1
|
Arishima M, Haraguchi R, Kawakita H, Aoki S, Oishi Y, Narita T. Development of Controllable Perfusion Culture Scaffolds Using Multi-Channel Collagen Gels: Effects of Gelation Conditions on Channel Formation and Media Supply. Polymers (Basel) 2025; 17:287. [PMID: 39940490 PMCID: PMC11820984 DOI: 10.3390/polym17030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The development of scaffold materials that effectively mimic the extracellular matrix while enabling controlled nutrient delivery remains a critical challenge in tissue engineering. Multi-channel collagen gels (MCCGs), which form through the competition between gelation and phase separation, have emerged as promising scaffolds due to their self-organized vessel-like structures. However, a systematic understanding of the relationship between the gelation conditions and functional properties is limited. In this study, MCCGs were developed as controllable perfusion culture scaffolds by investigating the effects of carbonate buffer concentration on channel formation, permeation behavior, and cell proliferation. MCCGs were prepared using different carbonate buffer concentrations (12.5, 25, and 50 mM), with 25 mM producing optimal channel formation, characterized by an approximately 60% channel area fraction and uniform distribution. Permeation studies revealed that fluid transport through MCCGs is governed by a complex interplay between capillary phenomena and hydraulic pressure, whose relative dominance shifts with flow rate: capillary action dominates at low flow rates (2.5 mL/h), whereas hydraulic pressure becomes the primary driver at higher rates (5.0-10.0 mL/h). Cell proliferation assessments demonstrated that MCCGs prepared with 25 mM carbonate buffer provided the most favorable microenvironment, achieving superior cell growth over 168 h through balanced media supply and cell adhesion area. This optimization approach through buffer concentration adjustment offers a cost-effective and scalable method for developing perfusion culture scaffolds, advancing both the fundamental understanding of functional gel systems and practical applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mareni Arishima
- Department of Chemistry and Applied Chemistry, Saga University, Saga 840-8502, Japan
| | - Ryota Haraguchi
- Department of Chemistry and Applied Chemistry, Saga University, Saga 840-8502, Japan
| | - Hidetaka Kawakita
- Department of Chemistry and Applied Chemistry, Saga University, Saga 840-8502, Japan
| | - Shigehisa Aoki
- Department of Pathology and Microbiology, Saga University, Saga 840-8501, Japan
| | - Yushi Oishi
- Department of Chemistry and Applied Chemistry, Saga University, Saga 840-8502, Japan
| | - Takayuki Narita
- Department of Chemistry and Applied Chemistry, Saga University, Saga 840-8502, Japan
| |
Collapse
|
2
|
Jokar J, Abdulabbas HT, Alipanah H, Ghasemian A, Ai J, Rahimian N, Mohammadisoleimani E, Najafipour S. Tissue engineering studies in male infertility disorder. HUM FERTIL 2023; 26:1617-1635. [PMID: 37791451 DOI: 10.1080/14647273.2023.2251678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/06/2023] [Indexed: 10/05/2023]
Abstract
Infertility is an important issue among couples worldwide which is caused by a variety of complex diseases. Male infertility is a problem in 7% of all men. In vitro spermatogenesis (IVS) is the experimental approach that has been developed for mimicking seminiferous tubules-like functional structures in vitro. Currently, various researchers are interested in finding and developing a microenvironmental condition or a bioartificial testis applied for fertility restoration via gamete production in vitro. The tissue engineering (TE) has developed new approaches to treat male fertility preservation through development of functional male germ cells. This makes TE a possible future strategy for restoration of male fertility. Although 3D culture systems supply the perception of the effect of cellular interactions in the process of spermatogenesis, formation of a native gradient of autocrine/paracrine factors in 3D culture systems have not been considered. These results collectively suggest that maintaining the microenvironment of testicular cells even in the form of a 3D-culture system is crucial in achieving spermatogenesis ex vivo. It is also possible to engineer the testicular structures using biomaterials to provide a supporting scaffold for somatic and stem cells. The insemination of these cells with GFs is possible for temporally and spatially adjusted release to mimic the microenvironment of the in situ seminiferous epithelium. This review focuses on recent studies and advances in the application of TE strategies to cell-tissue culture on synthetic or natural scaffolds supplemented with growth factors.
Collapse
Affiliation(s)
- Javad Jokar
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | | | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Mohammadisoleimani
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
3
|
Gao YB, Liu ZG, Lin GD, Guo Y, Chen L, Huang BT, Yin YB, Yang C, Sun LY, Rong YB, Chen S. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial. Neural Regen Res 2021; 16:1652-1659. [PMID: 33433497 PMCID: PMC8323693 DOI: 10.4103/1673-5374.303040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A new nerve matrix membrane derived from decellularized porcine nerves has been shown to retain the major extracellular matrix components, and to be effective in preventing adhesion between the nerve anastomosis sites and the surrounding tissues in a rat sciatic nerve transection model, thereby enhancing regeneration of the nerve. The effectiveness of the membrane may be attributed to its various bioactive components. In this prospective, randomized, single-blind, parallel-controlled multicenter clinical trial, we compared the safety and efficacy of the new nerve matrix membrane with a previously approved bovine tendon-derived type I collagen nerve wrapping. A total of 120 patients with peripheral nerve injury were recruited from Beijing Jishuitan Hospital, The First Bethune Hospital of Jilin University, and Yantai Yuhuangding Hospital, China. The patients were randomly assigned to undergo end-to-end and tension-free neurorrhaphy with nerve matrix membrane (n = 60, 52 male, 8 female, mean age 41.34 years, experimental group) or tendon-derived collagen nerve wrapping (n = 60, 42 male, 18 female, mean age 40.17 years, control group). Patients were followed-up at 14 ± 5, 30 ± 7, 90 ± 10 and 180 ± 20 days after the operation. Safety evaluation included analyses of local and systemic reactions, related laboratory tests, and adverse reactions. Efficacy evaluation included a static 2-point discrimination test, a moving 2-point discrimination test, and a Semmes–Weinstein monofilament examination. Sensory nerve function was evaluated with the British Medical Research Council Scale and Semmes–Weinstein monofilament examination. The ratio (percentage) of patients with excellent to good results in sensory nerve recovery 180 ± 20 days after the treatment was used as the primary effectiveness index. The percentages of patients with excellent to good results in the experimental and control groups were 98.00% and 94.44%, respectively, with no significant difference between the two groups. There were no significant differences in the results of routine blood tests, liver and renal function tests, coagulation function tests, or immunoglobulin tests at 14 and 180 days postoperatively between the two groups. These findings suggest that the novel nerve matrix membrane is similar in efficacy to the commercially-available bovine-derived collagen membrane in the repair of peripheral nerve injury, and it may therefore serve as an alternative in the clinical setting. The clinical trial was approved by the Institutional Ethics Committee of Beijing Jishuitan Hospital, China (approval No. 20160902) on October 8, 2016, the Institutional Ethics Committee of the First Bethune Hospital of Jilin University, China (approval No. 160518-088) on December 14, 2016, and the Institutional Ethics Committee of Yantai Yuhuangding Hospital, China (approval No. 2016-10-01) on December 9, 2016. The clinical trial was registered with the Chinese Clinical Trial Registry (registration number: ChiCTR2000033324) on May 28, 2020.
Collapse
Affiliation(s)
- Yong-Bin Gao
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Zhi-Gang Liu
- Department of Hand Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Guo-Dong Lin
- Department of Hand and Foot Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Yang Guo
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Lei Chen
- Department of Hand Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bo-Tao Huang
- Department of Hand and Foot Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Yao-Bin Yin
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Chen Yang
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Li-Ying Sun
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Yan-Bo Rong
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Shanlin Chen
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
4
|
Gallo N, Natali ML, Sannino A, Salvatore L. An Overview of the Use of Equine Collagen as Emerging Material for Biomedical Applications. J Funct Biomater 2020; 11:79. [PMID: 33139660 PMCID: PMC7712325 DOI: 10.3390/jfb11040079] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Type I collagen has always aroused great interest in the field of life-science and bioengineering, thanks to its favorable structural properties and bioactivity. For this reason, in the last five decades it has been widely studied and employed as biomaterial for the manufacture of implantable medical devices. Commonly used sources of collagen are represented by bovine and swine but their applications are limited because of the zoonosis transmission risks, the immune response and the religious constrains. Thus, type-I collagen isolated from horse tendon has recently gained increasing interest as an attractive alternative, so that, although bovine and porcine derived collagens still remain the most common ones, more and more companies started to bring to market a various range of equine collagen-based products. In this context, this work aims to overview the properties of equine collagen making it particularly appealing in medicine, cosmetics and pharmaceuticals, as well as its main biomedical applications and the currently approved equine collagen-based medical devices, focusing on experimental studies and clinical trials of the last 15 years. To the best of our knowledge, this is the first review focusing on the use of equine collagen, as well as on equine collagen-based marketed products for healthcare.
Collapse
Affiliation(s)
- Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy; (M.L.N.); (A.S.); (L.S.)
| | | | | | | |
Collapse
|
5
|
Moattari M, Moattari F, Kaka G, Mohseni Kouchesfehani H, Sadraie SH, Naghdi M, Mansouri K. Evaluation of dexamethasone treated mesenchymal stem cells for recovery in neurotmesis model of peripheral nerve injury. Neurol Res 2018; 40:1060-1070. [PMID: 30246623 DOI: 10.1080/01616412.2018.1517859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Peripheral nerve injuries comprise significant portion of the nervous system injuries. Although peripheral nerves show some capacity of regeneration after injury, the extent of regeneration is not remarkable. The present study aimes to evaluate the regeneration of transected sciatic nerve by a therapeutic value of dexamethasone (DEX) associated with cell therapy (Cell) and biodegradable membrane (Mem) in rat. METHODS Male Wistar rats (n = 42, 180-200g) were randomly divided into control (Ctrl), Membrane+ Cell, Mem, DEX, DEX+ Cell, DEX+ Mem and DEX+ Cell+ Mem groups. Functional recovery was evaluated at 2, 4, 6, 8 and 12 weeks after surgery using sciatic functional index (SFI), withdrawal reflex latency (WRL) test, electrophysiological and histological analyses. RESULTS The rats in the DEX+ Cell+ Mem-treated group showed a significant improvement in SFI, WRL and electrophysiological findings during the 2nd to 12th weeks after surgery. In addition, histomorphological findings showed a significant improvement in the DEX+ Cell+ Memtreated group, at 12 weeks after surgery. DISCUSSION Taken together, use of DEX associated with cell and biodegradable membrane could improve functional and histomorphological properties of the sciatic nerve after injury.
Collapse
Affiliation(s)
- Mehrnaz Moattari
- a Department of Animal Biology, Faculty of Biological Science , Kharazmi University , Tehran , Iran
| | - Farahnaz Moattari
- b Faculty of Agriculture and Natural Resources , Persian Gulf University , Bushehr , Iran
| | - Gholamreza Kaka
- c Neuroscience Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | | | - Seyed Homayoon Sadraie
- c Neuroscience Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Majid Naghdi
- d Department of Anatomy , Fasa University of Medical Science , Fasa , Fars , Iran
| | - Korosh Mansouri
- e Department of Physical Medicine, and Rehabilitation , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
6
|
Pei B, Wang W, Fan Y, Wang X, Watari F, Li X. Fiber-reinforced scaffolds in soft tissue engineering. Regen Biomater 2017; 4:257-268. [PMID: 28798872 PMCID: PMC5544910 DOI: 10.1093/rb/rbx021] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/12/2017] [Accepted: 06/16/2017] [Indexed: 12/13/2022] Open
Abstract
Soft tissue engineering has been developed as a new strategy for repairing damaged or diseased soft tissues and organs to overcome the limitations of current therapies. Since most of soft tissues in the human body are usually supported by collagen fibers to form a three-dimensional microstructure, fiber-reinforced scaffolds have the advantage to mimic the structure, mechanical and biological environment of natural soft tissues, which benefits for their regeneration and remodeling. This article reviews and discusses the latest research advances on design and manufacture of novel fiber-reinforced scaffolds for soft tissue repair and how fiber addition affects their structural characteristics, mechanical strength and biological activities in vitro and in vivo. In general, the concept of fiber-reinforced scaffolds with adjustable microstructures, mechanical properties and degradation rates can provide an effective platform and promising method for developing satisfactory biomechanically functional implantations for soft tissue engineering or regenerative medicine.
Collapse
Affiliation(s)
- Baoqing Pei
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wei Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Fumio Watari
- Department of Biomedical Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
7
|
Ribeiro J, Caseiro AR, Pereira T, Armada-da-Silva PA, Pires I, Prada J, Amorim I, Leal Reis I, Amado S, Santos JD, Bompasso S, Raimondo S, Varejão ASP, Geuna S, Luís AL, Maurício AC. Evaluation of PVA biodegradable electric conductive membranes for nerve regeneration in axonotmesis injuries: the rat sciatic nerve animal model. J Biomed Mater Res A 2017; 105:1267-1280. [PMID: 28078802 DOI: 10.1002/jbm.a.35998] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/13/2016] [Accepted: 01/05/2017] [Indexed: 11/06/2022]
Abstract
The therapeutic effect of three polyvinyl alcohol (PVA) membranes loaded with electrically conductive materials - carbon nanotubes (PVA-CNTs) and polypyrrole (PVA-PPy) - were tested in vivo for neuro-muscular regeneration after an axonotmesis injury in the rat sciatic nerve. The membranes electrical conductivity measured was 1.5 ± 0.5 × 10-6 S/m, 579 ± 0.6 × 10-6 S/m, and 1837.5 ± 0.7 × 10-6 S/m, respectively. At week-12, a residual motor and nociceptive deficit were present in all treated groups, but at week-12, a better recovery to normal gait pattern of the PVA-CNTs and PVA-PPy treated groups was observed. Morphometrical analysis demonstrated that PVA-CNTs group presented higher myelin thickness and lower g-ratio. The tibialis anterior muscle, in the PVA-PPy and PVA-CNTs groups showed a 9% and 19% increase of average fiber size area and a 5% and 10% increase of the "minimal Feret's diameter," respectively. No inflammation, degeneration, fibrosis or necrosis were detected in lung, liver, kidneys, spleen, and regional lymph nodes and absence of carbon deposits was confirmed with Von Kossa and Masson-Fontana stains. In conclusion, the membranes of PVA-CNTs and PVA-PPy are biocompatible and have electrical conductivity. The higher electrical conductivity measured in PVA-CNTs membrane might be responsible for the positive results on maturation of myelinated fibers. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1267-1280, 2017.
Collapse
Affiliation(s)
- Jorge Ribeiro
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal.,UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal
| | - Ana Rita Caseiro
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal.,CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Tiago Pereira
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
| | - Paulo Alexandre Armada-da-Silva
- Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (ULisboa), Estrada da Costa, 1499-002, Dafundo, Cruz Quebrada, Portugal.,CIPER-FMH: Centro Interdisciplinar de Estudo de Performance Humana, Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (ULisboa), Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal
| | - Isabel Pires
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.,CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Justina Prada
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.,CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Irina Amorim
- Departmento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Rua Alfredo Allen, Porto, 4200-135, Portugal
| | - Inês Leal Reis
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
| | - Sandra Amado
- Instituto Politécnico de Leiria, UIS-IPL: Unidade de Investigação em Saúde da Escola Superior de Saúde de Leiria, Portugal.,CDrsp - Centre for Rapid and Sustainable Product Development, Rua de Portugal 2430-028, Marinha, Grande, Portugal
| | - José Domingos Santos
- CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Simone Bompasso
- Department of Clinical and Biological Sciences, University of Turin, Turin, 10126, Italy.,Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Regione Gonzole 10, Orbassano, 10043, Turin, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Turin, 10126, Italy.,Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Regione Gonzole 10, Orbassano, 10043, Turin, Italy
| | - Artur Severo Proença Varejão
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.,CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, 10126, Italy.,Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Regione Gonzole 10, Orbassano, 10043, Turin, Italy
| | - Ana Lúcia Luís
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal.,UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal
| | - Ana Colette Maurício
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
| |
Collapse
|
8
|
Khojasteh A, Hosseinpour S, Nazeman P, Dehghan MM. The effect of a platelet-rich fibrin conduit on neurosensory recovery following inferior alveolar nerve lateralization: a preliminary clinical study. Int J Oral Maxillofac Surg 2016; 45:1303-8. [PMID: 27371997 DOI: 10.1016/j.ijom.2016.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/20/2016] [Accepted: 06/01/2016] [Indexed: 12/29/2022]
Abstract
This retrospective study aimed to assess the recovery of neurosensory dysfunction following modified inferior alveolar nerve (IAN) lateralization surgery compared to the conventional approach. Data from two groups of patients who underwent IAN lateralization in 2014 were included in this study. In one group, platelet-rich fibrin was placed over the IAN and this was protected with a collagen membrane conduit; the other group underwent the conventional IAN lateralization procedure. Implants were placed immediately. Neurosensory dysfunction was evaluated at 3, 6, and 12 months post-surgery. Demographic, neurosensory disturbance (NSD), subjective two-point discrimination test (TPD), and static light touch test (SLT) data were obtained. Twenty-three IAN lateralization procedures with the placement of 51 implants were performed in 14 patients. At the 6-month follow-up, the number of patients experiencing normal sensation was greater in the modified surgery group, but the 12-month follow-up results were the same in the two groups. More precise sensation was observed with the TPD in the modified group at 6 months, and the modified group demonstrated better SLT scores at 6 months. Although the two groups had comparable results at the 12-month follow-up, it was observed that the modified technique accelerated neural healing within 6 months and reduced the length of the discomfort period.
Collapse
Affiliation(s)
- A Khojasteh
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Medicine, University of Antwerp, Antwerp, Belgium.
| | - S Hosseinpour
- Student Research Committee, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - P Nazeman
- Research Institute of Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M M Dehghan
- Department of Surgery and Radiology, Centre of Excellence for Cell Therapy and Tissue Engineering, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Emril DR, Wibowo S, Meliala L, Susilowati R. Cytidine 5'-diphosphocholine administration prevents peripheral neuropathic pain after sciatic nerve crush injury in rats. J Pain Res 2016; 9:287-91. [PMID: 27284264 PMCID: PMC4883808 DOI: 10.2147/jpr.s70481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background Cytidine 5′-diphosphocholine (citicoline) has been shown to have beneficial effects in central nervous system injury as well as in motoric functional recovery after peripheral nerve injury. This study aimed to examine the effect of citicoline on prevention of neuropathic pain in a rat model of sciatic nerve crush injury. Methods Forty experimental rats were divided into four groups. In three groups, the right sciatic nerves were crushed in the mid-thigh region, and a gelatin sponge moistened with 0.4 or 0.8 mL of 100 µmol/L citicoline, or saline 0.4 mL in the control group, was applied. The fourth group of rats was sham-operated, ie the sciatic nerve was exposed with no crush. Functional assessments were performed 4 weeks after crush injury. von Frey filaments (100 g threshold) were used to assess neuropathic pain. In addition, the sciatic functional index and extensor postural thrust (EPT) tests were used to assess motoric function. Results The crush/citicoline 0.4 mL group had a lower percentage of pain (23.53%, n=17) compared with the crush/saline group (53.33%, n=15, P<0.005). The crush/citicoline 0.4 mL group also showed better motoric recovery, as seen in stronger EPT results (P<0.001). However, the sciatic functional index analysis did not show significant differences between groups (P=0.35). The crush/citicoline 0.8 mL group showed a higher percentage of pain (66.67%, n=18) and less EPT recovery. These results may be explained by more severe nerve injury due to compression with a larger administered volume. Conclusion In situ administration of 0.4 mL of 100 µmol/L citicoline prevents the occurrence of neuropathic pain and induces motoric recovery, evaluated by EPT test, 4 weeks after sciatic nerve injury.
Collapse
Affiliation(s)
- Dessy R Emril
- Department of Neurology, Faculty of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
| | - Samekto Wibowo
- Department of Neurology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Lucas Meliala
- Department of Neurology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rina Susilowati
- Department of Histology and Cell Biology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
10
|
Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products. Stem Cells Int 2016; 2016:9756973. [PMID: 26880998 PMCID: PMC4736584 DOI: 10.1155/2016/9756973] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells' secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest.
Collapse
|
11
|
Kloczko E, Nikkhah D, Yildirimer L. Scaffolds for hand tissue engineering: the importance of surface topography. J Hand Surg Eur Vol 2015; 40:973-85. [PMID: 25770899 DOI: 10.1177/1753193415571308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/14/2015] [Indexed: 02/03/2023]
Abstract
Tissue engineering is believed to have great potential for the reconstruction of the hand after trauma, congenital absence and tumours. Due to the presence of multiple distinct tissue types, which together function in a precisely orchestrated fashion, the hand counts among the most complex structures to regenerate. As yet the achievements have been limited. More recently, the focus has shifted towards scaffolds, which provide a three-dimensional framework to mimic the natural extracellular environment for specific cell types. In particular their surface structures (or topographies) have become a key research focus to enhance tissue-specific cell attachment and growth into fully functioning units. This article reviews the current understanding in hand tissue engineering before focusing on the potential for scaffold topographical features on micro- and nanometre scales to achieve better functional regeneration of individual and composite tissues.
Collapse
Affiliation(s)
- E Kloczko
- UCL School of Life and Medical Sciences, University College London, London, UK
| | - D Nikkhah
- The Queen Victoria Hospital, East Grinstead, UK
| | - L Yildirimer
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London, UK Department of Plastic and Reconstructive Surgery, Royal Free Hospital Hampstead NHS Trust, London, UK
| |
Collapse
|
12
|
Ribeiro J, Pereira T, Caseiro AR, Armada-da-Silva P, Pires I, Prada J, Amorim I, Amado S, França M, Gonçalves C, Lopes MA, Santos JD, Silva DM, Geuna S, Luís AL, Maurício AC. Evaluation of biodegradable electric conductive tube-guides and mesenchymal stem cells. World J Stem Cells 2015; 7:956-975. [PMID: 26240682 PMCID: PMC4515438 DOI: 10.4252/wjsc.v7.i6.956] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/19/2015] [Accepted: 05/06/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the therapeutic effect of three tube-guides with electrical conductivity associated to mesenchymal stem cells (MSCs) on neuro-muscular regeneration after neurotmesis.
METHODS: Rats with 10-mm gap nerve injury were tested using polyvinyl alcohol (PVA), PVA-carbon nanotubes (CNTs) and MSCs, and PVA-polypyrrole (PPy). The regenerated nerves and tibialis anterior muscles were processed for stereological studies after 20 wk. The functional recovery was assessed serially for gait biomechanical analysis, by extensor postural thrust, sciatic functional index and static sciatic functional index (SSI), and by withdrawal reflex latency (WRL). In vitro studies included cytocompatibility, flow cytometry, reverse transcriptase polymerase chain reaction and karyotype analysis of the MSCs. Histopathology of lung, liver, kidneys, and regional lymph nodes ensured the biomaterials biocompatibility.
RESULTS: SSI remained negative throughout and independently from treatment. Differences between treted groups in the severity of changes in WRL existed, showing a faster regeneration for PVA-CNTs-MSCs (P < 0.05). At toe-off, less acute ankle joint angles were seen for PVA-CNTs-MSCs group (P = 0.051) suggesting improved ankle muscles function during the push off phase of the gait cycle. In PVA-PPy and PVA-CNTs groups, there was a 25% and 42% increase of average fiber area and a 13% and 21% increase of the “minimal Feret’s diameter” respectively. Stereological analysis disclosed a significantly (P < 0.05) increased myelin thickness (M), ratio myelin thickness/axon diameter (M/d) and ratio axon diameter/fiber diameter (d/D; g-ratio) in PVA-CNT-MSCs group (P < 0.05).
CONCLUSION: Results revealed that treatment with MSCs and PVA-CNTs tube-guides induced better nerve fiber regeneration. Functional and kinematics analysis revealed positive synergistic effects brought by MSCs and PVA-CNTs. The PVA-CNTs and PVA-PPy are promising scaffolds with electric conductive properties, bio- and cytocompatible that might prevent the secondary neurogenic muscular atrophy by improving the reestablishment of the neuro-muscular junction.
Collapse
|
13
|
Gärtner A, Pereira T, Simões MJ, Armada-da-Silva PA, França ML, Sousa R, Bompasso S, Raimondo S, Shirosaki Y, Nakamura Y, Hayakawa S, Osakah A, Porto B, Luís AL, Varejão AS, Maurício AC. Use of hybrid chitosan membranes and human mesenchymal stem cells from the Wharton jelly of umbilical cord for promoting nerve regeneration in an axonotmesis rat model. Neural Regen Res 2014; 7:2247-58. [PMID: 25538746 PMCID: PMC4268725 DOI: 10.3969/j.issn.1673-5374.2012.29.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/10/2012] [Indexed: 12/11/2022] Open
Abstract
Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to assess the effect on nerve regeneration, associating a hybrid chitosan membrane with non-differentiated human mesenchymal stem cells isolated from Wharton's jelly of umbilical cord, in peripheral nerve reconstruction after crush injury. Chromosome analysis on human mesenchymal stem cell line from Wharton's jelly was carried out and no structural alterations were found in metaphase. Chitosan membranes were previously tested in vitro, to assess their ability in supporting human mesenchymal stem cell survival, expansion, and differentiation. For the in vivo testing, Sasco Sprague adult rats were divided in 4 groups of 6 or 7 animals each: Group 1, sciatic axonotmesis injury without any other intervention (Group 1-Crush); Group 2, the axonotmesis lesion of 3 mm was infiltrated with a suspension of 1 250–1 500 human mesenchymal stem cells (total volume of 50 μL) (Group 2-CrushCell); Group 3, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane covered with a monolayer of non-differentiated human mesenchymal stem cells (Group 3-CrushChitIIICell) and Group 4, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane (Group 4-CrushChitIII). Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index, static sciatic index, extensor postural thrust, and withdrawal reflex latency. Stereological analysis was carried out on regenerated nerve fibers. Results showed that infiltration of human mesenchymal stem cells, or the combination of chitosan membrane enwrapment and human mesenchymal stem cell enrichment after nerve crush injury provide a slight advantage to post-traumatic nerve regeneration. Results obtained with chitosan type III membrane alone confirmed that they significantly improve post-traumatic axonal regrowth and may represent a very promising clinical tool in peripheral nerve reconstructive surgery. Yet, umbilical cord human mesenchymal stem cells, that can be expanded in culture and induced to form several different types of cells, may prove, in future experiments, to be a new source of cells for cell therapy, including targets such as peripheral nerve and muscle.
Collapse
Affiliation(s)
- Andrea Gärtner
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| | - Tiago Pereira
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| | - Maria João Simões
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| | - Paulo As Armada-da-Silva
- Faculty of Human Kinetics, Technical University of Lisbon, Cruz Quebrada - Dafundo, 1499-002, Portugal
| | - Miguel L França
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| | - Rosa Sousa
- Institute of Biomedical Sciences Abel Salazar, Cytogenetic Department, Porto University, Porto 4099-003, Portugal
| | - Simone Bompasso
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation, Orbassano 10043, Turin, Italy ; Department of Clinical and Biological Sciences, University of Turin, Orbassano 10010, Turin, Italy
| | - Stefania Raimondo
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation, Orbassano 10043, Turin, Italy ; Department of Clinical and Biological Sciences, University of Turin, Orbassano 10010, Turin, Italy
| | - Yuki Shirosaki
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yuri Nakamura
- Faculty of Engineering, Okayama University, Okayama 700-8530, Japan
| | - Satoshi Hayakawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Akiyoshi Osakah
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Beatriz Porto
- Institute of Biomedical Sciences Abel Salazar, Cytogenetic Department, Porto University, Porto 4099-003, Portugal
| | - Ana Lúcia Luís
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| | - Artur Sp Varejão
- Department of Veterinary Sciences, Research Centre in Sports, Health and Human Development, University of Trás-os-Montes and Alto Douro, Vila Real 5001-801, Portugal
| | - Ana Colette Maurício
- Animal Science and Study Centre / Food and Agrarian Sciences and Technologies Institute, Porto University, 4099-003 Porto, Portugal ; Institute of Biomedical Sciences Abel Salazar, Veterinary Clinics Department, Porto University, Porto 4099-003, Portugal
| |
Collapse
|
14
|
JOÃO FILIPA, VELOSO ANTÓNIO, AMADO SANDRA, ARMADA-DA-SILVA PAULO, MAURÍCIO ANAC. CAN GLOBAL OPTIMIZATION TECHNIQUE COMPENSATE FOR MARKER SKIN MOVEMENT IN RAT KINEMATICS? J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414500651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The motion of the skeletal estimated from skin attached marker-based motion capture(MOCAP) systems is known to be affected by significant bias caused by anatomical landmarks mislocation but especially by soft tissue artifacts (such as skin deformation and sliding, inertial effects and muscle contraction). As a consequence, the error associated with this bias can propagate to joint kinematics and kinetics data, particularly in small rodents. The purpose of this study was to perform a segmental kinematic analysis of the rat hindlimb during locomotion, using both global optimization as well as segmental optimization methods. Eight rats were evaluated for natural overground walking and motion of the right hindlimb was captured with an optoeletronic system while the animals walked in the track. Three-dimensional (3D) biomechanical analyses were carried out and hip, knee and ankle joint angular displacements and velocities were calculated. Comparison between both methods demonstrated that the magnitude of the kinematic error due to skin movement increases in the segmental optimization when compared with the global optimization method. The kinematic results assessed with the global optimization method matches more closely to the joint angles and ranges of motion calculated from bone-derived kinematics, being the knee and hip joints with more significant differences.
Collapse
Affiliation(s)
- FILIPA JOÃO
- Univ Tecn Lisboa, Fac Motricidade Humana-CIPER-LBMF, Estrada da Costa, P-1499-002 Lisbon, Portugal
| | - ANTÓNIO VELOSO
- Univ Tecn Lisboa, Fac Motricidade Humana-CIPER-LBMF, Estrada da Costa, P-1499-002 Lisbon, Portugal
| | - SANDRA AMADO
- Univ Tecn Lisboa, Fac Motricidade Humana-CIPER-LBMF, Estrada da Costa, P-1499-002 Lisbon, Portugal
| | - PAULO ARMADA-DA-SILVA
- Univ Tecn Lisboa, Fac Motricidade Humana-CIPER-LBMF, Estrada da Costa, P-1499-002 Lisbon, Portugal
| | - ANA C. MAURÍCIO
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), Porto University (UP), P-4050-313, Porto, Portugal
| |
Collapse
|
15
|
Challenges for nerve repair using chitosan-siloxane hybrid porous scaffolds. BIOMED RESEARCH INTERNATIONAL 2014; 2014:153808. [PMID: 25054129 PMCID: PMC4087280 DOI: 10.1155/2014/153808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 01/02/2023]
Abstract
The treatment of peripheral nerve injuries remains one of the greatest challenges of neurosurgery, as functional recover is rarely satisfactory in these patients. Recently, biodegradable nerve guides have shown great potential for enhancing nerve regeneration. A major advantage of these nerve guides is that no foreign material remains after the device has fulfilled its task, which spares a second surgical intervention. Recently, we studied peripheral nerve regeneration using chitosan-γ-glycidoxypropyltrimethoxysilane (chitosan-GPTMS) porous hybrid membranes. In our studies, these porous membranes significantly improved nerve fiber regeneration and functional recovery in rat models of axonotmetic and neurotmetic sciatic nerve injuries. In particular, the number of regenerated myelinated nerve fibers and myelin thickness were significantly higher in rat treated with chitosan porous hybrid membranes, whether or not they were used in combination with mesenchymal stem cells isolated from the Wharton's jelly of the umbilical cord. In this review, we describe our findings on the use of chitosan-GPTMS hybrids for nerve regeneration.
Collapse
|
16
|
Ribeiro J, Gartner A, Pereira T, Gomes R, Lopes MA, Gonçalves C, Varejão A, Luís AL, Maurício AC. Perspectives of employing mesenchymal stem cells from the Wharton's jelly of the umbilical cord for peripheral nerve repair. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 108:79-120. [PMID: 24083432 DOI: 10.1016/b978-0-12-410499-0.00004-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) from Wharton's jelly present high plasticity and low immunogenicity, turning them into a desirable form of cell therapy for the injured nervous system. Their isolation, expansion, and characterization have been performed from cryopreserved umbilical cord tissue. Great concern has been dedicated to the collection, preservation, and transport protocols of the umbilical cord after the parturition to the laboratory in order to obtain samples with higher number of viable MSCs without microbiological contamination. Different biomaterials like chitosan-silicate hybrid, collagen, PLGA90:10, poly(DL-lactide-ɛ-caprolactone), and poly(vinyl alcohol) loaded with electrical conductive materials, associated to MSCs have also been tested in the rat sciatic nerve in axonotmesis and neurotmesis lesions. The in vitro studies of the scaffolds included citocompatibility evaluation of the biomaterials used and cell characterization by imunocytochemistry, karyotype analysis, differentiation capacity into neuroglial-like cells, and flow cytometry. The regeneration process follow-up has been performed by functional analysis and the repaired nerves processed for stereological studies permitted the morphologic regeneration evaluation. The MSCs from Wharton's jelly delivered through tested biomaterials should be regarded a potentially valuable tool to improve clinical outcome especially after trauma to sensory nerves. In addition, these cells represent a noncontroversial source of primitive mesenchymal progenitor cells, which can be harvested after birth, cryogenically stored, thawed, and expanded for therapeutic uses. The importance of a longitudinal study concerning tissue engineering of the peripheral nerve, which includes a multidisciplinary team able to develop biomaterials associated to cell therapies, to perform preclinical trials concerning animal welfare and the appropriate animal model is here enhanced.
Collapse
Affiliation(s)
- Jorge Ribeiro
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Universidade do Porto (UP), Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gärtner A, Pereira T, Armada-da-Silva P, Amado S, Veloso A, Amorim I, Ribeiro J, Santos J, Bárcia R, Cruz P, Cruz H, Luís A, Santos J, Geuna S, Maurício A. Effects of umbilical cord tissue mesenchymal stem cells (UCX®) on rat sciatic nerve regeneration after neurotmesis injuries. J Stem Cells Regen Med 2014. [PMID: 25075157 PMCID: PMC4112274 DOI: 10.46582/jsrm.1001004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Peripheral nerves have the intrinsic capacity of self-regeneration after traumatic injury but the extent of the regeneration is often very poor. Increasing evidence demonstrates that mesenchymal stem/stromal cells (MSCs) may play an important role in tissue regeneration through the secretion of soluble trophic factors that enhance and assist in repair by paracrine activation of surrounding cells. In the present study, the therapeutic value of a population of umbilical cord tissue-derived MSCs, obtained by a proprietary method (UCX®), was evaluated on end-to-end rat sciatic nerve repair. Furthermore, in order to promote both, end-to-end nerve fiber contacts and MSC cell-cell interaction, as well as reduce the flush away effect of the cells after administration, a commercially available haemostatic sealant, Floseal®, was used as vehicle. Both, functional and morphologic recoveries were evaluated along the healing period using extensor postural thrust (EPT), withdrawal reflex latency (WRL), ankle kinematics analysis, and either histological analysis or stereology, in the hyper-acute, acute and chronic phases of healing. The histological analysis of the hyper-acute and acute phase studies revealed that in the group treated with UCX® alone the Wallerian degeneration was improved for the subsequent process of regeneration, the fiber organization was higher, and the extent of fibrosis was lower. The chronic phase experimental groups revealed that treatment with UCX® induced an increased number of regenerated fibers and thickening of the myelin sheet. Kinematics analysis showed that the ankle joint angle determined for untreated animals was significantly different from any of the treated groups at the instant of initial contact (IC). At opposite toe off (OT) and heel rise (HR), differences were found between untreated animals and the groups treated with either uCx® alone or UCX® administered with Floseal®. Overall, the UCX® application presented positive effects in functional and morphologic recovery, in both the acute and chronic phases of the regeneration process. Kinematics analysis has revealed positive synergistic effects brought by Floseal® as vehicle for MSCs.
Collapse
Affiliation(s)
- A Gärtner
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA) , Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; These authors contributed equally for the results present in this research work
| | - T Pereira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA) , Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; These authors contributed equally for the results present in this research work
| | - Pas Armada-da-Silva
- Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (UL) , Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal. ; CIPER-FMH: Centro Interdisciplinar de Estudo de Performance Humana, Faculdade de Motricidade Humana (FMH) , Universidade de Lisboa (UL), Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal
| | - S Amado
- CIPER-FMH: Centro Interdisciplinar de Estudo de Performance Humana, Faculdade de Motricidade Humana (FMH) , Universidade de Lisboa (UL), Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal. ; UIS-IPL: Unidade de Investigação em Saúde da Escola Superior de Saúde de Leiria , Instituto Politécnico de Leiria, Portugal
| | - Ap Veloso
- Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (UL) , Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal. ; CIPER-FMH: Centro Interdisciplinar de Estudo de Performance Humana, Faculdade de Motricidade Humana (FMH) , Universidade de Lisboa (UL), Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal
| | - I Amorim
- Departamento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; Instituto Português de Patologia e Imunologia Molecular da niversidade do Porto (IPATIMUP) , Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - J Ribeiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA) , Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Jd Santos
- CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia , Universidade do Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Rn Bárcia
- ECBio - Research and Development in Biotechnology S.A. , Rua Henrique Paiva Couceiro, 27, 2700-451 Amadora, Portugal
| | - P Cruz
- ECBio - Research and Development in Biotechnology S.A. , Rua Henrique Paiva Couceiro, 27, 2700-451 Amadora, Portugal
| | - H Cruz
- ECBio - Research and Development in Biotechnology S.A. , Rua Henrique Paiva Couceiro, 27, 2700-451 Amadora, Portugal
| | - Al Luís
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Jm Santos
- ECBio - Research and Development in Biotechnology S.A. , Rua Henrique Paiva Couceiro, 27, 2700-451 Amadora, Portugal
| | - S Geuna
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation , Turin, Italy. ; Department of Clinical and Biological Sciences , University of Turin, Italy
| | - Ac Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) , Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA) , Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| |
Collapse
|
18
|
Beigi MH, Ghasemi-Mobarakeh L, Prabhakaran MP, Karbalaie K, Azadeh H, Ramakrishna S, Baharvand H, Nasr-Esfahani MH. In vivo integration of poly(ε-caprolactone)/gelatin nanofibrous nerve guide seeded with teeth derived stem cells for peripheral nerve regeneration. J Biomed Mater Res A 2014; 102:4554-67. [PMID: 24677613 DOI: 10.1002/jbm.a.35119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/29/2014] [Accepted: 02/04/2014] [Indexed: 12/25/2022]
Abstract
Artificial nanofiber nerve guides have gained huge interest in bridging nerve gaps and associated peripheral nerve regeneration due to its high surface area, flexibility and porous structure. In this study, electrospun poly (ε-caprolactone)/gelatin (PCL/Gel) nanofibrous mats were fabricated, rolled around a copper wire and fixed by medical grade adhesive to obtain a tubular shaped bio-graft, to bridge 10 mm sciatic nerve gap in in vivo rat models. Stem cells from human exfoliated deciduous tooth (SHED) were transplanted to the site of nerve injury through the nanofibrous nerve guides. In vivo experiments were performed in animal models after creating a sciatic nerve gap, such that the nerve gap was grafted using (i) nanofiber nerve guide (ii) nanofiber nerve guide seeded with SHED (iii) suturing, while an untreated nerve gap remained as the negative control. In vitro cell culture study was carried out for primary investigation of SHED-nanofiber interaction and its viability within the nerve guides after 2 and 16 weeks of implantation time. Walking track analysis, plantar test, electrophysiology and immunohistochemistry were performed to evaluate functional recovery during nerve regeneration. Vascularization was also investigated by hematoxilin/eosine (H&E) staining. Overall results showed that the SHED seeded on nanofibrous nerve guide could survive and promote axonal regeneration in rat sciatic nerves, whereby the biocompatible PCL/Gel nerve guide with cells can support axonal regeneration and could be a promising tissue engineered graft for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Mohammad-Hossein Beigi
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Geuna S, Gnavi S, Perroteau I, Tos P, Battiston B. Tissue Engineering and Peripheral Nerve Reconstruction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:35-57. [DOI: 10.1016/b978-0-12-410499-0.00002-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Gärtner A, Pereira T, Alves MG, Armada-da-Silva PAS, Amorim I, Gomes R, Ribeiro J, França ML, Lopes C, Carvalho RA, Socorro S, Oliveira PF, Porto B, Sousa R, Bombaci A, Ronchi G, Fregnan F, Varejão ASP, Luís AL, Geuna S, Maurício AC. Use of poly(DL-lactide-ε-caprolactone) membranes and mesenchymal stem cells from the Wharton's jelly of the umbilical cord for promoting nerve regeneration in axonotmesis: in vitro and in vivo analysis. Differentiation 2012; 84:355-65. [PMID: 23142731 DOI: 10.1016/j.diff.2012.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/22/2012] [Accepted: 10/09/2012] [Indexed: 02/08/2023]
Abstract
Cellular systems implanted into an injured nerve may produce growth factors or extracellular matrix molecules, modulate the inflammatory process and eventually improve nerve regeneration. In the present study, we evaluated the therapeutic value of human umbilical cord matrix MSCs (HMSCs) on rat sciatic nerve after axonotmesis injury associated to Vivosorb® membrane. During HMSCs expansion and differentiation in neuroglial-like cells, the culture medium was collected at 48, 72 and 96 h for nuclear magnetic resonance (NMR) analysis in order to evaluate the metabolic profile. To correlate the HMSCs ability to differentiate and survival capacity in the presence of the Vivosorb® membrane, the [Ca(2+)]i of undifferentiated HMSCs or neuroglial-differentiated HMSCs was determined by the epifluorescence technique using the Fura-2AM probe. The Vivosorb® membrane proved to be adequate and used as scaffold associated with undifferentiated HMSCs or neuroglial-differentiated HMSCs. In vivo testing was carried out in adult rats where a sciatic nerve axonotmesis injury was treated with undifferentiated HMSCs or neuroglial differentiated HMSCs with or without the Vivosorb® membrane. Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index (SFI), extensor postural thrust (EPT), and withdrawal reflex latency (WRL). Stereological analysis was carried out on regenerated nerve fibers. In vitro investigation showed the formation of typical neuroglial cells after differentiation, which were positively stained for the typical specific neuroglial markers such as the GFAP, the GAP-43 and NeuN. NMR showed clear evidence that HMSCs expansion is glycolysis-dependent but their differentiation requires the switch of the metabolic profile to oxidative metabolism. In vivo studies showed enhanced recovery of motor and sensory function in animals treated with transplanted undifferentiated and differentiated HMSCs that was accompanied by an increase in myelin sheath. Taken together, HMSC from the umbilical cord Wharton jelly might be useful for improving the clinical outcome after peripheral nerve lesion.
Collapse
Affiliation(s)
- A Gärtner
- Institute of Biomedical Sciences Abel Salazar, Porto University, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Devesa P, Gelabert M, Gonźlez-Mosquera T, Gallego R, Relova JL, Devesa J, Arce VM. Growth hormone treatment enhances the functional recovery of sciatic nerves after transection and repair. Muscle Nerve 2012; 45:385-92. [PMID: 22334173 DOI: 10.1002/mus.22303] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Although nerves can spontaneously regenerate in the peripheral nervous system without treatment, functional recovery is generally poor, and thus there is a need for strategies to improve nerve regeneration. METHODS The left sciatic nerve of adult rats was transected and immediately repaired by epineurial sutures. Rats were then assigned to one of two experimental groups treated with either growth hormone (GH) or saline for 8 weeks. Sciatic nerve regeneration was estimated by histological evaluation, nerve conduction tests, and rotarod and treadmill performance. RESULTS GH-treated rats showed increased cellularity at the lesion site together with more abundant immunoreactive axons and Schwann cells. Compound muscle action potential (CMAP) amplitude was also higher in these animals, and CMAP latency was significantly lower. Treadmill performance increased in rats receiving GH. CONCLUSION GH enhanced the functional recovery of the damaged nerves, thus supporting the use of GH treatment, alone or combined with other therapeutic approaches, in promoting nerve repair.
Collapse
Affiliation(s)
- Pablo Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, San Francisco 1, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Venouziou AI, Dailiana ZH, Varitimidis SE, Hantes ME, Gougoulias NE, Malizos KN. Radial nerve palsy associated with humeral shaft fracture. Is the energy of trauma a prognostic factor? Injury 2011; 42:1289-1293. [PMID: 21353219 DOI: 10.1016/j.injury.2011.01.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Radial nerve palsy associated with humeral shaft fractures is the most common nerve lesion complicating fractures of long bones. The purpose of the study was to review the outcome of surgical management in patients with low energy and high energy radial nerve palsy after humeral shaft fractures. METHODS Eighteen patients were treated operatively for a humeral shaft fracture with radial nerve palsy. The mean age was 32.2 years and the mean follow up time was 66.1 months (range: 30-104). The surgical management included fracture fixation with early nerve exploration and repair if needed. The patients were divided in two groups based on the energy of trauma (low vs. high trauma energy). The prevalence of injured and unrecovered nerves and time to nerve recovery were analysed. RESULTS Five patients sustained low and 13 high energy trauma. All patients with low energy trauma had an intact (4) or entrapped (1) radial nerve and recovered completely. Full nerve recovery was also achieved in five of 13 patients with high energy trauma where the nerve was found intact or entrapped. Signs of initial recovery were present in a mean of 3.2 weeks (range: 1-8) for the low energy group and 12 weeks (range: 3-23) for the high energy group (p=0.036). In these patients, the average time to full recovery was 14 and 26 weeks for the low and high energy trauma group respectively. Eight patients with high energy trauma had severely damaged nerves and failed to recover, although microsurgical nerve reconstruction was performed in 4 cases. Patients with high energy trauma had a prolonged fracture healing time (18.7 weeks on average) compared to those with low energy fractures (10.4 weeks), (p=0.003). CONCLUSIONS The outcome of the radial nerve palsy following humeral fractures is associated to the initial trauma. Palsies that are part of a low energy fracture uniformly recover and therefore primary surgical exploration seems unnecessary. In high energy fractures, neurotmesis or severe contusion must be expected. In this case nerve recovery is unfavourable and the patients should be informed of the poor prognosis and the need of tendon transfers.
Collapse
Affiliation(s)
- Aaron I Venouziou
- Department of Orthopaedic Surgery, Faculty of Medicine, School of Health Sciences, University of Thessalia, Biopolis, Larissa 41110, Greece
| | | | | | | | | | | |
Collapse
|
23
|
Medalha CC, Di Gangi GC, Barbosa CB, Fernandes M, Aguiar O, Faloppa F, Leite VM, Renno ACM. Low-level laser therapy improves repair following complete resection of the sciatic nerve in rats. Lasers Med Sci 2011; 27:629-35. [PMID: 22009383 DOI: 10.1007/s10103-011-1008-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 09/23/2011] [Indexed: 01/15/2023]
Abstract
The aim of this study is to analyze the effects of low-level laser therapy (LLLT) on the regeneration of the sciatic nerve in rats following a complete nerve resection. Male Wistar rats were divided into a control injury group, injury groups irradiated with a 660-nm laser at 10 or 50 J/cm(2), and injury groups irradiated with an 808-nm laser at 10 or 50 J/cm(2). Treatment began 24 h following nerve resection and continued for 15 days. Using the sciatic functional index (SFI), we show that the injured animals treated with 660 nm at 10 and 50 J/cm(2) had better SFI values compared with the control injury and the 808-nm groups. Animals irradiated with the 808-nm laser at 50 J/cm(2) show higher values for fiber density than do control animals. In addition, axon and fiber diameters were larger in animals irradiated with 660 nm at 50 J/cm(2) compared to the control group. These findings indicate that 660-nm LLLT is able to provide functional gait recovery and leads to increases in fiber diameter following sciatic nerve resection.
Collapse
Affiliation(s)
- Carla Christina Medalha
- Department of Bioscience, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, CEP 04021-001, Santos, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering. Biomaterials 2011; 32:8990-8. [PMID: 21880362 DOI: 10.1016/j.biomaterials.2011.08.035] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/14/2011] [Indexed: 12/31/2022]
Abstract
Current tissue engineering approaches for tendon defects require improved biomaterials to balance microstructural and mechanical design criteria. Collagen-glycosaminoglycan (CG) scaffolds have shown considerable success as in vivo regenerative templates and in vitro constructs to study cell behavior. While these scaffolds possess many advantageous qualities, their mechanical properties are typically orders of magnitude lower than orthopedic tissues such as tendon. Taking inspiration from mechanically efficient core-shell composites in nature such as plant stems and porcupine quills, we have created core-shell CG composites that display high bioactivity and improved mechanical integrity. These composites feature integration of a low density, anisotropic CG scaffold core with a high density, CG membrane shell. CG membranes were fabricated via an evaporative process that allowed separate tuning of membrane thickness and elastic moduli and were found to be isotropic in-plane. The membranes were then integrated with an anisotropic CG scaffold core via freeze-drying and subsequent crosslinking. Increasing the relative thickness of the CG membrane shell was shown to increase composite tensile elastic modulus by as much as a factor of 36 in a manner consistent with predictions from layered composites theory. CG scaffold-membrane composites were found to support tendon cell viability, proliferation, and metabolic activity in vitro, suggesting they maintain sufficient permeability while demonstrating improved mechanical strength. This work suggests an effective, biomimetic approach for balancing strength and bioactivity requirements of porous scaffolds for tissue engineering.
Collapse
|
25
|
Amado S, Armada-da-Silva PAS, João F, Maurício AC, Luís AL, Simões MJ, Veloso AP. The sensitivity of two-dimensional hindlimb joint kinematics analysis in assessing functional recovery in rats after sciatic nerve crush. Behav Brain Res 2011; 225:562-73. [PMID: 21875621 DOI: 10.1016/j.bbr.2011.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/08/2011] [Accepted: 08/13/2011] [Indexed: 12/26/2022]
Abstract
Walking analysis in the rat is increasingly used to assess functional recovery after peripheral nerve injury. Here we assess the sensitivity and specificity of hindlimb joint kinematics measures during the rat gait early after sciatic nerve crush injury (DEN), after twelve weeks of recovery (REINN) and in sham-operated controls (Sham) using discriminant analysis. The analysis addressed gait spatiotemporal variables and hip, knee and ankle angle and angular velocity measures during the entire walking cycle. In DEN animals, changes affected all studied joints plus spatiotemporal parameters of gait. Both the spatiotemporal and ankle kinematics parameters recovered to normality within twelve weeks. At this time point, some hip and knee kinematics values were still abnormal when compared to sham controls. Discriminant models based on hip, knee and ankle kinematics displayed maximal sensitivity to identify DEN animals. However, the discriminant models based on spatiotemporal and ankle kinematics data showed a poor performance when assigning animals to the REINN and Sham groups. Models using hip and knee kinematics during walking showed the best sensitivity to recognize the reinnervated animals. The model construed on the basis of hip joint kinematics was the one combining highest sensitivity with robustness and high specificity. It is concluded that ankle joint kinematics fails in detecting minor functional deficits after long term recovery from sciatic nerve crush and extending the kinematic analysis during walking to the hip and knee joints improves the sensitivity of this functional test.
Collapse
Affiliation(s)
- Sandra Amado
- Faculty of Human Kinetics and Neuromechanics of Human Movement Group, CIPER, Technical University of Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
26
|
Perspectives in regeneration and tissue engineering of peripheral nerves. Ann Anat 2011; 193:334-40. [DOI: 10.1016/j.aanat.2011.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 12/13/2022]
|