1
|
Zhang X, Feng Z, Pranatharthi Haran A, Hua X. Dual nanobody-redirected and Bi-specific CD13/TIM3 CAR T cells eliminate AML xenografts without toxicity to human HSCs. Oncoimmunology 2025; 14:2458843. [PMID: 39976474 PMCID: PMC11845053 DOI: 10.1080/2162402x.2025.2458843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025] Open
Abstract
Adoptive cell therapy including chimeric antigen receptor (CAR) T cells targeting CD19 has been approved by FDA to treat B cell-derived malignancies with remarkable success. The success has not yet been expanded to treating Acute Myeloid Leukemia (AML). We previously showed that a nanobody and single-chain fragment variable (scFv) CD13 (Nanobody)/TIM-3 (scFv) directed bispecific split CAR (bissCAR) T cells, while effective in eliminating AML in preclinical models, also caused substantial toxicity to human hematopoietic stem cells (HSCs) and other lineages. To maintain the bissCART specificity and efficacy, yet reduce toxicity to normal cells including HSCs, we generated new anti-TIM-3 nanobodies and constructed new cognate nanobodies-directed CD13/41BB and TIM3/CD3zeta nbiCARTs. The resultant nbiCARTs showed strong antitumor activity to CD13/TIM3 positive leukemic cells in vitro and in preclinical models. Importantly, the 3rd generation of nbiCARTs had little toxicity to human bone marrow-derived colony forming progenitors ex vivo and the human HSCs in mice with a humanized immune system. Together, the current studies generated novel and 3rd G CD13/TIM-3 nbiCARTs that displayed stronger antitumor activity yet minimal toxicity to normal tissues like HSCs that express a moderate level of CD13, paving the way to further evaluate the novel CD13/TIM-3CARTs in treating aggressive and refractory AML in clinical studies.
Collapse
MESH Headings
- Animals
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Mice
- Xenograft Model Antitumor Assays
- Hepatitis A Virus Cellular Receptor 2/immunology
- Single-Domain Antibodies/immunology
- Immunotherapy, Adoptive/methods
- Hematopoietic Stem Cells/immunology
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- Cell Line, Tumor
- Female
- Mice, SCID
- Mice, Inbred NOD
Collapse
Affiliation(s)
- Xuyao Zhang
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Zijie Feng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annapurna Pranatharthi Haran
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Lysandrou M, Zeiser R. Strategies to enhance anti-leukaemia immunotherapy. Curr Opin Pharmacol 2025; 82:102525. [PMID: 40267742 DOI: 10.1016/j.coph.2025.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Acute myeloid leukaemia (AML) was an incurable disease prior to allogeneic haematopoietic cell transplantation (allo-HCT), which was proven to be a potent cellular immunotherapy-approach. However, allo-HCT has major side effects, with disease relapse presenting as a frequent complication. Novel immunotherapies aim to reduce toxicity and increase the anti-leukaemia activity of allo-HCT. Technological advancements in genetic engineering approaches enable potent immunotherapeutic activity while limiting toxicities. A biology-driven application of small molecules that target AML vulnerabilities holds promise to enhance anti-leukaemia immunotherapy. Extensive preclinical testing of these approaches is essential to reduce toxicity and to find the ideal combination partners for future clinical testing.
Collapse
Affiliation(s)
- Memnon Lysandrou
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University Freiburg, Albert-Ludwigs University of Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University Freiburg, Albert-Ludwigs University of Freiburg, Germany.
| |
Collapse
|
3
|
Hoffmann GV, Gottschlich A, Subklewe M, Kobold S. Novel approaches to CAR T cell target identification in acute myeloid leukemia. Curr Opin Pharmacol 2025; 82:102524. [PMID: 40311558 DOI: 10.1016/j.coph.2025.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/28/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Identifying safe and effective CAR T cell targets in acute myeloid leukemia (AML) is challenging due to the disease's complexity and overlap with normal hematopoiesis. This review highlights advances in target discovery for AML, emphasizing innovative approaches. Structural surfaceomics identifies tumor-specific protein conformations, while AI-driven single-cell RNA sequencing integrates multi-source data to pinpoint optimal targets. Refined cell surface capture technology maps the AML surfaceome without relying on predefined antibodies. These strategies enhance CAR T cell specificity and minimize off-tumor effects, offering promising pathways for safer and more effective AML treatments and broader cancer therapies.
Collapse
Affiliation(s)
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
4
|
Wang B, Reville PK, Abbas HA. Therapeutic hurdles in acute myeloid leukemia: Leukemic stem cells, inflammation and immune dysfunction. Curr Opin Pharmacol 2025; 82:102526. [PMID: 40318269 DOI: 10.1016/j.coph.2025.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/07/2025]
Abstract
Acute myeloid leukemia (AML) is an aggressive and highly heterogeneous hematological malignancy characterized by clonal expansion and differentiation arrest in myeloid progenitor cells. Despite advancements in chemotherapy, allogeneic hematopoietic stem cell transplantation, and post-remission maintenance therapies, the long-term survival remains unsatisfactory with high rates of relapse and refractory. These therapeutic challenges are mediated by multiple factors, including the complexity of the cellular hierarchies in AML, the interaction of leukemic stem cells (LSCs) with the bone marrow niche, inflammation, and immune evasion mechanisms. Further, the absence of specific surface markers that distinguish LSCs from normal hematopoietic stem cells, together with LSCs' functional heterogeneity, complicates targeted treatment approaches. Immune dysfunction, including T cell exhaustion and immune suppression within the bone marrow niche contributes to therapy resistance. In this brief review, we aim to explore current challenges in AML therapy, focusing on LSC-driven resistance, immune evasion, and the need for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Bofei Wang
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick K Reville
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein A Abbas
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Borot F, Humbert O, Ehmsen JT, Fields E, Kohli S, Radtke S, Swing K, Pande D, Enstrom MR, Laszlo GS, Mayuranathan T, Ali AM, Weiss MJ, Yen JS, Newby GA, Walter RB, Liu DR, Mukherjee S, Kiem HP. Multiplex base editing to protect from CD33 directed drugs for immune and gene therapy. Nat Commun 2025; 16:4899. [PMID: 40425554 PMCID: PMC12116803 DOI: 10.1038/s41467-025-59713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
The selection of genetically engineered immune or hematopoietic cells in vivo after gene editing remains a clinical problem and requires a method to spare on-target toxicity to normal cells. Here, we develop a base editing approach exploiting a naturally occurring CD33 single nucleotide polymorphism leading to removal of full-length CD33 surface expression on edited cells. CD33 editing in human and nonhuman primate hematopoietic stem and progenitor cells protects myeloid progeny from CD33-targeted therapeutics without affecting normal hematopoiesis in vivo, thus demonstrating potential for improved immunotherapies with reduced off-leukemia toxicity. For broader application to gene therapies, we demonstrate highly efficient (>70%) multiplexed adenine base editing of the CD33 and gamma globin genes, resulting in long-term persistence of dual gene-edited cells with HbF reactivation in nonhuman primates. Using the CD33 antibody-drug conjugate Gemtuzumab Ozogamicin, we show resistance of engrafted, multiplex edited human cells in vivo, and a 2-fold enrichment for edited cells in vitro. Together, our results highlight the potential of adenine base editors for improved immune and gene therapies.
Collapse
Affiliation(s)
- Florence Borot
- Department of Medicine, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
| | - Olivier Humbert
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| | - Jeffrey T Ehmsen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily Fields
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Sajeev Kohli
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Stefan Radtke
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Kyle Swing
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Dnyanada Pande
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Mark R Enstrom
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - George S Laszlo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Thiyagaraj Mayuranathan
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Vellore, Bagayam Campus, Vellore, TN, India
| | - Abdullah Mahmood Ali
- Department of Medicine, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Edward P. Evans Center for Myelodysplastic Syndromes at Columbia University, New York, NY, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathan S Yen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gregory A Newby
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | - Roland B Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Siddhartha Mukherjee
- Department of Medicine, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Vellore, Bagayam Campus, Vellore, TN, India.
| | - Hans-Peter Kiem
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA.
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Hushmandi K, Imani Fooladi AA, Reiter RJ, Farahani N, Liang L, Aref AR, Nabavi N, Alimohammadi M, Liu L, Sethi G. Next-generation immunotherapeutic approaches for blood cancers: Exploring the efficacy of CAR-T and cancer vaccines. Exp Hematol Oncol 2025; 14:75. [PMID: 40382583 DOI: 10.1186/s40164-025-00662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/25/2025] [Indexed: 05/20/2025] Open
Abstract
Recent advancements in immunotherapy, particularly Chimeric antigen receptor (CAR)-T cell therapy and cancer vaccines, have significantly transformed the treatment landscape for leukemia. CAR-T cell therapy, initially promising in hematologic cancers, faces notable obstacles in solid tumors due to the complex and immunosuppressive tumor microenvironment. Challenges include the heterogeneous immune profiles of tumors, variability in antigen expression, difficulties in therapeutic delivery, T cell exhaustion, and reduced cytotoxic activity at the tumor site. Additionally, the physical barriers within tumors and the immunological camouflage used by cancer cells further complicate treatment efficacy. To overcome these hurdles, ongoing research explores the synergistic potential of combining CAR-T cell therapy with cancer vaccines and other therapeutic strategies such as checkpoint inhibitors and cytokine therapy. This review describes the various immunotherapeutic approaches targeting leukemia, emphasizing the roles and interplay of cancer vaccines and CAR-T cell therapy. In addition, by discussing how these therapies individually and collectively contribute to tumor regression, this article aims to highlight innovative treatment paradigms that could enhance clinical outcomes for leukemia patients. This integrative approach promises to pave the way for more effective and durable treatment strategies in the oncology field. These combined immunotherapeutic strategies hold great promise for achieving more complete and lasting remissions in leukemia patients. Future research should prioritize optimizing treatment sequencing, personalizing therapeutic combinations based on individual patient and tumor characteristics, and developing novel strategies to enhance T cell persistence and function within the tumor microenvironment. Ultimately, these efforts will advance the development of more effective and less toxic immunotherapeutic interventions, offering new hope for patients battling this challenging disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Liping Liang
- Guangzhou Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | | | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Le Liu
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China.
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
7
|
Roshal M, Gao Q. Flow cytometry evaluation of acute myeloid leukemia minimal residual disease based on an understanding of the normal maturation patterns in the blast compartments. Am J Clin Pathol 2025; 163:775-793. [PMID: 39921543 DOI: 10.1093/ajcp/aqae187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/03/2025] [Indexed: 02/10/2025] Open
Abstract
OBJECTIVE Detection of minimal/measurable disease (MRD) in acute myeloid leukemia (AML) is critical for both clinical decision-making and prognostication, yet remains a challenge. Flow cytometry is a well-established method for MRD detection. Flow cytometric (FC) evaluation of MRD must consider a complex maturational pattern of normal hematopoietic development to separate normal from abnormal progenitors. Here, we offer an example of an interpretive approach based on a thorough understanding of stage- and lineage-specific hematopoietic maturation. METHODS We provide a comprehensive overview of blast maturation from early precursors (hematopoietic stem cells) to committed late-stage unilineage progenitors and commonly observed stage-specific abnormalities based on cases we have encountered in practice. We emphasize the importance of stage-specific comparisons for accurate MRD detection by flow cytometry. RESULTS The AML blasts almost invariably show abnormal phenotypes, and the phenotypes may evolve upon therapy. The detected phenotypes are necessarily confined to the target antigens included in the panel. It is therefore critical to evaluate a range of antigens to establish a specific stage/state of lineage commitment and detect potential common abnormalities. Moreover, enough cells must be acquired to allow for the detection of MRD at desired levels. Significant technical and analytical validation is critical. CONCLUSIONS Flow cytometry offers a powerful single-cell-based platform for MRD detection in AML, and the results have been proven critical for disease management. Leukemia-associated phenotype-informed difference from the normal approach presented in this review presents an analytical framework for sensitive and accurate MRD detection.
Collapse
Affiliation(s)
- Mikhail Roshal
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, US
| | - Qi Gao
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, US
| |
Collapse
|
8
|
Khalifeh M, Hopewell E, Salman H. CAR-T cell therapy for treatment of acute myeloid leukemia, advances and outcomes. Mol Ther 2025:S1525-0016(25)00261-8. [PMID: 40181544 DOI: 10.1016/j.ymthe.2025.03.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/05/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025] Open
Abstract
Despite recent U.S. Food and Drug Administration (FDA) approval of multiple therapies for patients with acute myeloid leukemia (AML), clinical outcomes for those patients continue to remain poor. There are very few effective immunotherapeutic modalities such as allogeneic stem cell transplant for AML, and this is, in part, due to a lack of known antigens that are unique to AML and not present on vital normal hematopoietic precursors. Additionally, AML is supported by a hostile marrow tumor microenvironment that has a notable role in dampening T cell effector function. Myeloid-derived suppressor cells and regulatory T cells play a pivotal role in AML microenvironment immune hostility toward endogenous T cells as well as adoptively transferred T cells. There are many clinical trials that are designed to test the feasibility and efficacy of adoptively transferred T cells, including chimeric antigen receptor T cell therapies in AML, yet none is FDA approved for this fatal disease. In this review, we dissect these trials, their contribution to this therapeutic direction, and their success.
Collapse
Affiliation(s)
- Malak Khalifeh
- Brown Center for Immunotherapy, 975W. Walnut St., IB554A, Indianapolis, IN 46202, USA
| | - Emily Hopewell
- Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Huda Salman
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
9
|
Dong J, Konopleva M. Preclinical targeting of leukemia-initiating cells in the development future biologics for acute myeloid leukemia. Expert Opin Ther Targets 2025; 29:223-237. [PMID: 40304258 DOI: 10.1080/14728222.2025.2500417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Leukemia-initiating cells (LICs) are a critical subset of cells driving acute myeloid leukemia (AML) relapse and resistance to therapy. They possess unique properties, including metabolic, epigenetic, and microenvironmental dependencies, making them promising therapeutic targets. AREAS COVERED This review summarizes preclinical advances in targeting AML LICs, including strategies to exploit metabolic vulnerabilities, such as the reliance on oxidative phosphorylation (OXPHOS), through the use of mitochondrial inhibitors; target epigenetic regulators like DOT1L (Disruptor of Telomeric Silencing 1-like) to disrupt LIC survival mechanisms; develop immunotherapies, including CAR (chimeric antigen receptor) T-cell therapy, and bispecific antibodies; and disrupt LIC interactions with the bone marrow microenvironment by inhibiting supportive niches. EXPERT OPINION LIC-targeted therapies hold significant promise for revolutionizing AML treatment by reducing relapse rates and improving long-term outcomes. However, challenges such as LIC heterogeneity, therapy resistance, and associated toxicity persist. Recent studies have illuminated the distinct biological characteristics of LICs, advancing our understanding of their behavior and vulnerabilities. These insights offer new opportunities to target LICs at earlier disease stages and to explore combination therapies with other targeted treatments, ultimately enhancing therapeutic efficacy and improving patient outcomes.
Collapse
Affiliation(s)
- Jiaxin Dong
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marina Konopleva
- Department of Medicine (Oncology), Blood Cancer Institute, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
10
|
DiAndreth B, Nesterenko PA, Winters AG, Flynn AD, Jette CA, Suryawanshi V, Shafaattalab S, Martire S, Daris M, Moore E, Elshimali R, Gill T, Riley TP, Miller S, Netirojjanakul C, Hamburger AE, Kamb A. Multi-targeted, NOT gated CAR-T cells as a strategy to protect normal lineages for blood cancer therapy. Front Immunol 2025; 16:1493329. [PMID: 40191207 PMCID: PMC11968376 DOI: 10.3389/fimmu.2025.1493329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/21/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Despite advances in treatment of blood cancers, several-including acute myeloid leukemia (AML)-continue to be recalcitrant. Cell therapies based on chimeric antigen receptors (CARs) have emerged as promising approaches for blood cancers. However, current CAR-T treatments suffer from on-target, off-tumor toxicity, because most familiar blood cancer targets are also expressed in normal lineages. In addition, they face the common problem of relapse due to target-antigen loss. Cell therapeutics engineered to integrate more than one signal, often called logic-gated cells, can in principle achieve greater selectivity for tumors. Methods We applied such a technology, a NOT gated system called Tmod™ that is being developed to treat solid-tumor patients, to the problem of therapeutic selectivity for blood cancer cells. Results Here we show that Tmod cells can be designed to target 2-4 antigens to provide different practical and conceptual options for a blood cancer therapy: (i) mono- and bispecific activating receptors that target CD33, a well-known AML antigen expressed on the majority of AML tumors (as well as healthy myeloid cells) and CD43 (SPN), an antigen expressed on many hematopoietic cancers (and normal blood lineages); and (ii) mono- and bispecific inhibitory receptors that target CD16b (FCGR3B) and CLEC9A, antigens expressed on key normal blood cells but not on most blood cancers. Discussion These results further demonstrate the robust modularity of the Tmod system and generalize the Tmod approach beyond solid tumors.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Animals
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes/metabolism
- Mice
- Antigens, Neoplasm/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Cell Line, Tumor
- Cell Lineage
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Alexander Kamb
- A2 Biotherapeutics Discovery Research, Agoura Hills, CA, United States
| |
Collapse
|
11
|
Haubner S, Subklewe M, Sadelain M. Honing CAR T cells to tackle acute myeloid leukemia. Blood 2025; 145:1113-1125. [PMID: 39630061 DOI: 10.1182/blood.2024024063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 03/14/2025] Open
Abstract
ABSTRACT Acute myeloid leukemia (AML) remains a dismal disease with poor prognosis, particularly in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR) therapy has yielded remarkable clinical results in other leukemias and thus has, in principle, the potential to achieve similar outcomes in R/R AML. Redirecting the approved CD19-specific CAR designs against the myeloid antigens CD33, CD123, or CLEC12A has occasionally yielded morphologic leukemia-free states but has so far been marred by threatening myeloablation and early relapses. These safety and efficacy limitations are largely due to the challenge of identifying suitable target antigens and designing adequate receptors for effective recognition and safe elimination of AML. Building on lessons learned from the initial clinical attempts, a new wave of CAR strategies relying on alternative target antigens and innovative CAR designs is about to enter clinical evaluation. Adapted multiantigen targeting, logic gating, and emerging cell engineering solutions offer new possibilities to better direct T-cell specificity and sensitivity toward AML. Pharmacologic modulation and genetic epitope engineering may extend these approaches by augmenting target expression in AML cells or minimizing target expression in normal hematopoietic cells. On/off switches or CAR T-cell depletion may curb excessive or deleterious CAR activity. Investigation of AML-intrinsic resistance and leukemic microenvironmental factors is poised to reveal additional targetable AML vulnerabilities. We summarize here the findings, challenges, and new developments of CAR therapy for AML. These illustrate the need to specifically adapt CAR strategies to the complex biology of AML to achieve better therapeutic outcomes.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- Animals
- Antigens, Neoplasm/immunology
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Sascha Haubner
- Columbia Initiative in Cell Engineering and Therapy, Department of Medicine, Columbia University, New York, NY
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Michel Sadelain
- Columbia Initiative in Cell Engineering and Therapy, Department of Medicine, Columbia University, New York, NY
| |
Collapse
|
12
|
Lee JE, Jeon BE, Kwon CS, Kim HY, Kim TJ, Seo Y, Lee SH, Shin HJ, Kim SW. Norchelerythrine from Corydalis incisa (Thunb.) Pers. promotes differentiation and apoptosis by activating DNA damage response in acute myeloid leukemia. Int J Oncol 2025; 66:17. [PMID: 39918000 PMCID: PMC11837901 DOI: 10.3892/ijo.2025.5723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025] Open
Abstract
Acute myeloid leukemia (AML) is the most prevalent form of leukemia in adults. The cornerstone of first‑line chemotherapy for AML has poor survival rates, underscoring the urgent need for development of novel therapeutic agents. Differentiation therapy targets the blockade of differentiation in myeloid progenitor cells. The present study screened 100 plant extracts native to South Korea to search for those with differentiation‑inducing activity in AML. Differentiation‑inducing activity was assessed by measuring CD11b expression using fluorescence activated cell sorting. Of these, Corydalis incisa (Thunb.) Pers. (CIP) exhibited the highest efficacy. CIP induced myeloid differentiation, decreased viability and increased cell apoptosis and cell cycle arrest in HL‑60, U937 and THP‑1 cells. Furthermore, ultra‑performance liquid chromatography‑quadrupole time‑of‑flight mass spectrometry identified norchelerythrine as the primary anti‑leukemic compound in CIP. Norchelerythrine induced differentiation and promoted cell cycle arrest and apoptosis, mirroring the tumor‑suppressive effects of CIP, and notably decreased cell viability in patients with various genetic abnormalities. The present mechanistic study showed that norchelerythrine stimulated reactive oxygen species generation, leading to activation of DNA damage signaling and upregulation of p21cip1, a cyclin‑dependent kinase inhibitor. Overall, norchelerythrine isolated from CIP may be a novel therapeutic option in AML.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Byeol-Eun Jeon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Chan-Seong Kwon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeon-Young Kim
- Department of Molecular and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Youngseob Seo
- Korea Research Institute of Standard and Science, Daejeon 34113, Republic of Korea
| | - Sang Hun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 46241, Republic of Korea
| | - Ho-Jin Shin
- Division of Hematology-Oncology, Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 46241, Republic of Korea
| | - Sang-Woo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Hochman MJ, Muniz JP, Papadantonakis N. Precision Medicine in Myeloid Neoplasia: Challenges and Opportunities. J Pers Med 2025; 15:49. [PMID: 39997326 PMCID: PMC11856194 DOI: 10.3390/jpm15020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
High-risk myeloid neoplasms encompass a group of hematologic malignancies known to cause significant cytopenias, which are accompanied by the risk of end-organ damage. They tend to have an aggressive clinical course and limit life expectancy in the absence of effective treatments. The adoption of precision medicine approaches has been limited by substantive diversity in somatic mutations, limited fraction of patients with targetable genetic lesions, and the prolonged turnaround times of pertinent genetic tests. Efforts to incorporate targeted agents into first-line treatment, rapidly determine pre-treatment molecular or cytogenetic aberrations, and evaluate functional vulnerabilities ex vivo hold promise for advancing the use of precision medicine in these malignancies. Given the relative accessibility of malignant cells from blood and bone marrow, precision medicine strategies hold great potential to shape future standard-of-care approaches to patients with high-risk myeloid malignancies. This review aims to summarize the development of the targeted therapies currently available to treat these blood cancers, most notably acute myeloid leukemia, and also evaluate future opportunities and challenges related to the integration of personalized approaches.
Collapse
Affiliation(s)
- Michael J. Hochman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Joshua P. Muniz
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Aflac Cancer & Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Nikolaos Papadantonakis
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Kitte R, Serfling R, Blache U, Seitz C, Schrader S, Köhl U, Fricke S, Bär C, Tretbar US. Optimal Chimeric Antigen Receptor (CAR)-mRNA for Transient CAR T Cell Generation. Int J Mol Sci 2025; 26:965. [PMID: 39940734 PMCID: PMC11818003 DOI: 10.3390/ijms26030965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Genetically modified T lymphocytes expressing chimeric antigen receptors (CARs) are becoming increasingly important in the treatment of hematologic malignancies and are also intensively being investigated for other diseases such as autoimmune disorders and HIV. Current CAR T cell therapies predominantly use viral transduction methods which, despite their efficacy, raise safety concerns related to genomic integration and potentially associated malignancies as well as labor- and cost-intensive manufacturing. Therefore, non-viral gene transfer methods, especially mRNA-based approaches, have attracted research interest due to their transient modification and enhanced safety profile. In this study, the optimization of CAR-mRNA for T cell applications is investigated, focusing on the impact of mRNA modifications, in vitro transcription protocols, and purification techniques on the translation efficiency and immunogenicity of mRNA. Furthermore, the refined CAR-mRNA was used to generate transient CAR T cells from acute myeloid leukemia patient samples, demonstrating efficacy in vitro and proof-of-concept for clinically relevant settings. These results highlight the potential of optimized mRNA to produce transient and safe CAR T cells.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Immunotherapy, Adoptive/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Reni Kitte
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
| | - Robert Serfling
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
| | - Ulrich Blache
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
| | - Claudius Seitz
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstraße 7, 38124 Braunschweig, Germany; (C.S.); (S.S.)
| | - Selina Schrader
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstraße 7, 38124 Braunschweig, Germany; (C.S.); (S.S.)
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
- Medicine Campus MEDiC, Technical University of Dresden, Klinikum Chemnitz gGmbH, 09116 Chemnitz, Germany
| | - Christian Bär
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany;
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - U. Sandy Tretbar
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Ceolin V, Spadea M, Apolito V, Saglio F, Fagioli F. Emerging CART Therapies for Pediatric Acute Myeloid Leukemia. J Pediatr Hematol Oncol 2024; 46:393-403. [PMID: 39469946 DOI: 10.1097/mph.0000000000002956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
The prognosis of children with acute myeloid leukemia (AML) has improved incrementally over the last decades. However, at relapse, overall survival (OS) ∼40% to 50% and is even lower for patients with chemorefractory disease. Effective and less-toxic therapies are urgently needed for these children. In the last years, immune-directed therapies such as chimeric antigen receptor (CAR)-T cells were introduced, which showed outstanding clinical activity against B-cell malignancies. CART therapies are being developed for AML on the basis of the results obtained for other hematologic malignancies. The biggest challenge of CART therapy for AML is to identify a specific target antigen, since antigens expressed in AML cells are usually shared with healthy hematopoietic stem cells. An overview of prospects of CART in pediatric AML, focused on the common antigens targeted by CART in AML that have been tested or are currently under investigation, is provided in this manuscript.
Collapse
Affiliation(s)
- Valeria Ceolin
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital
| | - Manuela Spadea
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital
- Department of Pediatric Oncology/Hematology, University of Turin, Turin, Italy
| | - Vincenzo Apolito
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital
| | - Francesco Saglio
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital
| | - Franca Fagioli
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital
- Department of Pediatric Oncology/Hematology, University of Turin, Turin, Italy
| |
Collapse
|
16
|
Fiorenza S, Lim SY, Laszlo GS, Kimble EL, Phi TD, Lunn-Halbert MC, Kirchmeier DR, Huo J, Kiem HP, Turtle CJ, Walter RB. Targeting the membrane-proximal C2-set domain of CD33 for improved CAR T cell therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200854. [PMID: 39224504 PMCID: PMC11367471 DOI: 10.1016/j.omton.2024.200854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Current CD33-targeted immunotherapies typically recognize the membrane-distal V-set domain of CD33. Here, we show that decreasing the distance between T cell and leukemia cell membrane increases the efficacy of CD33 chimeric antigen receptor (CAR) T cells. We therefore generated and optimized second-generation CAR constructs containing single-chain variable fragments from antibodies raised against the membrane-proximal C2-set domain, which bind CD33 regardless of whether the V-set domain is present (CD33PAN antibodies). CD33PAN CAR T cells resulted in efficient tumor clearance and improved survival of immunodeficient mice bearing human AML cell xenografts and, in an AML model with limited CD33 expression, forced escape of CD33neg leukemia. Compared to CD33V-set CAR T cells, CD33PAN CAR T cells showed greater in vitro and in vivo efficacy against several human AML cell lines with differing levels of CD33 without increased expression of exhaustion markers. CD33PAN moieties were detected at a higher frequency on human leukemic stem cells, and CD33PAN CAR T cells had greater in vitro efficacy against primary human AML cells. Together, our studies demonstrate improved efficacy with CAR T cells binding CD33 close to the cell membrane, providing the rationale to investigate CD33PAN CAR T cells further toward possible clinical application.
Collapse
Affiliation(s)
- Salvatore Fiorenza
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Sheryl Y.T. Lim
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - George S. Laszlo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Erik L. Kimble
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA 98195, USA
| | - Tinh-Doan Phi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Margaret C. Lunn-Halbert
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Delaney R. Kirchmeier
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jenny Huo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hans-Peter Kiem
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Cameron J. Turtle
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Roland B. Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Grenier JMP, Testut C, Bal M, Bardin F, De Grandis M, Gelsi-Boyer V, Vernerey J, Delahaye M, Granjeaud S, Zemmour C, Spinella JF, Chavakis T, Mancini SJC, Boher JM, Hébert J, Sauvageau G, Vey N, Schwaller J, Hospital MA, Fauriat C, Aurrand-Lions M. Genetic deletion of JAM-C in preleukemic cells rewires leukemic stem cell gene expression program in AML. Blood Adv 2024; 8:4662-4678. [PMID: 38954834 PMCID: PMC11402138 DOI: 10.1182/bloodadvances.2023011747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
ABSTRACT The leukemic stem cell (LSC) score LSC-17 based on a stemness-related gene expression signature is an indicator of poor disease outcome in acute myeloid leukemia (AML). However, it is not known whether "niche anchoring" of LSC affects disease evolution. To address this issue, we conditionally inactivated the adhesion molecule JAM-C (Junctional Adhesion Molecule-C) expressed by hematopoietic stem cells (HSCs) and LSCs in an inducible mixed-lineage leukemia (iMLL)-AF9-driven AML mouse model. Deletion of Jam3 (encoding JAM-C) before induction of the leukemia-initiating iMLL-AF9 fusion resulted in a shift from long-term to short-term HSC expansion, without affecting disease initiation and progression. In vitro experiments showed that JAM-C controlled leukemic cell nesting irrespective of the bone marrow stromal cells used. RNA sequencing performed on leukemic HSCs isolated from diseased mice revealed that genes upregulated in Jam3-deficient animals belonged to activation protein-1 (AP-1) and tumor necrosis factor α (TNF-α)/NF-κB pathways. Human orthologs of dysregulated genes allowed to identify a score that was distinct from, and complementary to, the LSC-17 score. Substratification of patients with AML using LSC-17 and AP-1/TNF-α genes signature defined 4 groups with median survival ranging from <1 year to a median of "not reached" after 8 years. Finally, coculture experiments showed that AP-1 activation in leukemic cells was dependent on the nature of stromal cells. Altogether, our results identify the AP-1/TNF-α gene signature as a proxy of LSC anchoring in bone marrow niches, which improves the prognostic value of the LSC-17 score. This trial was registered at www.ClinicalTrials.gov as #NCT02320656.
Collapse
Affiliation(s)
- Julien M. P. Grenier
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
- UMR 7268, Aix-Marseille Université, EFS, CNRS, GENGLOBE, Marseille, France
| | - Céline Testut
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Matthieu Bal
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
- Département de la Recherche Clinique et de l’Innovation, Institut Paoli-Calmettes, Marseille, France
| | - Florence Bardin
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Maria De Grandis
- Aix-Marseille University, CNRS, EFS, ADES, Biologie des Groupes Sanguins, Marseille, France
- UMR 7268, Aix-Marseille Université, EFS, CNRS, GENGLOBE, Marseille, France
| | - Véronique Gelsi-Boyer
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Julien Vernerey
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Marjorie Delahaye
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Samuel Granjeaud
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Christophe Zemmour
- Département de la Recherche Clinique et de l’Innovation, Institut Paoli-Calmettes, Marseille, France
| | - Jean-François Spinella
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stéphane J. C. Mancini
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Jean-Marie Boher
- Département de la Recherche Clinique et de l’Innovation, Institut Paoli-Calmettes, Marseille, France
| | - Josée Hébert
- Division of Hematology-Oncology, Department of Medicine, Maisonneuve-Rosemont Hospital, Université de Montréal, Montreal, QC, Canada
| | - Guy Sauvageau
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Norbert Vey
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Jürg Schwaller
- Department of Biomedicine, University Children’s Hospital, University of Basel, Basel, Switzerland
| | | | - Cyril Fauriat
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| | - Michel Aurrand-Lions
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France
| |
Collapse
|
18
|
Zhang Y, Park M, Ghoda LY, Zhao D, Valerio M, Nafie E, Gonzalez A, Ly K, Parcutela B, Choi H, Gong X, Chen F, Harada K, Chen Z, Nguyen LXT, Pichiorri F, Chen J, Song J, Forman SJ, Amanam I, Zhang B, Jin J, Williams JC, Marcucci G. IL1RAP-specific T cell engager depletes acute myeloid leukemia stem cells. J Hematol Oncol 2024; 17:67. [PMID: 39143574 PMCID: PMC11325815 DOI: 10.1186/s13045-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The interleukin-1 receptor accessory protein (IL1RAP) is highly expressed on acute myeloid leukemia (AML) bulk blasts and leukemic stem cells (LSCs), but not on normal hematopoietic stem cells (HSCs), providing an opportunity to target and eliminate the disease, while sparing normal hematopoiesis. Herein, we report the activity of BIF002, a novel anti-IL1RAP/CD3 T cell engager (TCE) in AML. METHODS Antibodies to IL1RAP were isolated from CD138+ B cells collected from the immunized mice by optoelectric positioning and single cell sequencing. Individual mouse monoclonal antibodies (mAbs) were produced and characterized, from which we generated BIF002, an anti-human IL1RAP/CD3 TCE using Fab arm exchange. Mutations in human IgG1 Fc were introduced to reduce FcγR binding. The antileukemic activity of BIF002 was characterized in vitro and in vivo using multiple cell lines and patient derived AML samples. RESULTS IL1RAP was found to be highly expressed on most human AML cell lines and primary blasts, including CD34+ LSC-enriched subpopulation from patients with both de novo and relapsed/refractory (R/R) leukemia, but not on normal HSCs. In co-culture of T cells from healthy donors and IL1RAPhigh AML cell lines and primary blasts, BIF002 induced dose- and effector-to-target (E:T) ratio-dependent T cell activation and leukemic cell lysis at subnanomolar concentrations. BIF002 administered intravenously along with human T cells led to depletion of leukemic cells, and significantly prolonged survival of IL1RAPhigh MOLM13 or AML patient-derived xenografts with no off-target side effects, compared to controls. Of note, BiF002 effectively redirects T cells to eliminate LSCs, as evidenced by the absence of disease initiation in secondary recipients of bone marrow (BM) from BIF002+T cells-treated donors (median survival not reached; all survived > 200 days) compared with recipients of BM from vehicle- (median survival: 26 days; p = 0.0004) or isotype control antibody+T cells-treated donors (26 days; p = 0.0002). CONCLUSIONS The novel anti-IL1RAP/CD3 TCE, BIF002, eradicates LSCs and significantly prolongs survival of AML xenografts, representing a promising, novel treatment for AML.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Miso Park
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Lucy Y Ghoda
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Dandan Zhao
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Melissa Valerio
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ebtesam Nafie
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Asaul Gonzalez
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Kevin Ly
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Bea Parcutela
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Hyeran Choi
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Xubo Gong
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Chen
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Kaito Harada
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Le Xuan Truong Nguyen
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Joo Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Idoroenyi Amanam
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Bin Zhang
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - John C Williams
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
19
|
Fredon M, Poussard M, Biichlé S, Bonnefoy F, Mantion CF, Seffar E, Renosi F, Bôle-Richard E, Boidot R, Chevrier S, Anna F, Loustau M, Caumartin J, Gonçalves-Venturelli M, Robinet E, Saas P, Deconinck E, Daguidau E, Roussel X, Godet Y, Adotévi O, Angelot-Delettre F, Galaine J, Garnache-Ottou F. Impact of scFv on Functionality and Safety of Third-Generation CD123 CAR T Cells. Cancer Immunol Res 2024; 12:1090-1107. [PMID: 38819256 DOI: 10.1158/2326-6066.cir-23-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/01/2023] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Chimeric antigen receptor (CAR) T cells express an extracellular domain consisting of a single-chain fragment variable (scFv) targeting a surface tumor-associated antigen. scFv selection should involve safety profiling with evaluation of the efficacy/toxicity balance, especially when the target antigen also is expressed on healthy cells. Here, to assess differences in terms of efficacy and on-target/off-tumor effects, we generated five different CARs targeting CD123 by substituting only the scFv. In in vitro models, T cells engineered to express three of these five CD123 CARs were effectively cytotoxic on leukemic cells without increasing lysis of monocytes or endothelial cells. Using the IncuCyte system, we confirmed the low cytotoxicity of CD123 CAR T cells on endothelial cells. Hematotoxicity evaluation using progenitor culture and CD34 cell lysis showed that two of the five CD123 CAR T cells were less cytotoxic on hematopoietic stem cells. Using a humanized mouse model, we confirmed that CD123- cells were not eliminated by the CD123 CAR T cells. Two CD123 CAR T cells reduced tumor infiltration and increased the overall survival of mice in three in vivo models of blastic plasmacytoid dendritic cell neoplasm. In an aggressive version of this model, bulk RNA sequencing analysis showed that these CD123 CAR T cells upregulated genes associated with cytotoxicity and activation/exhaustion a few days after the injection. Together, these results emphasize the importance of screening different scFvs for the development of CAR constructs to support selection of cells with the optimal risk-benefit ratio for clinical development.
Collapse
Affiliation(s)
- Maxime Fredon
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Margaux Poussard
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Sabeha Biichlé
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Francis Bonnefoy
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | | | - Evan Seffar
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Medical Oncology Department, CHU, Besançon, France
| | - Florian Renosi
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Molecular Onco-Hematology Laboratory, CHU, Besançon, France
| | | | - Romain Boidot
- Department of Tumor Biology and Pathology, Molecular Biology Unit, Georges-François Leclerc Center, Dijon, France
- ICMUB UMR CNRS 6302, Dijon, France
| | - Sandrine Chevrier
- Department of Tumor Biology and Pathology, Molecular Biology Unit, Georges-François Leclerc Center, Dijon, France
| | - François Anna
- Preclinical Department, Invectys, Paris, France
- Molecular Virology and Vaccinology Unit, Pasteur Institute, Paris, France
| | | | | | - Mathieu Gonçalves-Venturelli
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Lymphobank S.A.S.U, Besançon, France
| | | | - Philippe Saas
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Eric Deconinck
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Hematology Department, CHU, Besançon, France
| | - Etienne Daguidau
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Hematology Department, CHU, Besançon, France
| | - Xavier Roussel
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Hematology Department, CHU, Besançon, France
| | - Yann Godet
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Olivier Adotévi
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Medical Oncology Department, CHU, Besançon, France
| | | | - Jeanne Galaine
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
| | - Francine Garnache-Ottou
- INSERM, EFS BFC, UMR1098-RIGHT, University of Franche-Comté, Besançon, France
- Hematology and Cellular Immunology Laboratory, CHU, Besançon, France
| |
Collapse
|
20
|
Yuan J, Zhang J, Zhao B, Liu F, Liu T, Duan Y, Chen Y, Chen X, Zou Y, Zhang L, Guo Y, Yang W, Yang Y, Wei J, Zhu X, Zhang Y. Single-cell transcriptomic analysis of the immune microenvironment in pediatric acute leukemia. Cancer Lett 2024; 596:217018. [PMID: 38844062 DOI: 10.1016/j.canlet.2024.217018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Relapse and treatment resistance pose significant challenges in the management of pediatric B cell acute lymphoblastic leukemia (B-ALL) and acute myeloid leukemia (AML). The efficacy of immunotherapy in leukemia remains limited due to factors such as the immunosuppressive tumor microenvironment (TME) and lack of suitable immunotherapeutic targets. Thus, an in-depth characterization of the TME in pediatric leukemia is warranted to improve the efficacy of immunotherapy. Here, we used single-cell RNA sequencing (scRNA-seq) to characterize the TME of pediatric B-ALL and AML, focusing specifically on bone-marrow-derived T cells. Moreover, we investigated the transcriptome changes during the initiation, remission, and relapse stages of pediatric AML. Our findings revealed that specific functional expression programs correlated with fluctuations in various T cell subsets, which may be associated with AML progression and relapse. Furthermore, our analysis of cellular communication networks led to the identification of VISTA, CD244, and TIM3 as potential immunotherapeutic targets in pediatric AML. Finally, we detected elevated proportions of γδ T cells and associated functional genes in samples from pediatric patients diagnosed with B-ALL and AML, which could inform the development of novel therapeutic approaches, potentially focusing on γδ T cells.
Collapse
Affiliation(s)
- Jiapei Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China.
| | - Jingliao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China
| | - Beibei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China
| | - Fang Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China
| | - Tianfeng Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China
| | - Yongjuan Duan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China
| | - Xiaojuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China
| | - Yao Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China
| | - Yang Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jun Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China.
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China.
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College., Tianjin, China.
| |
Collapse
|
21
|
Zeng Z, Roobrouck A, Deschamps G, Bonnevaux H, Guerif S, De Brabandere V, Amara C, Dejonckheere E, Virone-Oddos A, Chiron M, Konopleva M, Dullaers M. Dual-targeting CD33/CD123 NANOBODY T-cell engager with potent anti-AML activity and good safety profile. Blood Adv 2024; 8:2059-2073. [PMID: 38266153 PMCID: PMC11063226 DOI: 10.1182/bloodadvances.2023011858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
ABSTRACT Novel therapies are needed for effective treatment of acute myeloid leukemia (AML). Relapse is common and salvage treatment with cytotoxic chemotherapy is rarely curative. CD123 and CD33, 2 clinically validated targets in AML, are jointly expressed on blasts and leukemic stem cells in >95% of patients with AML. However, their expression is heterogenous between subclones and between patients, which may affect the efficacy of single-targeting agents in certain patient populations. We present here a dual-targeting CD33/CD123 NANOBODY T-cell engager (CD33/CD123-TCE) that was designed to decrease the risk of relapse from possible single antigen-negative clones and to increase coverage within and across patients. CD33/CD123-TCE killed AML tumor cells expressing 1 or both antigens in vitro. Compared with single-targeting control compounds, CD33/CD123-TCE conferred equal or better ex vivo killing of AML blasts in most primary AML samples tested, suggesting a broader effectiveness across patients. In a disseminated cell-line-derived xenograft mouse model of AML, CD33/CD123-TCE cleared cancer cells in long bones and in soft tissues. As cytokine release syndrome is a well-documented adverse effect of TCE, the compound was tested in a cytokine release assay and shown to induce less cytokines compared to a CD123 single-targeting control. In an exploratory single-dose nonhuman primate study, CD33/CD123-TCE revealed a favorable PK profile. Depletion of CD123 and CD33 expressing cells was observed, but there were neither signs of cytokine release syndrome nor clinical signs of toxicity. Taken together, the CD33/CD123 dual-targeting NANOBODY TCE exhibits potent and safe anti-AML activity and promises a broad patient coverage.
Collapse
Affiliation(s)
- Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | | | | | | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
22
|
Gao C, Li X, Xu Y, Zhang T, Zhu H, Yao D. Recent advances in CAR-T cell therapy for acute myeloid leukaemia. J Cell Mol Med 2024; 28:e18369. [PMID: 38712978 PMCID: PMC11075639 DOI: 10.1111/jcmm.18369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/18/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a fatal and refractory haematologic cancer that primarily affects adults. It interferes with bone marrow cell proliferation. Patients have a 5 years survival rate of less than 30% despite the availability of several treatments, including chemotherapy, allogeneic haematopoietic stem cell transplantation (Allo-HSCT), and receptor antagonist drugs. Allo-HSCT is the mainstay of acute myeloid leukaemia treatment. Although it does work, there are severe side effects, such as graft-versus-host disease (GVHD). In recent years, chimeric antigen receptor (CAR)-T cell therapies have made significant progress in the treatment of cancer. These engineered T cells can locate and recognize tumour cells in vivo and release a large number of effectors through immune action to effectively kill tumour cells. CAR-T cells are among the most effective cancer treatments because of this property. CAR-T cells have demonstrated positive therapeutic results in the treatment of acute myeloid leukaemia, according to numerous clinical investigations. This review highlights recent progress in new targets for AML immunotherapy, and the limitations, and difficulties of CAR-T therapy for AML.
Collapse
Affiliation(s)
- Chi Gao
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Xin Li
- College of BiotechnologyTianjin University of Science and TechnologyTianjinChina
| | - Yao Xu
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Tongcun Zhang
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
- Institute of Biology and MedicineWuhan University of Science and TechnologyWuhanChina
| | - Haichuan Zhu
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Di Yao
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| |
Collapse
|
23
|
Guijarro-Albaladejo B, Marrero-Cepeda C, Rodríguez-Arbolí E, Sierro-Martínez B, Pérez-Simón JA, García-Guerrero E. Chimeric antigen receptor (CAR) modified T Cells in acute myeloid leukemia: limitations and expectations. Front Cell Dev Biol 2024; 12:1376554. [PMID: 38694825 PMCID: PMC11061469 DOI: 10.3389/fcell.2024.1376554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with a poor prognosis despite the advent of novel therapies. Consequently, a major need exists for new therapeutic options, particularly for patients with relapsed/refractory (R/R) AML. In recent years, it has been possible to individualize the treatment of a subgroup of patients, particularly with the emergence of multiple targeted therapies. Nonetheless, a considerable number of patients remain without therapeutic options, and overall prognosis remains poor because of a high rate of disease relapse. In this sense, cellular therapies, especially chimeric antigen receptor (CAR)-T cell therapy, have dramatically shifted the therapeutic options for other hematologic malignancies, such as diffuse large B cell lymphoma and acute lymphoblastic leukemia. In contrast, effectively treating AML with CAR-based immunotherapy poses major biological and clinical challenges, most of them derived from the unmet need to identify target antigens with expression restricted to the AML blast without compromising the viability of the normal hematopoietic stem cell counterpart. Although those limitations have hampered CAR-T cell therapy translation to the clinic, there are several clinical trials where target antigens, such as CD123, CLL-1 or CD33 are being used to treat AML patients showing promising results. Moreover, there are continuing efforts to enhance the specificity and efficacy of CAR-T cell therapy in AML. These endeavors encompass the exploration of novel avenues, including the development of dual CAR-T cells and next-generation CAR-T cells, as well as the utilization of gene editing tools to mitigate off-tumor toxicities. In this review, we will summarize the ongoing clinical studies and the early clinical results reported with CAR-T cells in AML, as well as highlight CAR-T cell limitations and the most recent approaches to overcome these barriers. We will also discuss how and when CAR-T cells should be used in the context of AML.
Collapse
Affiliation(s)
- Beatriz Guijarro-Albaladejo
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Servicio de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Cristina Marrero-Cepeda
- Unidad de Gestión Clínica de Hematología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Eduardo Rodríguez-Arbolí
- Unidad de Gestión Clínica de Hematología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Servicio de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - José Antonio Pérez-Simón
- Unidad de Gestión Clínica de Hematología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Estefanía García-Guerrero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Servicio de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| |
Collapse
|
24
|
Hou Z, Ren Y, Zhang X, Huang D, Yan F, Sun W, Zhang W, Zhang Q, Fu X, Lang Z, Chu C, Zou B, Gao B, Jin B, Kang Z, Liu Q, Yan J. EP300-ZNF384 transactivates IL3RA to promote the progression of B-cell acute lymphoblastic leukemia. Cell Commun Signal 2024; 22:211. [PMID: 38566191 PMCID: PMC10986138 DOI: 10.1186/s12964-024-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
The EP300-ZNF384 fusion gene is an oncogenic driver in B-cell acute lymphoblastic leukemia (B-ALL). In the present study, we demonstrated that EP300-ZNF384 substantially induces the transcription of IL3RA and the expression of IL3Rα (CD123) on B-ALL cell membranes. Interleukin 3 (IL-3) supplementation promotes the proliferation of EP300-ZNF348-positive B-ALL cells by activating STAT5. Conditional knockdown of IL3RA in EP300-ZF384-positive cells inhibited the proliferation in vitro, and induced a significant increase in overall survival of mice, which is attributed to impaired propagation ability of leukemia cells. Mechanistically, the EP300-ZNF384 fusion protein transactivates the promoter activity of IL3RA by binding to an A-rich sequence localized at -222/-234 of IL3RA. Furthermore, forced EP300-ZNF384 expression induces the expression of IL3Rα on cell membranes and the secretion of IL-3 in CD19-positive B precursor cells derived from healthy individuals. Doxorubicin displayed a selective killing of EP300-ZNF384-positive B-ALL cells in vitro and in vivo. Collectively, we identify IL3RA as a direct downstream target of EP300-ZNF384, suggesting CD123 is a potent biomarker for EP300-ZNF384-driven B-ALL. Targeting CD123 may be a novel therapeutic approach to EP300-ZNF384-positive patients, alternative or, more likely, complementary to standard chemotherapy regimen in clinical setting.
Collapse
Affiliation(s)
- Zhijie Hou
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China.
| | - Yifei Ren
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Xuehong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Dan Huang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Fanzhi Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Wentao Sun
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Wenjuan Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Qingqing Zhang
- Department of Pathology, Dalian Medical University, Dalian, 116044, China
| | - Xihui Fu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Zhenghui Lang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Chenyang Chu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Boyang Zou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Beibei Gao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Zhijie Kang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China.
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
| |
Collapse
|
25
|
Canichella M, Molica M, Mazzone C, de Fabritiis P. Chimeric Antigen Receptor T-Cell Therapy in Acute Myeloid Leukemia: State of the Art and Recent Advances. Cancers (Basel) 2023; 16:42. [PMID: 38201469 PMCID: PMC10777995 DOI: 10.3390/cancers16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Chimeric antigen receptors (CAR)-T-cell therapy represents the most important innovation in onco-hematology in recent years. The progress achieved in the management of complications and the latest generations of CAR-T-cells have made it possible to anticipate in second-line the indication of this type of treatment in large B-cell lymphoma. While some types of B-cell lymphomas and B-cell acute lymphoid leukemia have shown extremely promising results, the same cannot be said for myeloid leukemias-in particular, acute myeloid leukemia (AML), which would require innovative therapies more than any other blood disease. The heterogeneities of AML cells and the immunological complexity of the interactions between the bone marrow microenvironment and leukemia cells have been found to be major obstacles to the clinical development of CAR-T in AML. In this review, we report on the main results obtained in AML clinical trials, the preclinical studies testing potential CAR-T constructs, and future perspectives.
Collapse
Affiliation(s)
- Martina Canichella
- Hematology, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy; (C.M.); (P.d.F.)
| | - Matteo Molica
- Department of Hematology-Oncology, Azienda Ospedaliera Pugliese-Ciaccio, 88100 Catanzaro, Italy;
| | - Carla Mazzone
- Hematology, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy; (C.M.); (P.d.F.)
| | - Paolo de Fabritiis
- Hematology, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy; (C.M.); (P.d.F.)
- Department of Biomedicina e Prevenzione, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
26
|
Gisina A, Kim Y, Yarygin K, Lupatov A. Can CD133 Be Regarded as a Prognostic Biomarker in Oncology: Pros and Cons. Int J Mol Sci 2023; 24:17398. [PMID: 38139228 PMCID: PMC10744290 DOI: 10.3390/ijms242417398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The CD133 cell membrane glycoprotein, also termed prominin-1, is expressed on some of the tumor cells of both solid and blood malignancies. The CD133-positive tumor cells were shown to exhibit higher proliferative activity, greater chemo- and radioresistance, and enhanced tumorigenicity compared to their CD133-negative counterparts. For this reason, CD133 is regarded as a potential prognostic biomarker in oncology. The CD133-positive cells are related to the cancer stem cell subpopulation in many types of cancer. Recent studies demonstrated the involvement of CD133 in the regulation of proliferation, autophagy, and apoptosis in cancer cells. There is also evidence of its participation in the epithelial-mesenchymal transition associated with tumor progression. For a number of malignant tumor types, high CD133 expression is associated with poor prognosis, and the prognostic significance of CD133 has been confirmed in a number of meta-analyses. However, some published papers suggest that CD133 has no prognostic significance or even demonstrate a certain correlation between high CD133 levels and a positive prognosis. This review summarizes and discusses the existing evidence for and against the prognostic significance of CD133 in cancer. We also consider possible reasons for conflicting findings from the studies of the clinical significance of CD133.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V. N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | | | | | | |
Collapse
|
27
|
Pérez-Amill L, Bataller À, Delgado J, Esteve J, Juan M, Klein-González N. Advancing CART therapy for acute myeloid leukemia: recent breakthroughs and strategies for future development. Front Immunol 2023; 14:1260470. [PMID: 38098489 PMCID: PMC10720337 DOI: 10.3389/fimmu.2023.1260470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Chimeric antigen receptor (CAR) T therapies are being developed for acute myeloid leukemia (AML) on the basis of the results obtained for other haematological malignancies and the need of new treatments for relapsed and refractory AML. The biggest challenge of CART therapy for AML is to identify a specific target antigen, since antigens expressed in AML cells are usually shared with healthy haematopoietic stem cells (HSC). The concomitant expression of the target antigen on both tumour and HSC may lead to on-target/off-tumour toxicity. In this review, we guide researchers to design, develop, and translate to the clinic CART therapies for the treatment of AML. Specifically, we describe what issues have to be considered to design these therapies; what in vitro and in vivo assays can be used to prove their efficacy and safety; and what expertise and facilities are needed to treat and manage patients at the hospital.
Collapse
Affiliation(s)
- Lorena Pérez-Amill
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Àlex Bataller
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Julio Delgado
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Jordi Esteve
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Manel Juan
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Hospital Sant Joan de Déu, Universidad de Barcelona, Barcelona, Spain
| | - Nela Klein-González
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Haubner S, Mansilla-Soto J, Nataraj S, Kogel F, Chang Q, de Stanchina E, Lopez M, Ng MR, Fraser K, Subklewe M, Park JH, Wang X, Rivière I, Sadelain M. Cooperative CAR targeting to selectively eliminate AML and minimize escape. Cancer Cell 2023; 41:1871-1891.e6. [PMID: 37802054 PMCID: PMC11006543 DOI: 10.1016/j.ccell.2023.09.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/20/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
Acute myeloid leukemia (AML) poses a singular challenge for chimeric antigen receptor (CAR) therapy owing to its phenotypic heterogeneity and similarity to normal hematopoietic stem/progenitor cells (HSPCs). Here we expound a CAR strategy intended to efficiently target AML while minimizing HSPC toxicity. Quantification of target expression in relapsed/refractory patient samples and normal HSPCs reveals a therapeutic window for gated co-targeting of ADGRE2 and CLEC12A: We combine an attenuated ADGRE2-CAR with a CLEC12A-chimeric costimulatory receptor (ADCLEC.syn1) to preferentially engage ADGRE2posCLEC12Apos leukemic stem cells over ADGRE2lowCLEC12Aneg normal HSPCs. ADCLEC.syn1 prevents antigen escape in AML xenograft models, outperforms the ADGRE2-CAR alone and eradicates AML despite proximate myelopoiesis in humanized mice. Off-target HSPC toxicity is similar to that of a CD19-CAR and can be mitigated by reducing CAR T cell-derived interferon-γ. Overall, we demonstrate the ability of target density-adapted cooperative CAR targeting to selectively eliminate AML and potentially obviate the need for hematopoietic rescue.
Collapse
Affiliation(s)
- Sascha Haubner
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Nataraj
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Friederike Kogel
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qing Chang
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Lopez
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mei Rosa Ng
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | - Kathryn Fraser
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jae H Park
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiuyan Wang
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Isabelle Rivière
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
29
|
Omer MH, Shafqat A, Ahmad O, Alkattan K, Yaqinuddin A, Damlaj M. Bispecific Antibodies in Hematological Malignancies: A Scoping Review. Cancers (Basel) 2023; 15:4550. [PMID: 37760519 PMCID: PMC10526328 DOI: 10.3390/cancers15184550] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Bispecific T-cell engagers (BiTEs) and bispecific antibodies (BiAbs) have revolutionized the treatment landscape of hematological malignancies. By directing T cells towards specific tumor antigens, BiTEs and BiAbs facilitate the T-cell-mediated lysis of neoplastic cells. The success of blinatumomab, a CD19xCD3 BiTE, in acute lymphoblastic leukemia spearheaded the expansive development of BiTEs/BiAbs in the context of hematological neoplasms. Nearly a decade later, numerous BiTEs/BiAbs targeting a range of tumor-associated antigens have transpired in the treatment of multiple myeloma, non-Hodgkin's lymphoma, acute myelogenous leukemia, and acute lymphoblastic leukemia. However, despite their generally favorable safety profiles, particular toxicities such as infections, cytokine release syndrome, myelosuppression, and neurotoxicity after BiAb/BiTE therapy raise valid concerns. Moreover, target antigen loss and the immunosuppressive microenvironment of hematological neoplasms facilitate resistance towards BiTEs/BiAbs. This review aims to highlight the most recent evidence from clinical trials evaluating the safety and efficacy of BiAbs/BiTEs. Additionally, the review will provide mechanistic insights into the limitations of BiAbs whilst outlining practical applications and strategies to overcome these limitations.
Collapse
Affiliation(s)
- Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff CF14 4YS, UK
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Omar Ahmad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Moussab Damlaj
- Department of Hematology & Oncology, Sheikh Shakhbout Medical City, Abu Dhabi P.O. Box 11001, United Arab Emirates;
- College of Medicine, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
30
|
Anjos-Afonso F, Bonnet D. Human CD34+ hematopoietic stem cell hierarchy: how far are we with its delineation at the most primitive level? Blood 2023; 142:509-518. [PMID: 37018661 PMCID: PMC10644061 DOI: 10.1182/blood.2022018071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/07/2023] Open
Abstract
The ability to isolate and characterize different hematopoietic stem cell (HSC) or progenitor cell populations opens avenues to understand how hematopoiesis is regulated during development, homeostasis, and regeneration as well as in age-related conditions such as clonal hematopoiesis and leukemogenesis. Significant progress has been made in the past few decades in determining the composition of the cell types that exist in this system, but the most significant advances have come from mouse studies. However, recent breakthroughs have made significant strides that have enhanced the resolution of the human primitive hematopoietic compartment. Therefore, we aim to review this subject not only from a historical perspective but also to discuss the progress made in the characterization of the human postnatal CD34+ HSC-enriched populations. This approach will enable us to shed light on the potential future translational applicability of human HSCs.
Collapse
Affiliation(s)
- Fernando Anjos-Afonso
- Haematopoietic Signalling Group, European Cancer Stem Cell Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
31
|
Wang L, Jiang C, Hu D. PARP10 is highly expressed and associated with inferior outcomes in acute myeloid leukemia. Aging (Albany NY) 2023; 15:6757-6773. [PMID: 37506247 PMCID: PMC10415541 DOI: 10.18632/aging.204832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/09/2023] [Indexed: 07/30/2023]
Abstract
Acute myeloid leukemia is a heterogeneous disease of the hematopoietic system, which possesses a poor prognosis; thus, the identification of novel molecular markers is urgently needed to better define the risk stratification and optimize treatment therapies for this disease. Here, we investigated the roles of the PARP family genes in AML by analyzing their mRNA expression profiles and their association with clinical features using data from TCGA and GSE. Our results showed that PARP10 was significantly more highly expressed in AML samples than in normal controls, and high expression of PARP10 was associated with older age (≥60 years, P = 0.012), more frequent TP53 mutations (P = 0.024), high-risk stratification (P < 0.05), and poorer outcomes (P < 0.05). Patients with high expression of PARP10 exhibited significantly poorer overall survival (OS) and event-free survival (EFS) than those with low PARP10 expressions (OS: median: 0.88 vs. 2.19 years; P = 0.001; EFS: median: 0.65 vs. 1.12 years; P = 0.041). Multivariate analysis indicated that high expression of PARP10 was an independent risk factor for poorer OS and EFS in AML patients. Moreover, we found that allo-SCT improved OS for AML patients with high PARP10 expression but not for patients with low PARP10 expression, while allo-SCT decreased EFS for patients with low PARP10 expression. Finally, we confirmed that PARP10 knockout impaired AML cell proliferation in vitro. In summary, our data suggested that PARP10 is aberrantly expressed in AML, and high expression of PARP10 might be a biomarker for poor prognosis and also a potential indicator for allo-SCT therapy, which might provide precise treatment indications for physicians.
Collapse
Affiliation(s)
- Ling Wang
- Department of Child Healthcare, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Child Neurodevelopment, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chuang Jiang
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Dandan Hu
- Department of Child Healthcare, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Child Neurodevelopment, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
32
|
Chen Y, Möbius S, Riege K, Hoffmann S, Hochhaus A, Ernst T, Rudolph KL. Genetic separation of chronic myeloid leukemia stem cells from normal hematopoietic stem cells at single-cell resolution. Leukemia 2023; 37:1561-1566. [PMID: 37237078 PMCID: PMC10317832 DOI: 10.1038/s41375-023-01929-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Yulin Chen
- Research Group on Stem Cell Aging, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Susanne Möbius
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, 07747, Jena, Germany
| | - Konstantin Riege
- The Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Steve Hoffmann
- The Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Andreas Hochhaus
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, 07747, Jena, Germany
| | - Thomas Ernst
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, 07747, Jena, Germany.
| | - Karl Lenhard Rudolph
- Research Group on Stem Cell Aging, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745, Jena, Germany.
- Faculty of Medicine, University Hospital Jena (UKJ), Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
33
|
van der Werf I, Mondala PK, Steel SK, Balaian L, Ladel L, Mason CN, Diep RH, Pham J, Cloos J, Kaspers GJL, Chan WC, Mark A, La Clair JJ, Wentworth P, Fisch KM, Crews LA, Whisenant TC, Burkart MD, Donohoe ME, Jamieson CHM. Detection and targeting of splicing deregulation in pediatric acute myeloid leukemia stem cells. Cell Rep Med 2023; 4:100962. [PMID: 36889320 PMCID: PMC10040387 DOI: 10.1016/j.xcrm.2023.100962] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/03/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
Pediatric acute myeloid leukemia (pAML) is typified by high relapse rates and a relative paucity of somatic DNA mutations. Although seminal studies show that splicing factor mutations and mis-splicing fuel therapy-resistant leukemia stem cell (LSC) generation in adults, splicing deregulation has not been extensively studied in pAML. Herein, we describe single-cell proteogenomics analyses, transcriptome-wide analyses of FACS-purified hematopoietic stem and progenitor cells followed by differential splicing analyses, dual-fluorescence lentiviral splicing reporter assays, and the potential of a selective splicing modulator, Rebecsinib, in pAML. Using these methods, we discover transcriptomic splicing deregulation typified by differential exon usage. In addition, we discover downregulation of splicing regulator RBFOX2 and CD47 splice isoform upregulation. Importantly, splicing deregulation in pAML induces a therapeutic vulnerability to Rebecsinib in survival, self-renewal, and lentiviral splicing reporter assays. Taken together, the detection and targeting of splicing deregulation represent a potentially clinically tractable strategy for pAML therapy.
Collapse
Affiliation(s)
- Inge van der Werf
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA; Department of Hematology, Amsterdam University Medical Center, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Phoebe K Mondala
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - S Kathleen Steel
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Larisa Balaian
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Luisa Ladel
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Cayla N Mason
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Raymond H Diep
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jessica Pham
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Center, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Gertjan J L Kaspers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Emma Children's Hospital Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Amsterdam, the Netherlands
| | - Warren C Chan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037, USA
| | - Adam Mark
- Center for Computational Biology and Bioinformatics (CCBB), University of California, San Diego, La Jolla, CA 92037, USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037, USA
| | - Peggy Wentworth
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics (CCBB), University of California, San Diego, La Jolla, CA 92037, USA
| | - Leslie A Crews
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Thomas C Whisenant
- Center for Computational Biology and Bioinformatics (CCBB), University of California, San Diego, La Jolla, CA 92037, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037, USA
| | - Mary E Donohoe
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Catriona H M Jamieson
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
34
|
van Spronsen MF, Hanekamp D, Westers TM, van Gils N, Vermue E, Rutten A, Jansen JH, Lissenberg-Witte BI, Smit L, Schuurhuis GJ, van de Loosdrecht AA. Immunophenotypic aberrant hematopoietic stem cells in myelodysplastic syndromes: a biomarker for leukemic progression. Leukemia 2023; 37:680-690. [PMID: 36792658 PMCID: PMC9991914 DOI: 10.1038/s41375-023-01811-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/06/2022] [Accepted: 01/06/2023] [Indexed: 02/17/2023]
Abstract
Myelodysplastic syndromes (MDS) comprise hematological disorders that originate from the neoplastic transformation of hematopoietic stem cells (HSCs). However, discrimination between HSCs and their neoplastic counterparts in MDS-derived bone marrows (MDS-BMs) remains challenging. We hypothesized that in MDS patients immature CD34+CD38- cells with aberrant expression of immunophenotypic markers reflect neoplastic stem cells and that their frequency predicts leukemic progression. We analyzed samples from 68 MDS patients and 53 controls and discriminated HSCs from immunophenotypic aberrant HSCs (IA-HSCs) expressing membrane aberrancies (CD7, CD11b, CD22, CD33, CD44, CD45RA, CD56, CD123, CD366 or CD371). One-third of the MDS-BMs (23/68) contained IA-HSCs. The presence of IA-HSCs correlated with perturbed hematopoiesis (disproportionally expanded CD34+ subsets beside cytopenias) and an increased hazard of leukemic progression (HR = 25, 95% CI: 2.9-218) that was independent of conventional risk factors. At 2 years follow-up, the sensitivity and specificity of presence of IA-HSCs for predicting leukemic progression was 83% (95% CI: 36-99%) and 71% (95% CI: 58-81%), respectively. In a selected cohort (n = 10), most MDS-BMs with IA-HSCs showed genomic complexity and high human blast counts following xenotransplantation into immunodeficient mice, contrasting MDS-BMs without IA-HSCs. This study demonstrates that the presence of IA-HSCs within MDS-BMs predicts leukemic progression, indicating the clinical potential of IA-HSCs as a prognostic biomarker.
Collapse
Affiliation(s)
- Margot F van Spronsen
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Diana Hanekamp
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Theresia M Westers
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Noortje van Gils
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Eline Vermue
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Arjo Rutten
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Joop H Jansen
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Birgit I Lissenberg-Witte
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Linda Smit
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Gerrit J Schuurhuis
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Swaminathan M, Cortes JE. Update on the role of gemtuzumab-ozogamicin in the treatment of acute myeloid leukemia. Ther Adv Hematol 2023; 14:20406207231154708. [PMID: 36845850 PMCID: PMC9943952 DOI: 10.1177/20406207231154708] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Gemtuzumab-ozogamicin (GO) is an antibody-drug conjugate (ADC) in which a monoclonal antibody targeting CD33 is covalently linked to the toxin calicheamicin. GO was initially approved by the United States Food and Drug Administration (FDA) for the treatment of adult patients with CD33+ acute myeloid leukemia (AML) in 2000. However, GO was recalled from the US market due to the lack of efficacy, and higher incidence of hepatotoxicities, including hepatic veno-occlusive disease (VOD), observed in phase 3 SWOG-0106 study. Since then, several other phase 3 studies have evaluated the efficacy of GO in the frontline treatment of adult patients with AML using different GO doses and schedules. The pivotal study that led to the reconsideration of GO was the French ALFA-0701 study, which used a lower and fractionated dose of GO in combination with standard chemotherapy (SC). Patients treated with the GO combination had a significantly longer survival outcome. The modified schedule also improved the toxicity profile. A systematic review and meta-analysis of over 3000 patients treated in five phase 3 studies showed that adding GO to SC improved relapse-free and overall survival. Most importantly, 6 mg/m2 dose of GO was associated with higher grade ⩾3 hepatoxicities and VOD than 3 mg/m2. The survival benefit was significant in the favorable and intermediate cytogenetic risk groups. This led to the reapproval of GO in 2017 for the treatment of patients with CD33+ AML. Currently, several clinical trials are exploring the role of GO with various combinations and in eliminating the measurable residual disease in patients with CD33+ AML.
Collapse
|
36
|
Chamo M, Koren O, Goldstein O, Bujanover N, Keinan N, Scharff Y, Gazit R. Molecular Mechanisms in Murine Syngeneic Leukemia Stem Cells. Cancers (Basel) 2023; 15:cancers15030720. [PMID: 36765677 PMCID: PMC9913241 DOI: 10.3390/cancers15030720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is a severe disease with a very high relapse rate. AML relapse may be attributable to leukemic stem cells (LSC). Notably, the "cancer stem cell" theory, which relates to LSCs, is controversial and criticized due to the technical peculiarities of the xenotransplant of human cells into mice. In this study, we searched for possible LSCs in an immunocompetent synergetic mice model. First, we found phenotypic heterogeneity in the ML23 leukemia line. We prospectively isolated a sub-population using the surface markers cKit+CD9-CD48+Mac1-/low, which have the potency to relapse the disease. Importantly, this sub-population can pass in syngeneic hosts and retrieve the heterogeneity of the parental ML23 leukemia line. The LSC sub-population resides in various organs. We present a unique gene expression signature of the LSC in the ML23 model compared to the other sub-populations. Interestingly, the ML23 LSC sub-population expresses therapeutic targeted genes such as CD47 and CD93. Taken together, we present the identification and molecular characterization of LSCs in a syngeneic murine model.
Collapse
|
37
|
Chen Y, Wang J, Zhang F, Liu P. A perspective of immunotherapy for acute myeloid leukemia: Current advances and challenges. Front Pharmacol 2023; 14:1151032. [PMID: 37153761 PMCID: PMC10154606 DOI: 10.3389/fphar.2023.1151032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
During the last decade, the underlying pathogenic mechanisms of acute myeloid leukemia (AML) have been the subject of extensive study which has considerably increased our understanding of the disease. However, both resistance to chemotherapy and disease relapse remain the principal obstacles to successful treatment. Because of acute and chronic undesirable effects frequently associated with conventional cytotoxic chemotherapy, consolidation chemotherapy is not feasible, especially for elderly patients, which has attracted a growing body of research to attempt to tackle this problem. Immunotherapies for acute myeloid leukemia, including immune checkpoint inhibitors, monoclonal antibodies, dendritic cell (DC) vaccines, together with T-cell therapy based on engineered antigen receptor have been developed recently. Our review presents the recent progress in immunotherapy for the treatment of AML and discusses effective therapies that have the most potential and major challenges.
Collapse
Affiliation(s)
- Ying Chen
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
- *Correspondence: Jishi Wang,
| | - Fengqi Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| | - Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Guiyang, China
| |
Collapse
|
38
|
Lu Y, Liu Y, Wen S, Kuang N, Zhang X, Li J, Wang F. Naturally selected CD7 CAR-T therapy without genetic editing demonstrates significant antitumour efficacy against relapsed and refractory acute myeloid leukaemia (R/R-AML). J Transl Med 2022; 20:600. [DOI: 10.1186/s12967-022-03797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
The survival rate for patients with relapsed and refractory acute myeloid leukaemia (R/R-AML) remains poor, and treatment is challenging. Chimeric antigen receptor T cells (CAR-T cells) have been widely used for haematologic malignancies. Current CAR-T therapies for acute myeloid leukaemia mostly target myeloid-lineage antigens, such as CD123 and CD33, which may be associated with potential haematopoietic toxicity. As a lineage-specific receptor, CD7 is expressed in acute myeloid leukaemia cells and T cells but is not expressed in myeloid cells. Therefore, the use of CD7 CAR-T cells for R/R-AML needs to be further explored.
Methods
In this report, immunohistochemistry and flow cytometry were used to analyse CD7 expression in clinical samples from R/R-AML patients and healthy donors (HDs). We designed naturally selected CD7 CAR-T cells to analyse various functions and in vitro antileukaemic efficacy based on flow cytometry, and xenograft models were used to validate in vivo tumour dynamics.
Results
We calculated the percentage of cells with CD7 expression in R/R-AML patients with minimal residual disease (MRD) (5/16, 31.25%) from our institution and assessed CD7 expression in myeloid and lymphoid lineage cells of R/R-AML patients, concluding that CD7 is expressed in T cells but not in myeloid cells. Subsequently, we designed and constructed naturally selected CD7 CAR-T cells (CD7 CAR). We did not perform CD7 antigen knockdown on CD7 CAR-T cells because CD7 molecule expression is naturally eliminated at Day 12 post transduction. We then evaluated the ability to target and kill CD7+ acute myeloid leukaemia cells in vitro and in vivo. Naturally selected CD7 CAR-T cells efficiently killed CD7+ acute myeloid leukaemia cells and CD7+ primary blasts of R/R-AML patients in vitro and significantly inhibited leukaemia cell growth in a xenograft mouse model.
Conclusion
Naturally selected CD7 CAR-T cells represent an effective treatment strategy for relapsed and refractory acute myeloid leukaemia patients in preclinical studies.
Collapse
|
39
|
Wei W, Yang D, Chen X, Liang D, Zou L, Zhao X. Chimeric antigen receptor T-cell therapy for T-ALL and AML. Front Oncol 2022; 12:967754. [PMID: 36523990 PMCID: PMC9745195 DOI: 10.3389/fonc.2022.967754] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/14/2022] [Indexed: 11/10/2023] Open
Abstract
Non-B-cell acute leukemia is a term that encompasses T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Currently, the therapeutic effectiveness of existing treatments for refractory or relapsed (R/R) non-B-cell acute leukemia is limited. In such situations, chimeric antigen receptor (CAR)-T cell therapy may be a promising approach to treat non-B-cell acute leukemia, given its promising results in B-cell acute lymphoblastic leukemia (B-ALL). Nevertheless, fratricide, malignant contamination, T cell aplasia for T-ALL, and specific antigen selection and complex microenvironment for AML remain significant challenges in the implementation of CAR-T therapy for T-ALL and AML patients in the clinic. Therefore, designs of CAR-T cells targeting CD5 and CD7 for T-ALL and CD123, CD33, and CLL1 for AML show promising efficacy and safety profiles in clinical trials. In this review, we summarize the characteristics of non-B-cell acute leukemia, the development of CARs, the CAR targets, and their efficacy for treating non-B-cell acute leukemia.
Collapse
Affiliation(s)
- Wenwen Wei
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Department of Medical Oncology of Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dong Yang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Xi Chen
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dandan Liang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Liqun Zou
- Department of Medical Oncology of Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Vitsky A, Sacaan A, Hu W, Finkelstein M, Reagan W. Gemtuzumab Ozogamicin Treatment Results in Decreased Proliferation and Differentiation of Human Megakaryocytes but Does Not Inhibit Mature Platelet Function. Toxicol Pathol 2022; 50:871-880. [PMID: 36200575 DOI: 10.1177/01926233221129202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mylotarg (Gemtuzumab ozogamicin [GO]), an antibody drug conjugate comprising a CD33-directed antibody linked to calicheamicin, is approved for use in certain acute myeloid leukemia patients. Following reports of prolonged thrombocytopenia and hemorrhagic events in a subset of patients, a detailed series of in vitro and ex vivo studies was performed at the request of regulators, both to look at the effects of GO on platelet production and to determine whether treatment with GO was likely to affect platelet aggregation under a variety of conditions. Treatment with GO resulted in cellular cytotoxicity and/or decreased differentiation during human megakaryocyte development. However, GO did not impair platelet aggregation under the experimental conditions evaluated. Ultimately, the effect of GO on megakaryocyte development observed in our studies was determined to have no impact on the risk-benefit assessment in the intended patient population, as thrombocytopenia is a known side effect of GO, and monitoring of platelet counts in patients is already strongly recommended.
Collapse
Affiliation(s)
- Allison Vitsky
- Pfizer Global Research and Development, San Diego, California, USA
| | - Aida Sacaan
- Pfizer Global Research and Development, San Diego, California, USA
| | - Wenyue Hu
- Pfizer Global Research and Development, San Diego, California, USA
| | | | - William Reagan
- Pfizer Global Research and Development, Groton, Connecticut, USA
| |
Collapse
|
41
|
Rix B, Maduro AH, Bridge KS, Grey W. Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function. Front Physiol 2022; 13:1009160. [PMID: 36246104 PMCID: PMC9564379 DOI: 10.3389/fphys.2022.1009160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The haematopoietic system is a classical stem cell hierarchy that maintains all the blood cells in the body. Haematopoietic stem cells (HSCs) are rare, highly potent cells that reside at the apex of this hierarchy and are historically some of the most well studied stem cells in humans and laboratory models, with haematopoiesis being the original system to define functional cell types by cell surface markers. Whilst it is possible to isolate HSCs to near purity, we know very little about the functional activity of markers to purify HSCs. This review will focus on the historical efforts to purify HSCs in humans based on cell surface markers, their putative functions and recent advances in finding functional markers on HSCs.
Collapse
Affiliation(s)
| | | | | | - William Grey
- *Correspondence: Katherine S. Bridge, ; William Grey,
| |
Collapse
|
42
|
Stouten S, Balkenende B, Roobol L, Lunel SV, Badie C, Dekkers F. Hyper-radiosensitivity affects low-dose acute myeloid leukemia incidence in a mathematical model. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:361-373. [PMID: 35864346 PMCID: PMC9334435 DOI: 10.1007/s00411-022-00981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
In vitro experiments show that the cells possibly responsible for radiation-induced acute myeloid leukemia (rAML) exhibit low-dose hyper-radiosensitivity (HRS). In these cells, HRS is responsible for excess cell killing at low doses. Besides the endpoint of cell killing, HRS has also been shown to stimulate the low-dose formation of chromosomal aberrations such as deletions. Although HRS has been investigated extensively, little is known about the possible effect of HRS on low-dose cancer risk. In CBA mice, rAML can largely be explained in terms of a radiation-induced Sfpi1 deletion and a point mutation in the remaining Sfpi1 gene copy. The aim of this paper is to present and quantify possible mechanisms through which HRS may influence low-dose rAML incidence in CBA mice. To accomplish this, a mechanistic rAML CBA mouse model was developed to study HRS-dependent AML onset after low-dose photon irradiation. The rAML incidence was computed under the assumptions that target cells: (1) do not exhibit HRS; (2) HRS only stimulates cell killing; or (3) HRS stimulates cell killing and the formation of the Sfpi1 deletion. In absence of HRS (control), the rAML dose-response curve can be approximated with a linear-quadratic function of the absorbed dose. Compared to the control, the assumption that HRS stimulates cell killing lowered the rAML incidence, whereas increased incidence was observed at low doses if HRS additionally stimulates the induction of the Sfpi1 deletion. In conclusion, cellular HRS affects the number of surviving pre-leukemic cells with an Sfpi1 deletion which, depending on the HRS assumption, directly translates to a lower/higher probability of developing rAML. Low-dose HRS may affect cancer risk in general by altering the probability that certain mutations occur/persist.
Collapse
Affiliation(s)
- Sjors Stouten
- Center for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Mathematics, Utrecht University, Utrecht, The Netherlands
| | - Ben Balkenende
- Department of Mathematics, Utrecht University, Utrecht, The Netherlands
| | - Lars Roobol
- Center for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Chilton, Didcot, Oxon, OX11 0RQ UK
| | - Fieke Dekkers
- Center for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Mathematics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
43
|
Proteomic Profiling Identifies Specific Leukemic Stem Cell-Associated Protein Expression Patterns in Pediatric AML Patients. Cancers (Basel) 2022; 14:cancers14153567. [PMID: 35892824 PMCID: PMC9332109 DOI: 10.3390/cancers14153567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Acute myeloid leukemia is an aggressive cancer in children and novel therapeutic tools are warranted to improve outcomes and reduce late effects in these patients. In this study, we isolate and explore the protein profiles of leukemic stem cells and normal hematopoietic stem cells from hematologically healthy children. Differences in protein profiles between leukemic and normal hematopoietic stem cells were identified. These results provide an insight into the disrupted biological pathways in childhood acute myeloid leukemia. Moreover, differences in protein profiles may serve as potential targets for future therapies specifically aiming at the disease-propagating leukemic stem cells while omitting the normal hematopoietic stem cells. Abstract Novel therapeutic tools are warranted to improve outcomes for children with acute myeloid leukemia (AML). Differences in the proteome of leukemic blasts and stem cells (AML-SCs) in AML compared with normal hematopoietic stem cells (HSCs) may facilitate the identification of potential targets for future treatment strategies. In this explorative study, we used mass spectrometry to compare the proteome of AML-SCs and CLEC12A+ blasts from five pediatric AML patients with HSCs and hematopoietic progenitor cells from hematologically healthy, age-matched controls. A total of 456 shared proteins were identified in both leukemic and control samples. Varying protein expression profiles were observed in AML-SCs and leukemic blasts, none having any overall resemblance to healthy counterpart cell populations. Thirty-four proteins were differentially expressed between AML-SCs and HSCs, including the upregulation of HSPE1, SRSF1, and NUP210, and the enrichment of proteins suggestive of protein synthesis perturbations through the downregulation of EIF2 signaling was found. Among others, NUP210 and calreticulin were upregulated in CLEC12A+ blasts compared with HSCs. In conclusion, the observed differences in protein expression between pediatric patients with AML and pediatric controls, in particular when comparing stem cell subsets, encourages the extended exploration of leukemia and AML-SC-specific biomarkers of potential relevance in the development of future therapeutic options in pediatric AML.
Collapse
|
44
|
Niu J, Peng D, Liu L. Drug Resistance Mechanisms of Acute Myeloid Leukemia Stem Cells. Front Oncol 2022; 12:896426. [PMID: 35865470 PMCID: PMC9294245 DOI: 10.3389/fonc.2022.896426] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is a polyclonal and heterogeneous hematological malignancy. Relapse and refractory after induction chemotherapy are still challenges for curing AML. Leukemia stem cells (LSCs), accepted to originate from hematopoietic stem/precursor cells, are the main root of leukemogenesis and drug resistance. LSCs are dynamic derivations and possess various elusive resistance mechanisms. In this review, we summarized different primary resistance and remolding mechanisms of LSCs after chemotherapy, as well as the indispensable role of the bone marrow microenvironment on LSCs resistance. Through a detailed and comprehensive review of the spectacle of LSCs resistance, it can provide better strategies for future researches on eradicating LSCs and clinical treatment of AML.
Collapse
Affiliation(s)
| | | | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Chugh RM, Bhanja P, Olea XD, Tao F, Schroeder K, Zitter R, Arora T, Pathak H, Kimler BF, Godwin AK, Perry JM, Saha S. Human Peripheral Blood Mononucleocyte Derived Myeloid Committed Progenitor Cells Mitigate H-ARS by Exosomal Paracrine Signal. Int J Mol Sci 2022; 23:5498. [PMID: 35628308 PMCID: PMC9142131 DOI: 10.3390/ijms23105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Radiation-induced loss of the hematopoietic stem cell progenitor population compromises bone marrow regeneration and development of mature blood cells. Failure to rescue bone marrow functions results in fatal consequences from hematopoietic injury, systemic infections, and sepsis. So far, bone marrow transplant is the only effective option, which partially minimizes radiation-induced hematopoietic toxicities. However, a bone marrow transplant will require HLA matching, which will not be feasible in large casualty settings such as a nuclear accident or an act of terrorism. In this study we demonstrated that human peripheral blood mononuclear cell-derived myeloid committed progenitor cells can mitigate radiation-induced bone marrow toxicity and improve survival in mice. These cells can rescue the recipient's hematopoietic stem cells from radiation toxicity even when administered up to 24 h after radiation exposure and can be subjected to allogenic transplant without GVHD development. Transplanted cells deliver sEVs enriched with regenerative and immune-modulatory paracrine signals to mitigate radiation-induced hematopoietic toxicity. This provides a natural polypharmacy solution against a complex injury process. In summary, myeloid committed progenitor cells can be prepared from blood cells as an off-the-shelf alternative to invasive bone marrow harvesting and can be administered in an allogenic setting to mitigate hematopoietic acute radiation syndrome.
Collapse
Affiliation(s)
- Rishi Man Chugh
- Departments of Radiation Oncology, University of Kansas Medical Center, Kansas City, MO 66160, USA; (R.M.C.); (P.B.); (X.D.O.); (R.Z.); (T.A.); (B.F.K.)
| | - Payel Bhanja
- Departments of Radiation Oncology, University of Kansas Medical Center, Kansas City, MO 66160, USA; (R.M.C.); (P.B.); (X.D.O.); (R.Z.); (T.A.); (B.F.K.)
| | - Ximena Diaz Olea
- Departments of Radiation Oncology, University of Kansas Medical Center, Kansas City, MO 66160, USA; (R.M.C.); (P.B.); (X.D.O.); (R.Z.); (T.A.); (B.F.K.)
| | - Fang Tao
- Departments of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (F.T.); (K.S.); (J.M.P.)
| | - Kealan Schroeder
- Departments of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (F.T.); (K.S.); (J.M.P.)
| | - Ryan Zitter
- Departments of Radiation Oncology, University of Kansas Medical Center, Kansas City, MO 66160, USA; (R.M.C.); (P.B.); (X.D.O.); (R.Z.); (T.A.); (B.F.K.)
| | - Tanu Arora
- Departments of Radiation Oncology, University of Kansas Medical Center, Kansas City, MO 66160, USA; (R.M.C.); (P.B.); (X.D.O.); (R.Z.); (T.A.); (B.F.K.)
| | - Harsh Pathak
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, MO 66160, USA; (H.P.); (A.K.G.)
| | - Bruce F. Kimler
- Departments of Radiation Oncology, University of Kansas Medical Center, Kansas City, MO 66160, USA; (R.M.C.); (P.B.); (X.D.O.); (R.Z.); (T.A.); (B.F.K.)
| | - Andrew K. Godwin
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, MO 66160, USA; (H.P.); (A.K.G.)
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO 66160, USA
| | - John M. Perry
- Departments of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (F.T.); (K.S.); (J.M.P.)
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, MO 66160, USA
- Departments of Pediatrics, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Subhrajit Saha
- Departments of Radiation Oncology, University of Kansas Medical Center, Kansas City, MO 66160, USA; (R.M.C.); (P.B.); (X.D.O.); (R.Z.); (T.A.); (B.F.K.)
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, MO 66160, USA; (H.P.); (A.K.G.)
| |
Collapse
|
46
|
Allogeneic TCRαβ deficient CAR T-cells targeting CD123 in acute myeloid leukemia. Nat Commun 2022; 13:2227. [PMID: 35484102 PMCID: PMC9050731 DOI: 10.1038/s41467-022-29668-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/08/2022] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia (AML) is a disease with high incidence of relapse that is originated and maintained from leukemia stem cells (LSCs). Hematopoietic stem cells can be distinguished from LSCs by an array of cell surface antigens such as CD123, thus a candidate to eliminate LSCs using a variety of approaches, including CAR T cells. Here, we evaluate the potential of allogeneic gene-edited CAR T cells targeting CD123 to eliminate LSCs (UCART123). UCART123 cells are TCRαβneg T cells generated from healthy donors using TALEN® gene-editing technology, decreasing the likelihood of graft vs host disease. As safety feature, cells express RQR8 to allow elimination with Rituximab. UCART123 effectively eliminates AML cells in vitro and in vivo with significant benefits in overall survival of AML-patient derived xenograft mice. Furthermore, UCART123 preferentially target AML over normal cells with modest toxicity to normal hematopoietic stem/progenitor cells. Together these results suggest that UCART123 represents an off-the shelf therapeutic approach for AML. CD123, the interleukin-3 receptor alpha chain, is aberrantly expressed in acute myeloid leukemia blasts and leukemia stem cells. Here the authors report the design and characterize the anti-tumor activity of allogeneic CD123-targeted CAR-T cells as a therapeutic approach for acute myeloid leukemia.
Collapse
|
47
|
Vanhooren J, Van Camp L, Depreter B, de Jong M, Uyttebroeck A, Van Damme A, Dedeken L, Dresse MF, van der Werff Ten Bosch J, Hofmans M, Philippé J, De Moerloose B, Lammens T. Deciphering the Non-Coding RNA Landscape of Pediatric Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:2098. [PMID: 35565228 PMCID: PMC9100904 DOI: 10.3390/cancers14092098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Pediatric acute myeloid leukemia (pedAML) is a heterogeneous blood cancer that affects children. Although survival rates have significantly improved over the past few decades, 20-30% of children will succumb due to treatment-related toxicity or relapse. The molecular characterization of the leukemic stem cell, shown to be responsible for relapse, is needed to improve treatment options and survival. Recently, it has become clear that non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play a role in the development of human diseases, including pediatric cancer. Nevertheless, non-coding RNA expression data in pedAML are scarce. Here, we explored lncRNA (n = 30,168) and miRNA (n = 627) expression in pedAML subpopulations (leukemic stem cells (LSCs) and leukemic blasts (L-blasts)) and their normal counterparts (hematopoietic stem cells and control myeloblasts). The potential regulatory activity of differentially expressed lncRNAs in LSCs (unique or shared with the L-blast comparison) on miRNAs was assessed. Moreover, pre-ranked gene set enrichment analyses of (anti-) correlated protein-coding genes were performed to predict the functional relevance of the differentially upregulated lncRNAs in LSCs (unique or shared with the L-blast comparison). In conclusion, this study provides a catalog of non-coding RNAs with a potential role in the pathogenesis of pedAML, paving the way for further translational research studies.
Collapse
Affiliation(s)
- Jolien Vanhooren
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Laurens Van Camp
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Barbara Depreter
- Department of Laboratory Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel, 1050 Brussels, Belgium
| | - Martijn de Jong
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Anne Uyttebroeck
- Department of Pediatrics, University Hospital Gasthuisberg, 3000 Leuven, Belgium
| | - An Van Damme
- Department of Pediatric Hematology Oncology, University Hospital Saint-Luc, 1200 Brussels, Belgium
| | - Laurence Dedeken
- Department of Pediatric Hematology Oncology, Queen Fabiola Children's University Hospital, 1020 Brussels, Belgium
| | - Marie-Françoise Dresse
- Department of Pediatric Hematology Oncology, University Hospital Liège, 4000 Liège, Belgium
| | | | - Mattias Hofmans
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Philippé
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| |
Collapse
|
48
|
Long NA, Golla U, Sharma A, Claxton DF. Acute Myeloid Leukemia Stem Cells: Origin, Characteristics, and Clinical Implications. Stem Cell Rev Rep 2022; 18:1211-1226. [PMID: 35050458 PMCID: PMC10942736 DOI: 10.1007/s12015-021-10308-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 02/06/2023]
Abstract
The stem cells of acute myeloid leukemia (AML) are the malignancy initiating cells whose survival ultimately drives growth of these lethal diseases. Here we review leukemia stem cell (LSC) biology, particularly as it relates to the very heterogeneous nature of AML and to its high disease relapse rate. Leukemia ontogeny is presented, and the defining functional and phenotypic features of LSCs are explored. Surface and metabolic phenotypes of these cells are described, particularly those that allow distinction from features of normal hematopoietic stem cells (HSCs). Opportunities for use of this information for improving therapy for this challenging group of diseases is highlighted, and we explore the clinical needs which may be addressed by emerging LSC data. Finally, we discuss current gaps in the scientific understanding of LSCs.
Collapse
Affiliation(s)
| | - Upendarrao Golla
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Arati Sharma
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - David F Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA.
- Division of Hematology and Oncology, Penn State Cancer Institute, Cancer Institute, Next-Generation Therapies, 500 University, Hershey, PA, 17033, USA.
| |
Collapse
|
49
|
Petersen MA, Rosenberg CA, Brøndum RF, Aggerholm A, Kjeldsen E, Rahbek O, Ludvigsen M, Hasle H, Roug AS, Bill M. Immunophenotypically defined stem cell subsets in paediatric AML are highly heterogeneous and demonstrate differences in BCL-2 expression by cytogenetic subgroups. Br J Haematol 2022; 197:452-466. [PMID: 35298835 DOI: 10.1111/bjh.18094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/11/2022]
Abstract
In adult acute myeloid leukaemia (AML), immunophenotypic differences enable discrimination of leukaemic stem cells (LSCs) from healthy haematopoietic stem cells (HSCs). However, immunophenotypic stem cell characteristics are less explored in paediatric AML. Employing a 15-colour flow cytometry assay, we analysed the expression of eight aberrant surface markers together with BCL-2 on CD34+ CD38- bone marrow stem cells from 38 paediatric AML patients and seven non-leukaemic, age-matched controls. Furthermore, clonality was investigated by genetic analyses of sorted immunophenotypically abnormal stem cells from six patients. A total of 50 aberrant marker positive (non-HSC-like) subsets with 41 different immunophenotypic profiles were detected. CD123, CLEC12A, and IL1RAP were the most frequently expressed markers. IL1RAP, CD93, and CD25 expression were not restricted to stem cells harbouring leukaemia-associated mutations. Differential BCL-2 expression was found among defined cytogenetic subgroups. Interestingly, only immunophenotypically abnormal non-HSC-like subsets demonstrated BCL-2 overexpression. Collectively, we observed pronounced immunophenotypic heterogeneity within the stem cell compartment of paediatric AML patients. Additionally, certain aberrant markers used in adults seemed to be ineligible for detection of leukaemia-representing stem cells in paediatric patients implying that inference from adult studies must be done with caution.
Collapse
Affiliation(s)
- Marianne A Petersen
- Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Carina A Rosenberg
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rasmus F Brøndum
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Anni Aggerholm
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Eigil Kjeldsen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Rahbek
- Department of Orthopaedic Surgery, Aalborg University Hospital, Aalborg, Denmark
| | - Maja Ludvigsen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Henrik Hasle
- Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anne S Roug
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Marie Bill
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
50
|
Vanuytsel K, Villacorta-Martin C, Lindstrom-Vautrin J, Wang Z, Garcia-Beltran WF, Vrbanac V, Parsons D, Lam EC, Matte TM, Dowrey TW, Kumar SS, Li M, Wang F, Yeung AK, Mostoslavsky G, Dries R, Campbell JD, Belkina AC, Balazs AB, Murphy GJ. Multi-modal profiling of human fetal liver hematopoietic stem cells reveals the molecular signature of engraftment. Nat Commun 2022; 13:1103. [PMID: 35232959 PMCID: PMC8888592 DOI: 10.1038/s41467-022-28616-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
The human hematopoietic stem cell harbors remarkable regenerative potential that can be harnessed therapeutically. During early development, hematopoietic stem cells in the fetal liver undergo active expansion while simultaneously retaining robust engraftment capacity, yet the underlying molecular program responsible for their efficient engraftment remains unclear. Here, we profile 26,407 fetal liver cells at both the transcriptional and protein level including ~7,000 highly enriched and functional fetal liver hematopoietic stem cells to establish a detailed molecular signature of engraftment potential. Integration of transcript and linked cell surface marker expression reveals a generalizable signature defining functional fetal liver hematopoietic stem cells and allows for the stratification of enrichment strategies with high translational potential. More precisely, our integrated analysis identifies CD201 (endothelial protein C receptor (EPCR), encoded by PROCR) as a marker that can specifically enrich for engraftment potential. This comprehensive, multi-modal profiling of engraftment capacity connects a critical biological function at a key developmental timepoint with its underlying molecular drivers. As such, it serves as a useful resource for the field and forms the basis for further biological exploration of strategies to retain the engraftment potential of hematopoietic stem cells ex vivo or induce this potential during in vitro hematopoietic stem cell generation.
Collapse
Affiliation(s)
- Kim Vanuytsel
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA, USA.
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA, USA.
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA, USA
| | | | - Zhe Wang
- Division of Computational Biomedicine, School of Medicine, Boston University, Boston, MA, USA
| | | | | | - Dylan Parsons
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Evan C Lam
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Taylor M Matte
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA, USA
| | - Todd W Dowrey
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA, USA
| | - Sara S Kumar
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA, USA
| | - Mengze Li
- Division of Computational Biomedicine, School of Medicine, Boston University, Boston, MA, USA
| | - Feiya Wang
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA, USA
| | - Anthony K Yeung
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA, USA
| | - Ruben Dries
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA, USA
- Division of Computational Biomedicine, School of Medicine, Boston University, Boston, MA, USA
| | - Joshua D Campbell
- Division of Computational Biomedicine, School of Medicine, Boston University, Boston, MA, USA
| | - Anna C Belkina
- Department of Pathology and Laboratory Medicine, School of Medicine, Boston University, Boston, MA, USA
- Flow Cytometry Core Facility, School of Medicine, Boston University, Boston, MA, USA
| | | | - George J Murphy
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA, USA.
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA, USA.
| |
Collapse
|