1
|
Zhang A, Lu Z, Roohani I, Liu B, Jarvis KL, Tan R, Wise SG, Bilek MMM, Mirkhalaf M, Akhavan B, Zreiqat H. Bioinstructive 3D-Printed Magnesium-Baghdadite Bioceramic Scaffolds for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15220-15236. [PMID: 40013831 DOI: 10.1021/acsami.5c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Current synthetic bioceramic scaffolds often lack bioinstructive ability for effective bone regeneration. We have selected magnesium-doped baghdadite (Mg-BAG) scaffolds, known for their promising osteoinductive and mechanical properties, as the base material and fabricated them using a liquid crystal display 3D printing technique. Building on this foundation, we have advanced the application of ion-assisted plasma polymerization (IAPP) technology, adapted for 3D structures, to develop homogeneous bioinstructive interfaces on these scaffolds for enhanced osteoinductive properties. The IAPP coatings formed under energetic ion bombardment maintained a strong attachment to the Mg-BAG scaffolds after 1 month of incubation at 37 °C in cell culture media. We provided evidence that such robustness of the interfaces is regulated by the coating's growth mechanism on a nanoscale, transitioning from initial island formation to a stable, smooth structure. The coatings enhanced the release of silicon ions from the scaffolds and significantly slowed the release of bone morphogenetic protein 2 (BMP2) over a period of 45 days. In the presence of lower soluble BMP2 concentrations, the biofunctionalized scaffolds demonstrated superior biocompatibility and osteoinductivity compared to those with physisorbed BMP2, as evidenced by sustained cell proliferation and elevated levels of osteogenic gene expression observed in human osteoblast-like cells (HOBs). This research highlights a key evolution of IAPP from traditional 2D substrates to more complex 3D structures and the excellent potential of IAPP bioceramic scaffolds as a next generation of cell-free constructs for bone regeneration applications and beyond.
Collapse
Affiliation(s)
- Anyu Zhang
- School of Biomedical Engineering, Tissue Engineering and Biomaterials Research Unit, Faculty of Engineering University of Sydney, Sydney, New South Wales 2006, Australia
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zufu Lu
- School of Biomedical Engineering, Tissue Engineering and Biomaterials Research Unit, Faculty of Engineering University of Sydney, Sydney, New South Wales 2006, Australia
| | - Iman Roohani
- School of Biomedical Engineering, Tissue Engineering and Biomaterials Research Unit, Faculty of Engineering University of Sydney, Sydney, New South Wales 2006, Australia
- School of Biomedical Engineering, Faculty of IT and Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Bingyan Liu
- School of Biomedical Engineering, Tissue Engineering and Biomaterials Research Unit, Faculty of Engineering University of Sydney, Sydney, New South Wales 2006, Australia
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Karyn L Jarvis
- ANFF-VIC Biointerface Engineering Hub, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Richard Tan
- School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Steven G Wise
- School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marcela M M Bilek
- School of Biomedical Engineering, Tissue Engineering and Biomaterials Research Unit, Faculty of Engineering University of Sydney, Sydney, New South Wales 2006, Australia
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mohammad Mirkhalaf
- School of Mech., Medical & Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
| | - Behnam Akhavan
- School of Biomedical Engineering, Tissue Engineering and Biomaterials Research Unit, Faculty of Engineering University of Sydney, Sydney, New South Wales 2006, Australia
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, New South Wales 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, New South Wales 2305, Australia
| | - Hala Zreiqat
- School of Biomedical Engineering, Tissue Engineering and Biomaterials Research Unit, Faculty of Engineering University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
2
|
Fulton DA, Dura G, Peters DT. The polymer and materials science of the bacterial fimbriae Caf1. Biomater Sci 2023; 11:7229-7246. [PMID: 37791425 PMCID: PMC10628683 DOI: 10.1039/d3bm01075a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Fimbriae are long filamentous polymeric protein structures located upon the surface of bacteria. Often implicated in pathogenicity, the biosynthesis and function of fimbriae has been a productive topic of study for many decades. Evolutionary pressures have ensured that fimbriae possess unique structural and mechanical properties which are advantageous to bacteria. These properties are also difficult to engineer with well-known synthetic and natural fibres, and this has raised an intriguing question: can we exploit the unique properties of bacterial fimbriae in useful ways? Initial work has set out to explore this question by using Capsular antigen fragment 1 (Caf1), a fimbriae expressed naturally by Yersina pestis. These fibres have evolved to 'shield' the bacterium from the immune system of an infected host, and thus are rather bioinert in nature. Caf1 is, however, very amenable to structural mutagenesis which allows the incorporation of useful bioactive functions and the modulation of the fibre's mechanical properties. Its high-yielding recombinant synthesis also ensures plentiful quantities of polymer are available to drive development. These advantageous features make Caf1 an archetype for the development of new polymers and materials based upon bacterial fimbriae. Here, we cover recent advances in this new field, and look to future possibilities of this promising biopolymer.
Collapse
Affiliation(s)
- David A Fulton
- Chemistry-School of Natural Science and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| | - Gema Dura
- Chemistry-School of Natural Science and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
- Departamento de Química Inorgánica Orgánica y Bioquímica Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas-IRICAAvda, C. J. Cela, 10, Ciudad Real 13071, Spain
| | - Daniel T Peters
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
3
|
Tan QC, Jiang XS, Chen L, Huang JF, Zhou QX, Wang J, Zhao Y, Zhang B, Sun YN, Wei M, Zhao X, Yang Z, Lei W, Tang YF, Wu ZX. Bioactive graphene oxide-functionalized self-expandable hydrophilic and osteogenic nanocomposite for orthopaedic applications. Mater Today Bio 2022; 18:100500. [DOI: 10.1016/j.mtbio.2022.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
|
4
|
Dura G, Peters DT, Waller H, Yemm AI, Perkins ND, Ferreira AM, Crespo-Cuadrado M, Lakey JH, Fulton DA. A Thermally Reformable Protein Polymer. Chem 2020. [DOI: 10.1016/j.chempr.2020.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
El Gezawi M, Wölfle UC, Haridy R, Fliefel R, Kaisarly D. Remineralization, Regeneration, and Repair of Natural Tooth Structure: Influences on the Future of Restorative Dentistry Practice. ACS Biomater Sci Eng 2019; 5:4899-4919. [PMID: 33455239 DOI: 10.1021/acsbiomaterials.9b00591] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, the principal strategy for the treatment of carious defects involves cavity preparations followed by the restoration of natural tooth structure with a synthetic material of inferior biomechanical and esthetic qualities and with questionable long-term clinical reliability of the interfacial bonds. Consequently, prevention and minimally invasive dentistry are considered basic approaches for the preservation of sound tooth structure. Moreover, conventional periodontal therapies do not always ensure predictable outcomes or completely restore the integrity of the periodontal ligament complex that has been lost due to periodontitis. Much effort and comprehensive research have been undertaken to mimic the natural development and biomineralization of teeth to regenerate and repair natural hard dental tissues and restore the integrity of the periodontium. Regeneration of the dentin-pulp tissue has faced several challenges, starting with the basic concerns of clinical applicability. Recent technologies and multidisciplinary approaches in tissue engineering and nanotechnology, as well as the use of modern strategies for stem cell recruitment, synthesis of effective biodegradable scaffolds, molecular signaling, gene therapy, and 3D bioprinting, have resulted in impressive outcomes that may revolutionize the practice of restorative dentistry. This Review covers the current approaches and technologies for remineralization, regeneration, and repair of natural tooth structure.
Collapse
Affiliation(s)
- Moataz El Gezawi
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Uta Christine Wölfle
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Rasha Haridy
- Department of Clinical Dental Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.,Department of Conservative Dentistry, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| | - Riham Fliefel
- Experimental Surgery and Regenerative Medicine (ExperiMed), University Hospital, LMU Munich, 80336 Munich, Germany.,Department of Oral and Maxillofacial Surgery, University Hospital, LMU Munich, 80337 Munich, Germany.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
| | - Dalia Kaisarly
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany.,Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| |
Collapse
|
6
|
Peters DT, Waller H, Birch MA, Lakey JH. Engineered mosaic protein polymers; a simple route to multifunctional biomaterials. J Biol Eng 2019; 13:54. [PMID: 31244892 PMCID: PMC6582577 DOI: 10.1186/s13036-019-0183-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Engineered living materials (ELMs) are an exciting new frontier, where living organisms create highly functional materials. In particular, protein ELMs have the advantage that their properties can be manipulated via simple molecular biology. Caf1 is a protein ELM that is especially attractive as a biomaterial on account of its unique combination of properties: bacterial cells export it as a massive, modular, non-covalent polymer which is resistant to thermal and chemical degradation and free from animal material. Moreover, it is biologically inert, allowing the bioactivity of each 15 kDa monomeric Caf1 subunit to be specifically engineered by mutagenesis and co-expressed in the same Escherichia coli cell to produce a mixture of bioactive Caf1 subunits. RESULTS Here, we show by gel electrophoresis and transmission electron microscopy that the bacterial cells combine these subunits into true mosaic heteropolymers. By combining two separate bioactive motifs in a single mosaic polymer we demonstrate its utility by stimulating the early stages of bone formation by primary human bone marrow stromal cells. Finally, using a synthetic biology approach, we engineer a mosaic of three components, demonstrating that Caf1 complexity depends solely upon the variety of monomers available. CONCLUSIONS These results demonstrate the utility of engineered Caf1 mosaic polymers as a simple route towards the production of multifunctional biomaterials that will be useful in biomedical applications such as 3D tissue culture and wound healing. Additionally, in situ Caf1 producing cells could create complex bacterial communities for biotechnology. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Daniel T. Peters
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Waller
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Mark A. Birch
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Jeremy H. Lakey
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Rabbers A, Rabelo R, Oliveira L, Ribeiro M, Martins V, Plepis A, Vulcani V. Additive effect of pulp pequi oil (Caryocar brasiliense Camb.) on the biocompatibility of collagen and gelatin membranes in subcutaneous implants. ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-10412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Trauma or disease inflicted by tissue injuries may cause tissue degeneration. The use of biomaterials for direct or indirect repair has emerged as a promising alternative, and has become an important research topic. The pequi fruit (Caryocar brasiliense Camb.) has shown antifungal, antibacterial, anti-inflammatory, healing, antitumor, and antioxidant properties. The objective of this study was to develop a new biomaterial using a combination of collagen, gelatin, and pulp pequi oil, and to evaluate its biocompatibility in comparison with that of biomaterials produced without pulp pequi oil. Membranes were prepared from a mixture of bovine tendon collagen, commercial gelatin, and pulp pequi oil. The inflammatory and cicatricial processes were assessed via histopathology of the tissue interface/implants in the subcutaneous tissues and quantitative evaluation of leukocyte and collagen production in Wistar rats. It was observed that the presence of pequi oil reduced the amount of foreign-body giant cells and favored the recruitment of fibroblasts (P< 0.01), thereby promoting greater production of collagen membrane than that in the membranes of control samples. Therefore, it can be concluded that the addition of pequi oil improved the biocompatibility of collagen and accelerated the healing process.
Collapse
|
8
|
Lukasova V, Buzgo M, Sovkova V, Dankova J, Rampichova M, Amler E. Osteogenic differentiation of 3D cultured mesenchymal stem cells induced by bioactive peptides. Cell Prolif 2017; 50. [PMID: 28714176 DOI: 10.1111/cpr.12357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/10/2017] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Bioactive peptides derived from receptor binding motifs of native proteins are a potent source of bioactive molecules that can induce signalling pathways. These peptides could substitute for osteogenesis promoting supplements. The work presented here compares three kinds of bioactive peptides derived from collagen III, bone morphogenetic protein 7 (BMP-7) and BMP-2 with their potential osteogenic activity on the model of porcine mesenchymal stem cells (pMSCs). MATERIALS AND METHODS pMSCs were cultured on electrospun polycaprolactone nanofibrous scaffolds with different concentrations of the bioactive peptides without addition of any osteogenic supplement. Analysis of pMSCs cultures included measurement of the metabolic activity and proliferation, immunofluorescence staining and also qPCR. RESULTS Results showed no detrimental effect of the bioactive peptides to cultured pMSCs. Based on qPCR analysis, the bioactive peptides are specific for osteogenic differentiation with no detectable expression of collagen II. Our results further indicate that peptide derived from BMP-2 protein promoted the expression of mRNA for osteocalcin (OCN) and collagen I significantly compared to control groups and also supported deposition of OCN as observed by immunostaining method. CONCLUSION The data suggest that bioactive peptide with an amino acid sequence of KIPKASSVPTELSAISTLYL derived from BMP-2 protein was the most potent for triggering osteogenic differentiation of pMSCs.
Collapse
Affiliation(s)
- Vera Lukasova
- Faculty of Science, Charles University in Prague, Prague, Czech Republic.,Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Matej Buzgo
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.,University Center for Energy Efficient Buildings, Czech Technical University in Prague, Bustehrad, Czech Republic
| | - Vera Sovkova
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jana Dankova
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Michala Rampichova
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,University Center for Energy Efficient Buildings, Czech Technical University in Prague, Bustehrad, Czech Republic
| | - Evzen Amler
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.,University Center for Energy Efficient Buildings, Czech Technical University in Prague, Bustehrad, Czech Republic
| |
Collapse
|
9
|
Migliorini E, Valat A, Picart C, Cavalcanti-Adam EA. Tuning cellular responses to BMP-2 with material surfaces. Cytokine Growth Factor Rev 2015; 27:43-54. [PMID: 26704296 DOI: 10.1016/j.cytogfr.2015.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic protein 2 (BMP-2) has been known for decades as a strong osteoinductive factor and for clinical applications is combined solely with collagen as carrier material. The growing concerns regarding side effects and the importance of BMP-2 in several developmental and physiological processes have raised the need to improve the design of materials by controlling BMP-2 presentation. Inspired by the natural cell environment, new material surfaces have been engineered and tailored to provide both physical and chemical cues that regulate BMP-2 activity. Here we describe surfaces designed to present BMP-2 to cells in a spatially and temporally controlled manner. This is achieved by trapping BMP-2 using physicochemical interactions, either covalently grafted or combined with other extracellular matrix components. In the near future, we anticipate that material science and biology will integrate and further develop tools for in vitro studies and potentially bring some of them toward in vivo applications.
Collapse
Affiliation(s)
- Elisa Migliorini
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany, Tel: +49-6221-54 5064
| | - Anne Valat
- CNRS-UMR 5628, LMGP, 3 parvis L.Néel, F-38 016 Grenoble, France
- University Grenoble Alpes, Grenoble Institute of Technology, LMGP, 3 parvis Louis Néel, F-28016 Grenoble, France
- INSERM U823, ERL CNRS5284, Université de Grenoble Alpes, Institut Albert Bonniot, Site Santé, BP170, 38042 Grenoble cedex 9, France, Tel: +33-04-56529311
| | - Catherine Picart
- CNRS-UMR 5628, LMGP, 3 parvis L.Néel, F-38 016 Grenoble, France
- University Grenoble Alpes, Grenoble Institute of Technology, LMGP, 3 parvis Louis Néel, F-28016 Grenoble, France
| | - Elisabetta Ada Cavalcanti-Adam
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany, Tel: +49-6221-54 5064
| |
Collapse
|
10
|
Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh A. Smart scaffolds in bone tissue engineering: A systematic review of literature. World J Stem Cells 2015; 7:657-668. [PMID: 25914772 PMCID: PMC4404400 DOI: 10.4252/wjsc.v7.i3.657] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/10/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To improve osteogenic differentiation and attachment of cells. METHODS An electronic search was conducted in PubMed from January 2004 to December 2013. Studies which performed smart modifications on conventional bone scaffold materials were included. Scaffolds with controlled release or encapsulation of bioactive molecules were not included. Experiments which did not investigate response of cells toward the scaffold (cell attachment, proliferation or osteoblastic differentiation) were excluded. RESULTS Among 1458 studies, 38 met the inclusion and exclusion criteria. The main scaffold varied extensively among the included studies. Smart modifications included addition of growth factors (group I-11 studies), extracellular matrix-like molecules (group II-13 studies) and nanoparticles (nano-HA) (group III-17 studies). In all groups, surface coating was the most commonly applied approach for smart modification of scaffolds. In group I, bone morphogenetic proteins were mainly used as growth factor stabilized on polycaprolactone (PCL). In group II, collagen 1 in combination with PCL, hydroxyapatite (HA) and tricalcium phosphate were the most frequent scaffolds used. In the third group, nano-HA with PCL and chitosan were used the most. As variable methods were used, a thorough and comprehensible compare between the results and approaches was unattainable. CONCLUSION Regarding the variability in methodology of these in vitro studies it was demonstrated that smart modification of scaffolds can improve tissue properties.
Collapse
Affiliation(s)
- Saeed Reza Motamedian
- Saeed Reza Motamedian, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran PO Box 19839, Iran
| | - Sepanta Hosseinpour
- Saeed Reza Motamedian, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran PO Box 19839, Iran
| | - Mitra Ghazizadeh Ahsaie
- Saeed Reza Motamedian, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran PO Box 19839, Iran
| | - Arash Khojasteh
- Saeed Reza Motamedian, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran PO Box 19839, Iran
| |
Collapse
|
11
|
Weng S, Zhou L, Han L, Yuan Y. Expression and purification of non-tagged recombinant mouse SPP1 in E. coli and its biological significance. Bioengineered 2014; 5:405-8. [PMID: 25482081 DOI: 10.4161/bioe.34424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Secreted phosphoprotein 1 (SPP1) is a multifunctional protein expressed by cells from a large variety of tissues. It is involved in many physiological and pathological processes, including bone metabolism, inflammation progress, tumor metastasis, injury repair, and hyperoxia-induced injury. Native SPP1 from multiple species have been isolated from the milk and urine, and recombinant SPP1 with different tags have been expressed and purified from bacteria. In our study, DNA fragments corresponding to mouse SPP1 without signal peptide were built into the pET28a(+) vector, and non-tagged recombinant mouse SPP1 (rmSPP1) was expressed in Escherichia coli BL21(DE3). rmSPP1 was purified using a novel tri-step procedure, and the product features high purity and low endotoxin level. rmSPP1 can effectively increase hepatocellular carcinoma cell (HCC) proliferation in vitro, demonstrating its biological activity.
Collapse
Affiliation(s)
- Shunyan Weng
- a Shanghai Key Laboratory of Veterinary Biotechnology; College of Agriculture and Biology ; Shanghai Jiao Tong University ; Shanghai , P.R. China
| | | | | | | |
Collapse
|
12
|
Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. BIOMED RESEARCH INTERNATIONAL 2014; 2014:921905. [PMID: 25143954 PMCID: PMC4124711 DOI: 10.1155/2014/921905] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/15/2014] [Indexed: 01/01/2023]
Abstract
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.
Collapse
Affiliation(s)
- Julien Barthes
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Hayriye Özçelik
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Mathilde Hindié
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, Université de Cergy-Pontoise, 2 Avenue Adolphe Chauvin, 95302 Cergy Pontoise, France
| | | | - Anwarul Hasan
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nihal Engin Vrana
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
- Protip SAS, 8 Place de l'Hôpital, 67000, Strasbourg, France
| |
Collapse
|
13
|
Lee JH, Park JH, El-Fiqi A, Kim JH, Yun YR, Jang JH, Han CM, Lee EJ, Kim HW. Biointerface control of electrospun fiber scaffolds for bone regeneration: engineered protein link to mineralized surface. Acta Biomater 2014; 10:2750-61. [PMID: 24468581 DOI: 10.1016/j.actbio.2014.01.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 01/11/2014] [Accepted: 01/16/2014] [Indexed: 12/12/2022]
Abstract
Control over the interface of biomaterials that favors the initial adhesion and subsequent differentiation of stem cells is one of the key strategies in bone tissue engineering. Here we engineer the interface of biopolymer electrospun fiber matrices with a fusion protein of fibronectin 9-10 domain (FNIII9-10) and osteocalcin (OCN), aiming to stimulate mesenchymal stem cell (MSC) functions, including initial adhesion, growth and osteogenic differentiation. In particular, a specific tethering of FNIII9-10-OCN protein was facilitated by the hydroxyapatite (HA) mineralization of the biopolymer surface through a molecular recognition of OCN to the HA crystal lattice. The FNIII9-10-OCN anchorage to the HA-mineralized fiber was observed to be highly specific and tightly bound to preserve stability over a long period. Initial cell adhesion levels, as well as the spreading shape and process, of MSCs within 24h were strikingly different between the fibers linked with and without fusion protein. Significant up-regulations in the mRNA expression of adhesion signaling molecules occurred with the fusion protein link, as analyzed by the reverse transcriptase polymerase chain reaction. The expression of a series of osteogenic-related genes at later stages, over 2-3weeks, was significantly improved in the fusion protein-tailored fiber, and the osteogenic protein levels were highly stimulated, as confirmed by immunofluorescence imaging and fluorescence-activated cell sorting analyses. In vivo study in a rat calvarium model confirmed a higher quantity of new bone formation in the fiber linked with fusion protein, and a further increase was noticed when the MSCs were tissue-engineered with the fusion protein-linked fiber. Collectively, these results indicate that FN-OCN fusion protein links via HA mineralization is a facile tool to generate a biointerface with cell-attractive and osteogenic potential, and that the engineered fibrous matrix is a potential bone regenerative scaffold.
Collapse
Affiliation(s)
- Jae Ho Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Republic of Korea
| | - Ahmed El-Fiqi
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Republic of Korea
| | - Joong-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Republic of Korea
| | - Ye-Rang Yun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Republic of Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Medical College, Inha University, Republic of Korea
| | - Cheol-Min Han
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Republic of Korea
| | - Eun-Jung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Republic of Korea; Department of Biochemistry, Medical College, Inha University, Republic of Korea.
| |
Collapse
|
14
|
Morris AH, Kyriakides TR. Matricellular proteins and biomaterials. Matrix Biol 2014; 37:183-91. [PMID: 24657843 DOI: 10.1016/j.matbio.2014.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 01/05/2023]
Abstract
Biomaterials are essential to modern medicine as components of reconstructive implants, implantable sensors, and vehicles for localized drug delivery. Advances in biomaterials have led to progression from simply making implants that are nontoxic to making implants that are specifically designed to elicit particular functions within the host. The interaction of implants and the extracellular matrix during the foreign body response is a growing area of concern for the field of biomaterials, because it can lead to implant failure. Expression of matricellular proteins is modulated during the foreign body response and these proteins interact with biomaterials. The design of biomaterials to specifically alter the levels of matricellular proteins surrounding implants provides a new avenue for the design and fabrication of biomimetic biomaterials.
Collapse
Affiliation(s)
- Aaron H Morris
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Department of Pathology, Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States.
| |
Collapse
|
15
|
Kopf J, Paarmann P, Hiepen C, Horbelt D, Knaus P. BMP growth factor signaling in a biomechanical context. Biofactors 2014; 40:171-87. [PMID: 24123658 DOI: 10.1002/biof.1137] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/07/2013] [Accepted: 08/01/2013] [Indexed: 01/10/2023]
Abstract
Bone Morphogenetic Proteins (BMPs) are members of the transforming growth factor-β superfamily of secreted polypeptide growth factors and are important regulators in a multitude of cellular processes. To ensure the precise and balanced propagation of their pleiotropic signaling responses, BMPs and their corresponding signaling pathways are subject to tight control. A large variety of regulatory mechanisms throughout different biological levels combines into a complex network and provides the basis for physiological BMP function. This regulatory network not only includes biochemical factors but also mechanical cues. Both BMP signaling and mechanotransduction pathways are tightly interconnected and represent an elaborate signaling network active during development but also during organ homeostasis. Moreover, its dysregulation is associated with a number of human pathologies. A more detailed understanding of this crosstalk in respect to molecular interactions will be indispensable in the future, in particular to understand BMP-related diseases as well as with regard to an efficient clinical application of BMP ligands.
Collapse
Affiliation(s)
- Jessica Kopf
- Institute for Chemistry/Biochemistry, Freie Universität, Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
16
|
Ratnayake M, Plöger F, Santibanez-Koref M, Loughlin J. Human chondrocytes respond discordantly to the protein encoded by the osteoarthritis susceptibility gene GDF5. PLoS One 2014; 9:e86590. [PMID: 24466161 PMCID: PMC3897745 DOI: 10.1371/journal.pone.0086590] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/16/2013] [Indexed: 01/20/2023] Open
Abstract
A genetic deficit mediated by SNP rs143383 that leads to reduced expression of GDF5 is strongly associated with large-joint osteoarthritis. We speculated that this deficit could be attenuated by the application of exogenous GDF5 protein and as a first step we have assessed what effect such application has on primary osteoarthritis chondrocyte gene expression. Chondrocytes harvested from cartilage of osteoarthritic patients who had undergone joint replacement were cultured with wildtype recombinant mouse and human GDF5 protein. We also studied variants of GDF5, one that has a higher affinity for the receptor BMPR-IA and one that is insensitive to the GDF5 antagonist noggin. As a positive control, chondrocytes were treated with TGF-β1. Chondrocytes were cultured in monolayer and micromass and the expression of genes coding for catabolic and anabolic proteins of cartilage were measured by quantitative PCR. The expression of the GDF5 receptor genes and the presence of their protein products was confirmed and the ability of GDF5 signal to translocate to the nucleus was demonstrated by the activation of a luciferase reporter construct. The capacity of GDF5 to elicit an intracellular signal in chondrocytes was demonstrated by the phosphorylation of intracellular Smads. Chondrocytes cultured with TGF-β1 demonstrated a consistent down regulation of MMP1, MMP13 and a consistent upregulation of TIMP1 and COL2A1 with both culture techniques. In contrast, chondrocytes cultured with wildtype GDF5, or its variants, did not show any consistent response, irrespective of the culture technique used. Our results show that osteoarthritis chondrocytes do not respond in a predictable manner to culture with exogenous GDF5. This may be a cause or a consequence of the osteoarthritis disease process and will need to be surmounted if treatment with exogenous GDF5 is to be advanced as a potential means to overcome the genetic deficit conferring osteoarthritis susceptibility at this gene.
Collapse
Affiliation(s)
- Madhushika Ratnayake
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | | | - Mauro Santibanez-Koref
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John Loughlin
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
17
|
Mitra J, Tripathi G, Sharma A, Basu B. Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response. RSC Adv 2013. [DOI: 10.1039/c3ra23315d] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Renner JN, Kim Y, Liu JC. Bone Morphogenetic Protein-Derived Peptide Promotes Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Tissue Eng Part A 2012; 18:2581-9. [PMID: 22765926 DOI: 10.1089/ten.tea.2011.0400] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Julie N. Renner
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana
| | - Yeji Kim
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana
| | - Julie C. Liu
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
19
|
Surface immobilization of bone morphogenetic protein 2 via a self-assembled monolayer formation induces cell differentiation. Acta Biomater 2012; 8:772-80. [PMID: 22040684 DOI: 10.1016/j.actbio.2011.10.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 11/23/2022]
Abstract
Bone extracellular matrix consists of a network of proteins in which growth factors, like bone morphogenetic protein 2 (BMP-2), are embedded and released upon matrix turnover and degradation. Recombinant human (rh)BMP-2 shows promise in enhancing bone fracture repair, although issues regarding finding a suitable delivery system still limit its extensive clinical use. The aim of this study is to determine which cell activities are triggered by the presentation of immobilized rhBMP-2. For this purpose gold surfaces were first decorated with a self-assembled monolayer consisting of a hetero-bifunctional linker. rhBMP-2 was covalently bound to the surfaces via this linker and used to investigate the cellular responses of C2C12 myoblasts. We show that covalently immobilized rhBMP-2 (iBMP-2) initiates short-term signaling events. Using a BMP-responsive reporter gene assay and western blotting to monitor phosphorylation of Smad1/5/8 we prove that iBMP-2 activates BMP-dependent signal transduction. Furthermore, we demonstrate that iBMP-2 suppresses myotube formation and promotes the osteoblast phenotype in C2C12 cells. The bioactivity of surface-bound rhBMP-2 presented in this study is not due to its release into the medium. As such, our simple approach paves the way for the controlled local presentation of immobilized growth factors, limiting degradation while still maintaining biological activity.
Collapse
|
20
|
Effect of oligonucleotide mediated immobilization of bone morphogenic proteins on titanium surfaces. Biomaterials 2011; 33:1315-22. [PMID: 22082620 DOI: 10.1016/j.biomaterials.2011.10.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 10/11/2011] [Indexed: 02/01/2023]
Abstract
The aim of the present study was to test the hypothesis that oligonucleotides can be used for anchorage and slow release of osteogenic growth factors such as BMP to enhance the osteogenic activity of a titanium implant surface. Strands of 60-mer non-coding DNA oligonucleotides (ODN) were bound to an acid-etched sandblasted cp Ti-surface by nanomechanical fixation using anodic polarization. RhBMP2 that had been conjugated to complementary strands of DNA oligonucleotides was then bound to the anchored ODN strands by hybridization. Binding studies showed a higher binding capacity compared to non-conjugated BMP2. Long term release experiments demonstrated a continuous release from all surfaces that was lowest for the conjugated BMP2 bound to the ODN anchor strands. Proliferation of human bone marrow stroma cells (hBMSC) was significantly increased on these surfaces. Immunofluorescence showed that hBMSC grown on surfaces coated with specifically bound conjugated BMP2 developed significantly higher numbers of focal adhesion points and exhibited significantly higher levels of transcription of osteogenic markers alkaline phosphatase and osteopontin at early intervals. Biological activity (induction of alkaline phosphatase) of conjugated BMP2 released from the surface was comparable to released non-conjugated BMP2, indicating that conjugation did not negatively affect the activity of the released molecules. In conclusion the present study has shown that BMP2 conjugated to ODN strands and hybridized to complementary ODN strands anchored to a titanium surface has led to slow growth factor release and can enhance the osteogenic activity of the titanium surface.
Collapse
|
21
|
Self-assembly of protein monolayers engineered for improved monoclonal immunoglobulin G binding. Int J Mol Sci 2011; 12:5157-67. [PMID: 21954350 PMCID: PMC3179157 DOI: 10.3390/ijms12085157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 07/04/2011] [Accepted: 08/10/2011] [Indexed: 02/04/2023] Open
Abstract
Bacterial outer membrane proteins, along with a filling lipid molecule can be modified to form stable self-assembled monolayers on gold. The transmembrane domain of Escherichia coli outer membrane protein A has been engineered to create a scaffold protein to which functional motifs can be fused. In earlier work we described the assembly and structure of an antibody-binding array where the Z domain of Staphylococcus aureus protein A was fused to the scaffold protein. Whilst the binding of rabbit polyclonal immunoglobulin G (IgG) to the array is very strong, mouse monoclonal IgG dissociates from the array easily. This is a problem since many immunodiagnostic tests rely upon the use of mouse monoclonal antibodies. Here we describe a strategy to develop an antibody-binding array that will bind mouse monoclonal IgG with lowered dissociation from the array. A novel protein consisting of the scaffold protein fused to two pairs of Z domains separated by a long flexible linker was manufactured. Using surface plasmon resonance the self-assembly of the new protein on gold and the improved binding of mouse monoclonal IgG were demonstrated.
Collapse
|
22
|
Mieszawska AJ, Kaplan DL. Smart biomaterials - regulating cell behavior through signaling molecules. BMC Biol 2010; 8:59. [PMID: 20529238 PMCID: PMC2873335 DOI: 10.1186/1741-7007-8-59] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 05/11/2010] [Indexed: 11/24/2022] Open
Abstract
Important advances in the field of tissue engineering are arising from increased interest in novel biomaterial designs with bioactive components that directly influence cell behavior. Following the recent work of Mitchell and co-workers published in BMC Biology, we review how spatial and temporal control of signaling molecules in a matrix material regulates cellular responses for tissue-specific applications. See research article http://www.biomedcentral.com/1741-7007/8/57
Collapse
Affiliation(s)
- Aneta J Mieszawska
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| | | |
Collapse
|