Mantripragada
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alexander Csorba
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Wesley Bova
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cynthia Boehm
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nicolas S. Piuzzi
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer Bullen
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Ronald J. Midura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - George F. Muschler
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
27
|
Wang KD, Ding X, Jiang N, Zeng C, Wu J, Cai XY, Hettinghouse A, Khleborodova A, Lei ZN, Chen ZS, Lei GH, Liu CJ. Digoxin targets low density lipoprotein receptor-related protein 4 and protects against osteoarthritis. Ann Rheum Dis 2021; 81:544-555. [PMID: 34853001 DOI: 10.1136/annrheumdis-2021-221380] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/12/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Dysregulated chondrocyte metabolism is closely associated with the pathogenesis of osteoarthritis (OA). Suppressing chondrocyte catabolism to restore cartilage homeostasis has been extensively explored, whereas far less effort has been invested toward enhancing chondrocyte anabolism. This study aimed to repurpose clinically approved drugs as potential stimulators of chondrocyte anabolism in treating OA. METHODS Screening of a Food and Drug Administration-approved drug library; Assays for examining the chondroprotective effects of digoxin in vitro; Assays for defining the therapeutic effects of digoxin using a surgically-induced OA model; A propensity-score matched cohort study using The Health Improvement Network to examine the relationship between digoxin use and the risk of joint OA-associated replacement among patients with atrial fibrillation; identification and characterisation of the binding of digoxin to low-density lipoprotein receptor-related protein 4 (LRP4); various assays, including use of CRISPR-Cas9 genome editing to delete LRP4 in human chondrocytes, for examining the dependence on LRP4 of digoxin regulation of chondrocytes. RESULTS Serial screenings led to the identification of ouabain and digoxin as stimulators of chondrocyte differentiation and anabolism. Ouabain and digoxin protected against OA and relieved OA-associated pain. The cohort study of 56 794 patients revealed that digoxin use was associated with reduced risk of OA-associated joint replacement. LRP4 was isolated as a novel target of digoxin, and deletion of LRP4 abolished digoxin's regulations of chondrocytes. CONCLUSIONS These findings not only provide new insights into the understanding of digoxin's chondroprotective action and underlying mechanisms, but also present new evidence for repurposing digoxin for OA.
Collapse
Affiliation(s)
- Kai-di Wang
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Xiang Ding
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA.,Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Jiang
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Wu
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xian-Yi Cai
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Aubryanna Hettinghouse
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Asya Khleborodova
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, New York, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, New York, USA
| | - Guang-Hua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China .,Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chuan-Ju Liu
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York, USA .,Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
28
|
Teunissen M, Miranda Bedate A, Coeleveld K, Riemers FM, Meij BP, Lafeber FPJG, Tryfonidou MA, Mastbergen SC. Enhanced Extracellular Matrix Breakdown Characterizes the Early Distraction Phase of Canine Knee Joint Distraction. Cartilage 2021; 13:1654S-1664S. [PMID: 34014119 PMCID: PMC8721609 DOI: 10.1177/19476035211014595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Joint distraction triggers intrinsic cartilage repair in animal models of osteoarthritis (OA), corroborating observations in human OA patients treated with joint distraction. The present study explores the still largely elusive mechanism initiating this repair process. DESIGN Unilateral OA was induced in the knee joint of 8 dogs using the groove model; the contralateral joint served as a control. After 10 weeks, 4 animals received joint distraction, the other 4 serving as OA controls. Halfway the distraction period (after 4 weeks of a standard 8-week distraction treatment), all animals were euthanized, and joint tissues were collected. A targeted quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis was performed of commonly involved processes including matrix catabolism/anabolism, inflammation, and known signaling pathways in OA. In addition, cartilage changes were determined on tissue sections using the canine OARSI (Osteoarthritis Research Society International) histopathology score and collagen type II (COL2A1) immunostaining. RESULTS Midway distraction, the distracted OA joint showed an upregulation of proteolytic genes, for example, ADAMTS5, MMP9, MMP13, compared to OA alone and the healthy joints, which correlated with an increased OARSI score. Additionally, genes of the transforming growth factor (TGF)-β and Notch pathway, and markers associated with progenitor cells were increased. CONCLUSIONS Joint distraction initiates both catabolic and anabolic transcriptional responses. The enhanced turnover, and thereby renewal of the matrix, could be the key to the cartilage repair observed in the months after joint distraction.
Collapse
Affiliation(s)
- Michelle Teunissen
- Department of Clinical Sciences,
Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alberto Miranda Bedate
- Department of Clinical Sciences,
Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Katja Coeleveld
- Rheumatology & Clinical Immunology,
UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frank M. Riemers
- Department of Clinical Sciences,
Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Björn P. Meij
- Department of Clinical Sciences,
Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Floris P. J. G. Lafeber
- Rheumatology & Clinical Immunology,
UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences,
Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Simon C. Mastbergen
- Rheumatology & Clinical Immunology,
UMC Utrecht, Utrecht University, Utrecht, The Netherlands,Simon C. Mastbergen, Rheumatology &
Clinical Immunology, UMC Utrecht, Utrecht University, G02.228, PO Box 85500, GA,
Utrecht 3508, The Netherlands.
| |
Collapse
|
29
|
Karlsen TA, Sundaram AYM, Brinchmann JE. Single-Cell RNA Sequencing of In Vitro Expanded Chondrocytes: MSC-Like Cells With No Evidence of Distinct Subsets. Cartilage 2021; 13:774S-784S. [PMID: 31072202 PMCID: PMC8804791 DOI: 10.1177/1947603519847746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate the heterogeneity of in vitro expanded chondrocytes used for autologous chondrocyte implantation. METHODS Human articular chondrocytes were expanded in vitro for 14 days, sorted into 86 single cells using fluorescence-activated cell sorting and subjected to single-cell RNA sequencing. Principal component, Cross R2 hierarchical clustering, and differential gene expression analyses were used for data evaluation. Flow cytometry and single-cell RT-qPCR (reverse transcriptase quantitative polymerase chain reaction) was used to validate the results of the RNA sequencing data Polyclonal chondrocyte populations from the same donor were differentiated in vitro toward the osteogenic and adipogenic lineages. RESULTS There was considerable variation in gene expression between individual cells, but we found no evidence for separate cell subpopulations based on principal component, hierarchical clustering, and differential gene expression analysis. Most of the cells expressed all the markers defining mesenchymal stem cells, and as polyclonal chondrocyte populations from the same donor were shown to differentiate into osteocytes and adipocytes in vitro, these cells formally qualify as mesenchymal stem cells. CONCLUSIONS In vitro expanded chondrocytes consist of one single population of cells with heterogeneity in gene expression between the cells. Dedifferentiated chondrocytes qualify as mesenchymal stem cells as they fulfill all the criteria suggested by the International Society for Cellular Therapy.
Collapse
Affiliation(s)
- Tommy A. Karlsen
- Norwegian Center for Stem Cell
Research, Department of Immunology, Oslo University Hospital Rikshospitalet,
Oslo, Norway,Tommy A. Karlsen, Department of
Immunology, Oslo University Hospital Rikshospitalet, PO Box 4950
Nydalen, Oslo 0424, Norway.
| | - Arvind Y. M. Sundaram
- Norwegian Sequencing Centre,
Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jan E. Brinchmann
- Norwegian Center for Stem Cell
Research, Department of Immunology, Oslo University Hospital Rikshospitalet,
Oslo, Norway,Department of Molecular Medicine,
Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Rikkers M, Korpershoek J, Levato R, Malda J, Vonk L. Progenitor Cells in Healthy and Osteoarthritic Human Cartilage Have Extensive Culture Expansion Capacity while Retaining Chondrogenic Properties. Cartilage 2021; 13:129S-142S. [PMID: 34802263 PMCID: PMC8804833 DOI: 10.1177/19476035211059600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Articular cartilage-derived progenitor cells (ACPCs) are a potential new cell source for cartilage repair. This study aims to characterize endogenous ACPCs from healthy and osteoarthritic (OA) cartilage, evaluate their potential for cartilage regeneration, and compare this to cartilage formation by chondrocytes. DESIGN ACPCs were isolated from full-thickness healthy and OA human cartilage and separated from the total cell population by clonal growth after differential adhesion to fibronectin. ACPCs were characterized by growth kinetics, multilineage differentiation, and surface marker expression. Chondrogenic redifferentiation of ACPCs was compared with chondrocytes in pellet cultures. Pellets were assessed for cartilage-like matrix production by (immuno)histochemistry, quantitative analyses for glycosaminoglycans and DNA content, and expression of chondrogenic and hypertrophic genes. RESULTS Healthy and OA ACPCs were successfully differentiated toward the adipogenic and chondrogenic lineage, but failed to produce calcified matrix when exposed to osteogenic induction media. Both ACPC populations met the criteria for cell surface marker expression of mesenchymal stromal cells (MSCs). Healthy ACPCs cultured in pellets deposited extracellular matrix containing proteoglycans and type II collagen, devoid of type I collagen. Gene expression of hypertrophic marker type X collagen was lower in healthy ACPC pellets compared with OA pellets. CONCLUSIONS This study provides further insight into the ACPC population in healthy and OA human articular cartilage. ACPCs show similarities to MSCs, yet do not produce calcified matrix under well-established osteogenic culture conditions. Due to extensive proliferative potential and chondrogenic capacity, ACPCs show potential for cartilage regeneration and possibly for clinical application, as a promising alternative to MSCs or chondrocytes.
Collapse
Affiliation(s)
- M. Rikkers
- Department of Orthopaedics, University
Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - J.V. Korpershoek
- Department of Orthopaedics, University
Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R. Levato
- Department of Orthopaedics, University
Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Department of Clinical Sciences,
Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J. Malda
- Department of Orthopaedics, University
Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Department of Clinical Sciences,
Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - L.A. Vonk
- Department of Orthopaedics, University
Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,CO.DON AG, Teltow, Germany,L.A. Vonk, Department of Orthopaedics,
University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA
Utrecht, The Netherlands.
| |
Collapse
|
31
|
Minguzzi M, Panichi V, D’Adamo S, Cetrullo S, Cattini L, Flamigni F, Mariani E, Borzì RM. Pleiotropic Roles of NOTCH1 Signaling in the Loss of Maturational Arrest of Human Osteoarthritic Chondrocytes. Int J Mol Sci 2021; 22:ijms222112012. [PMID: 34769441 PMCID: PMC8585104 DOI: 10.3390/ijms222112012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Notch signaling has been identified as a critical regulator of cartilage development and homeostasis. Its pivotal role was established by both several joint specific Notch signaling loss of function mouse models and transient or sustained overexpression. NOTCH1 is the most abundantly expressed NOTCH receptors in normal cartilage and its expression increases in osteoarthritis (OA), when chondrocytes exit from their healthy “maturation arrested state” and resume their natural route of proliferation, hypertrophy, and terminal differentiation. The latter are hallmarks of OA that are easily evaluated in vitro in 2-D or 3-D culture models. The aim of our study was to investigate the effect of NOTCH1 knockdown on proliferation (cell count and Picogreen mediated DNA quantification), cell cycle (flow cytometry), hypertrophy (gene and protein expression of key markers such as RUNX2 and MMP-13), and terminal differentiation (viability measured in 3-D cultures by luminescence assay) of human OA chondrocytes. NOTCH1 silencing of OA chondrocytes yielded a healthier phenotype in both 2-D (reduced proliferation) and 3-D with evidence of decreased hypertrophy (reduced expression of RUNX2 and MMP-13) and terminal differentiation (increased viability). This demonstrates that NOTCH1 is a convenient therapeutic target to attenuate OA progression.
Collapse
Affiliation(s)
- Manuela Minguzzi
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (M.M.); (S.D.); (E.M.)
| | - Veronica Panichi
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy; (V.P.); (S.C.); (F.F.)
| | - Stefania D’Adamo
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (M.M.); (S.D.); (E.M.)
| | - Silvia Cetrullo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy; (V.P.); (S.C.); (F.F.)
| | - Luca Cattini
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Flavio Flamigni
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy; (V.P.); (S.C.); (F.F.)
| | - Erminia Mariani
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (M.M.); (S.D.); (E.M.)
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
- Correspondence:
| |
Collapse
|
32
|
Fang W, Sun Z, Chen X, Han B, Vangsness CT. Synovial Fluid Mesenchymal Stem Cells for Knee Arthritis and Cartilage Defects: A Review of the Literature. J Knee Surg 2021; 34:1476-1485. [PMID: 32403148 DOI: 10.1055/s-0040-1710366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that have the ability to self-renew and differentiate into several cell lineages including adipocytes, chondrocytes, tenocytes, bones, and myoblasts. These properties make the cell a promising candidate for regenerative medicine applications, especially when dealing with sports injuries in the knee. MSCs can be isolated from almost every type of adult tissue. However, most of the current research focuses on MSCs derived from bone marrow, adipose, and placenta derived products. Synovial fluid-derived MSCs (SF-MSCs) are relatively overlooked but have demonstrated promising therapeutic properties including possessing higher chondrogenic proliferation capabilities than other types of MSCs. Interestingly, SF-MSC population has shown to increase exponentially in patients with joint injury or disease, pointing to a potential use as a biomarker or as a treatment of some orthopaedic disorders. In this review, we go over the current literature on synovial fluid-derived MSCs including the characterization, the animal studies, and discuss future perspectives.
Collapse
Affiliation(s)
- William Fang
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - ZhiTao Sun
- Department of Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangzhou, China
| | - Xiao Chen
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Bo Han
- Department of Surgery, USC Keck School of Medicine, Los Angeles, California
| | - C Thomas Vangsness
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
33
|
Lindberg GCJ, Cui X, Durham M, Veenendaal L, Schon BS, Hooper GJ, Lim KS, Woodfield TBF. Probing Multicellular Tissue Fusion of Cocultured Spheroids-A 3D-Bioassembly Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2103320. [PMID: 34632729 PMCID: PMC8596109 DOI: 10.1002/advs.202103320] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 05/02/2023]
Abstract
While decades of research have enriched the knowledge of how to grow cells into mature tissues, little is yet known about the next phase: fusing of these engineered tissues into larger functional structures. The specific effect of multicellular interfaces on tissue fusion remains largely unexplored. Here, a facile 3D-bioassembly platform is introduced to primarily study fusion of cartilage-cartilage interfaces using spheroids formed from human mesenchymal stromal cells (hMSCs) and articular chondrocytes (hACs). 3D-bioassembly of two adjacent hMSCs spheroids displays coordinated migration and noteworthy matrix deposition while the interface between two hAC tissues lacks both cells and type-II collagen. Cocultures contribute to increased phenotypic stability in the fusion region while close initial contact between hMSCs and hACs (mixed) yields superior hyaline differentiation over more distant, indirect cocultures. This reduced ability of potent hMSCs to fuse with mature hAC tissue further underlines the major clinical challenge that is integration. Together, this data offer the first proof of an in vitro 3D-model to reliably study lateral fusion mechanisms between multicellular spheroids and mature cartilage tissues. Ultimately, this high-throughput 3D-bioassembly model provides a bridge between understanding cellular differentiation and tissue fusion and offers the potential to probe fundamental biological mechanisms that underpin organogenesis.
Collapse
Affiliation(s)
- Gabriella C. J. Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| | - Mitchell Durham
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| | - Laura Veenendaal
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| | - Benjamin S. Schon
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| | - Gary J. Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| | - Khoon S. Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| | - Tim B. F. Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| |
Collapse
|
34
|
Xie J, Wang Y, Lu L, Liu L, Yu X, Pei F. Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications. Ageing Res Rev 2021; 70:101413. [PMID: 34298194 DOI: 10.1016/j.arr.2021.101413] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/08/2023]
Abstract
Cellular senescence is the inability of cells to proliferate, which has both beneficial and detrimental effects on tissue development and homeostasis. Chronic accumulation of senescent cells is associated with age-related disease, including osteoarthritis, a common joint disease responsible for joint pain and disability in older adults. The pathology of this disease includes loss of cartilage, synovium inflammation, and subchondral bone remodeling. Senescent cells are present in the cartilage of people with advanced osteoarthritis, but the link between cellular senescence and this disease is unclear. In this review, we summarize current evidence for the role of cellular senescence of different cell types in the onset and progression of osteoarthritis. We focus on the underlying mechanisms of senescence in chondrocytes, which maintain the cartilage in joints, and review the role of the Forkhead family of transcription factors, which are involved in cartilage maintenance and osteoarthritis. Finally, we discuss the potential therapeutic value and implications of targeting senescent cells using senolytic agents or immune therapies, targeting the senescence-associated secretory phenotype of these cells using senomorphic agents, and renewing the plasticity of stem cells and chondrocytes. Our review highlights current gaps in understanding of the mechanism of senescence that may, when addressed, provided new options for modifying and treating disease in osteoarthritis.
Collapse
|
35
|
Osteocyte Dysfunction in Joint Homeostasis and Osteoarthritis. Int J Mol Sci 2021; 22:ijms22126522. [PMID: 34204587 PMCID: PMC8233862 DOI: 10.3390/ijms22126522] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 01/29/2023] Open
Abstract
Structural disturbances of the subchondral bone are a hallmark of osteoarthritis (OA), including sclerotic changes, cystic lesions, and osteophyte formation. Osteocytes act as mechanosensory units for the micro-cracks in response to mechanical loading. Once stimulated, osteocytes initiate the reparative process by recruiting bone-resorbing cells and bone-forming cells to maintain bone homeostasis. Osteocyte-expressed sclerostin is known as a negative regulator of bone formation through Wnt signaling and the RANKL pathway. In this review, we will summarize current understandings of osteocytes at the crossroad of allometry and mechanobiology to exploit the relationship between osteocyte morphology and function in the context of joint aging and osteoarthritis. We also aimed to summarize the osteocyte dysfunction and its link with structural and functional disturbances of the osteoarthritic subchondral bone at the molecular level. Compared with normal bones, the osteoarthritic subchondral bone is characterized by a higher bone volume fraction, a larger trabecular bone number in the load-bearing region, and an increase in thickness of pre-existing trabeculae. This may relate to the aberrant expressions of sclerostin, periostin, dentin matrix protein 1, matrix extracellular phosphoglycoprotein, insulin-like growth factor 1, and transforming growth factor-beta, among others. The number of osteocyte lacunae embedded in OA bone is also significantly higher, yet the volume of individual lacuna is relatively smaller, which could suggest abnormal metabolism in association with allometry. The remarkably lower percentage of sclerostin-positive osteocytes, together with clustering of Runx-2 positive pre-osteoblasts, may suggest altered regulation of osteoblast differentiation and osteoblast-osteocyte transformation affected by both signaling molecules and the extracellular matrix. Aberrant osteocyte morphology and function, along with anomalies in molecular signaling mechanisms, might explain in part, if not all, the pre-osteoblast clustering and the uncoupled bone remodeling in OA subchondral bone.
Collapse
|
36
|
Wang K, Li J, Wang Y, Wang Y, Qin Y, Yang F, Zhang M, Zhu H, Li Z. Orchestrated cellular, biochemical, and biomechanical optimizations endow platelet-rich plasma-based engineered cartilage with structural and biomechanical recovery. Bioact Mater 2021; 6:3824-3838. [PMID: 33937588 PMCID: PMC8065202 DOI: 10.1016/j.bioactmat.2021.03.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Recently, biomaterials for cartilage regeneration has been intensively investigated. However, the development of scaffolds that capture regenerated cartilage with biomechanical and structural recovery has rarely been reported. To address this challenge, platelet-rich plasma (PRP)-based cartilage constructs with a well-orchestrated symphony of cellular, biochemical and biomechanical elements were prepared by simultaneously employing chondrogenic progenitor cells (CPCs) as a cell source, optimizing platelet concentration, and adding an enzyme-ion activator. It was shown that this triple-optimized PRP + CPC construct possessed increased biomechanical properties and suitable biochemical signals. The following in vitro study demonstrated that the triple-optimized PRP + CPC constructs generated cartilage-like tissue with higher expression levels of chondrogenic-specific markers, more deposition of cartilage-specific extracellular matrix (ECM), and greater biomechanical values than those of the other constructs. Twelve weeks after the construct was implanted in a cartilage defect in vivo, histological analysis, qPCR, and biomechanical tests collectively showed that the triple-optimized constructs yielded a more chondrocyte-like cell phenotype with a higher synthesis of Col-II and aggrecan. More importantly, the triple-optimized constructs facilitated cartilage regeneration with better biomechanical recovery than that of the other constructs. These results demonstrate the efficacy of the triple-optimization strategy and highlight the simplicity and potency of this PRP + CPC construct for cartilage regeneration.
Cartilage tissue engineering has been intensively investigated. We designed a PRP-based construct with favorable cell source, reinforced scaffold and appropriate biofactors. This designed construct can facilitate cartilage regeneration with biomechanical and structural recovery simultaneously. The favorable performance of the proposed scaffolds highlights the triple-optimization strategy to improve cartilage engineering.
Collapse
Affiliation(s)
- Ketao Wang
- Department of Orthopedics, Chinese PLA General Hospital, Haidian, Beijing, 100853, China.,Department of Foot and Ankle, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.,Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ji Li
- Department of Orthopedics, Chinese PLA General Hospital, Haidian, Beijing, 100853, China
| | - Yuxing Wang
- Department of Orthopedics, Chinese PLA General Hospital, Haidian, Beijing, 100853, China
| | - Yaqiang Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanyuan Qin
- Department of Blood Transfusion, Chinese PLA General Hospital, Haidian, Beijing, 100853, China
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingzhu Zhang
- Department of Foot and Ankle, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Heng Zhu
- Beijing Institute of Radiation Medicine/Beijing Institute of Basic Medical Sciences, Haidian, Beijing, 100850, China
| | - Zhongli Li
- Department of Orthopedics, Chinese PLA General Hospital, Haidian, Beijing, 100853, China
| |
Collapse
|
37
|
Baddam P, Kung T, Adesida AB, Graf D. Histological and molecular characterization of the growing nasal septum in mice. J Anat 2021; 238:751-764. [PMID: 33043993 PMCID: PMC7855085 DOI: 10.1111/joa.13332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/14/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
The nasal septum is a cartilaginous structure that serves as a pacemaker for the development of the midface. The septum is a hyaline cartilage which is surrounded by a perichondrium and epithelium. It remains cartilaginous anteriorly, but posteriorly it undergoes endochondral ossification to form the perpendicular plate of the ethmoid. Understanding of hyaline cartilage differentiation stems predominantly from investigations of growth plate cartilage. It is currently unclear if the morphological and molecular properties of the differentiating nasal septum align with what is known from the growth plate. In this study, we describe growth, molecular, and cellular characteristics of the nasal septum with reference to hyaline cartilage differentiation. The nasal septum grows asynchronous across its length with phases of rapid growth interrupted by more stagnant growth. Growth appears to be driven predominantly by acquisition of chondrocyte hypertrophy. Similarly, cellular differentiation is asynchronous, and differentiation observed in the anterior part precedes posterior differentiation. Overall, the nasal septum is structurally and molecularly heterogeneous. Early and extensive chondrocyte hypertrophy but no ossification is observed in the anterior septum. Onset of hypertrophic chondrocyte differentiation coincided with collagen fiber deposition along the perichondrium. Sox9, Col2, Col10, Mmp13, Sp7, and Runx2 expression was heterogeneous and did not always follow the expected pattern established from chondrocyte differentiation in the growth plate. The presence of hypertrophic chondrocytes expressing bone-related proteins early on in regions where the nasal septum does not ossify displays incongruities with current understanding of hyaline cartilage differentiation. Runx2, Collagen II, Collagen X, and Sp7 commonly used to mark distinct stages of chondrocyte maturation and early bone formation show wider expression than expected and do not align with expected cellular characteristics. Thus, the hyaline cartilage of the nasal septum is quite distinct from growth plate hyaline cartilage, and caution should be taken before assigning cartilage properties to less well-defined cartilage structures using these commonly used markers. Beyond the structural description of the nasal cartilage, this study also provides important information for cartilage tissue engineering when using nasal septal cartilage for tissue regeneration.
Collapse
Affiliation(s)
- Pranidhi Baddam
- School of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Tiffany Kung
- School of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Adetola B. Adesida
- Department of SurgeryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Daniel Graf
- School of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada,Department of Medical GeneticsFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
38
|
Santos S, Richard K, Fisher MC, Dealy CN, Pierce DM. Chondrocytes respond both anabolically and catabolically to impact loading generally considered non-injurious. J Mech Behav Biomed Mater 2020; 115:104252. [PMID: 33385951 DOI: 10.1016/j.jmbbm.2020.104252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022]
Abstract
We aimed to determine the longitudinal effects of low-energy (generally considered non-injurious) impact loading on (1) chondrocyte proliferation, (2) chondroprogenitor cell activity, and (3) EGFR signaling. In an in vitro study, we assessed 127 full-thickness, cylindrical osteochondral plugs of bovine cartilage undergoing either single, uniaxial unconfined impact loads with energy densities in the range of 1.5-3.2mJ/mm3 or no impact (controls). We quantified cell responses at two, 24, 48, and 72 h via immunohistochemical labeling of Ki67, Sox9, and pEGFR antibodies. We compared strain, stress, and impact energy density as predictors for mechanotransductive responses from cells, and fit significant correlations using linear regressions. Our study demonstrates that low-energy mechanical impacts (1.5-3.2mJ/mm3) generally stimulate time-dependent anabolic responses in the superficial zone of articular cartilage and catabolic responses in the middle and deep zones. We also found that impact energy density is the most consistent predictor of cell responses to low-energy impact loading. These spatial and temporal changes in chondrocyte behavior result directly from low-energy mechanical impacts, revealing a new level of mechanotransductive sensitivity in chondrocytes not previously appreciated.
Collapse
Affiliation(s)
- Stephany Santos
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Kelsey Richard
- Department of Global Health, University of Connecticut, Storrs, CT, United States of America
| | - Melanie C Fisher
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Services, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Caroline N Dealy
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Services, University of Connecticut Health Center, Farmington, CT, United States of America; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - David M Pierce
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States of America.
| |
Collapse
|
39
|
Liu Y, Chen Q. Senescent Mesenchymal Stem Cells: Disease Mechanism and Treatment Strategy. CURRENT MOLECULAR BIOLOGY REPORTS 2020; 6:173-182. [PMID: 33816065 PMCID: PMC8011589 DOI: 10.1007/s40610-020-00141-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Mesenchymal stem cells (MSCs) have been extensively studied for therapeutic application in tissue engineering and regenerative medicine. Despite their promise, recent findings suggest that MSC replication during repair process may lead to replicative senescence and stem cell exhaustion. Here, we review the basic mechanisms of MSC senescence, how it leads to degenerative diseases, and potential treatments for such diseases. RECENT FINDINGS Emerging evidence has shown a link between senescent MSCs and degenerative diseases, especially age-related diseases such as osteoarthritis and idiopathic pulmonary fibrosis. During these disease processes, MSCs undergo cell senescence and mediate Senescence Associated Secretory Phenotypes (SASP) to affect the surrounding microenvironment. Thus, senescent MSCs can accelerate tissue aging by increasing the number of senescent cells and spreading inflammation to neighboring cells. SUMMARY Senescent MSCs not only hamper tissue repair through cell senescence associated stem cell exhaustion, but also mediate tissue degeneration by initiating and spreading senescence-associated inflammation. It suggests new strategies of MSC-based cell therapy to remove, rejuvenate, or replace (3Rs) the senescent MSCs.
Collapse
Affiliation(s)
- Yajun Liu
- Laboratory of Molecular Biology and Nanomedicine, Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Qian Chen
- Laboratory of Molecular Biology and Nanomedicine, Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
40
|
Characterization of heterogeneous primary human cartilage-derived cell population using non-invasive live-cell phase-contrast time-lapse imaging. Cytotherapy 2020; 23:488-499. [PMID: 33092987 DOI: 10.1016/j.jcyt.2020.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/14/2023]
Abstract
Reliable and reproducible cell therapy strategies to treat osteoarthritis demand an improved characterization of the cell and heterogeneous cell population resident in native cartilage tissue. Using live-cell phase-contrast time-lapse imaging (PC-TLI), this study investigates the morphological attributes and biological performance of the three primary biological objects enzymatically isolated from primary human cartilage: connective tissue progenitors (CTPs), non-progenitors (NPs) and multi-cellular structures (MCSs). The authors' results demonstrated that CTPs were smaller in size in comparison to NPs (P < 0.001). NPs remained part of the adhered cell population throughout the cell culture period. Both NPs and CTP progeny on day 8 increased in size and decreased in circularity in comparison to their counterparts on day 1, although the percent change was considerably less in CTP progeny (P < 0.001). PC-TLI analyses indicated three colony types: single-CTP-derived (29%), multiple-CTP-derived (26%) and MCS-derived (45%), with large heterogeneity with respect to cell morphology, proliferation rate and cell density. On average, clonal (CL) (P = 0.009) and MCS (P = 0.001) colonies exhibited higher cell density (cells per colony area) than multi-clonal (MC) colonies; however, it is interesting to note that the behavior of CL (less cells per colony and less colony area) and MCS (high cells per colony and high colony area) colonies was quite different. Overall effective proliferation rate (EPR) of the CTPs that formed CL colonies was higher than the EPR of CTPs that formed MC colonies (P = 0.02), most likely due to CTPs with varying EPR that formed the MC colonies. Finally, the authors demonstrated that lag time before first cell division of a CTP (early attribute) could potentially help predict its proliferation rate long-term. Quantitative morphological characterization using non-invasive PC-TLI serves as a reliable and reproducible technique to understand cell heterogeneity. Size and circularity parameters can be used to distinguish CTP from NP populations. Morphological cell and colony features can also be used to reliably and reproducibly identify CTP subpopulations with preferred proliferation and differentiation potentials in an effort to improve cell manufacturing and therapeutic outcomes.
Collapse
|
41
|
Zimmermann J, Distler T, Boccaccini AR, van Rienen U. Numerical Simulations as Means for Tailoring Electrically Conductive Hydrogels Towards Cartilage Tissue Engineering by Electrical Stimulation. Molecules 2020; 25:E4750. [PMID: 33081205 PMCID: PMC7587583 DOI: 10.3390/molecules25204750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Cartilage regeneration is a clinical challenge. In recent years, hydrogels have emerged as implantable scaffolds in cartilage tissue engineering. Similarly, electrical stimulation has been employed to improve matrix synthesis of cartilage cells, and thus to foster engineering and regeneration of cartilage tissue. The combination of hydrogels and electrical stimulation may pave the way for new clinical treatment of cartilage lesions. To find the optimal electric properties of hydrogels, theoretical considerations and corresponding numerical simulations are needed to identify well-suited initial parameters for experimental studies. We present the theoretical analysis of a hydrogel in a frequently used electrical stimulation device for cartilage regeneration and tissue engineering. By means of equivalent circuits, finite element analysis, and uncertainty quantification, we elucidate the influence of the geometric and dielectric properties of cell-seeded hydrogels on the capacitive-coupling electrical field stimulation. Moreover, we discuss the possibility of cellular organisation inside the hydrogel due to forces generated by the external electric field. The introduced methodology is easily reusable by other researchers and allows to directly develop novel electrical stimulation study designs. Thus, this study paves the way for the design of future experimental studies using electrically conductive hydrogels and electrical stimulation for tissue engineering.
Collapse
Affiliation(s)
- Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany;
| | - Thomas Distler
- Institute of Biomaterials, Friedrich Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany; (T.D.); (A.R.B.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Friedrich Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany; (T.D.); (A.R.B.)
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany;
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
42
|
Bauza G, Pasto A, Mcculloch P, Lintner D, Brozovich A, Niclot FB, Khan I, Francis LW, Tasciotti E, Taraballi F. Improving the immunosuppressive potential of articular chondroprogenitors in a three-dimensional culture setting. Sci Rep 2020; 10:16610. [PMID: 33024130 PMCID: PMC7538570 DOI: 10.1038/s41598-020-73188-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
Cartilage repair in osteoarthritic patients remains a challenge. Identifying resident or donor stem/progenitor cell populations is crucial for augmenting the low intrinsic repair potential of hyaline cartilage. Furthermore, mediating the interaction between these cells and the local immunogenic environment is thought to be critical for long term repair and regeneration. In this study we propose articular cartilage progenitor/stem cells (CPSC) as a valid alternative to bone marrow-derived mesenchymal stem cells (BMMSC) for cartilage repair strategies after trauma. Similar to BMMSC, CPSC isolated from osteoarthritic patients express stem cell markers and have chondrogenic, osteogenic, and adipogenic differentiation ability. In an in vitro 2D setting, CPSC show higher expression of SPP1 and LEP, markers of osteogenic and adipogenic differentiation, respectively. CPSC also display a higher commitment toward chondrogenesis as demonstrated by a higher expression of ACAN. BMMSC and CPSC were cultured in vitro using a previously established collagen-chondroitin sulfate 3D scaffold. The scaffold mimics the cartilage niche, allowing both cell populations to maintain their stem cell features and improve their immunosuppressive potential, demonstrated by the inhibition of activated PBMC proliferation in a co-culture setting. As a result, this study suggests articular cartilage derived-CPSC can be used as a novel tool for cellular and acellular regenerative medicine approaches for osteoarthritis (OA). In addition, the benefit of utilizing a biomimetic acellular scaffold as an advanced 3D culture system to more accurately mimic the physiological environment is demonstrated.
Collapse
Affiliation(s)
- Guillermo Bauza
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Anna Pasto
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Patrick Mcculloch
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - David Lintner
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Ava Brozovich
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
- Texas A&M College of Medicine, 8447 Highway 47, Bryan, TX, 77807, USA
| | - Federica Banche Niclot
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
- Department of Applied Science and Technology, Polytechnic of Turin, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Ilyas Khan
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
| | - Lewis W Francis
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
| | - Ennio Tasciotti
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
43
|
Yang Z, Li H, Yuan Z, Fu L, Jiang S, Gao C, Wang F, Zha K, Tian G, Sun Z, Huang B, Wei F, Cao F, Sui X, Peng J, Lu S, Guo W, Liu S, Guo Q. Endogenous cell recruitment strategy for articular cartilage regeneration. Acta Biomater 2020; 114:31-52. [PMID: 32652223 DOI: 10.1016/j.actbio.2020.07.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
In the absence of timely and proper treatments, injuries to articular cartilage (AC) can lead to cartilage degeneration and ultimately result in osteoarthritis. Regenerative medicine and tissue engineering techniques are emerging as promising approaches for AC regeneration and repair. Although the use of cell-seeded scaffolds prior to implantation can regenerate and repair cartilage lesions to some extent, these approaches are still restricted by limited cell sources, excessive costs, risks of disease transmission and complex manufacturing practices. Recently developed acellular scaffold approaches that rely on the recruitment of endogenous cells to the injured sites avoid these drawbacks and offer great promise for in situ AC regeneration. Multiple endogenous stem/progenitor cells (ESPCs) are found in joint-resident niches and have the capability to migrate to sites of injury to participate in AC regeneration. However, the natural recruitment of ESPCs is insufficient, and the local microenvironment is hostile after injury. Hence, an endogenous cell recruitment strategy based on the combination of chemoattractants and acellular scaffolds to effectively and specifically recruit ESPCs and improve local microenvironment may provide new insights into in situ AC regeneration. This review provides a brief overview of: (1) the status of endogenous cell recruitment strategy; (2) the subpopulations, potential migration routes (PMRs) of joint-resident ESPCs and their immunomodulatory and reparative effects; (3) chemoattractants and their potential adverse effects; (4) scaffold-based drug delivery systems (SDDSs) that are utilized for in situ AC regeneration; and (5) the challenges and future perspectives of endogenous cell recruitment strategy for AC regeneration. STATEMENT OF SIGNIFICANCE: Although the endogenous cell recruitment strategy for articular cartilage (AC) regeneration has been investigated for several decades, much work remains to be performed in this field. Future studies should have the following aims: (1) reporting the up-to-date progress in the endogenous cell recruitment strategies; (2) determining the subpopulations of ESPCs, the cellular and molecular mechanisms underlying the migration of these cells and their anti-inflammatory, immunomodulatory and reparative effects; (3) elucidating the chemoattractants that enhance ESPC recruitment and their potential adverse effects; and (4) developing advanced SDDSs for chemoattractant dispatch. Herein, we present a systematic overview of the aforementioned issues to provide a better understanding of endogenous cell recruitment strategies for AC regeneration and repair.
Collapse
|
44
|
Hayes AJ, Melrose J. Aggrecan, the Primary Weight-Bearing Cartilage Proteoglycan, Has Context-Dependent, Cell-Directive Properties in Embryonic Development and Neurogenesis: Aggrecan Glycan Side Chain Modifications Convey Interactive Biodiversity. Biomolecules 2020; 10:E1244. [PMID: 32867198 PMCID: PMC7564073 DOI: 10.3390/biom10091244] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
This review examines aggrecan's roles in developmental embryonic tissues, in tissues undergoing morphogenetic transition and in mature weight-bearing tissues. Aggrecan is a remarkably versatile and capable proteoglycan (PG) with diverse tissue context-dependent functional attributes beyond its established role as a weight-bearing PG. The aggrecan core protein provides a template which can be variably decorated with a number of glycosaminoglycan (GAG) side chains including keratan sulphate (KS), human natural killer trisaccharide (HNK-1) and chondroitin sulphate (CS). These convey unique tissue-specific functional properties in water imbibition, space-filling, matrix stabilisation or embryonic cellular regulation. Aggrecan also interacts with morphogens and growth factors directing tissue morphogenesis, remodelling and metaplasia. HNK-1 aggrecan glycoforms direct neural crest cell migration in embryonic development and is neuroprotective in perineuronal nets in the brain. The ability of the aggrecan core protein to assemble CS and KS chains at high density equips cartilage aggrecan with its well-known water-imbibing and weight-bearing properties. The importance of specific arrangements of GAG chains on aggrecan in all its forms is also a primary morphogenetic functional determinant providing aggrecan with unique tissue context dependent regulatory properties. The versatility displayed by aggrecan in biodiverse contexts is a function of its GAG side chains.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards 2065, NSW, Australia
| |
Collapse
|
45
|
Varela-Eirín M, Carpintero-Fernández P, Sánchez-Temprano A, Varela-Vázquez A, Paíno CL, Casado-Díaz A, Continente AC, Mato V, Fonseca E, Kandouz M, Blanco A, Caeiro JR, Mayán MD. Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and promotes a pro-regenerative environment in osteoarthritis. Aging (Albany NY) 2020; 12:15882-15905. [PMID: 32745074 PMCID: PMC7485729 DOI: 10.18632/aging.103801] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Articular cartilage and synovial tissue from patients with osteoarthritis (OA) show an overactivity of connexin43 (Cx43) and accumulation of senescent cells associated with disrupted tissue regeneration and disease progression. The aim of this study was to determine the effect of oleuropein on Cx43 and cellular senescence for tissue engineering and regenerative medicine strategies for OA treatment. Oleuropein regulates Cx43 promoter activity and enhances the propensity of hMSCs to differentiate into chondrocytes and bone cells, reducing adipogenesis. This small molecule reduce Cx43 levels and decrease Twist-1 activity in osteoarthritic chondrocytes (OACs), leading to redifferentiation, restoring the synthesis of cartilage ECM components (Col2A1 and proteoglycans), and reducing the inflammatory and catabolic factors mediated by NF-kB (IL-1ß, IL-6, COX-2 and MMP-3), in addition to lowering cellular senescence in OACs, synovial and bone cells. Our in vitro results demonstrate the use of olive-derived polyphenols, such as oleuropein, as potentially effective therapeutic agents to improve chondrogenesis of hMSCs, to induce chondrocyte re-differentiation in OACs and clearing out senescent cells in joint tissues in order to prevent or stop the progression of the disease.
Collapse
Affiliation(s)
- Marta Varela-Eirín
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Paula Carpintero-Fernández
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Agustín Sánchez-Temprano
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Adrián Varela-Vázquez
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Carlos Luis Paíno
- Neurobiology-Research Service, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Antonio Casado-Díaz
- UGC Endocrinology and Nutrition, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Hospital Universitario Reina Sofía - CIBERFES, Universidad de Córdoba, Córdoba, Spain
| | - Alfonso Calañas Continente
- UGC Endocrinology and Nutrition, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Hospital Universitario Reina Sofía - CIBERFES, Universidad de Córdoba, Córdoba, Spain
| | - Virginia Mato
- Centre for Medical Informatics and Radiological Diagnosis, Universidade da Coruña, A Coruña, Spain
| | - Eduardo Fonseca
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| | - Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Alfonso Blanco
- Flow Cytometry Core Technologies, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - José Ramón Caeiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, Santiago de Compostela, Spain
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, A Coruña, Spain
| |
Collapse
|
46
|
Cheng HJ, Hsu WT, Chen CN, Li C. Activation of NOTCH1 by Shear Force Elicits Immediate Cytokine Expression in Human Chondrocytes. Int J Mol Sci 2020; 21:ijms21144958. [PMID: 32674293 PMCID: PMC7404062 DOI: 10.3390/ijms21144958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023] Open
Abstract
Osteoarthritis is caused by overloading of joints and is characterized by inflammation-induced disruption of cartilage structure. Current treatment strategy aims to relieve inflammation and prevent further deterioration of joint function. However, how mechanical force leads to inflammation and deterioration of chondrocyte function still remains incompletely understood. To explore the force-regulated molecular mechanism, an in vitro hydraulic shear force experiment to simulate the condition of force loading was required. The result demonstrated that multiple cytokines and immune regulators, including interleukin 8, interferon β, TRAF1 and TNFAIP3, were significantly increased by shear force within two hours of treatment. Moreover, JAG1 and HES1 were drastically upregulated as well, suggesting that NOTCH1 signaling is activated by shear force. Short-term expression of NOTCH1 intracellular domain activated a similar set of cytokines, indicating that NOTCH1 responds to shear force and activates downstream genes. When incubated under the medium conditioned by NOTCH1-activated chondrocyte, osteoblasts expressed higher levels of interferon β and interferon λ. Together, our results indicated that NOTCH1 functions as a force sensor and promotes expression of cytokines and immune regulators from shear-force bearing chondrocytes.
Collapse
Affiliation(s)
- Hao-Jen Cheng
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621, Taiwan; (H.-J.C.); (W.-T.H.)
- Department of Orthopedics, Shinnhomei Clinic, Chiayi 600, Taiwan
| | - Wan-Ting Hsu
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621, Taiwan; (H.-J.C.); (W.-T.H.)
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan;
| | - Chin Li
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621, Taiwan; (H.-J.C.); (W.-T.H.)
- Correspondence: ; Tel.: 886-5-272-0411; Fax: 886-5-272-2871
| |
Collapse
|
47
|
Kurenkova AD, Medvedeva EV, Newton PT, Chagin AS. Niches for Skeletal Stem Cells of Mesenchymal Origin. Front Cell Dev Biol 2020; 8:592. [PMID: 32754592 PMCID: PMC7366157 DOI: 10.3389/fcell.2020.00592] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
With very few exceptions, all adult tissues in mammals are maintained and can be renewed by stem cells that self-renew and generate the committed progeny required. These functions are regulated by a specific and in many ways unique microenvironment in stem cell niches. In most cases disruption of an adult stem cell niche leads to depletion of stem cells, followed by impairment of the ability of the tissue in question to maintain its functions. The presence of stem cells, often referred to as mesenchymal stem cells (MSCs) or multipotent bone marrow stromal cells (BMSCs), in the adult skeleton has long been realized. In recent years there has been exceptional progress in identifying and characterizing BMSCs in terms of their capacity to generate specific types of skeletal cells in vivo. Such BMSCs are often referred to as skeletal stem cells (SSCs) or skeletal stem and progenitor cells (SSPCs), with the latter term being used throughout this review. SSPCs have been detected in the bone marrow, periosteum, and growth plate and characterized in vivo on the basis of various genetic markers (i.e., Nestin, Leptin receptor, Gremlin1, Cathepsin-K, etc.). However, the niches in which these cells reside have received less attention. Here, we summarize the current scientific literature on stem cell niches for the SSPCs identified so far and discuss potential factors and environmental cues of importance in these niches in vivo. In this context we focus on (i) articular cartilage, (ii) growth plate cartilage, (iii) periosteum, (iv) the adult endosteal compartment, and (v) the developing endosteal compartment, in that order.
Collapse
Affiliation(s)
- Anastasiia D Kurenkova
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ekaterina V Medvedeva
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Phillip T Newton
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S Chagin
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Campos Y, Almirall A, Fuentes G, Bloem HL, Kaijzel EL, Cruz LJ. Tissue Engineering: An Alternative to Repair Cartilage. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:357-373. [PMID: 30913997 DOI: 10.1089/ten.teb.2018.0330] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein we review the state-of-the-art in tissue engineering for repair of articular cartilage. First, we describe the molecular, cellular, and histologic structure and function of endogenous cartilage, focusing on chondrocytes, collagens, extracellular matrix, and proteoglycans. We then explore in vitro cell culture on scaffolds, discussing the difficulties involved in maintaining or obtaining a chondrocytic phenotype. Next, we discuss the diverse compounds and designs used for these scaffolds, including natural and synthetic biomaterials and porous, fibrous, and multilayer architectures. We then report on the mechanical properties of different cell-loaded scaffolds, and the success of these scaffolds following in vivo implantation in small animals, in terms of generating tissue that structurally and functionally resembles native tissue. Last, we highlight future trends in this field. We conclude that despite major technical advances made over the past 15 years, and continually improving results in cartilage repair experiments in animals, the development of clinically useful implants for regeneration of articular cartilage remains a challenge
Collapse
Affiliation(s)
- Yaima Campos
- 1Biomaterials Center, Havana University, LA Habana, Cuba.,2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Gastón Fuentes
- 1Biomaterials Center, Havana University, LA Habana, Cuba.,2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans L Bloem
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric L Kaijzel
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Luis J Cruz
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
49
|
Ruscitto A, Scarpa V, Morel M, Pylawka S, Shawber CJ, Embree MC. Notch Regulates Fibrocartilage Stem Cell Fate and Is Upregulated in Inflammatory TMJ Arthritis. J Dent Res 2020; 99:1174-1181. [PMID: 32442041 DOI: 10.1177/0022034520924656] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Notch pathway is critical for the development of the extracellular matrix in cartilage by regulating both anabolic and catabolic cellular activities. Similarly, Notch signaling plays a biphasic role in adult cartilage health and osteoarthritis by maintaining homeostasis and contributing to degeneration, respectively. The temporomandibular joint (TMJ) is the synovial joint of the craniofacial complex and is subject to injury and osteoarthritis. While Notch has been studied in axial skeletal joints, little is known about the role of Notch in TMJ development and disease. We identified fibrocartilage stem cells (FCSCs) localized within the TMJ condyle superficial zone niche that regenerate cartilage and repair joint injury. Here we investigate the role of Notch in regulating TMJ development and FCSC fate. Using a Notch reporter mouse, we discovered FCSCs localized within the TMJ superficial niche exhibit Notch activity during TMJ morphogenesis. We further showed that constitutively activating Notch promotes FCSC differentiation toward both cartilage and bone lineages, but inhibits adipogenesis. Using a TNF-α-induced TMJ inflammatory arthritis mouse model, we found that the expression of Notch receptors and ligands are upregulated and coupled with cells undergoing cartilage to bone transdifferentiation, which may contribute to TMJ pathogenesis. We also discovered that global Notch inhibition reduces osteogenic and chondrogenic differentiation of FCSCs. Together, these findings suggest that Notch is critical for FCSC fate specification and TMJ homeostasis, and reveal that inhibition of the Notch pathway may be a new therapeutic target for treating TMJ osteoarthritis.
Collapse
Affiliation(s)
- A Ruscitto
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - V Scarpa
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - M Morel
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - S Pylawka
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - C J Shawber
- Department of OB/GYN, Division of Reproductive Sciences, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - M C Embree
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
50
|
Walsh SK, Schneider SE, Amundson LA, Neu CP, Henak CR. Maturity-dependent cartilage cell plasticity and sensitivity to external perturbation. J Mech Behav Biomed Mater 2020; 106:103732. [PMID: 32321631 DOI: 10.1016/j.jmbbm.2020.103732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 03/13/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Articular cartilage undergoes biological and morphological changes throughout maturation. The prevalence of osteoarthritis in the aged population suggests that maturation predisposes cartilage to degradation and/or impaired regeneration, but this process is not fully understood. Therefore, the objective of this study was to characterize the cellular and genetic profile of cartilage, as well as biological plasticity in response to mechanical and culture time stimuli, as a function of animal maturity. METHODS/DESIGN Porcine articular cartilage explants were harvested from stifle joints of immature (2-4 weeks), adolescent (5-6 months), and mature (1-5 years) animals. Half of all samples were subjected to a single compressive mechanical load. Loaded samples were paired with unloaded controls for downstream analyses. Expression of cartilage progenitor cell markers CD105, CD44, and CD29 were determined via flow cytometry. Expression of matrix synthesis genes Col1, Col2, Col10, ACAN, and SOX9 were determined via qPCR. Tissue morphology and matrix content were examined histologically. Post-loading assays were performed immediately and following 7 days in culture. RESULTS CD105 and CD29 expression decreased with maturity, while CD44 expression was upregulated in cartilage from mature animals. Expression of matrix synthesis genes were generally upregulated in cartilage from mature animals, and adolescent animals showed the lowest expression of several matrix synthesizing genes. Culture time and mechanical loading analyses revealed greater plasticity to mechanical loading and culture time in cartilage from younger animals. Histology confirmed distinct structural and biochemical profiles across maturity. CONCLUSION This study demonstrates differential, nonlinear expression of chondroprogenitor markers and matrix synthesis genes as a function of cartilage maturity, as well as loss of biological plasticity in aged tissue. These findings have likely implications for age-related loss of regeneration and osteoarthritis progression.
Collapse
Affiliation(s)
- Shannon K Walsh
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, USA.
| | - Stephanie E Schneider
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Laura A Amundson
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|