1
|
Yan Z, Wang C, Wu J, Wang J, Ma T. TIM-3 teams up with PD-1 in cancer immunotherapy: mechanisms and perspectives. MOLECULAR BIOMEDICINE 2025; 6:27. [PMID: 40332725 PMCID: PMC12058639 DOI: 10.1186/s43556-025-00267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) has become a prominent strategy for cancer treatment over the past ten years. However, the efficacy of ICIs remains limited, with certain cancers exhibiting resistance to these therapeutic approaches. Consequently, several immune checkpoint proteins are presently being thoroughly screened and assessed in both preclinical and clinical studies. Among these candidates, T cell immunoglobulin and mucin-domain containing-3 (TIM-3) is considered a promising target. TIM-3 exhibits multiple immunosuppressive effects on various types of immune cells. Given its differential expression levels at distinct stages of T cell dysfunction in the tumor microenvironment (TME), TIM-3, along with programmed cell death protein 1 (PD-1), serves as indicators of T cell exhaustion. Moreover, it is crucial to carefully evaluate the impact of TIM-3 and PD-1 expression in cancer cells on the efficacy of immunotherapy. To increase the effectiveness of anti-TIM-3 and anti-PD-1 therapies, it is proposed to combine the inhibition of TIM-3, PD-1, and programmed death-ligand 1 (PD-L1). The efficacy of TIM-3 inhibition in conjunction with PD-1/PD-L1 inhibitors is being evaluated in a number of ongoing clinical trials for patients with various cancers. This study systematically investigates the fundamental biology of TIM-3 and PD-1, as well as the detailed mechanisms through which TIM-3 and PD-1/PD-L1 axis contribute to cancer immune evasion. Additionally, this article provides a thorough analysis of ongoing clinical trials evaluating the synergistic effects of combining PD-1/PD-L1 and TIM-3 inhibitors in anti-cancer treatment, along with an overview of the current status of TIM-3 and PD-1 antibodies.
Collapse
Affiliation(s)
- Zhuohong Yan
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Chunmao Wang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghong Wu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jinghui Wang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Teng Ma
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
2
|
Saito S, Kawashima Y, Tanaka H, Yoshimura N, Tsukita Y, Saito R, Nakagawa T, Inomata M, Nagashima H, Sugawara S. Prospective Multi-Institutional Observational Study of Retreatment with Anti-PD-1/PD-L1 Antibodies in Patients with Non-Small Cell Lung Cancer Previously Treated with Anti-PD-1/PD-L1 Plus Chemotherapy: NJLCG (North Japan Lung Cancer Group) Trial 1901. Cancers (Basel) 2025; 17:1551. [PMID: 40361477 PMCID: PMC12071100 DOI: 10.3390/cancers17091551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
The emergence of immune checkpoint inhibitors (ICIs) has revolutionized standard therapies for non-small cell lung cancer (NSCLC) [...].
Collapse
Affiliation(s)
- Shin Saito
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai 981-0914, Japan; (S.S.); (S.S.)
| | - Yosuke Kawashima
- Department of Internal Medicine, Matsuzono Daini Hospital, Morioka 020-0103, Japan
| | - Hisashi Tanaka
- Department of Respiratory Medicine, Hirosaki University Hospital, Hirosaki 036-8563, Japan;
| | - Naruo Yoshimura
- Department of Respiratory Medicine, Tohoku Medical and Pharmaceutical University Hospital, Sendai 983-8512, Japan;
| | - Yoko Tsukita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan;
| | - Ryota Saito
- Department of Respiratory Medicine, Yamanashi Prefectural Central Hospital, Kofu 400-8506, Japan;
| | - Taku Nakagawa
- Department of Thoracic Surgery, Omagari Kosei Medical Center, Daisen 014-0027, Japan;
| | - Minehiko Inomata
- First Department of Internal Medicine, Toyama University Hospital, Toyama 930-0194, Japan;
| | - Hiromi Nagashima
- Department of Respiratory Medicine, Iwate Medical University Hospital, Iwate 028-3695, Japan;
| | - Shunichi Sugawara
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai 981-0914, Japan; (S.S.); (S.S.)
| |
Collapse
|
3
|
Padinharayil H, Varghese J, Varghese PR, Wilson CM, George A. Small Extracellular Vesicle (sEV) Uptake from Lung Adenocarcinoma and Squamous Cell Carcinoma Alters T-Cell Cytokine Expression and Modulates Protein Profiles in sEV Biogenesis. Proteomes 2025; 13:15. [PMID: 40407494 PMCID: PMC12101295 DOI: 10.3390/proteomes13020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND Despite advances in immunotherapy, non-small-cell lung carcinoma (NSCLC)'s clinical success is limited, possibly due to substantial immunological alterations in advanced cancer patients. This study examines the immunomodulatory effects of sEVs derived from lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) on T cells. METHODS SEVs were isolated from lung cancer cell lines and Jurkat-E6.1. SEV size and morphology were analyzed by NTA and TEM, respectively, while Western blotting confirmed sEV markers. SEV uptake was assessed, followed by resazurin assay, RNA isolation, quantification, cDNA preparation, RT-PCR, nano LC-MS, and bioinformatic analysis, before and after treating Jurkat-E6.1 cells with sEVs from A549 and SKMES1. RESULTS Cancer-derived sEVs were efficiently internalized by immune cells, reducing T-cell viability. The real-time PCR analysis showed downregulation of KI67, BCL2, BAX, TNFA, IL6, TGFβ, and IL10, suggesting reduced proliferation, dysregulated apoptosis, and impaired inflammatory and immunosuppressive signaling, and the upregulation of GZMB and IL2 suggests retained cytotoxic potential but possibly dysfunctional T-cell activation. Proteomic analysis revealed 39 differentially abundant proteins (DAPs) in ADC-treated T cells and 276 in SCC-treated T cells, with 19 shared DAPs. Gene Ontology (GO) analysis of these DAPs highlighted processes such as sEV biogenesis, metabolic pathways, and regulatory functions, with ADC sEVs influencing NAD metabolism, ECM binding, and oxidoreductase activity, while SCC sEVs affected mRNA stability, amino acid metabolism, and cadherin binding. The cytoplasmic colocalization suggests the presence of these proteins in the cellular and extracellular lumen, indicating the potential of further release of these proteins in the vesicles by T cells. CONCLUSION Lung cancer-derived sEVs regulate T-cell activities through immunoregulatory signaling. The molecular interactions between sEVs and immune cells can reveal novel tumor immune regulatory mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Mission Medical College & Research Institute, Thrissur 680005, Kerala, India; (H.P.); (P.R.V.)
- Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta 689641, Kerala, India;
| | - Jinsu Varghese
- Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta 689641, Kerala, India;
| | | | - Cornelia M. Wilson
- School of Psychology and Life Sciences, Canterbury Christ Church University, Kent CT1 1QU, UK
| | - Alex George
- Jubilee Mission Medical College & Research Institute, Thrissur 680005, Kerala, India; (H.P.); (P.R.V.)
| |
Collapse
|
4
|
Gamal W, Mediavilla-Varela M, Kunta V, Sahakian E, Pinilla-Ibarz J. Impact of mitochondrial metabolism on T-cell dysfunction in chronic lymphocytic leukemia. Front Cell Dev Biol 2025; 13:1577081. [PMID: 40313718 PMCID: PMC12043688 DOI: 10.3389/fcell.2025.1577081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
T cells play a central role in anti-tumor immunity, yet their function is often compromised within the immunosuppressive tumor microenvironment, leading to cancer progression and resistance to immunotherapies. T-cell activation and differentiation require dynamic metabolic shifts, with mitochondrial metabolism playing a crucial role in sustaining their function. Research in cancer immunometabolism has revealed key mitochondrial abnormalities in tumor-infiltrating lymphocytes, including reduced mitochondrial capacity, depolarization, structural defects, and elevated reactive oxygen species. While these mitochondrial disruptions are well-characterized in solid tumors and linked to T-cell exhaustion, their impact on T-cell immunity in lymphoproliferative disorders remains underexplored. Chronic lymphocytic leukemia (CLL), the most prevalent chronic adult leukemia, is marked by profound T-cell dysfunction that limits the success of adoptive cell therapies. Emerging studies are shedding light on the role of mitochondrial disturbances in CLL-related T-cell dysfunction, but significant knowledge gaps remain. This review explores mitochondrial metabolism in T-cell exhaustion, emphasizing recent findings in CLL. We also discuss therapeutic strategies to restore T-cell mitochondrial function and identify key research gaps.
Collapse
Affiliation(s)
- Wael Gamal
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Melanie Mediavilla-Varela
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Vishaal Kunta
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
5
|
George MM, Brennick CA, Hagymasi AT, Shcheglova TV, Al Seesi S, Rosales TJ, Baker BM, Mandoiu II, Srivastava PK. A frameshift-generated cancer neoepitope that controls tumor burden in prophylaxis as well as therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf016. [PMID: 40209093 DOI: 10.1093/jimmun/vkaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/10/2025] [Indexed: 04/12/2025]
Abstract
Insertion or deletion of one or two base pairs within a coding region causes a frameshift, which has the potential to generate neoepitopes (InDel-generated neoepitopes) that lack a self-counterpart and are entirely novel. Despite the obvious appeal of InDel-generated neoepitopes, and the demonstration of such candidate neoepitopes that can elicit a CD8 T-cell response, no InDel-generated neoepitopes that actually control tumors in vivo have been reported thus far. Here, in a mouse colon carcinoma line, we identify 11 InDels, only one of which generates a neoepitope that elicits tumor control in vivo in models of prophylaxis as well as therapy. Although this neoepitope has no self-counterpart, it has a low affinity (IC50 33,937.60 nM) for its MHC I allele. Despite its low affinity for MHC I, this neoepitope elicits antitumor activity in vivo through CD8 T cells. Furthermore, CD8 T cells elicited by this InDel-generated neoepitope, like the neoepitopes created by point mutations, show notably less exhaustion than classical immunogenic epitopes. Ironically, this InDel-generated neoepitope follows the same rules as noted for most of the tumor control-mediating neoepitopes generated by point mutations that have a poor affinity for MHC I alleles.
Collapse
Affiliation(s)
- Mariam M George
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States
- Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Cory A Brennick
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States
- Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Adam T Hagymasi
- Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Tatiana V Shcheglova
- Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Sahar Al Seesi
- Computer Science Department, Southern Connecticut State University, New Haven, CT, United States
| | - Tatiana J Rosales
- Harper Cancer Research Institute and the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Brian M Baker
- Harper Cancer Research Institute and the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Ion I Mandoiu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, United States
| | - Pramod K Srivastava
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States
- Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
6
|
Dai X, Xi M, Li J. Cancer metastasis: molecular mechanisms and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:20. [PMID: 40192949 PMCID: PMC11977077 DOI: 10.1186/s43556-025-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
The metastatic cascade is a complicated process where cancer cells travel across multiple organs distant from their primary site of onset. Despite the wide acceptance of the 'seed and soil' theory, mechanisms driving metastasis organotropism remain mystery. Using breast cancer of different subtypes as the disease model, we characterized the 'metastatic profile of cancer cells' and the 'redox status of the organ microenvironment' as the primary determinants of cancer metastasis organotropism. Mechanically, we identified a positive correlation between cancer metabolic plasticity and stemness, and proposed oxidative stress as the selection power of cancer cells succeeding the metastasis cascade. Therapeutically, we proposed the use of pro-oxidative therapeutics in ablating cancer cells taking advantages of this fragile moment during metastasis. We comprehensively reviewed current pro-oxidative strategies for treating cancers that cover the first line chemo- and radio-therapies, approaches relying on naturally existing power including magnetic field, electric field, light and sound, nanoparticle-based anti-cancer composites obtained through artificial design, as well as cold atmospheric plasma as an innovative pro-oxidative multi-modal modality. We discussed possible combinations of pro-oxidative approaches with existing therapeutics in oncology prior to the forecast of future research directions. This paper identified the fundamental mechanics driving metastasis organotropism and proposed intervention strategies accordingly. Insights provided here may offer clues for the design of innovative solutions that may open a new paradigm for cancer treatment.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Ming Xi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jitian Li
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Henan Province, Zhengzhou, 450000, China
| |
Collapse
|
7
|
Rausch L, Kallies A. Molecular Mechanisms Governing CD8 T Cell Differentiation and Checkpoint Inhibitor Response in Cancer. Annu Rev Immunol 2025; 43:515-543. [PMID: 40279308 DOI: 10.1146/annurev-immunol-082223-044122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
CD8 T cells play a critical role in antitumor immunity. However, over time, they often become dysfunctional or exhausted and ultimately fail to control tumor growth. To effectively harness CD8 T cells for cancer immunotherapy, a detailed understanding of the mechanisms that govern their differentiation and function is crucial. This review summarizes our current knowledge of the molecular pathways that regulate CD8 T cell heterogeneity and function in chronic infection and cancer and outlines how T cells respond to therapeutic checkpoint blockade. We explore how T cell-intrinsic and -extrinsic factors influence CD8 T cell differentiation, fate choices, and functional states and ultimately dictate their response to therapy. Identifying cells that orchestrate long-term antitumor immunity and understanding the mechanisms that govern their development and persistence are critical steps toward improving cancer immunotherapy.
Collapse
Affiliation(s)
- Lisa Rausch
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| | - Axel Kallies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| |
Collapse
|
8
|
Lim J, Goh MJ, Song BG, Sinn DH, Kang W, Gwak GY, Choi MS, Lee JH, Cha DI, Gu K, Ha SY, Hwang I, Park WY, Paik YH. Unraveling the immune-activated tumor microenvironment correlated with clinical response to atezolizumab plus bevacizumab in advanced HCC. JHEP Rep 2025; 7:101304. [PMID: 40124166 PMCID: PMC11929055 DOI: 10.1016/j.jhepr.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 03/25/2025] Open
Abstract
Background & Aims Despite atezolizumab plus bevacizumab being a standard treatment for advanced hepatocellular carcinoma (HCC), a significant proportion of patients do not achieve durable benefit. This study aimed to identify predictive biomarkers for this therapy by investigating the role of immune activation within the tumor microenvironment (TME). Methods We characterized the intratumoral TME of patients with advanced HCC treated with atezolizumab plus bevacizumab using single cell transcriptomics on pretreatment tumor biopsies from 12 patients. To complement and support these findings, we integrated our single cell data with publicly available bulk RNA-sequencing data from independent clinical trial cohorts. Results Patients who responded to combination therapy with atezolizumab plus bevacizumab demonstrated an immune-activated TME, marked by enhanced cytotoxicity and a tumor-specific T cell response. These patients also exhibited an increased proportion of inflammatory cytokine-enriched tumor-associated macrophage clusters with stronger interactions with T cells, an increased population of conventional dendritic cells, and activated antigen-presenting function in tumor endothelial cells. When publicly available bulk RNA-sequencing data from independent clinical trial cohorts were analyzed, these immune activation features were associated with improved progression-free survival (median 10.8 months, 95% CI: 7.3-not reached versus 5.5 months, 95% CI: 4.0-6.7; p <0.001). Conclusions These findings suggest that the existence of an activated immune TME before treatment is crucial for a favorable clinical response in patients with HCC treated with atezolizumab plus bevacizumab. Impact and implications Only a subset of patients with HCC benefit from combination therapy with atezolizumab plus bevacizumab, limiting its clinical utility. In this study, we used single cell RNA analysis to identify TME features associated with a clinical response to this therapy. Our findings suggest that a pre-existing immune-activated TME is crucial for predicting the response to atezolizumab plus bevacizumab. Specifically, features such as enhanced T cell cytotoxicity, inflammatory cytokine-enriched macrophage clusters, active antigen presentation in endothelial cells, and an increased presence of dendritic cells may aid patient selection and inform therapeutic strategies.
Collapse
Affiliation(s)
- Jinyeong Lim
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, South Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Myung Ji Goh
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byeong Geun Song
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong Hyun Sinn
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wonseok Kang
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Geum-Youn Gwak
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Moon Seok Choi
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joon Hyeok Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong Ik Cha
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyowon Gu
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Inwoo Hwang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woong-Yang Park
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, South Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Yong-Han Paik
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, South Korea
- Division of Gastroenterology and Hepatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Semeradtova A, Liegertova M, Herma R, Capkova M, Brignole C, Del Zotto G. Extracellular vesicles in cancer´s communication: messages we can read and how to answer. Mol Cancer 2025; 24:86. [PMID: 40108630 PMCID: PMC11921637 DOI: 10.1186/s12943-025-02282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Extracellular vesicles (EVs) are emerging as critical mediators of intercellular communication in the tumor microenvironment (TME), profoundly influencing cancer progression. These nano-sized vesicles, released by both tumor and stromal cells, carry a diverse cargo of proteins, nucleic acids, and lipids, reflecting the dynamic cellular landscape and mediating intricate interactions between cells. This review provides a comprehensive overview of the biogenesis, composition, and functional roles of EVs in cancer, highlighting their significance in both basic research and clinical applications. We discuss how cancer cells manipulate EV biogenesis pathways to produce vesicles enriched with pro-tumorigenic molecules, explore the specific contributions of EVs to key hallmarks of cancer, such as angiogenesis, metastasis, and immune evasion, emphasizing their role in shaping TME and driving therapeutic resistance. Concurrently, we submit recent knowledge on how the cargo of EVs can serve as a valuable source of biomarkers for minimally invasive liquid biopsies, and its therapeutic potential, particularly as targeted drug delivery vehicles and immunomodulatory agents, showcasing their promise for enhancing the efficacy and safety of cancer treatments. By deciphering the intricate messages carried by EVs, we can gain a deeper understanding of cancer biology and develop more effective strategies for early detection, targeted therapy, and immunotherapy, paving the way for a new era of personalized and precise cancer medicine with the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Alena Semeradtova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic.
| | - Michaela Liegertova
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Regina Herma
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Magdalena Capkova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| | - Genny Del Zotto
- Core Facilities, Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.
| |
Collapse
|
10
|
Zawidzka EM, Biavati L, Thomas A, Zanettini C, Marchionni L, Leone R, Borrello I. Tumor-specific CD8 + T cells from the bone marrow resist exhaustion and exhibit increased persistence in tumor-bearing hosts as compared with tumor-infiltrating lymphocytes. J Immunother Cancer 2025; 13:e009367. [PMID: 40010772 PMCID: PMC11865787 DOI: 10.1136/jitc-2024-009367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Immunotherapy is now an integral aspect of cancer therapy. Strategies employing adoptive cell therapy (ACT) have seen the establishment of chimeric antigen receptor (CAR)-T cells using peripheral blood lymphocytes as well as tumor-infiltrating lymphocytes (TILs) with significant clinical results. The bone marrow (BM) is an immunological niche housing T cells with specificity for previously encountered antigens, including tumor-associated antigens from certain solid cancers. This study sought to improve our understanding of tumor-specific BM T cells in the context of solid tumors by comparing them with TILs, and to assess whether there is a rationale for using the BM as a source of T cells for ACT against solid malignancies. METHODS We used the murine B16 melanoma model examining both the endogenous OVA-specific T cell response using an OVA-specific tetramer or examining the OVA-specific response with OVA-specific transgenic CD8+ (OT-1) T cells. Specifically, we compared baseline intrinsic properties of TILs or BM T cells from tumor-bearing mice and their changes following adoptive transfer in the tumor and bone marrow (as well as other compartments when indicated). RESULTS In tumor-bearing mice, endogenous tumor-specific T cells could be detected in the BM early in the course of tumor progression and possessed a more stem-cell-like and memory phenotype in an unsupervised cluster analysis compared with TILs which appeared more exhausted. The BM and tumor microenvironments significantly impact the fate of T cells. Naïve OT-1 transferred T cells acquired an exhausted phenotype in the tumor but maintained a more memory-like phenotype in the BM with tumor progression. Importantly, in a competitive transfer experiment, BM T cells infiltrated the tumor more efficiently than TILs, displayed a higher polyfunctionality with interleukin-2, interferon-γ, tumor necrosis factor-α production and showed greater persistence compared with TILs. CONCLUSIONS T cells from the BM appear superior to TILs as a source of cells for cellular therapy. They possess a memory-enriched phenotype and exhibit improved effector function, greater persistence within a tumor-bearing host, and the capacity for increased tumor infiltration. These data provide a foundation for further exploring the BM as a source of tumor-specific T cells for ACT in solid malignancies.
Collapse
Affiliation(s)
- Elizabeth M Zawidzka
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | - Luca Biavati
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | - Amy Thomas
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | | | | | - Robert Leone
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | - Ivan Borrello
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
- Cancer Institute, Tampa General Hospital, Tampa, Florida, USA
| |
Collapse
|
11
|
Zhang L, Guo X, Sun X, Liao J, Liu Q, Ye Y, Yang Z, Cressey R, He Q, Yuan Q. Analysis of tumor-infiltrating exhausted T cells highlights IL-6 and PD1 blockade as a combined immunotherapy strategy for non-small cell lung cancer. Front Immunol 2025; 16:1486329. [PMID: 40040705 PMCID: PMC11876966 DOI: 10.3389/fimmu.2025.1486329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/20/2025] [Indexed: 03/06/2025] Open
Abstract
Objective Given the limitations of immunotherapy for treating non-small cell lung cancer (NSCLC), we investigated the phenotype and function of exhausted CD8+T cells and analyzed a novel combination immunotherapy to restore the effector killing function of tumor-infiltrating CD8+T lymphocyte (TIL). Methods We examined the expression and function of immunosuppressive molecules on CD8+T cells of peripheral blood mononuclear cells (PBMCs) and TILs by using prospectively collected peripheral blood, pleural effusions, and tumor tissues from patients with NSCLC and correlated the results with clinical data. We then evaluated the effect of interleukin 6 (IL-6) stimulation on CD8+T cells. Finally, we assessed the effects of combined blockade of PD1 and IL-6 on macrophage recruitment in a zebrafish macrophage model and CD8+ T cell function and tumor growth in PBMC humanized mouse model. Results The expression of exhaustion markers on CD8+ T cells was found to be notably higher in both tumor and paraneoplastic tissues compared to peripheral blood. Furthermore, the degree of CD8+ T cell exhaustion exhibited a progressive increase with proximity to the tumor. When CD8+ T cells from peripheral blood and tumor tissues of NSCLC patients were stimulated with IL-6, the expression level of exhaustion markers, especially PD1, was further elevated. In the in vitro experiment, the combined inhibition of IL-6 and PD1 substantially enhanced the effector killing function of CD8+ T cells in NSCLC pleural effusion samples. In a macrophage-labeled zebrafish model, combined blockade of IL-6 and PD1 enhanced the recruitment of macrophages. In PBMC humanized mouse model, combined blockade of IL-6 and PD1 enhanced the inhibition of tumor growth. Conclusion Our data suggest that CD8+ T cells in NSCLC patients were in a state of exhaustion and combined blockade of IL-6 and PD1 to restore CD8+ T cell function to inhibit tumor growth may be an effective clinical strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Lulu Zhang
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Blood Distribution Department Nanjing Red Cross Blood Center, Nanjing, Jiangsu, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Xiaoke Sun
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jue Liao
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qin Liu
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ratchada Cressey
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Qing He
- Department of Head and Neck Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qing Yuan
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
12
|
Zeng Z, Zhang T, Zhang J, Li S, Connor S, Zhang B, Zhao Y, Wilson J, Singh D, Kulikauskas R, Church CD, Pulliam TH, Jani S, Nghiem P, Topalian SL, Forde PM, Pardoll DM, Ji H, Smith KN. A minimal gene set characterizes TIL specific for diverse tumor antigens across different cancer types. Nat Commun 2025; 16:1070. [PMID: 39900903 PMCID: PMC11791090 DOI: 10.1038/s41467-024-55059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/27/2024] [Indexed: 02/05/2025] Open
Abstract
Identifying tumor-specific T cell clones that mediate immunotherapy responses remains challenging. Mutation-associated neoantigen (MANA) -specific CD8+ tumor-infiltrating lymphocytes (TIL) have been shown to express high levels of CXCL13 and CD39 (ENTPD1), and low IL-7 receptor (IL7R) levels in many cancer types, but their collective relevance to T cell functionality has not been established. Here we present an integrative tool to identify MANA-specific TIL using weighted expression levels of these three genes in lung cancer and melanoma single-cell RNAseq datasets. Our three-gene "MANAscore" algorithm outperforms other RNAseq-based algorithms in identifying validated neoantigen-specific CD8+ clones, and accurately identifies TILs that recognize other classes of tumor antigens, including cancer testis antigens, endogenous retroviruses and viral oncogenes. Most of these TIL are characterized by a tissue resident memory gene expression program. Putative tumor-reactive cells (pTRC) identified via MANAscore in anti-PD-1-treated lung tumors had higher expression of checkpoint and cytotoxicity-related genes relative to putative non-tumor-reactive cells. pTRC in pathologically responding tumors showed distinguished gene expression patterns and trajectories. Collectively, we show that MANAscore is a robust tool that can greatly enrich candidate tumor-specific T cells and be used to understand the functional programming of tumor-reactive TIL.
Collapse
Affiliation(s)
- Zhen Zeng
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, US
- Mark Center for Advanced Genomics and Imaging, Baltimore, MD, US
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Tianbei Zhang
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, US
- Mark Center for Advanced Genomics and Imaging, Baltimore, MD, US
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Jiajia Zhang
- David Geffen School of Medicine, University of California, Los Angeles, CA, US
| | - Shuai Li
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, US
| | - Sydney Connor
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, US
- Mark Center for Advanced Genomics and Imaging, Baltimore, MD, US
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Boyang Zhang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, US
| | - Yimin Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, US
- Department of Biostatistics, University of Washington, Seattle, WA, US
| | - Jordan Wilson
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, US
| | - Dipika Singh
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, US
- Mark Center for Advanced Genomics and Imaging, Baltimore, MD, US
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Rima Kulikauskas
- Fred Hutchinson Cancer Center, Seattle, WA, US
- Department of Medicine, University of Washington, Seattle, WA, US
| | - Candice D Church
- Fred Hutchinson Cancer Center, Seattle, WA, US
- Department of Medicine, University of Washington, Seattle, WA, US
| | - Thomas H Pulliam
- Fred Hutchinson Cancer Center, Seattle, WA, US
- Department of Medicine, University of Washington, Seattle, WA, US
| | - Saumya Jani
- Fred Hutchinson Cancer Center, Seattle, WA, US
- Department of Medicine, University of Washington, Seattle, WA, US
| | - Paul Nghiem
- Fred Hutchinson Cancer Center, Seattle, WA, US
- Department of Medicine, University of Washington, Seattle, WA, US
| | - Suzanne L Topalian
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, US
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, US
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Patrick M Forde
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, US
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, US
- Mark Center for Advanced Genomics and Imaging, Baltimore, MD, US
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, US
| | - Kellie N Smith
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, US.
- Mark Center for Advanced Genomics and Imaging, Baltimore, MD, US.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, US.
| |
Collapse
|
13
|
Hargadon KM, Goodloe TB, Woodall SL. Lymph Node Invasion by Melanoma Cells Is Not Required for the Induction of Incomplete Differentiation by Tumor-Specific CD8+ T Cells. Cancer Rep (Hoboken) 2025; 8:e70145. [PMID: 39930625 PMCID: PMC11810983 DOI: 10.1002/cnr2.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/07/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Lymph node invasion by cancer cells is a poor prognostic factor and is often associated with anti-tumor CD8+ T cell dysfunction. In this study, we investigated the role of lymph node invasion by melanoma cells in the induction of incomplete differentiation by tumor antigen-specific CD8+ T cells. AIMS We aimed to determine whether lymph node invasion by melanoma cells is required for this specific form of anti-tumor CD8+ T cell dysfunction. METHODS AND RESULTS We assessed lymph node invasion by the B16-F1 and D5.1G4 murine melanoma cell lines and evaluated tumor antigen-specific CD8+ T cell responses to these melanomas in the context of tumor-free versus tumor-involved lymph nodes. We demonstrate that CD8+ T cells recognizing antigen from established melanomas fail to acquire effector function, regardless of whether the tumor is stable or progressive. This CD8+ T cell dysfunction arises in the context of both tumor-involved and tumor-free lymph nodes draining established melanomas. CONCLUSIONS Lymph node invasion by melanoma cells is not required for the induction of incomplete CD8+ T cell differentiation. These data and their implications for strategies to enhance CD8+ T cell responses against poorly immunogenic melanomas are discussed herein.
Collapse
Affiliation(s)
- Kristian M. Hargadon
- Hargadon Laboratory, Department of BiologyHampden‐Sydney CollegeHampden‐SydneyVirginiaUSA
| | - Travis B. Goodloe
- Hargadon Laboratory, Department of BiologyHampden‐Sydney CollegeHampden‐SydneyVirginiaUSA
| | - Stephen L. Woodall
- Hargadon Laboratory, Department of BiologyHampden‐Sydney CollegeHampden‐SydneyVirginiaUSA
| |
Collapse
|
14
|
Li S, Pan Y, Ye R, Wang Y, Li L. Immune checkpoints in B-cell Lymphoma: Still an Unmet challenge from Basic research to clinical practice. Int Immunopharmacol 2025; 146:113717. [PMID: 39673995 DOI: 10.1016/j.intimp.2024.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
In the last decade, advancements in immunotherapy knowledge have highlighted CTLA-4, PD-1, LAG-3, TIM-3, and TIGIT, decisive immune checkpoints exhibiting within the tumor microenvironment (TME), as fundamental objects for cancer immunotherapy. The widespread clinical use of immune checkpoint inhibitors (ICls), employing PD-1/PD-L1 or CTLA-4 antibodies to obstruct crucial checkpoint regulators, is noted in treating B-cell lymphoma patients. Nevertheless, the prolonged advantages of the currently employed treatments against CTLA-4, PD-1, and PD-L1 are uncommon among patients. Thus, recent focus has been progressively moved to additional immune checkpoints on T cells, like LAG-3, TIM-3, and TIGIT, which are now seen as reassuring targets for treatment and broadly acknowledged. There are several types of immunecheckpoint molecules expressed by T cells, and inhibitors targeting immune checkpoints can revive and amplify the immune response of T lymphocytes against tumors, a crucial aspect in lymphoma therapy. However, there is little knowledge about their regulation. Herein, we discuss the anti-tumor effects and functions of ICIs in controlling T-cell activity, as well as the progress in combined application with other immunotherapies.
Collapse
Affiliation(s)
- Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yuanyuan Pan
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yu Wang
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
15
|
Matsushima R, Wakamatsu E, Machiyama H, Nishi W, Yoshida Y, Nishikawa T, Toyota H, Furuhata M, Nishijima H, Takeuchi A, Suzuki M, Yokosuka T. Imaging of biphasic signalosomes constructed by checkpoint receptor 2B4 in conventional and chimeric antigen receptor-T cells. iScience 2025; 28:111669. [PMID: 39886466 PMCID: PMC11780131 DOI: 10.1016/j.isci.2024.111669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/27/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025] Open
Abstract
A co-signaling receptor, 2B4, has dual effects in immune cells, but its actual functions in T cells remain elusive. Here, using super-resolution imaging technology with an immunological synapse model, we showed that 2B4 forms "2B4 microclusters" immediately after 2B4-CD48 binding. A lipid phosphatase, SHIP-1, subsequently combined with 2B4 to form coinhibitory signalosomes, leading to the suppression of cytokine production. An activating adapter, SLAM-associated protein (SAP), attenuated the clustering of SHIP-1 and recruited a kinase, Fyn, enhancing the Vav1 signaling pathway as costimulatory signalosomes. Furthermore, we found that a chimeric antigen receptor with a 2B4 tail (2B4-CAR) retained the original signal transduction mechanism of 2B4. With endogenous levels of SAP expression, 2B4-CAR-T cells exposed sufficient antitumor efficacy in vivo without excess cytokine production. Our results may help explain the biphasic feature of 2B4 in T cell responses from the viewpoint of the signalosome and provide a new candidate for CAR development.
Collapse
Affiliation(s)
- Ryohei Matsushima
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Ei Wakamatsu
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Hiroaki Machiyama
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Wataru Nishi
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Yosuke Yoshida
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Nephrology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Tetsushi Nishikawa
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Dermatology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Hiroko Toyota
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masae Furuhata
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Hitoshi Nishijima
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Arata Takeuchi
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tadashi Yokosuka
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
16
|
Pierini S, Gabbasov R, Oliveira-Nunes MC, Qureshi R, Worth A, Huang S, Nagar K, Griffin C, Lian L, Yashiro-Ohtani Y, Ross K, Sloas C, Ball M, Schott B, Sonawane P, Cornell L, Blumenthal D, Chhum S, Minutolo N, Ciccaglione K, Shaw L, Zentner I, Levitsky H, Shestova O, Gill S, Varghese B, Cushing D, Ceeraz DeLong S, Abramson S, Condamine T, Klichinsky M. Chimeric antigen receptor macrophages (CAR-M) sensitize HER2+ solid tumors to PD1 blockade in pre-clinical models. Nat Commun 2025; 16:706. [PMID: 39814734 PMCID: PMC11735936 DOI: 10.1038/s41467-024-55770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
We previously developed human CAR macrophages (CAR-M) and demonstrated redirection of macrophage anti-tumor function leading to tumor control in immunodeficient xenograft models. Here, we develop clinically relevant fully immunocompetent syngeneic models to evaluate the potential for CAR-M to remodel the tumor microenvironment (TME), induce T cell anti-tumor immunity, and sensitize solid tumors to PD1/PDL1 checkpoint inhibition. In vivo, anti-HER2 CAR-M significantly reduce tumor burden, prolong survival, remodel the TME, increase intratumoral T cell and natural killer (NK) cell infiltration, and induce antigen spreading. CAR-M therapy protects against antigen-negative relapses in a T cell dependent fashion, confirming long-term anti-tumor immunity. In HER2+ solid tumors with limited sensitivity to anti-PD1 (aPD1) monotherapy, the combination of CAR-M and aPD1 significantly improves tumor growth control, survival, and remodeling of the TME in pre-clinical models. These results demonstrate synergy between CAR-M and T cell checkpoint blockade and provide a strategy to potentially enhance response to aPD1 therapy for patients with non-responsive tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuo Huang
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | - Karan Nagar
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | | | - Lurong Lian
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Lauren Shaw
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | | | | | - Olga Shestova
- Center for Cellular Immunotherapies, Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Saar Gill
- Center for Cellular Immunotherapies, Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Wan Z, Cui M, Yang J, Liao D, Chen J, Li F, Xiang Y, Cui Z, Yang Y. Prognostic significance of programmed cell death 1 expression on CD8+T cells in various cancers: a systematic review and meta-analysis. Front Oncol 2025; 14:1531219. [PMID: 39876901 PMCID: PMC11772205 DOI: 10.3389/fonc.2024.1531219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Background Increased PD-1 expression on CD8+ T cells is considered as a hallmark for T-cell exhaustion, and is thought to be related to the prognosis of cancer patients. However, discrepant results have made it difficult to apply PD-1+CD8+T cells and tumor prognosis to clinical practice. Therefore, we conducted a meta-analysis to evaluate its prognostic value in human cancers. Methods PRISMA reporting guidelines were strictly followed for conducting the current meta-analysis. The PubMed, Web of Science, Embase databases were searched from inception to November 2024. The pooled Hazard Ratio (HR) along with 95% confidence intervals (CIs) of each article were combined for the associations of PD-1+CD8+ T cells with overall survival (OS), progression- free survival (PFS) and disease-free survival(DFS). Subgroup analyses were performed for area, specimen type, cancer type, treatment, detected method and cancer stage. Results A total of 20 studies (23 cohorts, 3086 cancer patients) were included in our study. The expression PD-1+CD8+ T cells in cancer patients tended to predict poor overall survival (OS) (HR: 1.379, 95%CI: 1.084-1.753, p= 0.009), and unfavorable disease-free survival(DFS) (HR: 1.468, 95%CI: 0.931-2.316, p=0.099), though it did not reach statistical significance. Begg's and Egger's test demonstrated that no obvious publication bias was exist. Conclusions High PD-1 expression on CD8+ T cells is associated with worse survival outcomes, which can be potentially used as a prognostic marker of malignant tumor.
Collapse
Affiliation(s)
- Zhiyong Wan
- Department of General Practice, People’s Hospital of Leshan, Leshan, China
| | - Meng Cui
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Jia Yang
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Dan Liao
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Junliang Chen
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Fanmin Li
- Department of General Practice, People’s Hospital of Leshan, Leshan, China
| | - Yin Xiang
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Zhiwei Cui
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| | - Yang Yang
- Department of Medical Laboratory, People’s Hospital of Leshan, Leshan, China
| |
Collapse
|
18
|
Kuett L, Bollhagen A, Tietscher S, Sobottka B, Eling N, Varga Z, Moch H, de Souza N, Bodenmiller B. Distant Metastases of Breast Cancer Resemble Primary Tumors in Cancer Cell Composition but Differ in Immune Cell Phenotypes. Cancer Res 2025; 85:15-31. [PMID: 39437149 DOI: 10.1158/0008-5472.can-24-1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Breast cancer is the most commonly diagnosed cancer in women, with distant metastasis being the main cause of breast cancer-related deaths. Elucidating the changes in the tumor and immune ecosystems that are associated with metastatic disease is essential to improve understanding and ultimately treatment of metastasis. Here, we developed an in-depth, spatially resolved single-cell atlas of the phenotypic diversity of tumor and immune cells in primary human breast tumors and matched distant metastases, using imaging mass cytometry to analyze a total of 75 unique antibody targets. Although the same tumor cell phenotypes were typically present in primary tumors and metastatic sites, suggesting a strong founder effect of the primary tumor, their proportions varied between matched samples. Notably, the metastatic site did not influence tumor phenotype composition, except for the brain. Metastatic sites exhibited a lower number of immune cells overall but had a higher proportion of myeloid cells as well as exhausted and cytotoxic T cells. Myeloid cells showed distinct tissue-specific compositional signatures and increased presence of potentially matrix remodeling phenotypes in metastatic sites. This analysis of tumor and immune cell phenotypic composition of metastatic breast cancer highlights the heterogeneity of the disease within patients and across distant metastatic sites, indicating myeloid cells as the predominant immune modulators that could potentially be targeted at these sites. Significance: Multiplex imaging analysis of matched primary and metastatic breast tumors provides a phenotypic and spatial map of tumor microenvironments, revealing similar compositions of cancer cells and divergent immunologic features between matched samples.
Collapse
Affiliation(s)
- Laura Kuett
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Alina Bollhagen
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Sandra Tietscher
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Bettina Sobottka
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Nils Eling
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Natalie de Souza
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Adam K, Butler SC, Workman CJ, Vignali DAA. Advances in LAG3 cancer immunotherapeutics. Trends Cancer 2025; 11:37-48. [PMID: 39603977 PMCID: PMC12047404 DOI: 10.1016/j.trecan.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Cancer treatment has entered the age of immunotherapy. Immune checkpoint inhibitor (ICI) therapy has shown robust therapeutic potential in clinical practice, with significant improvements in progression-free survival (PFS) and overall survival (OS). Recently, checkpoint blockade of the lymphocyte activation gene 3 (LAG3) inhibitory receptor (IR) in combination with programmed death protein 1 (PD1) inhibition has been FDA approved in patients with advanced melanoma. This has encouraged the clinical evaluation of new LAG3-directed biologics in combination with other checkpoint inhibitors. Several of these studies are evaluating bispecific antibodies that target exhausted T (TEX) cells expressing multiple IRs. This review discusses the current understanding of LAG3 in regulating antitumor immunity and the ongoing clinical testing of LAG3 inhibition in cancer.
Collapse
Affiliation(s)
- Kieran Adam
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel C Butler
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Brust LA, Vorschel M, Körner S, Knebel M, Kühn JP, Wemmert S, Smola S, Wagner M, Schick B, Linxweiler M. Impact of T Cell Exhaustion and Stroma Senescence on Tumor Cell Biology and Clinical Outcome of Head and Neck Squamous Cell Carcinomas. Int J Mol Sci 2024; 25:13490. [PMID: 39769271 PMCID: PMC11728369 DOI: 10.3390/ijms252413490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) have an overall poor prognosis, especially in locally advanced and metastatic stages. In most cases, multimodal therapeutic approaches are required and show only limited cure rates with a high risk of tumor recurrence. Anti-PD-1 antibody treatment was recently approved for recurrent and metastatic cases but to date, response rates remain lower than 25%. Therefore, the investigation of the immunological tumor microenvironment and the identification of novel immunotherapeutic targets in HNSCC is of paramount importance. In our study, we used tissue samples of n = 116 HNSCC patients for the immunohistochemical detection of the intratumoral and peritumoral expression of T cell exhaustion markers (PD-1, LAG-3, TIM-3) on tumor infiltration leukocytes (TIL), as well as the expression level of stromal senescence markers (IL-8, MMP-3) on tumor-associated fibroblasts. The clinical parameter of the vitamin D serum status as well as the histopathological HPV infection status of the tumor was correlated with the expression rates of the biomarkers and the overall patient survival. An increased peritumoral and intratumoral expression of the biomarkers PD-1 and TIM-3 significantly correlated with improved overall patient survival. A high peritumoral expression of LAG-3 correlated with better overall survival. A positive HPV tumor status correlated with a significantly elevated expression of PD-1 and TIM-3. Biomarkers of stromal senescence showed no influence on the patient outcome. However, the vitamin D serum status showed no influence on patient outcomes or biomarker expressions. Our study identified PD-1, LAG-3, and TIM-3 as promising targets of a therapeutic strategy targeting the tumor microenvironment in HNSCC, particularly among HPV-positive patients, where a higher expression of these checkpoints correlated with an improved overall survival. These findings support the potential of antibodies targeting these immune checkpoints to enhance treatment efficacy, especially in the context of bispecific targeting.
Collapse
Affiliation(s)
- Lukas A. Brust
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, 66421 Homburg, Germany; (M.V.); (S.K.); (M.K.); (J.P.K.); (S.W.); (B.S.); (M.L.)
| | - Meike Vorschel
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, 66421 Homburg, Germany; (M.V.); (S.K.); (M.K.); (J.P.K.); (S.W.); (B.S.); (M.L.)
| | - Sandrina Körner
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, 66421 Homburg, Germany; (M.V.); (S.K.); (M.K.); (J.P.K.); (S.W.); (B.S.); (M.L.)
| | - Moritz Knebel
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, 66421 Homburg, Germany; (M.V.); (S.K.); (M.K.); (J.P.K.); (S.W.); (B.S.); (M.L.)
| | - Jan Philipp Kühn
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, 66421 Homburg, Germany; (M.V.); (S.K.); (M.K.); (J.P.K.); (S.W.); (B.S.); (M.L.)
| | - Silke Wemmert
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, 66421 Homburg, Germany; (M.V.); (S.K.); (M.K.); (J.P.K.); (S.W.); (B.S.); (M.L.)
| | - Sigrun Smola
- Institute of Virology, Saarland University, 66421 Homburg, Germany;
| | - Mathias Wagner
- Department of General and Surgical Pathology, Saarland University, 66421 Homburg, Germany;
| | - Bernhard Schick
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, 66421 Homburg, Germany; (M.V.); (S.K.); (M.K.); (J.P.K.); (S.W.); (B.S.); (M.L.)
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, 66421 Homburg, Germany; (M.V.); (S.K.); (M.K.); (J.P.K.); (S.W.); (B.S.); (M.L.)
| |
Collapse
|
21
|
Lucas S, Thomas SN. Therapeutic Immunomodulation of Tumor-Lymphatic Crosstalk via Intratumoral Immunotherapy. Mol Pharm 2024; 21:5929-5943. [PMID: 39478434 PMCID: PMC11615947 DOI: 10.1021/acs.molpharmaceut.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024]
Abstract
Intra- and peritumoral lymphatics and tumor-draining lymph nodes play major roles in mediating the adaptive immune response to cancer immunotherapy. Despite this, current paradigms of clinical cancer management seldom seek to therapeutically modulate tumor-lymphatic immune crosstalk. This review explores recent developments that set the stage for how this regulatory axis can be therapeutically manipulated, with a particular emphasis on tumor-localized immunomodulation. Building on this idea, the nature of tumor-lymphatic immune crosstalk and relevant immunotherapeutic targets and pathways are reviewed, with a focus on their translational potential. Engineered drug delivery systems that enhance intratumoral immunotherapy by improving drug delivery to both the tumor and lymph nodes are also highlighted.
Collapse
Affiliation(s)
- Samuel
N. Lucas
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
of America
| | - Susan N. Thomas
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
of America
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
- Parker
H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
- Winship
Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
of America
| |
Collapse
|
22
|
Maggi E, Munari E, Landolina N, Mariotti FR, Azzarone B, Moretta L. T cell landscape in the microenvironment of human solid tumors. Immunol Lett 2024; 270:106942. [PMID: 39486594 DOI: 10.1016/j.imlet.2024.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
T cells are the main effectors involved in anti-tumor immunity, mediating most of the adaptive response towards cancer. After priming in lymph nodes, tumor antigens-specific naïve T lymphocytes proliferate and differentiate into effector CD4+ and CD8+ T cells that migrate from periphery into tumor sites aiming to eliminate cancer cells. Then while most effector T cells die, a small fraction persists and recirculates as long-lived memory T cells which generate enhanced immune responses when re-encountering the same antigen. A number of T (and non-T) cell subsets, stably resides in non-lymphoid peripheral tissues and may provide rapid immune response independently of T cells recruited from blood, against the reemergence of cancer cells. When tumor grows, however, tumor cells have evaded immune surveillance of effector cells (NK and CTL cells) which are exhausted, thus favoring the local expansion of T (and non-T) regulatory cells. In this review, the current knowledge of features of T cells present in the tumor microenvironment (TME) of solid adult and pediatric tumors, the mechanisms upregulating immune-checkpoint molecules and transcriptional and epigenetic landscapes leading to dysfunction and exhaustion of T effector cells are reviewed. The interaction of T cells with cancer- or TME non-neoplastic cells and their secreted molecules shape the T cell profile compromising the intrinsic plasticity of T cells and, therefore, favoring immune evasion. In this phase regulatory T cells contribute to maintain a high immunosuppressive TME thus facilitating tumor cell proliferation and metastatic spread. Despite the advancements of cancer immunotherapy, many tumors are unresponsive to immune checkpoint inhibitors, or therapeutical vaccines or CAR T cell-based adoptive therapy: some novel strategies to improve these T cell-based treatments are lastly proposed.
Collapse
Affiliation(s)
- Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | - Enrico Munari
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37126, Italy
| | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | | | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS 00146 Rome, Italy.
| |
Collapse
|
23
|
Zhu H, Zhang W, Guo Q, Fan R, Luo G, Liu Y. Engineered oncolytic virus expressing B7H3-targeting BiTE enhances antitumor T-cell immune response. J Immunother Cancer 2024; 12:e009901. [PMID: 39615894 PMCID: PMC11624812 DOI: 10.1136/jitc-2024-009901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Bispecific T-cell engagers (BiTEs) are recombinant bispecific proteins designed to stimulate polyclonal T-cell immunity. In recent years, B7H3, a pan-cancer antigen, has been considered a promising target for future immunotherapy. However, the B7H3-targeting BiTE faces the challenge of systemic toxicity. Oncolytic viruses (OVs) represent a new class of cancer immunotherapeutics and serve as an appropriate platform for locoregional delivery of therapeutic genes. In this study, we designed an oncolytic adenovirus (OAd) encoding BiTE targeting human B7H3. We hypothesized that OVs encoding B7H3 BiTE deliver this molecule persistently to the tumor site while mediating polyclonal T-cell activation and redirecting it to tumor cells. METHODS B7H3-targeting BiTE was constructed by linking a single-chain variable fragment (scFv) that recognizes human B7H3 to an scFv that recognizes human CD3. B7H3 BiTE was inserted into OAd to construct OAd-B7H3-BiTE. The function of the OV-delivered B7H3 BiTE was detected via co-culturing B7H3+ target cells and peripheral blood mononuclear cells. A humanized immune system mouse model was used to evaluate the therapeutic effects in vivo. RESULTS B7H3 is highly expressed in a high proportion of human malignancies. OV-delivered BiTEs bind to T cells and target cells. We observed a series of phenomena reflecting T-cell activation induced by OAd-B7H3-BiTE, including cell clustering, cell size, activation markers, cytokine secretion, and proliferation. Furthermore, T-cell activation was mirrored by the corresponding cytotoxicity against B7H3+ tumor cells. In vivo, B7H3 BiTE was persistently expressed in tumors and enhanced the antitumor T-cell immune response. CONCLUSIONS Using an OV for the local expression of B7H3 BiTE maximizes the local concentration of BiTE while reducing systemic exposure. OV also provides a relatively "hot" T-cell immune environment for the function of BiTE. Because of its capacity to activate polyclonal T cells, BiTE has the potential to redirect virus-specific T cells to tumors. Our study provides new opportunities for the exploitation of B7H3-BiTE-armed OVs as therapeutic agents for the treatment of B7H3-positive malignancies.
Collapse
Affiliation(s)
- Haoran Zhu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| | - Wanrong Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| | - Qingguo Guo
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| | - Ruoyue Fan
- Bionce Biotechnology, Ltd, Nanjing, China
| | - Guangzuo Luo
- Bionce Biotechnology, Ltd, Nanjing, China
- Institute of Health Science, China Medical University, Shenyang, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| |
Collapse
|
24
|
Lacalle RA, Blanco R, García-Lucena R, Mañes S. Generation of human and murine exhausted CD8 + T cells in vitro. Methods Cell Biol 2024; 191:93-114. [PMID: 39824566 DOI: 10.1016/bs.mcb.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
T cell exhaustion is a state of dysfunction that can occur due to persistent exposure to antigens, such as in the tumor microenvironment. The progressive loss of effector functions in exhausted T cells can lead to resistance to immune checkpoint inhibitors and adoptive cell immunotherapies. Improving our understanding of the exhaustion process is thus crucial for optimizing the clinical outcomes of immunotherapy. A significant hurdle in this area is obtaining an adequate quantity of exhausted T cells. One solution could be the in vitro production of exhausted T cells by mimicking exhaustion-induced conditions. We present a simple, repeatable, flow cytometry-assisted method for generating exhausted CD8+ T cells from both human and mouse sources. This flexible protocol works with various cell sources and activation methods. Our results confirm the production of dysfunctional CD8+ T cells, akin to those in mouse tumor models and patient tumor samples. This methodology could help identify genes involved in the exhaustion process and serve as a platform for finding agents capable of altering, reversing, or accelerating this dysfunctional state. By using both mouse and human models, we increase the adaptability of the method, making it a powerful instrument for assessing potential substances with immunotherapeutic utility.
Collapse
Affiliation(s)
- Rosa Ana Lacalle
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| | - Raquel Blanco
- R&D Department, Landsteiner Genmed SL, Sevilla, Spain
| | | | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain.
| |
Collapse
|
25
|
Jo Y, Shim JA, Jeong JW, Kim H, Lee SM, Jeong J, Kim S, Im SK, Choi D, Lee BH, Kim YH, Kim CD, Kim CH, Hong C. Targeting ROS-sensing Nrf2 potentiates anti-tumor immunity of intratumoral CD8 + T and CAR-T cells. Mol Ther 2024; 32:3879-3894. [PMID: 39169624 PMCID: PMC11573615 DOI: 10.1016/j.ymthe.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play a crucial role in cancer rejection. However, CTLs encounter dysfunction and exhaustion in the immunosuppressive tumor microenvironment (TME). Although the reactive oxygen species (ROS)-rich TME attenuates CTL function, the underlying molecular mechanism remains poorly understood. The nuclear factor erythroid 2-related 2 (Nrf2) is the ROS-responsible factor implicated in increasing susceptibility to cancer progression. Therefore, we examined how Nrf2 is involved in anti-tumor responses of CD8+ T and chimeric antigen receptor (CAR) T cells in the ROS-rich TME. Here, we demonstrated that tumor growth in Nrf2-/- mice was significantly controlled and was reversed by T cell depletion and further confirmed that Nrf2 deficiency in T cells promotes anti-tumor responses using an adoptive transfer model of antigen-specific CD8+ T cells. Nrf2-deficient CTLs are resistant to ROS, and their effector functions are sustained in the TME. Furthermore, Nrf2 knockdown in human CAR-T cells enhanced the survival and function of intratumoral CAR-T cells in a solid tumor xenograft model and effectively controlled tumor growth. ROS-sensing Nrf2 inhibits the anti-tumor T cell responses, indicating that Nrf2 may be a potential target for T cell immunotherapy strategies against solid tumors.
Collapse
MESH Headings
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Animals
- Reactive Oxygen Species/metabolism
- Mice
- Humans
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Tumor Microenvironment/immunology
- Immunotherapy, Adoptive/methods
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Mice, Knockout
- Disease Models, Animal
- Xenograft Model Antitumor Assays
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
Collapse
Affiliation(s)
- Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Jin Woo Jeong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Hyori Kim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - So Min Lee
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Juhee Jeong
- Department of Anatomy and Cell Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Segi Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sun-Kyoung Im
- NeoImmunetech, Co., Ltd., Pohang 37666, Republic of Korea
| | - Donghoon Choi
- NeoImmunetech, Co., Ltd., Pohang 37666, Republic of Korea
| | | | - Yun Hak Kim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Chan Hyuk Kim
- School of Transdisciplinary Innovations and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.
| |
Collapse
|
26
|
Zhang J, Wang L, Guo H, Kong S, Li W, He Q, Ding L, Yang B. The role of Tim-3 blockade in the tumor immune microenvironment beyond T cells. Pharmacol Res 2024; 209:107458. [PMID: 39396768 DOI: 10.1016/j.phrs.2024.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Numerous preclinical studies have demonstrated the inhibitory function of T cell immunoglobulin mucin domain-containing protein 3 (Tim-3) on T cells as an inhibitory receptor, leading to the clinical development of anti-Tim-3 blocking antibodies. However, recent studies have shown that Tim-3 is expressed not only on T cells but also on multiple cell types in the tumor microenvironment (TME), including dendritic cells (DCs), natural killer (NK) cells, macrophages, and tumor cells. Therefore, Tim-3 blockade in the immune microenvironment not only affect the function of T cells but also influence the functions of other cells. For example, Tim-3 blockade can enhance the ability of DCs to regulate innate and adaptive immunity. The role of Tim-3 blockade in NK cells function is controversial, as it can enhance the antitumor function of NK cells under certain conditions while having the opposite effect in other situations. Additionally, Tim-3 blockade can promote the reversal of macrophage polarization from the M2 phenotype to the M1 phenotype. Furthermore, Tim-3 blockade can inhibit tumor development by suppressing the proliferation and metastasis of tumor cells. In summary, increasing evidence has shown that Tim-3 in other cell types also plays a critical role in the efficacy of anti-Tim-3 therapy. Understanding the function of anti-Tim-3 therapy in non-T cells can help elucidate the diverse responses observed in clinical patients, leading to better development of relevant therapeutic strategies. This review aims to discuss the role of Tim-3 in the TME and emphasize the impact of Tim-3 blockade in the tumor immune microenvironment beyond T cells.
Collapse
Affiliation(s)
- Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijia Kong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
27
|
Zhou Z, Zheng J, Lu Y, Mai Z, Lin Y, Lin P, Zheng Y, Chen X, Xu R, Zhao X, Cui L. Optimizing CD8 + T cell-based immunotherapy via metabolic interventions: a comprehensive review of intrinsic and extrinsic modulators. Exp Hematol Oncol 2024; 13:103. [PMID: 39438986 PMCID: PMC11495118 DOI: 10.1186/s40164-024-00575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
CD8+ T cells are integral to the effective management of cancer and infectious diseases due to their cytotoxic functions. The efficacy of these cells is profoundly influenced by their metabolic state, which regulates their activation, differentiation, and longevity. Accordingly, the modulation of metabolic pathways within CD8+ T cells is crucial for enhancing the effectiveness of T cell-based immunotherapy. Precise metabolic control is paramount in optimizing therapeutic outcomes and minimizing potential toxicities associated with treatment. Importantly, the potential of exogenous metabolites to augment CD8+ T cell responses is critically evaluated, especially through in vivo evidence that underscores their therapeutic promise. This review also addresses current challenges, including the need for precise control of metabolic modulation to avoid adverse effects, the development of targeted delivery systems to ensure efficient metabolite delivery to CD8+ T cells, and the inherent variability of metabolic states among patients that may influence treatment outcomes. Addressing these hurdles will be crucial for the successful integration of metabolic interventions into established immunotherapeutic regimens.
Collapse
Affiliation(s)
- Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
28
|
Cao C, Xu M, Wei Y, Peng T, Lin S, Liu X, Xu Y, Chu T, Liu S, Wu P, Hu B, Ding W, Li L, Ma D, Wu P. CXCR4 orchestrates the TOX-programmed exhausted phenotype of CD8 + T cells via JAK2/STAT3 pathway. CELL GENOMICS 2024; 4:100659. [PMID: 39317187 PMCID: PMC11602566 DOI: 10.1016/j.xgen.2024.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024]
Abstract
Evidence from clinical trials suggests that CXCR4 antagonists enhance immunotherapy effectiveness in several cancers. However, the specific mechanisms through which CXCR4 contributes to immune cell phenotypes are not fully understood. Here, we employed single-cell transcriptomic analysis and identified CXCR4 as a marker gene in T cells, with CD8+PD-1high exhausted T (Tex) cells exhibiting high CXCR4 expression. By blocking CXCR4, the Tex phenotype was attenuated in vivo. Mechanistically, CXCR4-blocking T cells mitigated the Tex phenotype by regulating the JAK2-STAT3 pathway. Single-cell RNA/TCR/ATAC-seq confirmed that Cxcr4-deficient CD8+ T cells epigenetically mitigated the transition from functional to exhausted phenotypes. Notably, clinical sample analysis revealed that CXCR4+CD8+ T cells showed higher expression in patients with a non-complete pathological response. Collectively, these findings demonstrate the mechanism by which CXCR4 orchestrates CD8+ Tex cells and provide a rationale for combining CXCR4 antagonists with immunotherapy in clinical trials.
Collapse
Affiliation(s)
- Canhui Cao
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Miaochun Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ye Wei
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ting Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojie Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yashi Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tian Chu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ping Wu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bai Hu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wencheng Ding
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Li
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ding Ma
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Peng Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430199, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
29
|
Yang A, Poholek AC. Systems immunology approaches to study T cells in health and disease. NPJ Syst Biol Appl 2024; 10:117. [PMID: 39384819 PMCID: PMC11464710 DOI: 10.1038/s41540-024-00446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
T cells are dynamically regulated immune cells that are implicated in a variety of diseases ranging from infection, cancer and autoimmunity. Recent advancements in sequencing methods have provided valuable insights in the transcriptional and epigenetic regulation of T cells in various disease settings. In this review, we identify the key sequencing-based methods that have been applied to understand the transcriptomic and epigenomic regulation of T cells in diseases.
Collapse
Affiliation(s)
- Aaron Yang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Ye L, Ryu H, Granadier D, Nguyen LT, Simoni Y, Dick I, Firth T, Rouse E, Chiang P, Lee YCG, Robinson BW, Creaney J, Newell EW, Redwood AJ. Stem-like exhausted CD8 T cells in pleural effusions predict improved survival in non-small cell lung cancer (NSCLC) and mesothelioma. Transl Lung Cancer Res 2024; 13:2352-2372. [PMID: 39430319 PMCID: PMC11484714 DOI: 10.21037/tlcr-24-284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/05/2024] [Indexed: 10/22/2024]
Abstract
Background Anti-tumor CD8 T cells are important for immunity but can become 'exhausted' and hence ineffective. Tumor-infiltrating exhausted CD8+ T cells include less differentiated stem-like exhausted T (Texstem) cells and terminally exhausted T (Texterm) cells. Both subsets have been proposed as prognostic biomarkers in cancer patients. In this study, we retrospectively investigated their prognostic significance in patients with metastatic non-small cell lung cancer (NSCLC) and validated our findings in a mesothelioma cohort. Methods Pre-treatment malignant pleural effusions (PEs) from 43 NSCLC (41 non-squamous, 2 squamous) patients were analyzed by flow cytometry. The percentages of Texstem and Texterm CD8 T cells were correlated with overall survival (OS) after adjusting for clinicopathological variables. Findings were validated using a mesothelioma cohort (n=49). Mass cytometry was performed on 16 pre-treatment PE samples from 5 mesothelioma and 3 NSCLC patients for T-cell phenotyping. Single-cell multi-omics analysis was performed on 4 pre-treatment PE samples from 2 NSCLC patients and 2 mesothelioma patients for analysis of the transcriptomic profiles, surface markers and T cell receptor (TCR) repertoire. Results Higher frequency of Texstem was associated with significantly increased OS [median 9.9 vs. 3.4 months, hazard ratio (HR) 0.36, 95% CI: 0.16-0.79, P=0.01]. The frequency of Texterm was not associated with OS. These findings were validated in the mesothelioma cohort (high vs. low Texstem, median OS 32.1 vs. 19.8 months, HR 0.31, 95% CI: 0.10-0.96, P=0.04). Detailed single-cell sequencing and mass cytometry profiling revealed that exhausted T cells from NSCLC expressed greater stem-likeness and less inhibitory markers than those from mesothelioma and that Texstem cells also contained 'bystander' virus-specific T cells. Conclusions This study demonstrates that PE CD8 Texstem cell abundance is associated with better survival outcomes, and thus may be a useful prognostic biomarker.
Collapse
Affiliation(s)
- Linda Ye
- National Centre for Asbestos Related Diseases, Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia
| | - Heeju Ryu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
- School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - David Granadier
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Long T. Nguyen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
| | - Yannick Simoni
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
| | - Ian Dick
- School of Biomedical Science, University of Western Australia, Nedlands, WA, Australia
| | - Tina Firth
- National Centre for Asbestos Related Diseases, Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia
| | - Ebony Rouse
- National Centre for Asbestos Related Diseases, Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia
| | - Peter Chiang
- National Centre for Asbestos Related Diseases, Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia
| | - Y. C. Gary Lee
- School of Biomedical Science, University of Western Australia, Nedlands, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
| | - Bruce W. Robinson
- National Centre for Asbestos Related Diseases, Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Science, University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Evan W. Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA
| | - Alec J. Redwood
- National Centre for Asbestos Related Diseases, Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Science, University of Western Australia, Nedlands, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
31
|
Yao Z, Zeng Y, Liu C, Jin H, Wang H, Zhang Y, Ding C, Chen G, Wu D. Focusing on CD8 + T-cell phenotypes: improving solid tumor therapy. J Exp Clin Cancer Res 2024; 43:266. [PMID: 39342365 PMCID: PMC11437975 DOI: 10.1186/s13046-024-03195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.
Collapse
Affiliation(s)
- Zhouchi Yao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yayun Zeng
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huimin Jin
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Wang
- Department of Scientific Research, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yue Zhang
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Chengming Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
32
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
33
|
Jiang S, Tang Y, Wang X, Guo H, Chen L, Hu G, Cui Y, Liang S, Zuo J, Luo Z, Chen X, Wang X. ARHGAP4 promotes colon cancer metastasis through the TGF-β signaling pathway and may be associated with T cell exhaustion. Biochem Biophys Res Commun 2024; 722:150172. [PMID: 38805788 DOI: 10.1016/j.bbrc.2024.150172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Colon cancer is a prevalent invasive neoplasm in the gastrointestinal system with a high degree of malignancy. Despite extensive research, the underlying mechanisms of its recurrence and metastasis remain elusive.Rho GTPase activating protein 4 (ARHGAP4), a member of the small GTPases protein family, may be closely related to tumor metastasis, and its expression is increased in colon cancer. However, the role of ARHGAP4 in colon cancer metastasis is uncertain. This study investigates the impact of ARHGAP4 on the metastasis of colon cancer cells. Our objective is to determine the role of ARHGAP4 in regulating the invasive behavior of colon cancer cells. METHODS We downloaded colon adenocarcinoma (COAD) data from the Cancer Genome Atlas (TCGA), and performed differential analysis and survival analysis. By using the CIBERSORT algorithm, we evaluated the proportion of infiltrating immune cells in colon cancer. We further analyzed whether ARHGAP4 is associated with T cell exhaustion. Finally, we investigated the impact of ARHGAP4 knockdown on the migration and invasion of colon cancer cells through in vitro cell experiments. Additionally, we utilized western blotting to assess the expression of protein related to the TGF-β signaling pathway and epithelial-mesenchymal transition (EMT). RESULTS We found that ARHGAP4 is upregulated in colon cancer. Subsequent survival analysis revealed that the high-expression group had significantly lower survival rates compared to the low-expression group. Immune infiltration analysis showed that ARHGAP4 was not only positively correlated with CD8+ T cells, but also positively correlated with T cell exhaustion markers programmed cell death 1 (PDCD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), and lymphocyte activating 3 (LAG-3). In vitro cell experiments, the knockdown of ARHGAP4 inhibited the migration and invasion of colon cancer cells. Among EMT-related proteins, when ARHGAP4 was knocked down, the expression of E-cadherin was increased, while the expression of N-cadherin and Vimentin was decreased. Meanwhile, the expression of TGF-β1, p-Smad2, and p-Smad3, which are associated with the TGF-β/Smad pathway, all decreased. CONCLUSION ARHGAP4 promotes colon cancer metastasis through the TGF-β/Smad signaling pathway and may be associated with T cell exhaustion. It plays an important role in the progression of colon cancer and may serve as a potential target for diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Shuanghong Jiang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China; Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Yong Tang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Xiaobo Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Haiyang Guo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Lin Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Guangbing Hu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Yutong Cui
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Shiqi Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Ji Zuo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Zichen Luo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Xinrui Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Xianfei Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China; Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China.
| |
Collapse
|
34
|
Lopresti L, Tatangelo V, Baldari CT, Patrussi L. Rewiring the T cell-suppressive cytokine landscape of the tumor microenvironment: a new frontier for precision anti-cancer therapy. Front Immunol 2024; 15:1418527. [PMID: 39281678 PMCID: PMC11392891 DOI: 10.3389/fimmu.2024.1418527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
T lymphocytes that infiltrate the tumor microenvironment (TME) often fail to function as effective anti-cancer agents. Within the TME, cell-to-cell inhibitory interactions play significant roles in dampening their anti-tumor activities. Recent studies have revealed that soluble factors released in the TME by immune and non-immune cells, as well as by tumor cells themselves, contribute to the exacerbation of T cell exhaustion. Our understanding of the cytokine landscape of the TME, their interrelationships, and their impact on cancer development is still at its early stages. In this review, we aim to shed light on Interleukin (IL) -6, IL-9, and IL-10, a small group of JAK/STAT signaling-dependent cytokines harboring T cell-suppressive effects in the TME and summarize their mechanisms of action. Additionally, we will explore how advancements in scientific research can help us overcoming the obstacles posed by cytokines that suppress T cells in tumors, with the ultimate objective of stimulating further investigations for the development of novel therapeutic strategies to counteract their tumor-promoting activities.
Collapse
Affiliation(s)
| | | | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
35
|
Radpour R, Simillion C, Wang B, Abbas HA, Riether C, Ochsenbein AF. IL-9 secreted by leukemia stem cells induces Th1-skewed CD4+ T cells, which promote their expansion. Blood 2024; 144:888-903. [PMID: 38941612 DOI: 10.1182/blood.2024024000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT In acute myeloid leukemia (AML), leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) interact with various cell types in the bone marrow (BM) microenvironment, regulating their expansion and differentiation. To study the interaction of CD4+ and CD8+ T cells in the BM with LSCs and LPCs, we analyzed their transcriptome and predicted cell-cell interactions by unbiased high-throughput correlation network analysis. We found that CD4+ T cells in the BM of patients with AML were activated and skewed toward T-helper (Th)1 polarization, whereas interleukin-9 (IL-9)-producing (Th9) CD4+ T cells were absent. In contrast to normal hematopoietic stem cells, LSCs produced IL-9, and the correlation modeling predicted IL9 in LSCs as a main hub gene that activates CD4+ T cells in AML. Functional validation revealed that IL-9 receptor signaling in CD4+ T cells leads to activation of the JAK-STAT pathway that induces the upregulation of KMT2A and KMT2C genes, resulting in methylation on histone H3 at lysine 4 to promote genome accessibility and transcriptional activation. This induced Th1-skewing, proliferation, and effector cytokine secretion, including interferon gamma (IFN-γ) and tumor necrosis factor α (TNF-α). IFN-γ and, to a lesser extent, TNF-α produced by activated CD4+ T cells induced the expansion of LSCs. In accordance with our findings, high IL9 expression in LSCs and high IL9R, TNF, and IFNG expression in BM-infiltrating CD4+ T cells correlated with worse overall survival in AML. Thus, IL-9 secreted by AML LSCs shapes a Th1-skewed immune environment that promotes their expansion by secreting IFN-γ and TNF-α.
Collapse
MESH Headings
- Interleukin-9/genetics
- Interleukin-9/metabolism
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/immunology
- Th1 Cells/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Tumor Microenvironment/immunology
- Receptors, Interleukin-9/genetics
- Receptors, Interleukin-9/metabolism
- Interferon-gamma/metabolism
- Histone-Lysine N-Methyltransferase/genetics
Collapse
Affiliation(s)
- Ramin Radpour
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Bofei Wang
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Hussein A Abbas
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX
| | - Carsten Riether
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian F Ochsenbein
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
36
|
Hamid O, Lewis KD, Weise A, McKean M, Papadopoulos KP, Crown J, Kim TM, Lee DH, Thomas SS, Mehnert J, Kaczmar J, Lakhani NJ, Kim KB, Middleton MR, Rabinowits G, Spira AI, Yushak M, Mehmi I, Fang F, Chen S, Mani J, Jankovic V, Wang F, Fiaschi N, Brennan L, Paccaly A, Masinde S, Salvati M, Fury MG, Kroog G, Lowy I, Gullo G. Phase I Study of Fianlimab, a Human Lymphocyte Activation Gene-3 (LAG-3) Monoclonal Antibody, in Combination With Cemiplimab in Advanced Melanoma. J Clin Oncol 2024; 42:2928-2938. [PMID: 38900987 PMCID: PMC11328921 DOI: 10.1200/jco.23.02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 06/22/2024] Open
Abstract
PURPOSE Coblockade of lymphocyte activation gene-3 (LAG-3) and PD-1 receptors could provide significant clinical benefit for patients with advanced melanoma. Fianlimab and cemiplimab are high-affinity, human, hinge-stabilized IgG4 monoclonal antibodies, targeting LAG-3 and PD-1, respectively. We report results from a first-in-human phase-I study of fianlimab and cemiplimab safety and efficacy in various malignancies including advanced melanoma. METHODS Patients with advanced melanoma were eligible for enrollment into four cohorts: three for patients without and one for patients with previous anti-PD-1 therapy in the advanced disease setting. Patients were treated with fianlimab 1,600 mg and cemiplimab 350 mg intravenously once every 3 weeks for up to 51 weeks, with an optional additional 51 weeks if clinically indicated. The primary end point was objective response rate (ORR) per RECIST 1.1 criteria. RESULTS ORRs were 63% for patients with anti-PD-1-naïve melanoma (cohort-6; n = 40; median follow-up 20.8 months), 63% for patients with systemic treatment-naïve melanoma (cohort-15; n = 40; 11.5 months), and 56% for patients with previous neo/adjuvant treatment melanoma (cohort-16; n = 18, 9.7 months). At a median follow-up of 12.6 months for the combined cohorts (6 + 15 + 16), the ORR was 61.2% and the median progression-free survival (mPFS) 13.3 months (95% CI, 7.5 to not estimated [NE]). In patients (n = 13) with previous anti-PD-1 adjuvant therapy, ORR was 61.5% and mPFS 12 months (95% CI, 1.4 to NE). ORR in patients with previous anti-PD-1 therapy for advanced disease (n = 15) was 13.3% and mPFS 1.5 months (95% CI, 1.3 to 7.7). Treatment-emergent and treatment-related adverse events ≥grade 3 (G3) were observed in 44% and 22% of patients, respectively. Except for increased incidence of adrenal insufficiency (12%-G1-4, 4%-G3-4), no new safety signals were recorded. CONCLUSION The current results show a promising benefit-risk profile of fianlimab/cemiplimab combination for patients with advanced melanoma, including those with previous anti-PD-1 therapy in the adjuvant, but not advanced, setting.
Collapse
Affiliation(s)
- Omid Hamid
- The Angeles Clinical and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA
| | - Karl D. Lewis
- University of Colorado Denver Cancer Center, Aurora, CO
| | | | - Meredith McKean
- Sarah Cannon Research Institute/Tennessee Oncology PLLC, Nashville, TN
| | | | - John Crown
- St Vincent's University Hospital, Dublin, Ireland
| | - Tae Min Kim
- Seoul National University Hospital, Seoul, South Korea
| | | | - Sajeve S. Thomas
- University of Florida Health Cancer Center at Orlando Health, Orlando, FL
| | - Janice Mehnert
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | | | | | - Kevin B. Kim
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, CA
| | - Mark R. Middleton
- Department of Oncology, NIHR Biomedical Research Centre, Oxford, United Kingdom
| | | | | | - Melinda Yushak
- Department of Hematology and Medical Oncology at Emory University School of Medicine, Atlanta, GA
| | - Inderjit Mehmi
- The Angeles Clinical and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA
| | - Fang Fang
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | | - Fang Wang
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | | | | | | | | - Glenn Kroog
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | - Israel Lowy
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | |
Collapse
|
37
|
Huang T, Ren X, Tang X, Wang Y, Ji R, Guo Q, Ma Q, Zheng Y, Hu Z, Zhou Y. Current perspectives and trends of CD39-CD73-eAdo/A2aR research in tumor microenvironment: a bibliometric analysis. Front Immunol 2024; 15:1427380. [PMID: 39188712 PMCID: PMC11345151 DOI: 10.3389/fimmu.2024.1427380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Background and objective Extracellular adenosine (eAdo) bridges tumor metabolism and immune regulation. CD39-CD73-eAdo/A2aR axis regulates tumor microenvironment (TME) and immunotherapy response. In the era of immunotherapy, exploring the impact of the CD39-CD73-eAdo/A2aR axis on TME and developing targeted therapeutic drugs to enhance the efficacy of immunotherapy are the current research hotspots. This study summarizes and explores the research trends and hotspots of the adenosine axis in the field of TME to provide ideas for further in-depth research. Methods Literature information was obtained from the Web of Science core collection database. The VOS viewer and the bibliometric tool based on R were used to quantify and identify cooperation information and individual influence by analyzing the detailed information of the global annual publication volume, country/region and institution distribution, article authors and co-cited authors, and journal distribution of these articles. At the same time, the distribution of author keywords and the co-occurrence of author keywords, highly cited articles, and highly co-cited references of CD39-CD73-eAdo/A2aR in the field of TME were analyzed to determine research hotspots and trends. Result 1,721 articles published in the past ten years were included in this study. Through bibliometric analysis, we found that (1) 69 countries and regions explored the effect of the CD39-CD73-eAdo/A2aR on TME, and the research was generally on the rise. Researchers in the United States dominated research in this area, with the highest total citation rate. China had the most significant number of publications. (2) Harvard University has published the most articles in this field. (3) 12,065 authors contributed to the publication of papers in this field, of which 23 published at least eight papers. STAGG J had significant academic influence, with 24 published articles and 2,776 citations. Co-cited authors can be clustered into three categories. Stagg J, Allard B, Ohta A, and Antonioli, L occupied a central position in the network. (4) 579 scholarly journals have published articles in this field. The journal FRONTIERS IN IMMUNOLOGY published the most significant number of papers, with 97 articles and a total of 2,317 citations, and the number of publications increased year by year. (5) "The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets" was the most frequently local cited article (163 times). The "A2A adenosine receptor protects tumors from antitumor T cells" was the most co-cited reference (224 times). (6) Through the analysis of author keywords, we found that the relationship between adenosine and immunotherapy was a core concept for many researchers in this field. Breast cancer, melanoma, colorectal cancer, ovarian cancer, glioblastoma, pancreatic cancer, hepatocellular carcinoma, and lung cancer were the most frequent cancer types in adenosine-related tumor studies. Immunotherapy, immunosuppression, immune checkpoint, and immune checkpoint inhibitors were the hot keywords in the research, reflecting the importance of the adenosine metabolic pathway in tumor immunotherapy. The keywords such as Immunogenic cell death, T cells, Sting, regulatory T cells, innate immunity, and immune infiltration demonstrated the pathways by which adenosine affected the TME. The famous author keywords in recent years have been immunotherapy, immunogenic cell death, inflammation, lung cancer, and gastric cancer. Conclusion The effect of CD39-CD73-eAdo/A2aR on the infiltration and function of various immune cells in TME, tumor immunotherapy response, and patient prognosis has attracted the attention of researchers from many countries/regions. American scholars still dominate the research in this field, but Chinese scholars produce the most research results. The journal FRONTIERS IN IMMUNOLOGY has published the wealthiest research in the field. Stagg J was a highly influential researcher in this field. Further exploration of targeted inhibition of CD39-CD73-eAdo/A2aR alone or in combination with other immunotherapy, radiotherapy, and chemotherapy in treating various cancer types and developing effective clinical therapeutic drugs are continuous research hotspots in this field.
Collapse
Affiliation(s)
- Tian Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiangqing Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaolong Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Rui Ji
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qinghong Guo
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qian Ma
- The First Department of Geriatrics, Xianyang First People’s Hospital, Xianyang, China
| | - Ya Zheng
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zenan Hu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
38
|
Ngiow SF, Manne S, Huang YJ, Azar T, Chen Z, Mathew D, Chen Q, Khan O, Wu JE, Alcalde V, Flowers AJ, McClain S, Baxter AE, Kurachi M, Shi J, Huang AC, Giles JR, Sharpe AH, Vignali DAA, Wherry EJ. LAG-3 sustains TOX expression and regulates the CD94/NKG2-Qa-1b axis to govern exhausted CD8 T cell NK receptor expression and cytotoxicity. Cell 2024; 187:4336-4354.e19. [PMID: 39121847 PMCID: PMC11337978 DOI: 10.1016/j.cell.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 11/20/2023] [Accepted: 07/10/2024] [Indexed: 08/12/2024]
Abstract
Exhausted CD8 T (Tex) cells in chronic viral infection and cancer have sustained co-expression of inhibitory receptors (IRs). Tex cells can be reinvigorated by blocking IRs, such as PD-1, but synergistic reinvigoration and enhanced disease control can be achieved by co-targeting multiple IRs including PD-1 and LAG-3. To dissect the molecular changes intrinsic when these IR pathways are disrupted, we investigated the impact of loss of PD-1 and/or LAG-3 on Tex cells during chronic infection. These analyses revealed distinct roles of PD-1 and LAG-3 in regulating Tex cell proliferation and effector functions, respectively. Moreover, these studies identified an essential role for LAG-3 in sustaining TOX and Tex cell durability as well as a LAG-3-dependent circuit that generated a CD94/NKG2+ subset of Tex cells with enhanced cytotoxicity mediated by recognition of the stress ligand Qa-1b, with similar observations in humans. These analyses disentangle the non-redundant mechanisms of PD-1 and LAG-3 and their synergy in regulating Tex cells.
Collapse
Affiliation(s)
- Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yinghui Jane Huang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tarek Azar
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingzhou Chen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Khan
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Wu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victor Alcalde
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahron J Flowers
- Tara Miller Melanoma Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sean McClain
- Tara Miller Melanoma Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Makoto Kurachi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwei Shi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Gene Lay Institute of Immunology and Inflammation at Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Schnell A. Stem-like T cells in cancer and autoimmunity. Immunol Rev 2024; 325:9-22. [PMID: 38804499 DOI: 10.1111/imr.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Stem-like T cells are characterized by their ability to self-renew, survive long-term, and give rise to a heterogeneous pool of effector and memory T cells. Recent advances in single-cell RNA-sequencing (scRNA-seq) and lineage tracing technologies revealed an important role for stem-like T cells in both autoimmunity and cancer. In cancer, stem-like T cells constitute an important arm of the anti-tumor immune response by giving rise to effector T cells that mediate tumor control. In contrast, in autoimmunity stem-like T cells perform an unfavorable role by forming a reservoir of long-lived autoreactive cells that replenish the pathogenic, effector T-cell pool and thereby driving disease pathology. This review provides background on the discovery of stem-like T cells and their function in cancer and autoimmunity. Moreover, the influence of the microbiota and metabolism on the stem-like T-cell pool is summarized. Lastly, the implications of our knowledge about stem-like T cells for clinical treatment strategies for cancer and autoimmunity will be discussed.
Collapse
Affiliation(s)
- Alexandra Schnell
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
40
|
Luan J, Liu Y, Cao M, Guo X, Guo N. The pathogenic response of cytotoxic T‑lymphocytes, a common therapeutic target for cancer, has a direct impact on treatment outcomes (Review). Oncol Rep 2024; 52:98. [PMID: 38904200 PMCID: PMC11200153 DOI: 10.3892/or.2024.8757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Cytotoxic T lymphocytes (CTLs), also known as CD8+ T cells, participate in immune function by secreting various cytokines after recognizing specific antigens and class I major histocompatibility complex molecules associated with tumor cells, and thus have a key role in antitumor immunity. However, certain CD8+ T cells show low reactivity and thus cannot effectively remove tumor cells or viral antigens. Due to this heterogeneity, effective biomarkers representing these differences in CD8+ cells are needed. The identification of suitable biomarkers will also enhance the management of cancer treatment. Recent research has improved the understanding of CD8+ T lymphocytes in the tumor microenvironment and circulatory system. Treatment efficacy is impacted directly by the pathogenic response of CTLs, and thus, the use of adjuvant therapies to address these pathological changes, e.g., stimulating the increase in the proportion of reactive T cells or suppressing the proportion of terminally exhausted T cells, would be advantageous.
Collapse
Affiliation(s)
- Jing Luan
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Yuxin Liu
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Meng Cao
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Xianing Guo
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Na Guo
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
41
|
Ma R, Sun JH, Wang YY. The role of transforming growth factor-β (TGF-β) in the formation of exhausted CD8 + T cells. Clin Exp Med 2024; 24:128. [PMID: 38884843 PMCID: PMC11182817 DOI: 10.1007/s10238-024-01394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
CD8 + T cells exert a critical role in eliminating cancers and chronic infections, and can provide long-term protective immunity. However, under the exposure of persistent antigen, CD8 + T cells can differentiate into terminally exhausted CD8 + T cells and lose the ability of immune surveillance and disease clearance. New insights into the molecular mechanisms of T-cell exhaustion suggest that it is a potential way to improve the efficacy of immunotherapy by restoring the function of exhausted CD8 + T cells. Transforming growth factor-β (TGF-β) is an important executor of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Recent studies have shown that TGF-β is one of the drivers for the development of exhausted CD8 + T cells. In this review, we summarized the role and mechanisms of TGF-β in the formation of exhausted CD8 + T cells and discussed ways to target those to ultimately enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Rong Ma
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- Cancer Institute, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jin-Han Sun
- Graduate School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan-Yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
- Cancer Institute, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
42
|
Rao Y, Qiu K, Song Y, Mao M, Feng L, Cheng D, Li J, Zhang Z, Zhang Y, Shao X, Pang W, Wang Y, Chen X, Jiang C, Wu S, Yu S, Liu J, Wang H, Peng X, Yang L, Chen L, Mu X, Zheng Y, Xu W, Liu G, Chen F, Yu H, Zhao Y, Ren J. The diversity of inhibitory receptor co-expression patterns of exhausted CD8 + T cells in oropharyngeal carcinoma. iScience 2024; 27:109668. [PMID: 38655196 PMCID: PMC11035373 DOI: 10.1016/j.isci.2024.109668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/05/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Exhausted CD8+ T cells (Texs) are characterized by the expression of various inhibitory receptors (IRs), whereas the functional attributes of these co-expressed IRs remain limited. Here, we systematically characterized the diversity of IR co-expression patterns in Texs from both human oropharyngeal squamous cell carcinoma (OPSCC) tissues and syngeneic OPSCC model. Nearly 60% of the Texs population co-expressed two or more IRs, and the number of co-expressed IRs was positively associated with superior exhaustion and cytotoxicity phenotypes. In OPSCC patients, programmed cell death-1 (PD-1) blockade significantly enhanced PDCD1-based co-expression with other IR genes, whereas dual blockades of PD-1 and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) significantly upregulated CTLA4-based co-expression with other IR genes. Collectively, our findings demonstrate that highly diverse IR co-expression is a leading feature of Texs and represents their functional states, which might provide essential clues for the rational selection of immune checkpoint inhibitors in treating OPSCC.
Collapse
Affiliation(s)
- Yufang Rao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Qiu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yao Song
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Minzi Mao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lan Feng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Danni Cheng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junhong Li
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziyan Zhang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuyang Zhang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiuli Shao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wendu Pang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Xuemei Chen
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Chuanhuan Jiang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Sisi Wu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Shuaishuai Yu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Jun Liu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Wang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- MinSheng Ear-Nose-Throat Hospital, Chengdu, Sichuan, China
| | - Li Chen
- MinSheng Ear-Nose-Throat Hospital, Chengdu, Sichuan, China
| | - Xiaosong Mu
- Langzhong People’s Hospital, Nanchong, Sichuan, China
| | - Yongbo Zheng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre and Dalla Lana School of Public Health, Toronto, ON, Canada
| | - Geoffrey Liu
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, and Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Fei Chen
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Zhao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianjun Ren
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
43
|
Upadhye A, Meza Landeros KE, Ramírez-Suástegui C, Schmiedel BJ, Woo E, Chee SJ, Malicki D, Coufal NG, Gonda D, Levy ML, Greenbaum JA, Seumois G, Crawford J, Roberts WD, Schoenberger SP, Cheroutre H, Ottensmeier CH, Vijayanand P, Ganesan AP. Intra-tumoral T cells in pediatric brain tumors display clonal expansion and effector properties. NATURE CANCER 2024; 5:791-807. [PMID: 38228835 DOI: 10.1038/s43018-023-00706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Brain tumors in children are a devastating disease in a high proportion of patients. Owing to inconsistent results in clinical trials in unstratified patients, the role of immunotherapy remains unclear. We performed an in-depth survey of the single-cell transcriptomes and clonal relationship of intra-tumoral T cells from children with brain tumors. Our results demonstrate that a large fraction of T cells in the tumor tissue are clonally expanded with the potential to recognize tumor antigens. Such clonally expanded T cells display enrichment of transcripts linked to effector function, tissue residency, immune checkpoints and signatures of neoantigen-specific T cells and immunotherapy response. We identify neoantigens in pediatric brain tumors and show that neoantigen-specific T cell gene signatures are linked to better survival outcomes. Notably, among the patients in our cohort, we observe substantial heterogeneity in the degree of clonal expansion and magnitude of T cell response. Our findings suggest that characterization of intra-tumoral T cell responses may enable selection of patients for immunotherapy, an approach that requires prospective validation in clinical trials.
Collapse
Affiliation(s)
- Aditi Upadhye
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kevin E Meza Landeros
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | | | | | - Edwin Woo
- Southampton University Hospitals NHS Trust, Southampton, UK
| | - Serena J Chee
- Department of Respiratory Medicine, Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, UK
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Denise Malicki
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Rady Children's Hospital, San Diego, CA, USA
| | - Nicole G Coufal
- Rady Children's Hospital, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - David Gonda
- Rady Children's Hospital, San Diego, CA, USA
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, USA
| | - Michael L Levy
- Rady Children's Hospital, San Diego, CA, USA
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, USA
| | | | | | - John Crawford
- Rady Children's Hospital, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Children's Hospital Orange County, Irvine, CA, USA
| | - William D Roberts
- Rady Children's Hospital, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | | | - Christian H Ottensmeier
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Clatterbridge Cancer Center NHS Foundation Trust, Liverpool, UK
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Anusha-Preethi Ganesan
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
44
|
Hood T, Slingsby F, Sandner V, Geis W, Schmidberger T, Bevan N, Vicard Q, Hengst J, Springuel P, Dianat N, Rafiq QA. A quality-by-design approach to improve process understanding and optimise the production and quality of CAR-T cells in automated stirred-tank bioreactors. Front Immunol 2024; 15:1335932. [PMID: 38655265 PMCID: PMC11035805 DOI: 10.3389/fimmu.2024.1335932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Ex vivo genetically-modified cellular immunotherapies, such as chimeric antigen receptor T cell (CAR-T) therapies, have generated significant clinical and commercial outcomes due to their unparalleled response rates against relapsed and refractory blood cancers. However, the development and scalable manufacture of these novel therapies remains challenging and further process understanding and optimisation is required to improve product quality and yield. In this study, we employ a quality-by-design (QbD) approach to systematically investigate the impact of critical process parameters (CPPs) during the expansion step on the critical quality attributes (CQAs) of CAR-T cells. Utilising the design of experiments (DOE) methodology, we investigated the impact of multiple CPPs, such as number of activations, culture seeding density, seed train time, and IL-2 concentration, on CAR-T CQAs including, cell yield, viability, metabolism, immunophenotype, T cell differentiation, exhaustion and CAR expression. Initial studies undertaken in G-Rex® 24 multi-well plates demonstrated that the combination of a single activation step and a shorter, 3-day, seed train resulted in significant CAR-T yield and quality improvements, specifically a 3-fold increase in cell yield, a 30% reduction in exhaustion marker expression and more efficient metabolism when compared to a process involving 2 activation steps and a 7-day seed train. Similar findings were observed when the CPPs identified in the G-Rex® multi-well plates studies were translated to a larger-scale automated, controlled stirred-tank bioreactor (Ambr® 250 High Throughput) process. The single activation step and reduced seed train time resulted in a similar, significant improvement in CAR-T CQAs including cell yield, quality and metabolism in the Ambr® 250 High Throughput bioreactor, thereby validating the findings of the small-scale studies and resulting in significant process understanding and improvements. This study provides a methodology for the systematic investigation of CAR-T CPPs and the findings demonstrate the scope and impact of enhanced process understanding for improved CAR-T production.
Collapse
Affiliation(s)
- Tiffany Hood
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Fern Slingsby
- Product Excellence Bioreactor Technology, Sartorius Stedim UK Limited, Epsom, United Kingdom
| | - Viktor Sandner
- Digital Solutions, Sartorius Stedim Austria GmbH, Vienna, Austria
| | - Winfried Geis
- Digital Solutions, Sartorius Stedim Biotech GmbH, Goettingen, Germany
| | - Timo Schmidberger
- Digital Solutions, Sartorius Stedim Biotech GmbH, Goettingen, Germany
| | - Nicola Bevan
- BioAnalytics Application Development, Essen BioScience Ltd. (Part of the Sartorius Group), Royston, United Kingdom
| | - Quentin Vicard
- Cell Culture Technology Marketing, Sartorius Stedim France S.A.S., Aubagne, France
| | - Julia Hengst
- Cell Culture Technology Marketing, Sartorius Stedim Biotech GmbH, Goettingen, Germany
| | - Pierre Springuel
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Noushin Dianat
- Cell Culture Technology Marketing, Sartorius Stedim France S.A.S., Aubagne, France
| | - Qasim A. Rafiq
- Department of Biochemical Engineering, University College London, London, United Kingdom
| |
Collapse
|
45
|
Lin CP, Levy PL, Alflen A, Apriamashvili G, Ligtenberg MA, Vredevoogd DW, Bleijerveld OB, Alkan F, Malka Y, Hoekman L, Markovits E, George A, Traets JJH, Krijgsman O, van Vliet A, Poźniak J, Pulido-Vicuña CA, de Bruijn B, van Hal-van Veen SE, Boshuizen J, van der Helm PW, Díaz-Gómez J, Warda H, Behrens LM, Mardesic P, Dehni B, Visser NL, Marine JC, Markel G, Faller WJ, Altelaar M, Agami R, Besser MJ, Peeper DS. Multimodal stimulation screens reveal unique and shared genes limiting T cell fitness. Cancer Cell 2024; 42:623-645.e10. [PMID: 38490212 PMCID: PMC11003465 DOI: 10.1016/j.ccell.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/03/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Genes limiting T cell antitumor activity may serve as therapeutic targets. It has not been systematically studied whether there are regulators that uniquely or broadly contribute to T cell fitness. We perform genome-scale CRISPR-Cas9 knockout screens in primary CD8 T cells to uncover genes negatively impacting fitness upon three modes of stimulation: (1) intense, triggering activation-induced cell death (AICD); (2) acute, triggering expansion; (3) chronic, causing dysfunction. Besides established regulators, we uncover genes controlling T cell fitness either specifically or commonly upon differential stimulation. Dap5 ablation, ranking highly in all three screens, increases translation while enhancing tumor killing. Loss of Icam1-mediated homotypic T cell clustering amplifies cell expansion and effector functions after both acute and intense stimulation. Lastly, Ctbp1 inactivation induces functional T cell persistence exclusively upon chronic stimulation. Our results functionally annotate fitness regulators based on their unique or shared contribution to traits limiting T cell antitumor activity.
Collapse
Affiliation(s)
- Chun-Pu Lin
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pierre L Levy
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Tumor Immunology and Immunotherapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Astrid Alflen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Georgi Apriamashvili
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten A Ligtenberg
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Yuval Malka
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ettai Markovits
- Ella Lemelbaum Institute for Immuno-oncology and Melanoma, Sheba Medical Center, Ramat Gan 52612, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Austin George
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alex van Vliet
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joanna Poźniak
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Carlos Ariel Pulido-Vicuña
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Beaunelle de Bruijn
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Susan E van Hal-van Veen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Julia Boshuizen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pim W van der Helm
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Judit Díaz-Gómez
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Hamdy Warda
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Leonie M Behrens
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Paula Mardesic
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bilal Dehni
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Gal Markel
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel; Davidoff Cancer Center and Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - William J Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michal J Besser
- Ella Lemelbaum Institute for Immuno-oncology and Melanoma, Sheba Medical Center, Ramat Gan 52612, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel; Davidoff Cancer Center and Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center, Petach Tikva 4941492, Israel; Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
46
|
Dillen A, Bui I, Jung M, Agioti S, Zaravinos A, Bonavida B. Regulation of PD-L1 Expression by YY1 in Cancer: Therapeutic Efficacy of Targeting YY1. Cancers (Basel) 2024; 16:1237. [PMID: 38539569 PMCID: PMC10968822 DOI: 10.3390/cancers16061237] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 05/14/2025] Open
Abstract
During the last decade, we have witnessed several milestones in the treatment of various resistant cancers including immunotherapeutic strategies that have proven to be superior to conventional treatment options, such as chemotherapy and radiation. This approach utilizes the host's immune response, which is triggered by cancer cells expressing tumor-associated antigens or neoantigens. The responsive immune cytotoxic CD8+ T cells specifically target and kill tumor cells, leading to tumor regression and prolongation of survival in some cancers; however, some cancers may exhibit resistance due to the inactivation of anti-tumor CD8+ T cells. One mechanism by which the anti-tumor CD8+ T cells become dysfunctional is through the activation of the inhibitory receptor programmed death-1 (PD-1) by the corresponding tumor cells (or other cells in the tumor microenvironment (TME)) that express the programmed death ligand-1 (PD-L1). Hence, blocking the PD-1/PD-L1 interaction via specific monoclonal antibodies (mAbs) restores the CD8+ T cells' functions, leading to tumor regression. Accordingly, the Food and Drug Administration (FDA) has approved several checkpoint antibodies which act as immune checkpoint inhibitors. Their clinical use in various resistant cancers, such as metastatic melanoma and non-small-cell lung cancer (NSCLC), has shown significant clinical responses. We have investigated an alternative approach to prevent the expression of PD-L1 on tumor cells, through targeting the oncogenic transcription factor Yin Yang 1 (YY1), a known factor overexpressed in many cancers. We report the regulation of PD-L1 by YY1 at the transcriptional, post-transcriptional, and post-translational levels, resulting in the restoration of CD8+ T cells' anti-tumor functions. We have performed bioinformatic analyses to further explore the relationship between both YY1 and PD-L1 in cancer and to corroborate these findings. In addition to its regulation of PD-L1, YY1 has several other anti-cancer activities, such as the regulation of proliferation and cell viability, invasion, epithelial-mesenchymal transition (EMT), metastasis, and chemo-immuno-resistance. Thus, targeting YY1 will have a multitude of anti-tumor activities resulting in a significant obliteration of cancer oncogenic activities. Various strategies are proposed to selectively target YY1 in human cancers and present a promising novel therapeutic approach for treating unresponsive cancer phenotypes. These findings underscore the distinct regulatory roles of YY1 and PD-L1 (CD274) in cancer progression and therapeutic response.
Collapse
Affiliation(s)
- Ana Dillen
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| | - Indy Bui
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| | - Megan Jung
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| | - Stephanie Agioti
- Cancer Genetics, Genomic and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus (A.Z.)
| | - Apostolos Zaravinos
- Cancer Genetics, Genomic and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus (A.Z.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| |
Collapse
|
47
|
Liu G, Chen T, Zhang X, Hu B, Shi H. Immune checkpoint inhibitor-associated cardiovascular toxicities: A review. Heliyon 2024; 10:e25747. [PMID: 38434280 PMCID: PMC10907684 DOI: 10.1016/j.heliyon.2024.e25747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionary effects on therapeutic strategies for multiple malignancies. Their efficacy depends on their ability to reactivate the host immune system to fight cancer cells. However, adverse reactions to ICIs are common and involve several organs, limiting their use in clinical practice. Although the incidence of cardiovascular toxicity is relatively low, it is associated with serious consequences and high mortality rates. The primary cardiovascular toxicities include myocarditis, pericarditis, Takotsubo syndrome, arrhythmia, vasculitis, acute coronary syndrome, and venous thromboembolism. Currently, the mechanism underlying ICI-associated cardiovascular toxicity remains unclear and underexplored. The diagnosis and monitoring of ICI-associated cardiovascular toxicities mainly include the following indicators: symptoms, signs, laboratory examination, electrocardiography, imaging, and pathology. Treatments are based on the grade of cardiovascular toxicity and mainly include drug withdrawal, corticosteroid therapy, immunosuppressants, and conventional cardiac treatment. This review focuses on the incidence, underlying mechanisms, clinical manifestations, diagnoses, and treatment strategies.
Collapse
Affiliation(s)
- Guihong Liu
- Guihong Liu Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Chen
- Tao Chen Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Zhang
- Guihong Liu Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Binbin Hu
- Guihong Liu Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huashan Shi
- Guihong Liu Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Li R, Wang Y, Wen X, Cheng B, Lv R, Chen R, Hu W, Wang Y, Liu J, Lin B, Zhang H, Zhang E, Tang X. A novel EIF3C-related CD8 + T-cell signature in predicting prognosis and immunotherapy response of nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2024; 150:103. [PMID: 38400862 PMCID: PMC10894114 DOI: 10.1007/s00432-023-05552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/09/2023] [Indexed: 02/26/2024]
Abstract
PURPOSE At present, dysfunctional CD8+ T-cells in the nasopharyngeal carcinoma (NPC) tumor immune microenvironment (TIME) have caused unsatisfactory immunotherapeutic effects, such as a low response rate of anti-PD-L1 therapy. Therefore, there is an urgent need to identify reliable markers capable of accurately predicting immunotherapy efficacy. METHODS Utilizing various algorithms for immune-infiltration evaluation, we explored the role of EIF3C in the TIME. We next found the influence of EIF3C expression on NPC based on functional analyses and RNA sequencing. By performing correlation and univariate Cox analyses of CD8+ Tcell markers from scRNA-seq data, we identified four signatures, which were then used in conjunction with the lasso algorithm to determine corresponding coefficients in the resulting EIF3C-related CD8+ T-cell signature (ETS). We subsequently evaluated the prognostic value of ETS using univariate and multivariate Cox regression analyses, Kaplan-Meier curves, and the area under the receiver operating characteristic curve (AUROC). RESULTS Our results demonstrate a significant relationship between low expression of EIF3C and high levels of CD8+ T-cell infiltration in the TIME, as well as a correlation between EIF3C expression and progression of NPC. Based on the expression levels of four EIF3C-related CD8+ T-cell marker genes, we constructed the ETS predictive model for NPC prognosis, which demonstrated success in validation. Notably, our model can also serve as an accurate indicator for detecting immunotherapy response. CONCLUSION Our findings suggest that EIF3C plays a significant role in NPC progression and immune modulation, particularly in CD8+ T-cell infiltration. Furthermore, the ETS model holds promise as both a prognostic predictor for NPC patients and a tool for adjusting individualized immunotherapy strategies.
Collapse
Affiliation(s)
- Rui Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Yikai Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Xin Wen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong Province, China
| | - Binglin Cheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Ruxue Lv
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Ruzhen Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Wen Hu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Yinglei Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Jingwen Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Bingyi Lin
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Haixiang Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Enting Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - XinRan Tang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
49
|
Yahsi B, Palaz F, Dincer P. Applications of CRISPR Epigenome Editors in Tumor Immunology and Autoimmunity. ACS Synth Biol 2024; 13:413-427. [PMID: 38298016 DOI: 10.1021/acssynbio.3c00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Over the past decade, CRISPR-Cas systems have become indispensable tools for genetic engineering and have been used in clinical trials for various diseases. Beyond genome editing, CRISPR-Cas systems can also be used for performing programmable epigenetic modifications. Recent efforts in enhancing CRISPR-based epigenome modifiers have yielded potent tools enabling targeted DNA methylation/demethylation capable of sustaining epigenetic memory through numerous cell divisions. Moreover, it has been understood that during chronic inflammatory states, including cancer, T cells encounter a state called T cell exhaustion that involves elevated inhibitory receptors (e.g., LAG-3, TIM3, PD-1, CD39) and reduced effector T cell-related protein levels (IFN-γ, granzyme B, and perforin). Importantly, epigenetic dysregulation has been identified as one of the key drivers of T cell exhaustion, and it remains one of the biggest obstacles in the field of immunotherapy and decreases the efficiency of chimeric antigen receptor T (CAR-T) cell therapy. Similarly, autoimmune diseases exhibit epigenetically dysfunctional regulatory T (Treg) cells. For instance, FOXP3 intronic regions, known as conserved noncoding sequences, display hypomethylation in healthy states but hypermethylation in pathological contexts. Therefore, the reversal of epigenetic dysregulation in cancer and autoimmune diseases using CRISPR-based epigenome modifiers has important therapeutic implications. In this review, we outline the progressive refinement of CRISPR-based epigenome modifiers and explore their potential therapeutic applications in tumor immunology and autoimmunity.
Collapse
Affiliation(s)
- Berkay Yahsi
- Hacettepe University School of Medicine, Ankara 06100, Turkey
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Pervin Dincer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
50
|
Li M, Jiang A, Han H, Chen M, Wang B, Cheng Y, Zhang H, Wang X, Dai W, Yang W, Zhang Q, He B. A Trinity Nano-Vaccine System with Spatiotemporal Immune Effect for the Adjuvant Cancer Therapy after Radiofrequency Ablation. ACS NANO 2024; 18:4590-4612. [PMID: 38047809 DOI: 10.1021/acsnano.3c03352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cancer vaccine gains great attention with the advances in tumor immunology and nanotechnology, but its long-term efficacy is restricted by the unsustainable immune activity after vaccination. Here, we demonstrate the vaccine efficacy is negatively correlated with the tumor burden. To maximum the vaccine-induced immunity and prolong the time-effectiveness, we design a priming-boosting vaccination strategy by combining with radiofrequency ablation (RFA), and construct a bisphosphonate nanovaccine (BNV) system. BNV system consists of nanoparticulated bisphosphonates with dual electric potentials (BNV(+&-)), where bisphosphonates act as the immune adjuvant by blocking mevalonate metabolism. BNV(+&-) exhibits the spatial and temporal heterogeneity in lymphatic delivery and immune activity. As the independent components of BNV(+&-), BNV(-) is drained to the lymph nodes, and BNV(+) is retained at the injection site. The alternately induced immune responses extend the time-effectiveness of antitumor immunity and suppress the recurrence and metastasis of colorectal cancer liver metastases after RFA. As a result, this trinity system integrated with RFA therapy, bisphosphonate adjuvant, and spatiotemporal immune effect provides an orientation for the sustainable regulation and precise delivery of cancer vaccines.
Collapse
Affiliation(s)
- Minghui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Anna Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Huize Han
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Meifang Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Yuxi Cheng
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|