1
|
Zheng P, Jia Q, Li Z, Jiang HB, Zhou L. Enhanced osteogenic and angiogenic capabilities of adipose-derived stem cells in fish collagen scaffolds for treatment of femoral head osteonecrosis. Sci Rep 2025; 15:18300. [PMID: 40419685 DOI: 10.1038/s41598-025-03015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a debilitating condition that often leads to femoral head collapse due to insufficient blood supply and impaired bone regeneration. However, effective treatment options for this condition are limited. This study explored a novel fish collagen (FC) scaffold combined with adipose-derived stem cells (ADSCs) to enhance osteogenesis and angiogenesis in ONFH. ADSCs were isolated and cultured on FC scaffolds to evaluate their biocompatibility and differentiation capacity. Osteogenic and angiogenic differentiation potentials were assessed in vitro, and the FC/ADSC combination was further evaluated in vivo using a rat model of ONFH. The molecular mechanisms were investigated via gene expression profiling and Hippo signaling pathway analysis. The FC scaffolds promoted ADSCs adhesion, proliferation, and migration without cytotoxicity. In vitro, FC/ADSCs significantly enhanced mineralization and capillary-like structure formation compared to the controls. FC/ADSCs improved bone regeneration and neovascularization in the femoral head in vivo, as confirmed by histological and immunohistochemical analyses. Mechanistically, the Hippo pathway is activated, increasing HIF-1α expression, which enhances osteogenic and angiogenic differentiation. FC scaffolds combined with ADSCs provide a promising therapeutic strategy for ONFH by facilitating bone regeneration and vascularization through the p-YAP/HIF-1α/VEGF axis. This scaffold-cell approach represents a potential advancement in ONFH treatment.
Collapse
Affiliation(s)
- Pinxuan Zheng
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Jia
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
- The CONVERSATIONALIST club & Department of Dental Digitalization, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - Zhongzhe Li
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China
| | - Heng Bo Jiang
- The CONVERSATIONALIST club & Department of Dental Digitalization, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China.
| | - Lu Zhou
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China.
| |
Collapse
|
2
|
Kim Y, Kim H, Yun SY, Lee BK. Primed IFN-γ-Umbilical Cord Stem Cells Ameliorate Temporomandibular Joint Osteoarthritis. Tissue Eng Part A 2025; 31:351-360. [PMID: 38787325 DOI: 10.1089/ten.tea.2023.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disorder affecting the temporomandibular joint (TMJ), marked by persistent inflammation and structural damage to the joint. Only symptomatic treatment is available for managing TMJOA. Human umbilical cord mesenchymal stem cells (hUC-MSCs) show potential for treating TMJOA via their immune-modulating actions in the disease area. In addition, stimulation of inflammatory cytokines such as interferon-gamma in hUC-MSCs improves the therapeutic activity of naïve stem cells. Emerging evidence indicates that macrophages play significant roles in regulating joint inflammation through diverse secreted mediators in the pathogenesis of TMJOA. This study was conducted to evaluate the effects of inflammatory cytokine-stimulated hUC-MSCs in repairing TMJOA-induced cartilage lesions and the role of macrophages in the disease. Our in vitro data showed that stimulated hUC-MSCs induce M2 polarization of macrophages and enhance the expression of anti-inflammatory molecules. These effects were subsequently validated in vivo. In a rat model of TMJOA, stimulated hUC-MSCs ameliorated inflammation and increased M2 macrophages ratio. Our results indicate that hUC-MSCs stimulated by inflammatory cytokines modulate the activation of M2 macrophages, thereby shifting the local osteoarthritis microenvironment toward a prochondrogenic state and facilitating cartilage repair in inflammatory conditions. Stimulating hUC-MSCs with inflammatory cytokines could potentially offer an effective therapeutic approach for TMJOA, with macrophages playing a pivotal role in immune modulation.
Collapse
Affiliation(s)
- Yerin Kim
- AMIST, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Hyunjeong Kim
- Asan Institute for Life Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, Seoul, Korea
| | - So-Yeon Yun
- AMIST, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Bu-Kyu Lee
- AMIST, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
- Asan Institute for Life Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, Seoul, Korea
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| |
Collapse
|
3
|
Li L, Dou X, Song X, Wang F. The Current Status and Future Prospects of Intra-articular Injection Therapy for Hip Osteoarthritis: A Review. Curr Pain Headache Rep 2025; 29:64. [PMID: 40100299 PMCID: PMC11919992 DOI: 10.1007/s11916-025-01378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW Hip osteoarthritis constitutes a prevalent condition among individuals aged 55 and above, serving as one of the primary triggers for joint discomfort and impairment, and marking a substantial origin of chronic pain particularly affecting the elderly population. Our article provides an exhaustive summary of the mechanisms of action, therapeutic efficacy, and potential adverse consequences associated with novel therapeutic modalities including glucocorticoids, hyaluronic acid, platelet-rich plasma, mesenchymal stem cells, and stromal vascular fraction. Concurrently, we conducted a comprehensive evaluation of the clinical efficacy and potential applications of various medications. RECENT FINDINGS In comparison to physical therapy, oral analgesics, and other nonsurgical modalities, intra-articular injection therapy is characterized by enhanced safety and greater efficacy. Moreover, when contrasted with surgical intervention, intra-articular injection demonstrates a lower degree of invasiveness and incurs fewer adverse reactions. Intra-articular treatments have shown excellent local efficacy while significantly minimizing adverse reactions in patients. These methods hold significant potential for development but require comprehensive research and thorough discussion within the academic community.
Collapse
Affiliation(s)
- Li Li
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
- Nursing department, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Xiaofan Dou
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
- Nursing department, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Xueliang Song
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
- Nursing department, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Fengxian Wang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
- Nursing department, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
4
|
Yamagami R, Terao T, Kasai T, Ishikura H, Hatano M, Higuchi J, Yoshida S, Arino Y, Murakami R, Sato M, Maenohara Y, Makii Y, Matsuzaki T, Inoue K, Tsuji S, Tanaka S, Saito T. Baseline magnetic resonance imaging findings associated with short-term clinical outcomes after intraarticular administration of autologous adipose-derived stem cells for knee osteoarthritis. Regen Ther 2025; 28:227-234. [PMID: 39830136 PMCID: PMC11741093 DOI: 10.1016/j.reth.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/08/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction This study aimed to determine the association between the baseline magnetic resonance imaging (MRI) findings and clinical outcomes after articular injection of adipose-derived mesenchymal stem cells (ASCs) for knee osteoarthritis (KOA). Methods This retrospective study included 149 patients with varus-type KOA treated with a single intraarticular ASC injection. All patients underwent a MRI evaluation before treatment. Patients were categorized following the MRI Osteoarthritis Knee Score (MOAKS) system cartilage score into the mild, moderate, or severe KOA groups. Additionally, joint effusion and synovitis, bone marrow lesions (BMLs), and meniscal extrusions were graded with the MOAKS. Knee Osteoarthritis Outcome Score (KOOS) was obtained at baseline, 1-, 3-, 6-, and 12-month posttreatment. The responder rate in the Outcome Measures in Arthritis Clinical Trials-Osteoarthritis Research Society International was assessed with the KOOS. Multivariate logistic regression analyses were conducted to determine factors associated with the responder rate. Results All KOOS subscales significantly enhanced with the greatest improvement from baseline to 6 months which plateaued between 6 and 12 months. The responder rate was 65.4 % in the mild/moderate KOA compared to 35.2 % in the severe KOA at 12 months. Lower OA grade (odds ratio [OR]: 0.52; 95 % confidence interval (CI): 0.31-0.88; P = 0.015), smaller BMLs in medial femoral condyle (OR: 0.36; 95 % CI: 0.14-0.94; P = 0.037), and less meniscal extrusion (OR: 0.31; 95 % CI: 0.11-0.89; P = 0.029) were associated with higher responder rate at 6 months in multivariable logistic regression analysis. The factors associated with higher responder rate at 12 months included lower OA grade (OR: 0.42; 95 % CI: 0.25-0.73; P = 0.002) and younger age (OR: 1.04; 95 % CI: 1.00-1.08; P = 0.042). Conclusions ASC treatment for KOA enhanced short-term clinical outcomes. MRI findings, including cartilage lesions, BMLs, and meniscal extrusion, were associated with responder rate, helping physicians identify which patients may benefit from this therapy.
Collapse
Affiliation(s)
- Ryota Yamagami
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Ochanomizu Cell Clinic, Tokyo, Japan
| | | | - Taro Kasai
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Ochanomizu Cell Clinic, Tokyo, Japan
| | - Hisatoshi Ishikura
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Ochanomizu Cell Clinic, Tokyo, Japan
| | - Masaki Hatano
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Ochanomizu Cell Clinic, Tokyo, Japan
| | - Junya Higuchi
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Ochanomizu Cell Clinic, Tokyo, Japan
| | - Shuichi Yoshida
- Ochanomizu Cell Clinic, Tokyo, Japan
- Yakuendai Rehabilitation Hospital, Chiba, Japan
| | - Yusuke Arino
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Ochanomizu Cell Clinic, Tokyo, Japan
| | - Ryo Murakami
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Ochanomizu Cell Clinic, Tokyo, Japan
| | - Masashi Sato
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Ochanomizu Cell Clinic, Tokyo, Japan
| | - Yuji Maenohara
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Ochanomizu Cell Clinic, Tokyo, Japan
| | - Yuma Makii
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Ochanomizu Cell Clinic, Tokyo, Japan
| | - Tokio Matsuzaki
- Avenue Cell Clinic, Tokyo, Japan
- CPC Corporation, Tokyo, Japan
| | - Keita Inoue
- Avenue Cell Clinic, Tokyo, Japan
- CPC Corporation, Tokyo, Japan
| | - Shinsaku Tsuji
- Avenue Cell Clinic, Tokyo, Japan
- CPC Corporation, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Saito
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Ochanomizu Cell Clinic, Tokyo, Japan
| |
Collapse
|
5
|
Aabling RR, Rusan M, Møller AMJ, Munk-Pedersen N, Holm C, Elmengaard B, Pedersen M, Møller BK. A Narrative Review on Manufacturing Methods Employed in the Production of Mesenchymal Stromal Cells for Knee Osteoarthritis Therapy. Biomedicines 2025; 13:509. [PMID: 40002922 PMCID: PMC11853043 DOI: 10.3390/biomedicines13020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Knee osteoarthritis (OA) is a chronic, progressive, inflammatory, and degenerative whole-joint disease. Early-stage OA treatments typically include physiotherapy, weight-loss, pain relief medications, and intra-articular knee injections, such as corticosteroids, hyaluronic acid, or platelet-rich plasma. These treatments primarily provide symptomatic relief rather than reversing or halting disease progression. Recently, mesenchymal stromal cell (MSC) injections have garnered attention due to their immunomodulatory and regenerative capacities. MSCs, which can be derived from sources such as bone marrow, umbilical cord, or adipose tissue, and can be allogeneic or autologous, have demonstrated promising results in both animal models and several human studies. However, different protocols have been employed, presenting challenges for comparing outcomes. In this review, we address these variable settings, evaluate current practices, and identify key factors critical in optimizing MSC-based therapies by critically reviewing clinical trials of ex vivo expanded MSC therapies for OA undertaken between 2008 and 2023. Specific attention was given to two key aspects: (1) the cell culture process employed in manufacturing of autologous or allogeneic MSC products, and (2) the post-culture methods employed in storage, reconstitution and administration of the MSCs. Our findings suggest that standardizing MSC production for clinical applications remains a significant challenge, primarily due to variations in tissue sources, harvesting techniques, and manufacturing protocols, and due to broad discrepancies in reporting. Thus, we propose a set of minimal reporting criteria to guide future clinical trials. A common reporting guideline is a critical step towards a more standardized MSC production across different laboratories and clinical settings, thereby enhancing reproducibility and advancing the field of regenerative medicine for knee OA, as well as other disease settings.
Collapse
Affiliation(s)
- Rasmus Roost Aabling
- Comparative Medicine Lab, SDCA-Steno Diabetes Center Aarhus, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99 and 11, DK-8200 Aarhus, Denmark
| | - Maria Rusan
- Department of Molecular Medicine, Aarhus University Hospital, Brendstrupgårdsvej 21A, DK-8200 Aarhus, Denmark;
- Department of Clinical Pharmacology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark;
| | - Anaïs Marie Julie Møller
- Center for Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark;
| | - Naija Munk-Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark; (N.M.-P.); (M.P.)
| | - Carsten Holm
- Department of Orthopedic Surgery, Elective Surgery Centre, Silkeborg Regional Hospital, Falkevej 1G, DK-8600 Silkeborg, Denmark; (C.H.); (B.E.)
| | - Brian Elmengaard
- Department of Orthopedic Surgery, Elective Surgery Centre, Silkeborg Regional Hospital, Falkevej 1G, DK-8600 Silkeborg, Denmark; (C.H.); (B.E.)
| | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark; (N.M.-P.); (M.P.)
| | - Bjarne Kuno Møller
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark;
- Center for Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark;
| |
Collapse
|
6
|
Im GI. Clinical updates in mesenchymal stromal cell therapy for osteoarthritis treatment. Expert Opin Biol Ther 2025; 25:187-195. [PMID: 39710894 DOI: 10.1080/14712598.2024.2446612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/21/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Osteoarthritis (OA) is a common chronic musculoskeletal disease with heterogeneous clinical manifestations and variable responses to different treatments. Unfortunately, there is no effective disease modifying therapy at present that can alter the natural course of the disease. Cell therapy based on mesenchymal stromal cells (MSCs) may offer an attractive therapeutic option for OA with their multiple modes of action, particularly immune-regulatory and regenerative capacities. AREAS COVERED In this narrative review, updates on mode of action based on patient's data, factors that can influence the efficacy of MSC treatment, current status in clinical application of MSCs as seen from randomized, controlled OA trials are introduced as well as the author's perspectives in the future of MSCs as OA therapeutics. EXPERT OPINION Symptomatic relief is not sufficient to justify the high cost associated with culture-expanded stem cells. Its advantages and efficacy over simple and low risk/cost modalities should be seriously reevaluated. Also, as the short-term strategy, efforts should be made to lower the cost of MSC therapy. In the future, multiomics technology may help to predict that subgroup of patients who will favorably respond to stem cell treatment, which would enhance the cost effectiveness and therapeutic benefit of MSC therapy.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
7
|
Wu KC, Chang YH, Ding DC, Lin SZ. Mesenchymal Stromal Cells for Aging Cartilage Regeneration: A Review. Int J Mol Sci 2024; 25:12911. [PMID: 39684619 PMCID: PMC11641625 DOI: 10.3390/ijms252312911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cartilage degeneration is a key feature of aging and osteoarthritis, characterized by the progressive deterioration of joint function, pain, and limited mobility. Current treatments focus on symptom relief, not cartilage regeneration. Mesenchymal stromal cells (MSCs) offer a promising therapeutic option due to their capability to differentiate into chondrocytes, modulate inflammation, and promote tissue regeneration. This review explores the potential of MSCs for cartilage regeneration, examining their biological properties, action mechanisms, and applications in preclinical and clinical settings. MSCs derived from bone marrow, adipose tissue, and other sources can self-renew and differentiate into multiple cell types. In aging cartilage, they aid in tissue regeneration by secreting growth factors and cytokines that enhance repair and modulate immune responses. Recent preclinical studies show that MSCs can restore cartilage integrity, reduce inflammation, and improve joint function, although clinical translation remains challenging due to limitations such as cell viability, scalability, and regulatory concerns. Advancements in MSC delivery, including scaffold-based approaches and engineered exosomes, may improve therapeutic effectiveness. Potential risks, such as tumorigenicity and immune rejection, are also discussed, emphasizing the need for optimized treatment protocols and large-scale clinical trials to develop effective, minimally invasive therapies for cartilage regeneration.
Collapse
Affiliation(s)
- Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
8
|
Lee H, Lim Y, Lee SH. Rapid-acting pain relief in knee osteoarthritis: autologous-cultured adipose-derived mesenchymal stem cells outperform stromal vascular fraction: a systematic review and meta-analysis. Stem Cell Res Ther 2024; 15:446. [PMID: 39568086 PMCID: PMC11580442 DOI: 10.1186/s13287-024-04034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Knee osteoarthritis (OA) is a leading cause of disability, with current treatment options often falling short of providing satisfactory outcomes. Autologous-cultured adipose-derived mesenchymal stem cells (ADMSCs) and stromal vascular fractions (SVFs) have emerged as potential regenerative therapies. METHODS A comprehensive search was conducted among multiple databases for studies up to June 2023. The risk of bias was assessed in randomized and non-randomized studies, adhering to PRISMA guidelines. The study has been registered with PROSPERO (CRD 42023433160). RESULTS Our analysis encompassed 31 studies involving 1,406 patients, of which, 19 studies with 958 patients were included in a meta-analysis, examining both SVF and autologous-cultured ADMSC methods. Significant pain reduction was observed with autologous-cultured ADMSCs starting at 3 months (MD = -2.43, 95% CI, -3.99, -0.86), whereas significant pain mitigation in response to SVF therapy was found to start at 12 months (MD = -2.13, 95% CI, -3.06, -1.21). Both autologous-cultured ADMSCs and SVF provided significant improvement in knee function starting at 12 months (MD = -9.19, 95% CI, -12.48, -5.90 vs. MD = -9.09, 95% CI, -12.67, -5.51, respectively). We found no evidence of severe adverse events linked directly to ADMSC therapy. CONCLUSION Autologous-cultured ADMSCs offer a promising alternative for more rapid pain relief in knee OA, with both ADMSCs and SVF demonstrating substantial long-term benefits in joint function and cartilage regeneration, in the absence of any severe ADMSC-related adverse events.
Collapse
Affiliation(s)
- Haneul Lee
- Department of Physical Therapy, College of Medical Science, Gachon University, Incheon, Korea
| | - Youngeun Lim
- Department of Physical Therapy, College of Medical Science, Gachon University, Incheon, Korea
| | - Seon-Heui Lee
- College of Nursing, Research Institute of AI and Nursing Science, Gachon University, Incheon, Korea.
| |
Collapse
|
9
|
Perry J, Mennan C, Cool P, McCarthy HS, Newell K, Hopkins T, Hulme C, Wright KT, Henson FM, Roberts S. Intra-Articular Injection of Human Umbilical Cord-Derived Mesenchymal Stromal Cells Reduces Radiographic Osteoarthritis in an Ovine Model. Cartilage 2024:19476035241287832. [PMID: 39491540 PMCID: PMC11556672 DOI: 10.1177/19476035241287832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/31/2024] [Accepted: 09/14/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE To determine if mesenchymal stromal cells (MSCs) derived from human umbilical cords (hUC) could reduce degeneration developing when injected into the knee of a large animal model of osteoarthritis (OA). DESIGN Ten million culture-expanded UC-MSCs (pooled from 3 human donors) were injected in 50 μL of tissue culture medium into the left stifle joints of 7 sheep whose medial meniscus was transected 4 weeks previously. Seven other sheep had only 50 μL of medium injected as the no treatment "control" group. After 8 weeks the sheep underwent euthanasia, the joints were excised and examined macroscopically, via x-ray and magnetic resonance imaging (MRI), both via histology for degenerative and inflammatory changes and immunohistochemically to identify any human cells within the joint tissues. Activity monitoring both before meniscus transection and euthanasia was also undertaken. RESULTS There was a significant reduction in the Kellgren-Lawrence x-ray score for joints injected with hUC-MSCs compared with the control joints. Likewise, macroscopic, MRI, synovitis and OARSI histology scores were all lower (better) in the joints injected with hUC-MSCs than in the control arm, but not significantly. Activity levels and synovitis scores were similar in both groups of animals. CONCLUSIONS hUC-MSCs appear to modify and reduce the development of osteoarthritic changes in the ovine stifle joint after meniscal destabilization, an injury which commonly leads to OA in humans. These results are encouraging for the potential benefit of culture expanded UC-MSCs as an allogeneic cell therapy in patients who may have early OA following a meniscal injury of the knee.
Collapse
Affiliation(s)
- Jade Perry
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre of Regenerative Medicine Research, The School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
- The Tissue Engineering & Regenerative Therapies Centre, Versus Arthritis, Chesterfield, UK
| | - Claire Mennan
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre of Regenerative Medicine Research, The School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
- The Tissue Engineering & Regenerative Therapies Centre, Versus Arthritis, Chesterfield, UK
| | - Paul Cool
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre of Regenerative Medicine Research, The School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | - Helen S. McCarthy
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre of Regenerative Medicine Research, The School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
| | - Karin Newell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Timothy Hopkins
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, UK
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Charlotte Hulme
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre of Regenerative Medicine Research, The School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
- The Tissue Engineering & Regenerative Therapies Centre, Versus Arthritis, Chesterfield, UK
| | - Karina T. Wright
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre of Regenerative Medicine Research, The School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
- The Tissue Engineering & Regenerative Therapies Centre, Versus Arthritis, Chesterfield, UK
| | - Frances M.D. Henson
- The Tissue Engineering & Regenerative Therapies Centre, Versus Arthritis, Chesterfield, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Sally Roberts
- The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Centre of Regenerative Medicine Research, The School of Pharmacy and Bioengineering, Keele University, Staffordshire, UK
- The Tissue Engineering & Regenerative Therapies Centre, Versus Arthritis, Chesterfield, UK
| |
Collapse
|
10
|
Li L, Li J, Li JJ, Zhou H, Zhu XW, Zhang PH, Huang B, Zhao WT, Zhao XF, Chen ES. Chondrocyte autophagy mechanism and therapeutic prospects in osteoarthritis. Front Cell Dev Biol 2024; 12:1472613. [PMID: 39507422 PMCID: PMC11537998 DOI: 10.3389/fcell.2024.1472613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis characterized by progressive cartilage degradation, with its pathogenesis closely related to chondrocyte autophagy. Chondrocytes are the only cells in articular cartilage, and the function of chondrocytes plays a vital role in maintaining articular cartilage homeostasis. Autophagy, an intracellular degradation system that regulates energy metabolism in cells, plays an incredibly important role in OA. During the early stages of OA, autophagy is enhanced in chondrocytes, acting as an adaptive mechanism to protect them from various environmental changes. However, with the progress of OA, chondrocyte autophagy gradually decreases, leading to the accumulation of damaged organelles and macromolecules within the cell, prompting chondrocyte apoptosis. Numerous studies have shown that cartilage degradation is influenced by the senescence and apoptosis of chondrocytes, which are associated with reduced autophagy. The relationship between autophagy, senescence, and apoptosis is complex. While autophagy is generally believed to inhibit cellular senescence and apoptosis to promote cell survival, recent studies have shown that some proteins are degraded by selective autophagy, leading to the secretion of the senescence-associated secretory phenotype (SASP) or increased SA-β-Gal activity in senescent cells within the damaged region of human OA cartilage. Autophagy activation may lead to different outcomes depending on the timing, duration, or type of its activation. Thus, our study explored the complex relationship between chondrocyte autophagy and OA, as well as the related regulatory molecules and signaling pathways, providing new insights for the future development of safe and effective drugs targeting chondrocyte autophagy to improve OA.
Collapse
Affiliation(s)
- Lan Li
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Li
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian-Jiang Li
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Huan Zhou
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xing-Wang Zhu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Ping-Heng Zhang
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Huang
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Ting Zhao
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Feng Zhao
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - En-Sheng Chen
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Zhang X, Cui C, Lin F. Efficacy and safety of mesenchymal stem cell injections for knee osteoarthritis: A systematic review and meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:55. [PMID: 39629035 PMCID: PMC11613985 DOI: 10.4103/jrms.jrms_515_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 12/06/2024]
Abstract
Background There have not been any clear studies on the use of mesenchymal stem cells (MSCs) to treat osteoarthritis (OA) in the knee. Materials and Methods This study investigates the effects of different MSC dosages on pain alleviation in individuals with OA in the knee by conducting a meta-analysis of existing randomized controlled trials. Electronic resources such as Google Scholar, PubMed, Cochrane Library, and Web of Science were searched up until June 2023. Treatment effect sizes were computed using the knee osteoarthritis outcome score (KOOS), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the Knee Society Score (KSS). Random or fixed effect models were applied to aggregate the data. We performed a subgroup analysis according to dosage level. The heterogeneity of the research was investigated using the Chi-square test and the I2 index. Results The meta-analysis included 26 studies with a total sample size of 739 patients. A significant reduction in pain was observed 1 year and 2 years following the injection of MSCs into the injured joint, as indicated by the Visual Analogue Scale, WOMAC, KOOS, and KSS indexes (P < 0.05). Patients on MSCs reported much reduced pain after 1 and 2 years compared to the control group (P < 0.05). Subgroup and meta-regression analyses revealed no statistically significant variations in the effectiveness of MSC dosage (P < 0.05). The studies did not report any adverse effects. Conclusion Different dosages of MSCs had the same pain-relieving effects on patients with OA in the knee. MSC injections were safe and beneficial in such cases.
Collapse
Affiliation(s)
- Xinguang Zhang
- Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Cunbao Cui
- Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Feng Lin
- Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
12
|
Onorato F, Rucci M, Alessio-Mazzola M, Bistolfi A, Castagnoli C, Formica M, Ferracini R. Autologous microfragmented adipose tissue treatment of knee osteoarthritis demonstrates effectiveness in 68% of patients at 4-year follow-up. Arch Orthop Trauma Surg 2024; 144:3925-3935. [PMID: 38212589 PMCID: PMC11564389 DOI: 10.1007/s00402-023-05143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/11/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Adipose tissue-derived stem cells are an interesting therapeutic option for early knee osteoarthritis (OA) treatment due to their high plasticity, easiness of harvesting and rapidity of administration. The aim of this study was to evaluate the medium-term effectiveness and safety of Microfragmented Autologous Fat Tissue (MFAT) injection treatment at 4-year follow-up and to investigate potential correlations among patients' pre-treatment clinical condition and clinical outcomes to identify possible predicting factors for procedure success or failure. PATIENTS AND METHODS This is a prospective trial enrolling 46 patients with diagnosis of symptomatic knee OA and failure of previous conservative measures who underwent diagnostic arthroscopy and single autologous MFAT injection between June 2017 and July 2018. Patients were assessed with repeated clinical scoring systems at baseline, 6 months, 1 and 4 years after surgery. The evaluation included demographic characteristics, arthroscopic findings, and stem cell number from injected tissue. RESULTS No major complications were reported during follow-up period and there was a significant increase of Lysholm knee score from baseline value of 61.7 ± 13.8 to 79.5 ± 16.9 at 4 years (p < 0.001). The WOMAC score increased from a baseline value of 66.5 ± 14.7 to 82.8 ± 15.7 at 4 years (p < 0.001) and there was a significant decrease of VAS pain score from baseline value of 6.3 ± 1.5 to 3.5 ± 2.6 at 4-year follow-up (p < 0.001). ROM improved significantly from 118.4 ± 2.6 to 122.5 ± 2.5 at 12 months (p < 0.001), but did not improve at 4 years (p > 0.05). 15 patients (32.6%) were considered treatment failures, because they required secondary surgery, further injection therapy or experienced symptoms persistence. Patient with synovitis had 75% failure rate, although synovitis did not result as a statistically significant factor influencing clinical outcome up to 4-year follow-up (p = 0.058). Age, cartilage defects severity, BMI, concomitant procedures, and stem cell number from injected MFAT did not show any significant correlation with the results. CONCLUSIONS MFAT intra-articular injection is a safe procedure with positive improvements up to 4-year follow-up in patients with early knee OA. These findings suggest MFAT could be a minimally invasive treatment of early knee OA with durable benefits at mid-term evaluation. TRIAL REGISTRATION IRB number ID-3522.
Collapse
Affiliation(s)
- Francesco Onorato
- Department of Orthopedics and Traumatology, Orthopedic and Trauma Center, Città della Salute e della Scienza di Torino, University of Turin, Via Zuretti 29, 10126, Turin, Italy
| | - Massimiliano Rucci
- Department of Surgical Sciences (DISC), Orthopaedics and Traumatology Clinic, Ospedale Policlinico San Martino, University of Genoa, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Mattia Alessio-Mazzola
- IRCCS Ospedale San Raffaele, Orthopaedic and Trauma Unit, Via Olgettina 60, 20132, Milan, Italy
| | - Alessandro Bistolfi
- Orthopaedics and Traumatology, Ospedale Cardinal Massaia Asti, Via Conte Verde 125, 14100, Asti, Italy
| | - Carlotta Castagnoli
- Department of General Surgery and Special Surgery, Burns Center Unit, Unit of Skin Bank, Via Zuretti 29, 10126, Turin, Italy
| | - Matteo Formica
- Department of Surgical Sciences (DISC), Orthopaedics and Traumatology Clinic, Ospedale Policlinico San Martino, University of Genoa, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Riccardo Ferracini
- Department of Orthopedics and Traumatology, Ospedale Koelliker, Corso Galileo Ferraris 247/255, 10134, Turin, Italy.
| |
Collapse
|
13
|
Kostecka A, Kalamon N, Skoniecka A, Koczkowska M, Skowron PM, Piotrowski A, Pikuła M. Adipose-derived mesenchymal stromal cells in clinical trials: Insights from single-cell studies. Life Sci 2024; 351:122761. [PMID: 38866216 DOI: 10.1016/j.lfs.2024.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Mesenchymal Stromal Cells (MSCs) offer tremendous potential for the treatment of various diseases and their healing properties have been explored in hundreds of clinical trials. These trails primarily focus on immunological and neurological disorders, as well as regenerative medicine. Adipose tissue is a rich source of mesenchymal stromal cells and methods to obtain and culture adipose-derived MSCs (AD-MSCs) have been well established. Promising results from pre-clinical testing of AD-MSCs activity prompted clinical trials that further led to the approval of AD-MSCs for the treatment of complex perianal fistulas in Crohn's disease and subcutaneous tissue defects. However, AD-MSC heterogeneity along with various manufacturing protocols or different strategies to boost their activity create the need for standardized quality control procedures and safety assessment of the intended cell product. High-resolution transcriptomic methods have been recently gaining attention, as they deliver insight into gene expression profiles of individual cells, helping to deconstruct cellular hierarchy and differentiation trajectories, and to understand cell-cell interactions within tissues. This article presents a comprehensive overview of completed clinical trials evaluating the safety and efficacy of AD-MSC treatment, together with current single-cell studies of human AD-MSC. Furthermore, our work emphasizes the increasing significance of single-cell research in elucidating the mechanisms of cellular action and predicting their therapeutic effects.
Collapse
Affiliation(s)
- Anna Kostecka
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Natalia Kalamon
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| | - Aneta Skoniecka
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Koczkowska
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Arkadiusz Piotrowski
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, 80-211 Gdańsk, Poland.
| |
Collapse
|
14
|
Ruoss S, Nasamran CA, Ball ST, Chen JL, Halter KN, Bruno KA, Whisenant TC, Parekh JN, Dorn SN, Esparza MC, Bremner SN, Fisch KM, Engler AJ, Ward SR. Comparative single-cell transcriptional and proteomic atlas of clinical-grade injectable mesenchymal source tissues. SCIENCE ADVANCES 2024; 10:eadn2831. [PMID: 38996032 PMCID: PMC11244553 DOI: 10.1126/sciadv.adn2831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Bone marrow aspirate concentrate (BMAC) and adipose-derived stromal vascular fraction (ADSVF) are the most marketed stem cell therapies to treat a variety of conditions in the general population and elite athletes. Both tissues have been used interchangeably clinically even though their detailed composition, heterogeneity, and mechanisms of action have neither been rigorously inventoried nor compared. This lack of information has prevented investigations into ideal dosages and has facilitated anecdata and misinformation. Here, we analyzed single-cell transcriptomes, proteomes, and flow cytometry profiles from paired clinical-grade BMAC and ADSVF. This comparative transcriptional atlas challenges the prevalent notion that there is one therapeutic cell type present in both tissues. We also provide data of surface markers that may enable isolation and investigation of cell (sub)populations. Furthermore, the proteome atlas highlights intertissue and interpatient heterogeneity of injected proteins with potentially regenerative or immunomodulatory capacities. An interactive webtool is available online.
Collapse
Affiliation(s)
- Severin Ruoss
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Chanond A. Nasamran
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
| | - Scott T. Ball
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Jeffrey L. Chen
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Kenneth N. Halter
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Kelly A. Bruno
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Thomas C. Whisenant
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
| | - Jesal N. Parekh
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Shanelle N. Dorn
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Mary C. Esparza
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | | | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, UC San Diego, La Jolla, CA, USA
| | - Adam J. Engler
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Samuel R. Ward
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Department of Radiology, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Deng Y, Zheng H, Li B, Huang F, Qiu Y, Yang Y, Sheng W, Peng C, Tian X, Wang W, Yu H. Nanomedicines targeting activated immune cells and effector cells for rheumatoid arthritis treatment. J Control Release 2024; 371:498-515. [PMID: 38849090 DOI: 10.1016/j.jconrel.2024.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and inflammatory cellular infiltration. Functional cells in the RA microenvironment (RAM) are composed of activated immune cells and effector cells. Activated immune cells, including macrophages, neutrophils, and T cells, can induce RA. Effector cells, including synoviocytes, osteoclasts, and chondrocytes, receiving inflammatory stimuli, exacerbate RA. These functional cells, often associated with the upregulation of surface-specific receptor proteins and significant homing effects, can secrete pro-inflammatory factors and interfere with each other, thereby jointly promoting the progression of RA. Recently, some nanomedicines have alleviated RA by targeting and modulating functional cells with ligand modifications, while other nanoparticles whose surfaces are camouflaged by membranes or extracellular vesicles (EVs) of these functional cells target and attack the lesion site for RA treatment. When ligand-modified nanomaterials target specific functional cells to treat RA, the functional cells are subjected to attack, much like the intended targets. When functional cell membranes or EVs are modified onto nanomaterials to deliver drugs for RA treatment, functional cells become the attackers, similar to arrows. This study summarized how diversified functional cells serve as targets or arrows by engineered nanoparticles to treat RA. Moreover, the key challenges in preparing nanomaterials and their stability, long-term efficacy, safety, and future clinical patient compliance have been discussed here.
Collapse
Affiliation(s)
- Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feibing Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
16
|
Spasovski D, Spasovski V, Bascarevic Z, Stojiljkovic M, Andjelkovic M, Pavlovic S. Seven-Year Longitudinal Study: Clinical Evaluation of Knee Osteoarthritic Patients Treated with Mesenchymal Stem Cells. J Clin Med 2024; 13:3861. [PMID: 38999426 PMCID: PMC11242523 DOI: 10.3390/jcm13133861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Background/Objectives: Numerous studies have demonstrated the safety and efficacy of intraarticular stem cell injections for treating osteoarthritic knee joints, reporting symptom reduction and pain relief within a few months of treatment. Here, we report the results of a 7-year follow-up after a single intraarticular injection of 0.5-1 × 107 autologous adipose tissue-derived mesenchymal stem cells in patients with OA (Kellgren-Lawrence grade 2 to 4). Methods: Nine patients were treated, and two patients had bilateral disease. Patients were evaluated clinically and radiologically using X-ray and MRI. A comprehensive statistical analysis was undertaken to evaluate the obtained results. Results: All clinical scores and range of motion significantly improved within the first six months after injection. At the 18-month time point, a significant improvement in cartilage structure was observed on MRI while X-ray showed no changes in subchondral bone of distal femur and proximal tibia. At the 60-month time point, the clinical scores were still improved compared to baseline, except for the range of motion, which decreased almost back to the baseline level. At 84 months, the clinical scores decreased significantly toward the baseline level, but the MRI structural characteristics of cartilage still remained significantly better than those measured at baseline. Conclusions: Adipose tissue-derived stem cell therapy has substantial long-term clinical effects on patients with knee osteoarthritis.
Collapse
Affiliation(s)
- Dusko Spasovski
- Institute for Orthopedics Banjica, University of Belgrade, 11000 Belgrade, Serbia
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Spasovski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Zoran Bascarevic
- Institute for Orthopedics Banjica, University of Belgrade, 11000 Belgrade, Serbia
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Marina Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
17
|
Zhang J, Zhu X, Chen S, Li P, Yang L, Zhang J. The research status of biodegradable polymers in repair of Achilles tendon defects. INT J POLYM MATER PO 2024; 73:771-784. [DOI: 10.1080/00914037.2023.2206658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/19/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Jinchi Zhang
- Department of Biomaterials, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
- Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang 110031, PR China
- College of Kinesiology, Shenyang Sport University, Shenyang 110102, PR China
| | - Xiaolin Zhu
- Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang 110031, PR China
| | - Siyu Chen
- China Medical University and Queen’s University Belfast, Shenyang 110122, PR China
| | - Peng Li
- Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang 110031, PR China
| | - Liqun Yang
- Department of Biomaterials, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
- Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang 110031, PR China
| | - Jinzhe Zhang
- Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang 110031, PR China
| |
Collapse
|
18
|
Holzbauer M, Priglinger E, Kølle SFT, Prantl L, Stadler C, Winkler PW, Gotterbarm T, Duscher D. Intra-Articular Application of Autologous, Fat-Derived Orthobiologics in the Treatment of Knee Osteoarthritis: A Systematic Review. Cells 2024; 13:750. [PMID: 38727286 PMCID: PMC11083621 DOI: 10.3390/cells13090750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The aim of this study was to review the current literature regarding the effects of intra-articularly applied, fat-derived orthobiologics (FDO) in the treatment of primary knee osteoarthritis over a mid-term follow-up period. A systematic literature search was conducted on the online databases of Scopus, PubMed, Ovid MEDLINE, and Cochrane Library. Studies investigating intra-articularly applied FDO with a minimum number of 10 knee osteoarthritis patients, a follow-up period of at least 2 years, and at least 1 reported functional parameter (pain level or Patient-Reported Outcome Measures) were included. Exclusion criteria encompassed focal chondral defects and techniques including additional arthroscopic bone marrow stimulation. In 28 of 29 studies, FDO showed a subjective improvement in symptoms (pain and Patient-Reported Outcome Measures) up to a maximum follow-up of 7.2 years. Radiographic cartilage regeneration up to 3 years postoperatively, as well as macroscopic cartilage regeneration investigated via second-look arthroscopy, may corroborate the favorable clinical findings in patients with knee osteoarthritis. The methodological heterogeneity in FDO treatments leads to variations in cell composition and represents a limitation in the current state of knowledge. However, this systematic review suggests that FDO injection leads to beneficial mid-term results including symptom reduction and preservation of the affected joint in knee osteoarthritis patients.
Collapse
Affiliation(s)
- Matthias Holzbauer
- Department for Orthopedics and Trauma Surgery, Med Campus III, Kepler University Hospital, Krankenhausstrasse 9, 4020 Linz, Austria; (E.P.); (C.S.); (P.W.W.); (T.G.)
- Faculty of Medicine, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Eleni Priglinger
- Department for Orthopedics and Trauma Surgery, Med Campus III, Kepler University Hospital, Krankenhausstrasse 9, 4020 Linz, Austria; (E.P.); (C.S.); (P.W.W.); (T.G.)
- Faculty of Medicine, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | | | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (L.P.); (D.D.)
| | - Christian Stadler
- Department for Orthopedics and Trauma Surgery, Med Campus III, Kepler University Hospital, Krankenhausstrasse 9, 4020 Linz, Austria; (E.P.); (C.S.); (P.W.W.); (T.G.)
- Faculty of Medicine, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Philipp Wilhelm Winkler
- Department for Orthopedics and Trauma Surgery, Med Campus III, Kepler University Hospital, Krankenhausstrasse 9, 4020 Linz, Austria; (E.P.); (C.S.); (P.W.W.); (T.G.)
- Faculty of Medicine, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Tobias Gotterbarm
- Department for Orthopedics and Trauma Surgery, Med Campus III, Kepler University Hospital, Krankenhausstrasse 9, 4020 Linz, Austria; (E.P.); (C.S.); (P.W.W.); (T.G.)
- Faculty of Medicine, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Dominik Duscher
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (L.P.); (D.D.)
- TF Plastic Surgery and Longevity Center, Herzogstrasse 67, 80803 Munich, Germany and Dorotheergasse 12, 1010 Vienna, Austria
| |
Collapse
|
19
|
Kennedy O, Kitson A, Okpara C, Chow LW, Gonzalez-Fernandez T. Immunomodulatory Strategies for Cartilage Regeneration in Osteoarthritis. Tissue Eng Part A 2024; 30:259-271. [PMID: 38126327 DOI: 10.1089/ten.tea.2023.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent musculoskeletal disorder and a leading cause of disability globally. Although many efforts have been made to treat this condition, current tissue engineering (TE) and regenerative medicine strategies fail to address the inflammatory tissue environment that leads to the rapid progression of the disease and prevents cartilage tissue formation. First, this review addresses in detail the current anti-inflammatory therapies for OA with a special emphasis on pharmacological approaches, gene therapy, and mesenchymal stromal cell (MSC) intra-articular administration, and discusses the reasons behind the limited clinical success of these approaches at enabling cartilage regeneration. Then, we analyze the state-of-the-art TE strategies and how they can be improved by incorporating immunomodulatory capabilities such as the optimization of biomaterial composition, porosity and geometry, and the loading of anti-inflammatory molecules within an engineered structure. Finally, the review discusses the future directions for the new generation of TE strategies for OA treatment, specifically focusing on the spatiotemporal modulation of anti-inflammatory agent presentation to allow for tailored patient-specific therapies. Impact statement Osteoarthritis (OA) is a prevalent and debilitating musculoskeletal disorder affecting millions worldwide. Despite significant advancements in regenerative medicine and tissue engineering (TE), mitigating inflammation while simultaneously promoting cartilage tissue regeneration in OA remains elusive. In this review article, we discuss current anti-inflammatory therapies and explore their potential synergy with cutting-edge cartilage TE strategies, with a special focus on novel spatiotemporal and patient-specific anti-inflammatory strategies.
Collapse
Affiliation(s)
- Orlaith Kennedy
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Biomedical Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Andrew Kitson
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Chiebuka Okpara
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Lesley W Chow
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | | |
Collapse
|
20
|
van Griensven M, Balmayor ER. Extracellular vesicles are key players in mesenchymal stem cells' dual potential to regenerate and modulate the immune system. Adv Drug Deliv Rev 2024; 207:115203. [PMID: 38342242 DOI: 10.1016/j.addr.2024.115203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/15/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
MSCs are used for treatment of inflammatory conditions or for regenerative purposes. MSCs are complete cells and allogenic transplantation is in principle possible, but mostly autologous use is preferred. In recent years, it was discovered that cells secrete extracellular vesicles. These are active budded off vesicles that carry a cargo. The cargo can be miRNA, protein, lipids etc. The extracellular vesicles can be transported through the body and fuse with target cells. Thereby, they influence the phenotype and modulate the disease. The extracellular vesicles have, like the MSCs, immunomodulatory or regenerative capacities. This review will focus on those features of extracellular vesicles and discuss their dual role. Besides the immunomodulation, the regeneration will concentrate on bone, cartilage, tendon, vessels and nerves. Current clinical trials with extracellular vesicles for immunomodulation and regeneration that started in the last five years are highlighted as well. In summary, extracellular vesicles have a great potential as disease modulating entity and treatment. Their dual characteristics need to be taken into account and often are both important for having the best effect.
Collapse
Affiliation(s)
- Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, 6229 ER Maastricht, the Netherlands; Musculoskeletal Gene Therapy Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA.
| | - Elizabeth R Balmayor
- Musculoskeletal Gene Therapy Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
21
|
Tjandra KC, Novriansyah R, Sudiasa INS, Ar A, Rahmawati NAD, Dilogo IH. Modified Mesenchymal stem cell, platelet-rich plasma, and hyaluronic acid intervention in early stage osteoarthritis: A systematic review, meta-analysis, and meta-regression of arthroscopic-guided intra-articular approaches. PLoS One 2024; 19:e0295876. [PMID: 38457479 PMCID: PMC10923406 DOI: 10.1371/journal.pone.0295876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/25/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) hold promise for osteoarthritis (OA) treatment, potentially enhanced by combining them with platelet-rich plasma (PRP) and hyaluronic acid (HA). This study aimed to assess the synergy of MSCs, PRP, and varying HA doses, and determine optimal MSC sources to treat early-stage OA in the perspective of Lysholm score, VAS Score, KSS score, and WOMAC score. METHOD Original articles from 2013 to 2023 were screened from four databases, focusing on clinical trials and randomized controlled trials. The Risk of Bias in Non-randomized Studies-of Interventions (ROB-2) tool evaluated bias, and a PICOS criteria table guided result construction. Revman 5.4 analyzed outcomes such as Lysholm score, VAS score, KSS, WOMAC score, cartilage volume, and defect size using MRI. This systematic review adhered to PRISMA guidelines. RESULT Nine studies met the final inclusion criteria. Meta-analysis revealed a significant improvement in Lysholm score (MD: 17.89; 95% CI: 16.01, 19.77; I2 = 0%, P = 0.56), a notable reduction in VAS score (MD: -2.62; 95% CI: -2.83, -2.41; I2 = 99%, P < 0.00001), elevated KSS (MD: 29.59; 95% CI: 27.66, 31.52; I2 = 95%, P < 0.0001), and reduced WOMAC score (MD: -12.38; 95% CI: -13.75, -11.01; I2 = 99%, P < 0.0001). CONCLUSIONS Arthroscopic guided high-dose subchondral application of primary cultured synovial MSCs in popliteal PRP media with HA effectively regenerates cartilage defects and improves clinical outcomes in early-stage osteoarthritis. Clarification of MSC sources and quantities enhances the understanding of this promising treatment modality.
Collapse
Affiliation(s)
- Kevin Christian Tjandra
- Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Kariadi General Hospital, Semarang, Indonesia
| | - Robin Novriansyah
- Kariadi General Hospital, Semarang, Indonesia
- Department of Surgery, Faculty of Medicine, Universitas Diopnegoro, Semarang, Indonesia
| | - I. Nyoman Sebastian Sudiasa
- Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Kariadi General Hospital, Semarang, Indonesia
| | - Ardiyana Ar
- Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Kariadi General Hospital, Semarang, Indonesia
| | - Nurul Azizah Dian Rahmawati
- Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
- Kariadi General Hospital, Semarang, Indonesia
| | - Ismail Hadisoebroto Dilogo
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Research Cluster Indonesian Medical Education and Research Institute (IMERI) Universitas Indonesia, Jakarta, Indonesia
- Department of Orthopaedic and Traumatology, Cipto Mangunkusumo General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
22
|
Arceri A, Mazzotti A, Artioli E, Zielli SO, Barile F, Manzetti M, Viroli G, Ruffilli A, Faldini C. Adipose-derived stem cells applied to ankle pathologies: a systematic review. Musculoskelet Surg 2024; 108:1-9. [PMID: 37943411 PMCID: PMC10881601 DOI: 10.1007/s12306-023-00798-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
The purpose of this systematic review was to analyze the current use of adipose-derived mesenchymal stem cells (ADMSCs) and present the available evidence on their therapeutic potential in the treatment of ankle orthopedic issues, evaluating the applications and results. A literature search of PubMed, Google Scholar, EMBASE and Cochrane Library database was performed. The review was conducted following PRISMA guidelines. Risk of bias assessment was conducted through the Methodological Index for Non-Randomized Studies (MINORS) criteria. Initial search results yielded 4348 articles. A total of 8 articles were included in the review process. No clinical evidence has demonstrated the effectiveness of one isolation method over the other, but nonenzymatic mechanical method has more advantages. In all studies included significant clinical outcomes improvement were recorded in patients affected by osteochondral lesion and osteoarthritis of ankle. All studies performed a concomitant procedure. No serious complications were reported. ADMSC injection, especially through the nonenzymatic mechanical methods, looks to be simple and promising treatment for osteochondral lesions and osteoarthritis of the ankle, with no severe complications. The current scarcity of studies and their low-quality level preclude definitive conclusions presently. LEVEL OF EVIDENCE: III.
Collapse
Affiliation(s)
- A Arceri
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
| | - A Mazzotti
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40123, Bologna, Italy
| | - E Artioli
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
| | - S O Zielli
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy.
| | - F Barile
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40123, Bologna, Italy
| | - M Manzetti
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
| | - G Viroli
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
| | - A Ruffilli
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40123, Bologna, Italy
| | - C Faldini
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40123, Bologna, Italy
| |
Collapse
|
23
|
Taeb S, Rostamzadeh D, Mafi S, Mofatteh M, Zarrabi A, Hushmandi K, Safari A, Khodamoradi E, Najafi M. Update on Mesenchymal Stem Cells: A Crucial Player in Cancer Immunotherapy. Curr Mol Med 2024; 24:98-113. [PMID: 36573062 DOI: 10.2174/1566524023666221226143814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/28/2022]
Abstract
The idea of cancer immunotherapy has spread, and it has made tremendous progress with the advancement of new technology. Immunotherapy, which serves to assist the natural defenses of the body in eradicating cancerous cells, is a remarkable achievement that has revolutionized both cancer research and cancer treatments. Currently, the use of stem cells in immunotherapy is widespread and shares a special characteristic, including cancer cell migration, bioactive component release, and immunosuppressive activity. In the context of cancer, mesenchymal stem cells (MSCs) are rapidly being identified as vital stromal regulators of tumor progression. MSCs therapy has been implicated in treating a wide range of diseases, including bone damage, autoimmune diseases, and particularly hematopoietic abnormalities, providing stem cell-based therapy with an extra dimension. Moreover, the implication of MSCs does not have ethical concerns, and the complications known in pluripotent and totipotent stem cells are less common in MSCs. MSCs have a lot of distinctive characteristics that, when coupled, make them excellent for cellular-based immunotherapy and as vehicles for gene and drug delivery in a variety of inflammations and malignancies. MSCs can migrate to the inflammatory site and exert immunomodulatory responses via cell-to-cell contacts with lymphocytes by generating soluble substances. In the current review, we discuss the most recent research on the immunological characteristics of MSCs, their use as immunomodulatory carriers, techniques for approving MSCs to adjust their immunological contour, and their usages as vehicles for delivering therapeutic as well as drugs and genes engineered to destroy tumor cells.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Mofatteh
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
- Lincoln College, University of Oxford, Turl Street, Oxford OX1 3DR, United Kingdom
| | - Ali Zarrabi
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Safari
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
24
|
Onoi Y, Matsumoto T, Sobajima S, Tsubosaka M, Hayashi S, Matsushita T, Iwaguro H, Kuroda R. Clinical use of autologous adipose-derived stromal vascular fraction cell injections for hip osteoarthritis. Regen Ther 2023; 24:94-102. [PMID: 37363753 PMCID: PMC10285449 DOI: 10.1016/j.reth.2023.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Currently, studies on adipose-derived stromal vascular fraction (SVF) cells are attracting increasing attention because they have the potential to differentiate into a subset of cell types, such as bone marrow-derived mesenchymal stromal cells (MSCs), and are easier to harvest than MSCs, thus making them easier to apply clinically. This study evaluated the short-term clinical outcomes of SVF cell therapy for hip osteoarthritis (OA). Methods Forty-two patients were enrolled in this study; these patients received a single injection comprising an average of 3.8 (standard deviation [SD], ±1.3) × 107 SVF cells into the hip joint. All patients were followed-up for at least 6 months. The mean age of the patients was 60.2 years (SD, ±9.4 years). Kellgren-Lawrence (KL) grades II, III, and IV based on radiography were 13, 13, and 16 patients, respectively. SVF cells were obtained from the subcutaneous fat of the abdomen or breech using a Celution® 800/CRS system. The average cell viability of SVF cells was 90.8% (SD, ±2.8%). Clinical assessments were performed using the Harris Hip Score (HHS), Japanese Orthopaedic Association Hip Disease Evaluation Questionnaire (JHEQ) score, and visual analog scale (VAS) score to evaluate pain. Images were evaluated using radiography, and T2 mapping values were obtained using a 1.5-T magnetic resonance imaging system. These clinical and imaging assessments were followed from preoperatively to 6 months postoperatively. Results The HHS, JHEQ score, and VAS score improved significantly from 22.5 (SD, ±16.6), 26.6 (SD, ±11.3), and 75.5 (SD, ±15.8) preoperatively to 46.8 (SD, ±27.2), 39.4 (SD, ±19.7), and 46.5 (SD, ±27.9), respectively, at 6 months postoperatively. KL grade II showed significant improvement in clinical outcome from preoperative to postoperative, while KL grade IV showed slight or little improvement. The center edge angle, acetabular head index on the radiographs, and T2 mapping values did not change significantly from preoperatively to 6 months postoperatively. Conclusions SVF cell injection in the hip joint showed good short-term clinical efficacy for reducing hip OA symptoms. SVF cell therapy is thus an innovative and effective treatment for hip OA.
Collapse
Affiliation(s)
- Yuma Onoi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Sobajima
- Department of Orthopaedic Surgery, Sobajima Clinic, Osaka, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideki Iwaguro
- Department of Orthopaedic Surgery, Sobajima Clinic, Osaka, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
25
|
Hamilton M, Wang J, Dhar P, Stehno-Bittel L. Controlled-Release Hydrogel Microspheres to Deliver Multipotent Stem Cells for Treatment of Knee Osteoarthritis. Bioengineering (Basel) 2023; 10:1315. [PMID: 38002439 PMCID: PMC10669156 DOI: 10.3390/bioengineering10111315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of joint disease affecting articular cartilage and peri-articular tissues. Traditional treatments are insufficient, as they are aimed at mitigating symptoms. Multipotent Stromal Cell (MSC) therapy has been proposed as a treatment capable of both preventing cartilage destruction and treating symptoms. While many studies have investigated MSCs for treating OA, therapeutic success is often inconsistent due to low MSC viability and retention in the joint. To address this, biomaterial-assisted delivery is of interest, particularly hydrogel microspheres, which can be easily injected into the joint. Microspheres composed of hyaluronic acid (HA) were created as MSC delivery vehicles. Microrheology measurements indicated that the microspheres had structural integrity alongside sufficient permeability. Additionally, encapsulated MSC viability was found to be above 70% over one week in culture. Gene expression analysis of MSC-identifying markers showed no change in CD29 levels, increased expression of CD44, and decreased expression of CD90 after one week of encapsulation. Analysis of chondrogenic markers showed increased expressions of aggrecan (ACAN) and SRY-box transcription factor 9 (SOX9), and decreased expression of osteogenic markers, runt-related transcription factor 2 (RUNX2), and alkaline phosphatase (ALPL). In vivo analysis revealed that HA microspheres remained in the joint for up to 6 weeks. Rats that had undergone destabilization of the medial meniscus and had overt OA were treated with empty HA microspheres, MSC-laden microspheres, MSCs alone, or a control vehicle. Pain measurements taken before and after the treatment illustrated temporarily decreased pain in groups treated with encapsulated cells. Finally, the histopathological scoring of each group illustrated significantly less OA damage in those treated with encapsulated cells compared to controls. Overall, these studies demonstrate the potential of using HA-based hydrogel microspheres to enhance the therapeutic efficacy of MSCs in treating OA.
Collapse
Affiliation(s)
- Megan Hamilton
- Bioengineering Program, School of Engineering, University of Kansas, Lawrence, KS 66045, USA;
- Likarda, Kansas City, MO 64137, USA;
| | - Jinxi Wang
- Department of Orthopedic Surgery and Sport Medicine, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Prajnaparamita Dhar
- Bioengineering Program, School of Engineering, University of Kansas, Lawrence, KS 66045, USA;
| | - Lisa Stehno-Bittel
- Likarda, Kansas City, MO 64137, USA;
- Department of Orthopedic Surgery and Sport Medicine, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
26
|
Gherghel R, Macovei LA, Burlui MA, Cardoneanu A, Rezus II, Mihai IR, Rezus E. Osteoarthritis—The Role of Mesenchymal Stem Cells in Cartilage Regeneration. APPLIED SCIENCES 2023; 13:10617. [DOI: 10.3390/app131910617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Osteoarthritis (OA) is a condition that can cause substantial pain, loss of joint function, and a decline in quality of life in patients. Numerous risk factors, including aging, genetics, and injury, have a role in the onset of OA, characterized by structural changes within the joints. Most therapeutic approaches focus on the symptoms and try to change or improve the structure of the joint tissues. Even so, no treatments have been able to stop or slow the progression of OA or give effective and long-lasting relief of symptoms. In the absence of disease-modifying drugs, regenerative medicine is being investigated as a possible treatment that can change the course of OA by changing the structure of damaged articular cartilage. In regenerative therapy for OA, mesenchymal stem cells (MSCs) have been the mainstay of translational investigations and clinical applications. In recent years, MSCs have been discovered to be an appropriate cell source for treating OA due to their ability to expand rapidly in culture, their nontumorigenic nature, and their ease of collection. MSCs’ anti-inflammatory and immunomodulatory capabilities may provide a more favorable local environment for the regeneration of injured articular cartilage, which was thought to be one of the reasons why they were seen as more suited for OA. In addition to bone marrow, MSCs have also been isolated from adipose tissue, synovium, umbilical cord, cord blood, dental pulp, placenta, periosteum, and skeletal muscle. Adipose tissue and bone marrow are two of the most essential tissues for therapeutic MSCs. Positive preclinical and clinical trial results have shown that, despite current limitations and risks, MSC-based therapy is becoming a promising approach to regenerative medicine in treating OA.
Collapse
Affiliation(s)
- Robert Gherghel
- Department of Orthopedics and Trauma Surgery, Piatra Neamt Emergency Hospital, 700115 Piatra Neamt, Romania
| | - Luana Andreea Macovei
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Maria-Alexandra Burlui
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Anca Cardoneanu
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Ioana-Irina Rezus
- Department of Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Ioana Ruxandra Mihai
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
27
|
Zhao S, Xiu G, Wang J, Wen Y, Lu J, Wu B, Wang G, Yang D, Ling B, Du D, Xu J. Engineering exosomes derived from subcutaneous fat MSCs specially promote cartilage repair as miR-199a-3p delivery vehicles in Osteoarthritis. J Nanobiotechnology 2023; 21:341. [PMID: 37736726 PMCID: PMC10515007 DOI: 10.1186/s12951-023-02086-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease involving cartilage. Exosomes derived from Mesenchymal stem cells (MSCs) therapy improves articular cartilage repair, but subcutaneous fat (SC) stromal cells derived exosomes (MSCsSC-Exos), especially engineering MSCsSC-Exos for drug delivery have been rarely reported in OA therapy. This objective of this study was to clarify the underlying mechanism of MSCsSC-Exos on cartilage repair and therapy of engineering MSCsSC-Exos for drug delivery in OA. MSCsSC-Exos could ameliorate the pathological severity degree of cartilage via miR-199a-3p, a novel molecular highly enriched in MSCsSC-Exos, which could mediate the mTOR-autophagy pathway in OA rat model. Intra-articular injection of antagomiR-199a-3p dramatically attenuated the protective effect of MSCsSC-Exos-mediated on articular cartilage in vivo. Furthermore, to achieve the superior therapeutic effects of MSCsSC-Exos on injured cartilage, engineering exosomes derived from MSCsSC as the chondrocyte-targeting miR-199a-3p delivery vehicles were investigated in vitro and in vivo. The chondrocyte-binding peptide (CAP) binding MSCsSC-Exos could particularly deliver miR-199a-3p into the chondrocytes in vitro and into deep articular tissues in vivo, then exert the excellent protective effect on injured cartilage in DMM-induced OA mice. As it is feasible to obtain human subcutaneous fat from healthy donors by liposuction operation in clinic, meanwhile engineering MSCsSC-Exos to realize targeted delivery of miR-199a-3p into chondrocytes exerted excellent therapeutic effects in OA animal model in vivo. Through combining MSCsSC-Exos therapy and miRNA therapy via an engineering approach, we develop an efficient MSCsSC-Exos-based strategy for OA therapy and promote the application of targeted-MSCsSC-Exos for drug delivery in the future.
Collapse
Affiliation(s)
- Shu Zhao
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
- Department of Plastic Surgery, Shanghai Fourth People's Hospital, School of Medicine,Tongji University, Shanghai, 200434, People's Republic of China
| | - Guanghui Xiu
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, 650021, People's Republic of China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
| | - Yi Wen
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
| | - Jinyuan Lu
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Baitong Wu
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
| | - Guangming Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
| | - Danjing Yang
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120
| | - Bin Ling
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, 650021, People's Republic of China.
| | - Dajiang Du
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China, 200120.
| |
Collapse
|
28
|
Huang Z, Zhang S, Cao M, Lin Z, Kong L, Wu X, Guo Q, Ouyang Y, Song Y. What is the optimal dose of adipose-derived mesenchymal stem cells treatment for knee osteoarthritis? A conventional and network meta-analysis of randomized controlled trials. Stem Cell Res Ther 2023; 14:245. [PMID: 37697417 PMCID: PMC10496179 DOI: 10.1186/s13287-023-03475-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Despite increasing clinical investigations underscoring the efficacy and safety of adipose-derived mesenchymal stem cells (AD-MSCs) therapy in knee osteoarthritis (KOA), no article has recently reviewed the cell dosage. This study aimed to evaluate the efficacy and safety of varying doses of AD-MSCs in treating KOA using conventional and network meta-analysis. METHODS A search of databases in in Chinese and English was performed to identify randomized controlled trials (RCT) on MSCs for knee osteoarthritis from the inception date to May 1, 2022. This study mainly analyzed the efficacy of AD-MSCs in the treatment of KOA, and subgroup analysis was performed on the therapeutic effects of MSCs from different tissues at the same dose. We divided the different cell doses into low, moderate, and high groups, with the corresponding cell doses: (0-25)*10^6, (25-50)*10^6, and > 50*10^6 cells, respectively. We further analyzed the improvement of improvement of the Visual Analog Scale (VAS) and the Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores and the incidence of adverse events (AEs) after varied dosage injection. RESULTS A total of 16 literatures were included in this study, of which 8 literatures were about AD-MSCs. Conventional meta-analysis suggests that AD-MSCs can reduce pain and improve function in KOA patients, regardless of the cell doses, up to 12 months of follow-up. The network meta-analysis showed that intra-articular injection of AD-MSCs significantly improved pain and knee function scores in KOA patients compared with the control group at 3, 6, and 12 months. Among the three groups, the high-dose group had the best treatment effect, and the degree of joint pain and dysfunction indicators improved more significantly in the early stage. For adverse events, there was a dose-response trend that increased with increasing doses. CONCLUSIONS Both cell doses reduced pain and improved knee function in KOA patients. The effect surpassed in the high-dose group than in the moderate-dose, low-dose and control groups. However, adverse events also increase with the increase in dose, which should be carefully considered in clinical application, and the side effects still need to be paid attention to. Considering the limitations of this meta-analysis, future studies need to further explore the efficacy and safety of different doses of treatment, and carry out large sample, multi-center, randomized controlled trials to ensure the reliability and promotion value of the research results.
Collapse
Affiliation(s)
- Zongyuan Huang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China.
| | - Shuai Zhang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Mingde Cao
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhujian Lin
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Ling Kong
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xin Wu
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Qianshi Guo
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Yuxiang Ouyang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Yancheng Song
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
29
|
Im GI, Henrotin Y. Regenerative medicine for early osteoarthritis. Ther Adv Musculoskelet Dis 2023; 15:1759720X231194813. [PMID: 37694184 PMCID: PMC10486218 DOI: 10.1177/1759720x231194813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
The concept of early osteoarthritis (OA) is based on the expectation that if found and treated in the early stage, the progression of the disease might be arrested before affected joints are irreversibly destroyed. This notion of early OA detection can also bear meaning for regenerative medicine (RM) which is purposed to cure a disease by regenerating the damaged tissue. RM can be a category of disease-modifying osteoarthritis drugs (DMOADs) and provide an attractive treatment for OA, restoring structural damage incurred during the disease by repopulating cells and reconstituting. While cell therapy including the use of stem cells is conflated with RM, it may also comprise gene therapy, exosomes, and other cell or cell-free-derived products. Considering that not all early OA will become advanced OA and that RM has a characteristic of personalized medicine, it would be very important to foretell, even roughly, which patients will progress rapidly and who will favorably respond to regenerative treatment. Subclassification and comprehensive endotyping or phenotyping (E/P) can be very helpful in detecting the population who would benefit from RM as well as rapid progressors who need closer monitoring.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopedics, Dongguk University Ilsan Hospital, 32 Dongguk-Ro, Goyang Gyeonggi-Do 10326, Republic of Korea
| | | |
Collapse
|
30
|
Maldonado VV, Patel NH, Smith EE, Barnes CL, Gustafson MP, Rao RR, Samsonraj RM. Clinical utility of mesenchymal stem/stromal cells in regenerative medicine and cellular therapy. J Biol Eng 2023; 17:44. [PMID: 37434264 DOI: 10.1186/s13036-023-00361-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been carefully examined to have tremendous potential in regenerative medicine. With their immunomodulatory and regenerative properties, MSCs have numerous applications within the clinical sector. MSCs have the properties of multilineage differentiation, paracrine signaling, and can be isolated from various tissues, which makes them a key candidate for applications in numerous organ systems. To accentuate the importance of MSC therapy for a range of clinical indications, this review highlights MSC-specific studies on the musculoskeletal, nervous, cardiovascular, and immune systems where most trials are reported. Furthermore, an updated list of the different types of MSCs used in clinical trials, as well as the key characteristics of each type of MSCs are included. Many of the studies mentioned revolve around the properties of MSC, such as exosome usage and MSC co-cultures with other cell types. It is worth noting that MSC clinical usage is not limited to these four systems, and MSCs continue to be tested to repair, regenerate, or modulate other diseased or injured organ systems. This review provides an updated compilation of MSCs in clinical trials that paves the way for improvement in the field of MSC therapy.
Collapse
Affiliation(s)
- Vitali V Maldonado
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
| | - Neel H Patel
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
| | - Emma E Smith
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
| | - C Lowry Barnes
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Raj R Rao
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | - Rebekah M Samsonraj
- Department of Biomedical Engineering, University of Arkansas, 790 W Dickson St, Fayetteville, AR, USA.
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
31
|
Kim KI, Lee MC, Lee JH, Moon YW, Lee WS, Lee HJ, Hwang SC, In Y, Shon OJ, Bae KC, Song SJ, Park KK, Kim JH. Clinical Efficacy and Safety of the Intra-articular Injection of Autologous Adipose-Derived Mesenchymal Stem Cells for Knee Osteoarthritis: A Phase III, Randomized, Double-Blind, Placebo-Controlled Trial. Am J Sports Med 2023; 51:2243-2253. [PMID: 37345256 DOI: 10.1177/03635465231179223] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
BACKGROUND Intra-articular injection of autologous culture-expanded adipose-derived mesenchymal stem cells (ADMSCs) has introduced a promising treatment option for knee osteoarthritis. Although the clinical efficacy and safety of ADMSCs have been reported, the treatment remains controversial owing to the small sample sizes and heterogeneous osteoarthritis grades in previous studies. PURPOSE To assess the efficacy and safety of intra-articular injection of ADMSCs as compared with placebo in alleviating pain and improving functional capacity in a large sample of patients with knee osteoarthritis of Kellgren-Lawrence (K-L) grade 3. STUDY DESIGN Randomized controlled trial; Level of evidence, 1. METHODS This phase III multicenter clinical trial was a double-blind randomized controlled study that included 261 patients with K-L grade 3 symptomatic knee osteoarthritis who were administered a single injection of autologous culture-expanded ADMSCs or placebo. Clinical data were assessed at baseline and at 3 and 6 months after the injection. The primary endpoints were improvements in 100-mm visual analog scale (VAS) for pain and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) for function at 6 months after the injection. The secondary endpoints included clinical and radiologic examinations and safety after injection. The changes in cartilage defects after injection were assessed by magnetic resonance imaging at 6 months. RESULTS The ADMSC and control groups included 125 and 127 patients available for follow-up, respectively. At 6 months, the ADMSC group showed significantly better improvements in 100-mm VAS (ADMSC vs control, 25.2 vs 15.5; P = .004) and total WOMAC score (21.7 vs 14.3; P = .002) as compared with the control group. The linear mixed model analysis indicated significantly better improvements in all clinical outcomes in the ADMSC group after 6 months. At 6 months, the ADMSC group achieved significantly higher proportions of patients above the minimal clinically important difference in 100-mm VAS and WOMAC score. Radiologic outcomes and adverse events did not demonstrate significant differences between the groups. No serious treatment-related adverse events were observed. Magnetic resonance imaging revealed no significant difference in change of cartilage defects between the groups at 6 months. CONCLUSION Intra-articular injection of autologous culture-expanded ADMSCs provided significant pain relief and functional improvements in patients with K-L grade 3 osteoarthritis. Long-term results are needed to determine the disease-modifying effects of ADMSCs, such as structural changes, and the duration of effect of intra-articular injection of ADMSCs in knee osteoarthritis. REGISTRATION NCT03990805 (ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Kang-Il Kim
- Department of Orthopaedic Surgery, Center for Joint Diseases, Kyung Hee University Hospital at Gangdong, Seoul, Korea; Department of Orthopaedic Surgery, School of Medicine, Kyung Hee University, Seoul, Korea
- Investigation performed at Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Myung Chul Lee
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul National University School of Medicine, Seoul, Korea
- Investigation performed at Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Ju Hong Lee
- Department of Orthopaedic Surgery, Jeonbuk National University Hospital, Jeonbuk National University School of Medicine, Jeonju, Korea
- Investigation performed at Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Young-Wan Moon
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Investigation performed at Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Woo-Suk Lee
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University School of Medicine, Seoul, Korea
- Investigation performed at Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Han-Jun Lee
- Department of Orthopedic Surgery, Chung-Ang University Hospital, Chung-Ang University School of Medicine, Seoul, Korea
- Investigation performed at Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Science, Research Institute of Life Science, and School of Medicine, Gyeongsang National University, Jinju, Korea
- Investigation performed at Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Yong In
- Department of Orthopaedic Surgery, Seoul St Mary's Hospital, Catholic University College of Medicine, Seoul, Korea
- Investigation performed at Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Oog-Jin Shon
- Department of Orthopaedic Surgery, Yeungnam University Medical Center, Yeungnam University School of Medicine, Daegu, Korea
- Investigation performed at Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Ki-Cheor Bae
- Department of Orthopaedic Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
- Investigation performed at Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Sang-Jun Song
- Department of Orthopaedic Surgery, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul, Korea
- Investigation performed at Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Kwan Kyu Park
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University School of Medicine, Seoul, Korea
- Investigation performed at Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Jun-Ho Kim
- Department of Orthopaedic Surgery, Center for Joint Diseases, Kyung Hee University Hospital at Gangdong, Seoul, Korea
- Investigation performed at Kyung Hee University Hospital at Gangdong, Seoul, Korea
| |
Collapse
|
32
|
Gupta PK, Maheshwari S, Cherian JJ, Goni V, Sharma AK, Tripathy SK, Talari K, Pandey V, Sancheti PK, Singh S, Bandyopadhyay S, Shetty N, Kamath SU, Prahaldbhai PS, Abraham J, Kannan S, Bhat S, Parshuram S, Shahavi V, Sharma A, Verma NN, Kumar U. Efficacy and Safety of Stempeucel in Osteoarthritis of the Knee: A Phase 3 Randomized, Double-Blind, Multicenter, Placebo-Controlled Study. Am J Sports Med 2023; 51:2254-2266. [PMID: 37366164 DOI: 10.1177/03635465231180323] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
BACKGROUND Osteoarthritis is a chronic, progressive, and degenerative condition with limited therapy options. Recently, biologic therapies have been an evolving option for the management of osteoarthritis. PURPOSE To assess whether allogenic mesenchymal stromal cells (MSCs) have the potential to improve functional parameters and induce cartilage regeneration in patients with osteoarthritis. STUDY DESIGN Randomized controlled trial; Level of evidence, 1. METHODS A total of 146 patients with grade 2 and 3 osteoarthritis were randomized to either an MSC group or placebo group with a ratio of 1:1. There were 73 patients per group who received either a single intra-articular injection of bone marrow-derived MSCs (BMMSCs; 25 million cells) or placebo, followed by 20 mg per 2 mL of hyaluronic acid under ultrasound guidance. The primary endpoint was the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) total score. The secondary endpoints were WOMAC subscores for pain, stiffness, and physical function; the visual analog scale score for pain; and magnetic resonance imaging findings using T2 mapping and cartilage volume. RESULTS Overall, 65 patients from the BMMSC group and 68 patients from the placebo group completed 12-month follow-up. The BMMSC group showed significant improvements in the WOMAC total score compared with the placebo group at 6 and 12 months (percentage change: -23.64% [95% CI, -32.88 to -14.40] at 6 months and -45.60% [95% CI, -55.97 to -35.23] at 12 months P < .001; percentage change, -44.3%). BMMSCs significantly improved WOMAC pain, stiffness, and physical function subscores as well as visual analog scale scores at 6 and 12 months (P < .001). T2 mapping showed that there was no worsening of deep cartilage in the medial femorotibial compartment of the knee in the BMMSC group at 12-month follow-up, whereas in the placebo group, there was significant and gradual worsening of cartilage (P < .001). Cartilage volume did not change significantly in the BMMSC group. There were 5 adverse events that were possibly/probably related to the study drug and consisted of injection-site swelling and pain, which improved within a few days. CONCLUSION In this small randomized trial, BMMSCs proved to be safe and effective for the treatment of grade 2 and 3 osteoarthritis. The intervention was simple and easy to administer, provided sustained relief of pain and stiffness, improved physical function, and prevented worsening of cartilage quality for ≥12 months. REGISTRATION CTRI/2018/09/015785 (National Institutes of Health and Clinical Trials Registry-India).
Collapse
Affiliation(s)
- Pawan Kumar Gupta
- Stempeutics Research, Bangalore, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Sunil Maheshwari
- Medilink Hospital and Research Centre, Ahmedabad, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Joe Joseph Cherian
- St John's Medical College, Bangalore, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Vijay Goni
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Arun Kumar Sharma
- Sawai Man Singh Hospital & Medical College, Jaipur, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Sujith Kumar Tripathy
- All India Institutes of Medical Sciences, Bhubaneswar, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Keerthi Talari
- Yashoda Hospital, Hyderabad, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Vivek Pandey
- Kasturba Medical College, Manipal, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Parag Kantilal Sancheti
- Sancheti Institute for Orthopaedics and Rehabilitation, Pune, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Saurabh Singh
- Banaras Hindu University, Varanasi, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Syamasis Bandyopadhyay
- Apollo Gleneagles Hospital, Kolkata, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Naresh Shetty
- Ramaiah Medical College, Bangalore, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Surendra Umesh Kamath
- Kasturba Medical College Hospital, Mangalore, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Purohit Sharad Prahaldbhai
- Sanjivani Super Specialty Hospital, Ahmedabad, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Jijy Abraham
- Stempeutics Research, Bangalore, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Suresh Kannan
- Stempeutics Research, Bangalore, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Samatha Bhat
- Stempeutics Research, Bangalore, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Shivashankar Parshuram
- Stempeutics Research, Bangalore, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Vinayaka Shahavi
- Alkem Laboratories, Mumbai, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Akhilesh Sharma
- Alkem Laboratories, Mumbai, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Nikhil N Verma
- Rush University Medical Center, Chicago, Illinois, USA
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| | - Uday Kumar
- Stempeutics Research, Bangalore, India
- Investigation performed at Post Graduate Institute of Medical Education & Research, Chandigarh and St. John's Medical College Hospital, Bengaluru, India
| |
Collapse
|
33
|
Cong B, Sun T, Zhao Y, Chen M. Current and Novel Therapeutics for Articular Cartilage Repair and Regeneration. Ther Clin Risk Manag 2023; 19:485-502. [PMID: 37360195 PMCID: PMC10290456 DOI: 10.2147/tcrm.s410277] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023] Open
Abstract
Articular cartilage repair is a sophisticated process that has is being recently investigated. There are several different approaches that are currently reported to promote cartilage repair, like cell-based therapies, biologics, and physical therapy. Cell-based therapies involve the using stem cells or chondrocytes, which make up cartilage, to promote the growth of new cartilage. Biologics, like growth factors, are also being applied to enhance cartilage repair. Physical therapy, like exercise and weight-bearing activities, can also be used to promote cartilage repair by inducing new cartilage growth and improving joint function. Additionally, surgical options like osteochondral autograft, autologous chondrocyte implantation, microfracture, and others are also reported for cartilage regeneration. In the current literature review, we aim to provide an up-to-date discussion about these approaches and discuss the current research status.
Collapse
Affiliation(s)
- Bo Cong
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, 264003, People’s Republic of China
- Yantai Key Laboratory for Repair and Reconstruction of Bone & Joint, Yantai, 264003, People’s Republic of China
| | - Tao Sun
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, 264003, People’s Republic of China
- Yantai Key Laboratory for Repair and Reconstruction of Bone & Joint, Yantai, 264003, People’s Republic of China
| | - Yuchi Zhao
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, 264003, People’s Republic of China
- Yantai Key Laboratory for Repair and Reconstruction of Bone & Joint, Yantai, 264003, People’s Republic of China
| | - Mingqi Chen
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, 264003, People’s Republic of China
| |
Collapse
|
34
|
Shang Z, Wanyan P, Zhang B, Wang M, Wang X. A systematic review, umbrella review, and quality assessment on clinical translation of stem cell therapy for knee osteoarthritis: Are we there yet? Stem Cell Res Ther 2023; 14:91. [PMID: 37061744 PMCID: PMC10105961 DOI: 10.1186/s13287-023-03332-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The success of stem cell therapy for knee osteoarthritis (KOA) in preclinical animal models has accelerated the pace of clinical translation. However, it remains uncertain whether the current scientific evidence supports the clinical application of stem cells in treating KOA. A comprehensive evaluation of the safety and efficacy of stem cell therapies and scientific evidence quality is necessary. METHODS Using "stem cells" and "knee osteoarthritis" as the search terms, several databases, including PubMed, Web of Science, Cochrane, Embase, and Clinicaltrials.gov, were searched on August 25, 2022, and updated on February 27, 2023. Clinical studies that reported adverse reactions (ARs) of stem cell therapy in KOA patients were included without limiting the type of studies. Quantitative systematic reviews of stem cell therapy for KOA that conducted meta-analysis were included. Two researchers conducted literature screening and data extraction independently, and the evidence quality was evaluated according to the Institute of Health Economics and AMSTAR 2 criteria. RESULTS Fifty clinical studies and 13 systematic reviews/meta-analyses (SRs/MAs) were included. Nineteen ARs were reported in 50 studies, including five knee-related ARs, seven common ARs, and seven other ARs. Some studies reported over 10% prevalence of knee pain (24.5%; 95% CI [14.7%, 35.7%]), knee effusion (12.5%; 95% CI [4.8%, 22.5%]), and knee swelling (11.9%; 95% CI [3.5%, 23.5%]). Additionally, two studies have reported cases of prostate cancer and breast tumors, respectively. However, these two studies suggest that stem cell therapy does not bring significant ARs to patients. SRs/MAs results revealed that stem cell therapy relieved pain in patients over time but did not improve knee function. However, current clinical studies have limited evidence regarding study objectives, test designs, and patient populations. Similarly, SRs/MAs have inadequate evidence regarding study design, risk of bias assessment, outcome description, comprehensive discussion, and potential conflicts of interest. CONCLUSIONS The inefficacy of stem cells, the risk of potential complications, and the limited quality of evidence from current studies precluded any recommendation for using stem cell products in patients with KOA. Clinical translation of stem cell therapies remains baseless and should be cautiously approached until more robust evidence is available. PROSPERO registration number: CRD42022355875.
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Pingping Wanyan
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- The Second Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Baolin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Mingchuan Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Xin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.
- Chengren Institute of Traditional Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
- Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
35
|
Householder NA, Raghuram A, Agyare K, Thipaphay S, Zumwalt M. A Review of Recent Innovations in Cartilage Regeneration Strategies for the Treatment of Primary Osteoarthritis of the Knee: Intra-articular Injections. Orthop J Sports Med 2023; 11:23259671231155950. [PMID: 37138944 PMCID: PMC10150434 DOI: 10.1177/23259671231155950] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 05/05/2023] Open
Abstract
Background The pathology of primary osteoarthritis (OA) begins with structural cartilage damage, which initiates a self-propagating inflammatory pathway that further exacerbates cartilage deterioration. Current standard of care for knee primary OA involves treating the inflammatory symptoms to manage pain, which includes intra-articular (IA) injections of cortisone, an anti-inflammatory steroid, followed by a series of joint-cushioning hyaluronic acid gel injections. However, these injections do not delay the progression of primary OA. More focus on the underlying cellular pathology of OA has prompted researchers to develop treatments targeting the biochemical mechanisms of cartilage degradation. Purpose Researchers have yet to develop a United States Food and Drug Administration (FDA)-approved injection that has been demonstrated to significantly regenerate damaged articular cartilage. This paper reviews the current research on experimental injections aimed at achieving cellular restoration of the hyaline cartilage tissue of the knee joint. Study Design Narrative review. Methods The authors conducted a narrative literature review examining studies on primary OA pathogenesis and a systematic review of non-FDA-approved IA injections for the treatment of primary OA of the knee, described as "disease-modifying osteoarthritis drugs" in phase 1, 2, and 3 clinical trials. Conclusion New treatment approaches for primary OA investigate the potential of genetic therapies to restore native cartilage. It is clear that the most promising IA injections that could improve treatment of primary OA are bioengineered advanced-delivery steroid-hydrogel preparations, ex vivo expanded allogeneic stem cell injections, genetically engineered chondrocyte injections, recombinant fibroblast growth factor therapy, injections of selective proteinase inhibitors, senolytic therapy via injections, injectable antioxidant therapies, injections of Wnt pathway inhibitors, injections of nuclear factor-kappa β inhibitors, injections of modified human angiopoietin-like-3, various potential viral vector-based genetic therapy approaches, and RNA genetic technology administered via injections.
Collapse
Affiliation(s)
| | - Akshay Raghuram
- School of Medicine, Texas Tech University
Health Sciences Center, Lubbock, Texas, USA
| | - Kofi Agyare
- School of Medicine, Texas Tech University
Health Sciences Center, Lubbock, Texas, USA
| | - Skyler Thipaphay
- School of Medicine, Texas Tech University
Health Sciences Center, Lubbock, Texas, USA
| | - Mimi Zumwalt
- School of Medicine, Texas Tech University
Health Sciences Center, Lubbock, Texas, USA
- Mimi Zumwalt, MD, Orthopaedics
Department, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 9436,
Lubbock, TX 79430-9436, USA ()
| |
Collapse
|
36
|
Intra-Articular Injection of Autologous Micro-Fragmented Adipose Tissue for the Treatment of Knee Osteoarthritis: A Prospective Interventional Study. J Pers Med 2023; 13:jpm13030504. [PMID: 36983686 PMCID: PMC10059754 DOI: 10.3390/jpm13030504] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023] Open
Abstract
Background: To investigate the efficacy and safety of autologous micro-fragmented adipose tissue (MF-AT) for improving joint function and cartilage repair in patients with knee osteoarthritis. Methods: From March 2019 to December 2020, 20 subjects (40 knees) between 50 and 65 years old suffering from knee osteoarthritis were enrolled in the study and administered a single injection of autologous MF-A. The data of all patients were prospectively collected. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), knee society score (KSS), hospital for special surgery (HSS) score, visual analogue score (VAS) pain score, changes in cartilage Recht grade on magnetic resonance imaging (MRI) and adverse events were analyzed before and 3, 6, 9, 12 and 18 months after injection. Results: The WOMAC, VAS, KSS and HSS scores at 3, 6, 9, 12 and 18 months after injection were improved compared with those before injection (p < 0.05). There was no significant difference in WOMAC scores between 9 and 12 months after injection (p > 0.05), but the WOMAC score 18 months after injection was worse than that at the last follow-up (p < 0.05). The VAS, KSS and HSS scores 9, 12 and 18 months after injection were worse than those at the last follow-up (p < 0.05). The Recht score improvement rate was 25%. No adverse events occurred during the follow-up. Conclusions: Autologous MF-AT improves knee function and relieves pain with no adverse events. However, the improved knee function was not sustained, with the best results occurring 9–12 months after injection and the cartilage regeneration remaining to be investigated.
Collapse
|
37
|
Kim KI, Kim MS, Kim JH. Intra-articular Injection of Autologous Adipose-Derived Stem Cells or Stromal Vascular Fractions: Are They Effective for Patients With Knee Osteoarthritis? A Systematic Review With Meta-analysis of Randomized Controlled Trials. Am J Sports Med 2023; 51:837-848. [PMID: 35019764 DOI: 10.1177/03635465211053893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Intra-articular injection of adipose-derived stem cells, which are divided into adipose-derived mesenchymal stem cells (ASCs) and adipose-derived stromal vascular fractions (ADSVFs), has been reported to be a viable treatment modality for knee osteoarthritis (OA); however, its efficacy remains limited. PURPOSE This study aimed to provide comprehensive information about the efficacy and safety of intra-articular injections of autologous ASCs and ADSVFs without adjuvant treatment in patients with knee OA. STUDY DESIGN Meta-analysis; Level of evidence, 1. METHODS A systematic search of the MEDLINE, Embase, Web of Science, and Cochrane Library databases was performed to identify randomized controlled trials (RCTs) that evaluated the efficacy and safety of intra-articular injections of autologous ASCs or ADSVFs without adjuvant treatments compared with placebo or hyaluronic acid in patients with knee OA. Clinically, the 100-mm visual analog scale for pain relief and the Western Ontario and McMaster Universities Osteoarthritis Index for functional improvement were implemented. Radiologically, cartilage status was assessed using magnetic resonance imaging (MRI). Procedure-related knee pain, swelling, and adverse events (AEs) were evaluated for safety. Additionally, we performed subgroup analyses comparing ASCs versus ADSVFs. Methodological quality was assessed using the modified Coleman Methodology Score (mCMS). RESULTS A total of 5 RCTs were included in this study. Based on the meta-analysis, ASCs or ADSVFs showed significantly better pain relief at 6 months (Z = 7.62; P < .0001) and 12 months (Z = 7.21; P < .0001) and functional improvement at 6 months (Z = 4.13; P < .0001) and 12 months (Z = 3.79; P = .0002), without a difference in procedure-related knee pain or swelling compared with controls. Although a meta-analysis with regard to cartilage improvements was not performed owing to heterogeneous MRI assessment, 3 studies reported significantly improved cartilage status after the injection. No serious AEs associated with ASCs or ADSVFs were reported. Subgroup analyses showed similar efficacy between ASC and ADSVF treatments. The median mCMS was 70 (range, 55-75). CONCLUSION For patients with knee OA, intra-articular injection of autologous ASCs or ADSVFs without adjuvant treatment showed remarkable clinical efficacy and safety at short-term follow-up. Some degree of efficacy has been shown for cartilage regeneration in knee OA, although the evidence remains limited. Further RCTs that directly compare ASCs and ADSVFs are needed.
Collapse
Affiliation(s)
- Kang-Il Kim
- Department of Orthopaedic Surgery, Center for Joint Diseases, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea.,Department of Orthopaedic Surgery, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Myung-Seo Kim
- Department of Orthopaedic Surgery, Center for Joint Diseases, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Jun-Ho Kim
- Department of Orthopaedic Surgery, Center for Joint Diseases, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| |
Collapse
|
38
|
You B, Zhou C, Yang Y. MSC-EVs alleviate osteoarthritis by regulating microenvironmental cells in the articular cavity and maintaining cartilage matrix homeostasis. Ageing Res Rev 2023; 85:101864. [PMID: 36707035 DOI: 10.1016/j.arr.2023.101864] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Osteoarthritis (OA), a common cause of chronic articular cartilage degeneration, is the main cause of disability in older adults and severely affects quality of life. Multiple factors are involved in the pathogenesis of OA, resulting in imbalance in the homeostasis of the joint cavity microenvironment, which exacerbates the disease. Because of the deficiency of blood vessels and nerves in cartilage, existing therapies to promote cartilage healing are relatively ineffective. Mesenchymal stem cell (MSC)-related therapies have achieved positive outcomes for the treatment of OA, and these beneficial effects have been confirmed to be largely mediated by extracellular vesicles (EVs). MSC-derived EVs (MSC-EVs) have been demonstrated to participate in the regulation of chondrocyte function, to have anti-inflammatory and immunomodulatory effects, and to alleviate metabolic disorders of the extracellular matrix, thereby slowing the progression of OA. In addition, engineered MSC-EVs can enrich therapeutic molecules and optimize administration to enhance their therapeutic effects on OA. A thorough understanding of the endogenous properties of EVs and related engineering strategies could help researchers develop more precise control therapy for OA.
Collapse
Affiliation(s)
- Benshuai You
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China.
| | - Yang Yang
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China.
| |
Collapse
|
39
|
Targeting macrophage polarization as a promising therapeutic strategy for the treatment of osteoarthritis. Int Immunopharmacol 2023; 116:109790. [PMID: 36736223 DOI: 10.1016/j.intimp.2023.109790] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a chronic osteoarthropathy characterized by the progressive degeneration of articular cartilage and synovial inflammation. Early OA clinical treatments involve intra-articular injection of glucocorticoids, oral acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs), which are used for anti-inflammation and pain relief. However, long-term use of these agents will lead to inevitable side effects, even aggravate cartilage loss. At present, there are no disease-modifying OA drugs (DMOADs) yet approved by regulatory agencies. Polarization regulation of synovial macrophages is a new target for OA treatment. Inhibiting M1 polarization and promoting M2 polarization of synovial macrophages can alleviate synovial inflammation, relieve joint pain and inhibit articular cartilage degradation, which is a promising strategy for OA treatment. In this study, we describe the molecular mechanisms of macrophage polarization and its key role in the development of OA. Subsequently, we summarize the latest progress of strategies for OA treatment through macrophage reprogramming, including small molecule compounds (conventional western medicine and synthetic compounds, monomer compounds of traditional Chinese medicine), biomacromolecules, metal/metal oxides, cells, and cell derivatives, and interprets the molecular mechanisms, hoping to provide some information for DMOADs development.
Collapse
|
40
|
Synovial Fluid Derived from Human Knee Osteoarthritis Increases the Viability of Human Adipose-Derived Stem Cells through Upregulation of FOSL1. Cells 2023; 12:cells12020330. [PMID: 36672268 PMCID: PMC9856741 DOI: 10.3390/cells12020330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Knee osteoarthritis (Knee OA) is an irreversible condition that causes bone deformity and degeneration of the articular cartilage that comprises the joints, resulting in chronic pain and movement disorders. The administration of cultured adipose-derived stem cells (ADSCs) into the knee joint cavity improves the clinical symptoms of Knee OA; however, the effect of synovial fluid (SF) filling the joint cavity on the injected ADSCs remains unclear. In this study, we investigated the effect of adding SF from Knee OA patients to cultured ADSCs prepared for therapeutic use in an environment that mimics the joint cavity. An increase in the viability of ADSCs was observed following the addition of SF. Gene expression profiling of SF-treated ADSCs using DNA microarrays revealed changes in several genes involved in cell survival. Of these genes, we focused on FOSL1, which is involved in the therapeutic effect of ADSCs and the survival and proliferation of cancer stem cells. We confirmed the upregulation of FOSL1 mRNA and protein expression using RT-PCR and western blot analysis, respectively. Next, we knocked down FOSL1 in ADSCs using siRNA and observed a decrease in cell viability, indicating the involvement of FOSL1 in the survival of ADSCs. Interestingly, in the knockdown cells, ADSC viability was also decreased by SF exposure. These results suggest that SF enhances cell viability by upregulating FOSL1 expression in ADSCs. For therapy using cultured ADSCs, the therapeutic effect of ADSCs may be further enhanced if an environment more conducive to the upregulation of FOSL1 expression in ADSCs can be established.
Collapse
|
41
|
Fujita M, Matsumoto T, Sobajima S, Tsubosaka M, Matsushita T, Iwaguro H, Kuroda R. Clinical and Radiological Comparison of Single and Double Intra-articular Injection of Adipose-Derived Stromal Vascular Fraction for Knee Osteoarthritis. Cell Transplant 2023; 32:9636897231190175. [PMID: 37551027 PMCID: PMC10411282 DOI: 10.1177/09636897231190175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
The aim of the article is to compare the clinical and radiological outcomes between single and double stromal vascular fraction (SVF) cell injections in patients with knee osteoarthritis (OA). We included 54 patients treated for varus knee OA with intra-articular SVF cell injection. They were divided into two groups: those who received one injection and those who received two. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, knee range of motion, and knee muscle force were assessed at baseline and 3, 6, 12, and 24 months after the first injection. The preoperative hip-knee-ankle (HKA) angle was evaluated using plain radiographs, and T2 mapping values were assessed. The total WOMAC score improved significantly in the single injection group from 3 to 24 months, but the total WOMAC score in the double injection group improved significantly at 24 months. The T2 mapping values in both the groups improved, with a significant difference at 12 months. The preoperative mean HKA angle and the correlation coefficients between the HKA angle and the total WOMAC score and between the HKA angle and the T2 mapping value of the medial femur were significant. In conclusion, double injections may provide more satisfactory treatment outcomes in patients with severe varus knee alignment. This clinical trial is registered in the Japanese Ministry of Health, Labour and Welfare (URL: https://saiseiiryo.mhlw.go.jp/published_plan/index/2) with the registration name "Cell transplantation therapy for osteoarthritis using autologous subcutaneous adipose tissue-derived regenerative (stem) cells (ADRCs)," and the registration number was "PB5160012."
Collapse
Affiliation(s)
- Masahiro Fujita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Sobajima
- Department of Orthopaedic Surgery, Sobajima Clinic, Higashiosaka, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideki Iwaguro
- Department of Orthopaedic Surgery, Sobajima Clinic, Higashiosaka, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
42
|
Vonk LA. Potency Assay Considerations for Cartilage Repair, Osteoarthritis and Use of Extracellular Vesicles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:59-80. [PMID: 37258784 DOI: 10.1007/978-3-031-30040-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Articular cartilage covers the ends of bones in synovial joints acting as a shock absorber that helps movement of bones. Damage of the articular cartilage needs treatment as it does not repair itself and the damage can progress to osteoarthritis. In osteoarthritis all the joint tissues are involved with characteristic progressive cartilage degradation and inflammation. Autologous chondrocyte implantation is a well-proven cell-based treatment for cartilage defects, but a main downside it that it requires two surgeries. Multipotent, aka mesenchymal stromal cell (MSC)-based cartilage repair has gained attention as it can be used as a one-step treatment. It is proposed that a combination of immunomodulatory and regenerative capacities make MSC attractive for the treatment of osteoarthritis. Furthermore, since part of the paracrine effects of MSCs are attributed to extracellular vesicles (EVs), small membrane enclosed particles secreted by cells, EVs are currently being widely investigated for their potential therapeutic effects. Although MSCs have entered clinical cartilage treatments and EVs are used in in vivo efficacy studies, not much attention has been given to determine their potency and to the development of potency assays. This chapter provides considerations and suggestions for the development of potency assays for the use of MSCs and MSC-EVs for the treatment of cartilage defects and osteoarthritis.
Collapse
Affiliation(s)
- Lucienne A Vonk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
43
|
Perucca Orfei C, Boffa A, Sourugeon Y, Laver L, Magalon J, Sánchez M, Tischer T, Filardo G, de Girolamo L. Cell-based therapies have disease-modifying effects on osteoarthritis in animal models. A systematic review by the ESSKA Orthobiologic Initiative. Part 1: adipose tissue-derived cell-based injectable therapies. Knee Surg Sports Traumatol Arthrosc 2023; 31:641-655. [PMID: 36104484 PMCID: PMC9898370 DOI: 10.1007/s00167-022-07063-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this systematic review was to determine if adipose tissue-derived cell-based injectable therapies can induce disease-modifying effects in joints affected by osteoarthritis (OA). METHODS A systematic review was performed on three electronic databases (PubMed, Web of Science, Embase) according to PRISMA guidelines. A synthesis of the results was performed investigating disease-modifying effects in preclinical studies comparing injectable adipose-derived products with OA controls or other products, different formulations or injection intervals, and the combination with other products. The risk of bias was assessed according to the SYRCLE's tool. RESULTS Seventy-one studies were included (2,086 animals) with an increasing publication trend over time. Expanded cells were used in 65 studies, 3 studies applied point of care products, and 3 studies investigated both approaches. Overall, 48 out of 51 studies (94%) reported better results with adipose-derived products compared to OA controls, with positive findings in 17 out of 20 studies (85%) in macroscopic, in 37 out of 40 studies (93%) in histological, and in 22 out of 23 studies (96%) in immunohistochemical evaluations. Clinical and biomarker evaluations showed positive results in 14 studies out of 18 (78%) and 12 studies out of 14 (86%), while only 9 studies out of 17 (53%) of the imaging evaluations were able to detect differences versus controls. The risk of bias was low in 38% of items, unclear in 51%, and high in (11%). CONCLUSION The current preclinical models document consistent evidence of disease-modifying effects of adipose-derived cell-based therapies for the treatment of OA. The high heterogeneity of the published studies highlights the need for further targeted research to provide recommendations on the optimal methodologies for a more effective application of these injective therapies for the treatment of OA in clinical practice. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Carlotta Perucca Orfei
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Milan, Italy
| | - Angelo Boffa
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Yosef Sourugeon
- grid.413731.30000 0000 9950 8111Rambam Health Care Campus, Haifa, Israel
| | - Lior Laver
- grid.414084.d0000 0004 0470 6828Department of Orthopaedics, Hillel Yaffe Medical Center (HYMC), Hadera, Israel ,Arthrosport Clinic, Tel-Aviv, Israel ,grid.6451.60000000121102151Technion University Hospital (Israel Institute of Technology) - Rappaport Faculty of Medicine, Haifa, Israel
| | - Jérémy Magalon
- grid.414336.70000 0001 0407 1584Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, Marseille, France ,grid.5399.60000 0001 2176 4817INSERM, NRA, C2VN, Aix Marseille Univ, Marseille, France ,SAS Remedex, Marseille, France
| | - Mikel Sánchez
- grid.473696.9Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain ,Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Thomas Tischer
- grid.10493.3f0000000121858338Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
| | - Giuseppe Filardo
- grid.419038.70000 0001 2154 6641Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy ,grid.469433.f0000 0004 0514 7845Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland ,grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Laura de Girolamo
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Milan, Italy
| |
Collapse
|
44
|
Lee DH, Kim SA, Song JS, Shetty AA, Kim BH, Kim SJ. Cartilage Regeneration Using Human Umbilical Cord Blood Derived Mesenchymal Stem Cells: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121801. [PMID: 36557003 PMCID: PMC9786930 DOI: 10.3390/medicina58121801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Background and Objectives: Human umbilical-cord-blood-derived mesenchymal stem cells (hUCB-MSCs) have recently been used in clinical cartilage regeneration procedures with the expectation of improved regeneration capacity. However, the number of studies using hUCB-MSCs is still insufficient, and long-term follow-up results after use are insufficient, indicating the need for additional data and research. We have attempted to prove the efficacy and safety of hUCB-MSC treatment in a comprehensive analysis by including all subjects with knee articular cartilage defect or osteoarthritis who have undergone cartilage repair surgery using hUCB-MSCs. We conducted a meta-analysis and demonstrated efficacy and safety based on a systematic review. Materials and Methods: This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. For this study, we searched the PubMed, Embase, Web of Science, Scopus, and Cochrane Library literature databases up to June 2022. A total of seven studies were included, and quality assessment was performed for each included study using the Newcastle−Ottawa Quality Assessment Scale. Statistical analysis was performed on the extracted pooled clinical outcome data, and subgroup analyses were completed. Results: A total of 570 patients were included in the analysis. In pooled analysis, the final follow-up International Knee Documentation Committee (IKDC) score showed a significant increase (mean difference (MD), −32.82; 95% confidence interval (CI), −38.32 to −27.32; p < 0.00001) with significant heterogeneity (I2 = 93%, p < 0.00001) compared to the preoperative score. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores at final follow-up were significantly decreased (MD, 30.73; 95% CI, 24.10−37.36; p < 0.00001) compared to the preoperative scores, with significant heterogeneity (I2 = 95%, p < 0.00001). The visual analog scale (VAS) score at final follow-up was significantly decreased (MD, 4.81; 95% CI, 3.17−6.46; p < 0.00001) compared to the preoperative score, with significant heterogeneity (I2 = 98%, p < 0.00001). Two studies evaluated the modified Magnetic Resonance Observation of Cartilage Repair Tissue (M-MOCART) score and confirmed sufficient improvement. In a study analyzing a group treated with bone marrow aspiration concentrate (BMAC), there was no significant difference in clinical outcome or M-MOCART score, and the post-treatment International Cartilage Repair Society (ICRS) grade increased. Conclusion: This analysis demonstrated the safety, efficacy, and quality of repaired cartilage following hUCB-MSC therapy. However, there was no clear difference in the comparison with BMAC. In the future, comparative studies with other stem cell therapies or cartilage repair procedures should be published to support the superior effect of hUCB-MSC therapy to improve treatment of cartilage defect or osteoarthritis.
Collapse
Affiliation(s)
- Dong Hwan Lee
- Department of Orthopedic Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Seoul 07345, Republic of Korea
| | - Seon Ae Kim
- Department of Orthopaedic Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si 11765, Republic of Korea
| | - Jun-Seob Song
- Department of Orthopaedic Surgery, Gangnam JS Hospital, Seoul 06259, Republic of Korea
| | - Asode Ananthram Shetty
- Institute of Medical Sciences, Faculty of Health and Wellbeing, Chatham Maritime, Canterbury Christ Church University, Kent ME4 4UF, UK
| | - Bo-Hyoung Kim
- Department of Orthopedic Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Seoul 07345, Republic of Korea
| | - Seok Jung Kim
- Department of Orthopaedic Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si 11765, Republic of Korea
- Correspondence: ; Tel.: +82-31-820-3654; Fax: +82-31-847-3671
| |
Collapse
|
45
|
Sadri B, Tamimi A, Nouraein S, Bagheri Fard A, Mohammadi J, Mohammadpour M, Hassanzadeh M, Bajouri A, Madani H, Barekat M, Karimi Torshizi S, Malek M, Ghorbani Liastani M, Beheshti Maal A, Niknejadi M, Vosough M. Clinical and laboratory findings following transplantation of allogeneic adipose-derived mesenchymal stromal cells in knee osteoarthritis, a brief report. Connect Tissue Res 2022; 63:663-674. [PMID: 35856397 DOI: 10.1080/03008207.2022.2074841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) injection has been proposed as an innovative treatment for knee osteoarthritis (KOA). Since, allogeneic MSCs can be available as off-the-shelf products, they are preferable in regenerative medicine. Among different sources for MSCs, adipose-derived MSCs (AD-MSCs) appear to be more available. METHODS Three patients with KOA were enrolled in this study. A total number of 100 × 106 AD-MSCs was injected intra-articularly, per affected knee. They were followed up for 6 months by the assessment of clinical outcomes, magnetic resonance imaging (MRI), and serum inflammatory biomarkers. RESULTS The primary outcome of this study was safety and feasibility of allogeneic AD-MSCs injection during the 6 months follow-up. Fortunately, no serious adverse events (SAEs) were reported. Assessment of secondary outcomes of visual analogue scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and knee osteoarthritis outcome score (KOOS) indicated improvement in all patients. Comparison between baseline and endpoint findings of MRI demonstrated a slight improvement in two patients. In addition, decrease in serum cartilage oligomeric matrix protein (COMP) and hyaluronic acid (HA) indicated the possibility of reduced cartilage degeneration. Moreover, quantification of serum interleukin-10 (IL-10) and interleukin-6 (IL-6) levels indicated that the host immune system immunomodulated after infusion of AD-MSCs. CONCLUSION Intra-articular injection of AD-MSCs is safe and could be effective in cartilage regeneration in KOA. Preliminary assessment after six-month follow-up suggests the potential efficacy of this intervention which would need to be confirmed in randomized controlled trials on a larger population. TRIAL REGISTRATION This study was registered in the Iranian registry of clinical trials (https://en.irct.ir/trial/46) in 24 April 2018 with identifier IRCT20080728001031N23.
Collapse
Affiliation(s)
- Bahareh Sadri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shirin Nouraein
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Abolfazl Bagheri Fard
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Mohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mehdi Mohammadpour
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassanzadeh
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Bajouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hoda Madani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Barekat
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahedeh Karimi Torshizi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahrooz Malek
- Department of Radiology, Medical Imaging Center, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Imam Khomeini Hospital, Tehran, Iran
| | - Maede Ghorbani Liastani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alireza Beheshti Maal
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Niknejadi
- Department of Reproductive Imaging, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
46
|
Lin CY, Wang YL, Chen YJ, Ho CT, Chi YH, Chan LY, Chen GW, Hsu HC, Hwang DW, Wu HC, Hung SC. Collagen-binding peptides for the enhanced imaging, lubrication and regeneration of osteoarthritic articular cartilage. Nat Biomed Eng 2022; 6:1105-1117. [PMID: 36229661 DOI: 10.1038/s41551-022-00948-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 09/02/2022] [Indexed: 01/15/2023]
Abstract
Treatments for osteoarthritis would benefit from the enhanced visualization of injured articular cartilage and from the targeted delivery of disease-modifying drugs to it. Here, by using ex vivo human osteoarthritic cartilage and live rats and minipigs with induced osteoarthritis, we report the application of collagen-binding peptides, identified via phage display, that are home to osteoarthritic cartilage and that can be detected via magnetic resonance imaging when conjugated with a superparamagnetic iron oxide. Compared with the use of peptides with a scrambled sequence, hyaluronic acid conjugated with the collagen-binding peptides displayed enhanced retention in osteoarthritic cartilage and better lubricated human osteoarthritic tissue ex vivo. Mesenchymal stromal cells encapsulated in the modified hyaluronic acid and injected intra-articularly in rats showed enhanced homing to osteoarthritic tissue and improved its regeneration. Molecular docking revealed WXPXW as the consensus motif that binds to the α1 chain of collagen type XII. Peptides that specifically bind to osteoarthritic tissue may aid the diagnosis and treatment of osteoarthritic joints.
Collapse
Affiliation(s)
- Chin-Yu Lin
- Drug Development Center, Institute of Translational Medicine and New Drug Development, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yung-Li Wang
- Drug Development Center, Institute of Translational Medicine and New Drug Development, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Jen Chen
- Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Te Ho
- Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsuan Chi
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Long Yi Chan
- Drug Development Center, Institute of Translational Medicine and New Drug Development, School of Medicine, China Medical University, Taichung, Taiwan
| | - Guan-Wen Chen
- Molecular Science Center, GGA Corporation, Taipei, Taiwan
| | - Horng-Chaung Hsu
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopaedics, China Medical University Hospital, Taichung, Taiwan
| | - Dennis W Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | - Shih-Chieh Hung
- Drug Development Center, Institute of Translational Medicine and New Drug Development, School of Medicine, China Medical University, Taichung, Taiwan. .,Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan. .,Department of Orthopaedics, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
47
|
López F. Safety and efficacy of intra-articular infiltration of purified autologous adipose tissue for osteoarthritis treatment: a pre-post study. J Exp Orthop 2022; 9:97. [PMID: 36163597 PMCID: PMC9512941 DOI: 10.1186/s40634-022-00534-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Félix López
- Maestranza Medical Center, Madrid, Spain. .,Bluehealthcare, Madrid, Spain.
| |
Collapse
|
48
|
Günay AE, Karaman I, Guney A, Karaman ZF, Demirpolat E, Gonen ZB, Dogan S, Yerer MB. Assessment of clinical, biochemical, and radiological outcomes following intra-articular injection of Wharton jelly-derived mesenchymal stromal cells in patients with knee osteoarthritis: A prospective clinical study. Medicine (Baltimore) 2022; 101:e30628. [PMID: 36123928 PMCID: PMC9478323 DOI: 10.1097/md.0000000000030628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to perform clinical, biochemical, and radiological evaluation of the efficacy of mesenchymal stem cells derived from Wharton jelly (WJ) present within the human umbilical cord in the treatment of knee osteoarthritis. Between 2018 and 2019, 10 patients with knee osteoarthritis for whom the conservative treatment was not beneficial were included in the study. Patients were clinically, radiologically, and biochemically evaluated before treatment initiation. Thereafter, the patients were intra-articularly injected using a solution containing 1 × 108 WJ-derived MSCs. Evaluations were performed on day 21 (V1) and 42 (V2) and month 3 (V3), 6 (V4), and 12 (V5) after the procedure. At 1-year post-injection, visual analogue scale, Western Ontario and McMaster Universities Osteoarthritis Index, and Lequesne scores of patients were lower than those observed during the initial evaluation, whereas the mean 36-Item Short Form Health Survey score was higher. Cartilage thicknesses were found to be increased in all regions except in the medial femur, medial posterior femur, lateral posterior femur, and lateral posterior tibia regions in magnetic resonance imaging. A significant increase was observed in tumor necrosis factor-alpha, interleukin-1β, adiponectin, resistin, and interleukin-6 levels compared with pre-injection values. The leptin levels at 6-month and 1-year controls were lower than the pre-injection levels, and the decrease observed at 6 months was significant. In patients with knee osteoarthritis, intra-articular WJ-derived MSC injection causes significant pain reduction, satisfactory functional improvement, and increased patient satisfaction following a 1-year follow-up. These clinical improvements were supported by magnetic resonance images, along with changes in adiponectin and leptin levels in synovial fluid. Level of evidence: IV.
Collapse
Affiliation(s)
- Ali Eray Günay
- Department of Orthopedics and Traumatology, City Hospital, Kayseri, Turkey
- *Correspondence: Ali Eray Günay, Kayseri City Education and Research Hospital Orthopaedics Clinic, TR-38080 Kayseri, Turkey (e-mail: )
| | - Ibrahim Karaman
- Departments of Orthopedics and Traumatology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Ahmet Guney
- Departments of Orthopedics and Traumatology, Erciyes University Medical Faculty, Kayseri, Turkey
| | | | - Eren Demirpolat
- Department of Pharmacology, Erciyes University, Pharmacy Faculty, Kayseri, Turkey
| | - Zeynep Burcin Gonen
- Oral and Maxillofacial Surgery, Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Serap Dogan
- Radiology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Erciyes University, Pharmacy Faculty, Kayseri, Turkey
| |
Collapse
|
49
|
Miller D, Grant A, Durgam S, El-Hayek K, Flanigan DC, Malanga G, Vasileff WK, Baria MR. Adipose-Derived Stem Cells, Obesity, and Inflammation: A Systematic Review and Implications for Osteoarthritis Treatment. Am J Phys Med Rehabil 2022; 101:879-887. [PMID: 35978456 DOI: 10.1097/phm.0000000000001930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Adipose is a known source of mesenchymal stem cells that can be used to treat musculoskeletal disorders, such as osteoarthritis. Because obesity often coexists with osteoarthritis, excess adiposity may be a useful source of mesenchymal stem cells. However, obesity is associated with systemic inflammation, which may influence the quality of adipose-derived stem cells. We performed a systematic review of the literature examining adipose-derived stem cell behavior, cytokine, and growth factor profiles from obese and nonobese patients. Two independent reviewers applied the inclusion/exclusion criteria and independently extracted data including mesenchymal stem cell count/viability/behavior, growth factor, and/or cytokine expression. Twenty-two articles met criteria for inclusion. Samples from obese patients had increased mesenchymal stem cell content (n = 6), but decreased proliferative ability (n = 3), and increased expression of interleukin 1 (n = 3), interleukin 6 (n = 3), and tumor necrosis factor α (n = 6). There was also greater macrophage content (n = 4). Weight loss normalized cellular function. In vitro behavior and quality of adipose-derived stem cell are significantly different between obese and nonobese patients. Samples from obese patients had greater adipose-derived stem cell content, lower proliferative ability, increased senescence, and increased proinflammatory cytokine expression. Differences in cellular function should be considered when using adipose to treat musculoskeletal pathology in obese and nonobese patients.
Collapse
Affiliation(s)
- Dana Miller
- From the Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, Ohio (DM, AG); Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio (SD); Divisions General Surgery and Surgical Oncology, MetroHealth System, Case Western Reserve University School of Medicine, Cleveland, Ohio (KE-H); Department of Orthopaedics, Sports Medicine Research Institute, The Ohio State University, Columbus, Ohio (DCF, WKV); Department of Physical Medicine and Rehabilitation, Rutgers School of Medicine-New Jersey Medical School, Newark, New Jersey (GM); and Department of Physical Medicine and Rehabilitation, Sports Medicine Research Institute, The Ohio State University, Columbus, Ohio (MRB)
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Autologous Stem Cells for the Treatment of Chondral Injury and Disease. OPER TECHN SPORT MED 2022. [DOI: 10.1016/j.otsm.2022.150963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|