1
|
Li JZ, Zhan X, Sun HB, Chi C, Zhang GF, Liu DH, Zhang WX, Sun LH, Kang K. L-arginine from elder human mesenchymal stem cells induces angiogenesis and enhances therapeutic effects on ischemic heart diseases. World J Stem Cells 2025; 17:103314. [PMID: 40308887 PMCID: PMC12038462 DOI: 10.4252/wjsc.v17.i4.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/06/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based therapy may be a future treatment for myocardial infarction (MI). However, few studies have assessed the therapeutic efficacy of adipose tissue-derived MSCs (ADSCs) obtained from elderly patients in comparison to that of bone marrow-derived MSCs (BMSCs) from the same elderly patients. The metabolomics results revealed a significantly higher L-arginine excretion from aged ADSCs vs BMSCs in hypoxic conditions. This was hypothesized as the possible mechanism that ADSCs showed an improved angiogenic capacity and enhanced the therapeutic effect on ischemic heart diseases. AIM To investigate the role of L-arginine in enhancing angiogenesis and cardiac protection by comparing ADSCs and BMSCs in hypoxic conditions for MI therapy. METHODS Metabolomic profiling of supernatants from ADSCs and BMSCs under hypoxic conditions were performed. Then, arginine succinate lyase (ASL) overexpression and short hairpin RNA plasmid were prepared and transfected into BMSCs. Subsequently, in vitro wound healing and Matrigel tube formation assays were used to verify the proangiogenetic effects of ADSC positive control, BMSCs, BMSCs ASL short hairpin RNA, BMSCs ASL overexpressed, and BMSC negative control on cocultured human umbilical vein endothelial cells. All sample sizes, which were determined to meet the statistical requirements and be greater than 3, were established on the basis of previously established literature standards. The protein levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor, etc. were detected. In vivo, the five types of cells were transplanted into the infarcted area of MI rat models, and the therapeutic effects of the transplanted cells were evaluated by echocardiography on cardiac function and by Masson's staining/terminal-deoxynucleotidyl transferase mediated nick end labeling assay/immunofluorescence detection on the infarcted area. RESULTS Metabolomic analysis showed that L-arginine was increased. Using ASL gene transfection, we upregulated the production of L-arginine in aged patient-derived BMSCs in vitro, which in turn enhanced mitogen activated protein kinase and VEGF receptor 2 protein expression, VEGF and basic fibroblast growth factor secretion, and inductive angiogenesis to levels comparable to donor-matched ADSCs. After the cell transplantation in vivo, the modified BMSCs as well as ADSCs exhibited decreased apoptotic cells, enhanced vessel formation, reduced scar size, and improved cardiac function in the MI rat model. The therapeutic efficacy decreased by inhibiting L-arginine synthesis. CONCLUSION L-arginine is important for inducing therapeutic angiogenesis for ADSCs and BMSCs in hypoxic conditions. ADSCs have higher L-arginine secretion, which leads to better angiogenesis induction and cardiac protection. ADSC transplantation is a promising autologous cell therapy strategy in the context of the present aging society.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710014, Shaanxi Province, China
| | - Xu Zhan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Hao-Bo Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Chao Chi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Guo-Fu Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Dong-Hui Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wen-Xi Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Li-Hua Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Cell Transplantation of the National Ministry of Public Health, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
2
|
Wang W, Tayier B, Guan L, Yan F, Mu Y. Optimization of the cotransfection of SERCA2a and Cx43 genes for myocardial infarction complications. Life Sci 2023; 331:122067. [PMID: 37659592 DOI: 10.1016/j.lfs.2023.122067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
As our previous study showed, the therapeutic effect of two genes (SERCA2a and Cx43) on heart failure after myocardial infarction (MI) was greater than that of single gene (SERCA2a or Cx43) therapy for bone marrow stem cell (BMSC) transplantation. Based on previous research, the aim of this study was to investigate the optimal ratio of codelivery of SERCA2a and Cx43 genes for MI therapy after biotinylated microbubble (BMB) transplantation via ultrasonic-targeted microbubble destruction (UTMD). Forty rats underwent left anterior descending (LAD) ligation and BMSC injection into the infarct and border zones. Four weeks later, the genes SERCA2a and Cx43 were codelivered at different ratios (1:1, 1:2 and 2:1) into the infarcted heart via UTMD. Cardiac mechanoelectrical function was determined at 4 wks after gene delivery, and the hearts of the rats were harvested for measurement of MI size and detection of SERCA2a and Cx43 expression. Q-PCR analysis of the expression of Nkx2.5 and GATA4 in the myocardial infarct zone and measurement of neovascularization in infarcted hearts. After comparing the therapeutic effects of different cogene ratios, the SERCA2a/Cx43-1:2 group showed remarkable cardiac electrical stability and strengthened the role of anti-arrhythmia. In conclusion, the optimum ratio of the SERCA2a/Cx43 gene is 1:2, which is advantageous for maintaining cardiac electrophysiological stability.
Collapse
Affiliation(s)
- Wei Wang
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China; Department of Ultrasound, Urumqi Friendship Hospital, Urumqi, China
| | - Baihetiya Tayier
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Lina Guan
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yuming Mu
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China.
| |
Collapse
|
3
|
Ainiwan A, Wei Y, Dou J, Tang L, Mu Y, Guan L. Functional evaluation of constructed pseudo-endogenous microRNA-targeted myocardial ultrasound nanobubble. Front Med (Lausanne) 2023; 10:1136304. [PMID: 37809333 PMCID: PMC10556731 DOI: 10.3389/fmed.2023.1136304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Background Stem cell transplantation is one of the treatment methods for acute myocardial infarction (AMI). MicroRNA-1 contributes to the study of the essential mechanisms of stem cell transplantation for treating AMI by targeted regulating the myocardial microenvironment after stem cell transplantation at the post-transcriptional level. Thus, microRNA-1 participates in regulating the myocardial microenvironment after stem cell transplantation, a promising strategy for the Stem cell transplantation treatment of AMI. However, the naked microRNA-1 synthesized is extremely unstable and non-targeting, which can be rapidly degraded by circulating RNase. Herein, to safely and effectively targeted transport the naked microRNA-1 synthesized into myocardial tissue, we will construct pseudo-endogenous microRNA-targeted myocardial ultrasound nanobubble pAd-AAV-9/miRNA-1 NB and evaluate its characteristics, targeting, and function. Methods The pAd-AAV-9/miRNA-1 gene complex was linked to nanobubble NBs by the "avidin-biotin bridging" method to prepare cardiomyocyte-targeted nanobubble pAd-AAV-9/miRNA-1 NB. The shape, particle size, dispersion, and stability of nanobubbles and the connection of pAd-AAV-9/miRNA-1 gene complex to nanobubble NB were observed. The virus loading efficiency was determined, and the myocardium-targeting imaging ability was evaluated using contrast-enhanced ultrasound imaging in vivo. The miRNA-1 expression level in myocardial tissue and other vital organs ex vivo of SD rats was considered by Q-PCR. Also, the cytotoxic effects were assessed. Results The particle size of NBs was 504.02 ± 36.94 nm, and that of pAd-AAV-9/miRNA-1 NB was 568.00 ± 37.39 nm. The particle size and concentration of pAd-AAV-9/miRNA-1 NBs did not change significantly within 1 h at room temperature (p > 0.05). pAd-AAV-9/miRNA-1 NB had the highest viral load rate of 86.3 ± 2.2% (p < 0.05), and the optimum viral load was 5 μL (p < 0.05). pAd-AAV-9/miRNA-1 NB had good contrast-enhanced ultrasound imaging in vivo. Quantitative analysis of miRNA-1 expression levels in vital organs ex vivo of SD rats by Q-PCR showed that pAd-AAV-9/miRNA-1 NB targeted the myocardial tissue. Q-PCR indicated that the expression level of miRNA-1 in the myocardium of the pAd-AAV-9/miRNA-1 NB + UTMD group was significantly higher than that of the pAd-AAV-9/miRNA-1 NB group (p < 0.05). pAd-AAV-9/miRNA-1 NB had no cytotoxic effect on cardiomyocytes (p > 0.05). Conclusion The pAd-AAV-9/miRNA-1 NB constructed in this study could carry naked miRNA-1 synthesized in vitro for targeted transport into myocardial tissue successfully and had sound contrast-enhanced imaging effects in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Yuming Mu
- Department of Echocardiography, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lina Guan
- Department of Echocardiography, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
4
|
Wang W, Tayier B, Guan L, Yan F, Mu Y. Pre-transplantation of Bone Marrow Mesenchymal Stem Cells Amplifies the Therapeutic Effect of Ultrasound-Targeted Microbubble Destruction-Mediated Localized Combined Gene Therapy in Post-Myocardial Infarction Heart Failure Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:830-845. [PMID: 35246339 DOI: 10.1016/j.ultrasmedbio.2022.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Although stem cell transplantation and single-gene therapy have been intensively discussed separately as treatments for myocardial infarction (MI) hearts and have exhibited ideal therapeutic efficiency in animal models, clinical trials turned out to be disappointing. Here, we deliver sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) and connexin 43 (Cx43) genes simultaneously via an ultrasound-targeted microbubble destruction (UTMD) approach to chronic MI hearts that have been pre-treated with bone marrow mesenchymal stem cells (BMSCs) to amplify cardiac repair. First, biotinylated microbubbles (BMBs) were fabricated, and biotinylated recombinant adenoviruses carrying the SERCA2a or Cx43 gene were conjugated to the surface of self-assembled BMBs to form SERCA2a-BMBs, Cx43-BMBs or dual gene-loaded BMBs. Then, the general characteristics of these bubbles, including particle size, concentration, contrast signal and gene loading capacity, were examined. Second, a rat myocardial infarction model was created by ligating the left anterior descending coronary artery and injecting BMSCs into the infarct and border zones. Four weeks later, co-delivery of SERCA2a and Cx43 genes to the infarcted heart were delivered together to the infarcted heart using the UTMD approach. Cardiac mechano-electrical function was determined 4 wk after gene transfection, and the infarcted hearts were collected for myocardial infarct size measurement and detection of expression of SERCA2a, Cx43 and cardiac-specific markers. Finally, to validate the role of BMSC transplantation, MI rats transplanted or not with BMSCs were transfected with SERCA2a and Cx43, and the cardiac mechano-electrical function of these two groups of rats was recorded and compared. General characteristics of the self-assembled gene-loaded BMBs were qualified, and the gene loading rate was satisfactory. The self-assembled gene-loaded BMBs were in microscale and exhibit satisfactory dual-gene loading capacity. High transfection efficiency was achieved under ultrasound irradiation in vitro. In addition, rats in which SERCA2a and Cx43 were overexpressed simultaneously had the best contractile function and electrical stability among all experimental groups. Immunofluorescence assay revealed that the levels of SERCA2a and/or Cx43 proteins were significantly elevated, especially in the border zone. Moreover, compared with rats that did not receive BMSCs, rats pre-treated with BMSCs have better mechano-electrical function after transfection with SERCA2a and Cx43. Collectively, we report a promising cardiac repair strategy for post-MI hearts that exploits the providential advantages of stem cell therapy and UTMD-mediated localized co-delivery of specific genes.
Collapse
Affiliation(s)
- Wei Wang
- Department of Echocardiography, Xinjiang Medical University First Affiliated Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Baihetiya Tayier
- Department of Echocardiography, Xinjiang Medical University First Affiliated Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Lina Guan
- Department of Echocardiography, Xinjiang Medical University First Affiliated Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuming Mu
- Department of Echocardiography, Xinjiang Medical University First Affiliated Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China.
| |
Collapse
|
5
|
Applications of Ultrasound-Mediated Gene Delivery in Regenerative Medicine. Bioengineering (Basel) 2022; 9:bioengineering9050190. [PMID: 35621468 PMCID: PMC9137703 DOI: 10.3390/bioengineering9050190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/21/2022] Open
Abstract
Research on the capability of non-viral gene delivery systems to induce tissue regeneration is a continued effort as the current use of viral vectors can present with significant limitations. Despite initially showing lower gene transfection and gene expression efficiencies, non-viral delivery methods continue to be optimized to match that of their viral counterparts. Ultrasound-mediated gene transfer, referred to as sonoporation, occurs by the induction of transient membrane permeabilization and has been found to significantly increase the uptake and expression of DNA in cells across many organ systems. In addition, it offers a more favorable safety profile compared to other non-viral delivery methods. Studies have shown that microbubble-enhanced sonoporation can elicit significant tissue regeneration in both ectopic and disease models, including bone and vascular tissue regeneration. Despite this, no clinical trials on the use of sonoporation for tissue regeneration have been conducted, although current clinical trials using sonoporation for other indications suggest that the method is safe for use in the clinical setting. In this review, we describe the pre-clinical studies conducted thus far on the use of sonoporation for tissue regeneration. Further, the various techniques used to increase the effectiveness and duration of sonoporation-induced gene transfer, as well as the obstacles that may be currently hindering clinical translation, are explored.
Collapse
|
6
|
Yu CG, Deng Q, Cao S, Zhao ZY, Mei DE, Feng CL, Zhou Q, Chen JL. Ultrasound-targeted cationic microbubbles combined with the NFκB binding motif increase SDF-1α gene transfection: A protective role in hearts after myocardial infarction. Kaohsiung J Med Sci 2022; 38:594-604. [PMID: 35324061 DOI: 10.1002/kjm2.12529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
Treatment of myocardial infarction (MI) remains a major challenge. The chemokine family plays an important role in cardiac injury, repair, and remodeling following MI, while stromal cell-derived factor-1 alpha (SDF-1α) is the most promising therapeutic target. This study aimed to increase SDF-1α expression using a novel gene delivery system and further explore its effect on MI treatment. In this study, two kinds of plasmids, human SDF-1α plasmid (phSDF-1α) and human SDF-1α- nuclear factor κB plasmid (phSDF-1α-NFκB), were constructed and loaded onto cationic microbubble carriers, and the plasmids were released into MI rabbits by ultrasound-targeted microbubble destruction. The transfection efficiency of SDF-1α and the degree of heart repair were further explored and compared. In the MI rabbit models, transfection with phSDF-1α-NFκB resulted in higher SDF-1α expression in peri-infarct area compared with transfection with phSDF-1α or no transfection. Upregulation of SDF-1α was shown beneficial to these MI rabbit models, as demonstrated with better recovery of cardiac function, greater perfusion of the myocardium, more neovascularization, smaller infarction size and thicker infarct wall 1 month after treatment. Ultrasound-targeted cationic microbubbles combined with the NFκB binding motif could increase SDF-1α gene transfection, which would play a protective role after MI.
Collapse
Affiliation(s)
- Cai-Gui Yu
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qing Deng
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng Cao
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhi-Yu Zhao
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan-E Mei
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chuang-Li Feng
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qing Zhou
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin-Ling Chen
- Department of Echocardiography, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Li J, Lv Y, Wang H, Liu Y, Ren J, Wang H. Cardiomyocyte-like cell differentiation by FGF-2 transfection and induction of rat bone marrow mesenchymal stem cells. Tissue Cell 2021; 73:101665. [PMID: 34695652 DOI: 10.1016/j.tice.2021.101665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE(S) To investigate and test the hypotheses that FGF-2 enhanced myocardial differentiation with rat bone marrow mesenchymal stem cells (BMSCs). MATERIALS AND METHODS Lentiviral vectors carrying the FGF-2 gene were transfected into rat BMSCs firstly. According to the different inducing agents, they were divided into the following four groups: group A (BMSCs blank control group), group B (FGF-2 induction group), group C (Lenti-FGF-2-GFP lentivirus transfection group), and the group D (Lenti-control-GFP lentiviral transfer). Then several kinds of experimental methods such as real-time PCR, immunocytochemical staining, immunofluorescence staining, Western blot, and transmission electron microscopy were used to elucidate the effects by which FGF-2 adjusts myocardial differentiation in rat BMSCs. RESULTS The results of real-time PCR showed that GATA-4 and Nkx2.5 were expressed in all groups of cells. Compared with the experimental control group, the expression of GATA-4 and Nkx2.5 genes was the strongest after induction of 2 weeks in each induction group, and gradually decreased after induction of 4 weeks. Among them, the relative expression levels of GATA-4 and Nkx2.5 genes in Lenti-FGF-2-GFP were highest at all time points. The expressions of cTnI, cTnT, Cx43, and Desmin were detected by immunocytochemical staining and immunofluorescence staining. After 4 weeks of induction, cTnI, cTnT, Cx43, and Desmin were positively expressed in the cytoplasm of cells. Statistical analysis showed that the integrated optical density (IOD) values of the markers in the Lenti-FGF-2-GFP were the strongest. Cx43 and cTnI were weakly positive or negative in the experimental control group. There was a significant difference in the positive expression of each marker in each induction group and the experimental control group. Western blot analysis showed that Tromyosin (Tm) and Desmin were expressed in the blank group, FGF-2 drug-induced group, Lenti-FGF-2-GFP, and empty virus control transfection group after 4 weeks of induction, among which FGF-2 lentivirus transfected. The expression levels of Tm and Desmin were the highest in the staining induction group. Statistical analysis showed that the positive expressions of Tm and Desmin in each experimental group were statistically significant. Transmission electron microscopy showed that the nucleus of the cells transfected and induced by FGF-2 was located at the center of the cells. Myofilaments, rough endoplasmic reticulum, and mitochondria, and ribosomes were seen in the cytoplasm. CONCLUSION These results indicate that FGF-2 can transfect and induce differentiation of BMSCs into cardiomyocyte-like cells. Lentivirus-mediated FGF-2 transfection induces the differentiation of bone marrow mesenchymal stem cells into cardiomyocyte-like cells better than FGF-2 direct induction.
Collapse
Affiliation(s)
- Jiao Li
- Department of Histology and Embryology, Hebei North University, Zhangjiakou city, China
| | - Yang Lv
- Department of Histology and Embryology, Hebei North University, Zhangjiakou city, China
| | - Haoyu Wang
- Department of Histology and Embryology, Hebei North University, Zhangjiakou city, China
| | - Yang Liu
- Department of Histology and Embryology, Hebei North University, Zhangjiakou city, China
| | - Junxu Ren
- Department of Histology and Embryology, Hebei North University, Zhangjiakou city, China
| | - Haiping Wang
- Department of Histology and Embryology, Hebei North University, Zhangjiakou city, China.
| |
Collapse
|
8
|
Zhang C, Chen S, Li Q, Wu J, Qiu F, Chen Z, Sun Y, Luo J, Bastarrachea RA, Grayburn PA, DeFronzo RA, Liu Y, Qian K, Huang P. Ultrasound-Targeted Microbubble Destruction Mediates Gene Transfection for Beta-Cell Regeneration and Glucose Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008177. [PMID: 34185956 DOI: 10.1002/smll.202008177] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/30/2021] [Indexed: 06/13/2023]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) mediates gene transfection with high biosafety and thus has been promising toward treatment of type 1 diabetes. However, the potential application of UTMD in type 2 diabetes (T2D) is still limited, due to the lack of systematic design and dynamic monitoring. Herein, an efficient gene delivery system is constructed by plasmid deoxyribonucleic acid (DNA) encoding glucagon-like peptide 1 (GLP-1) in ultrasound-induced microbubbles, toward treatment of T2D in macaque. The as designed UTMD afforded enhancement of cell membrane penetration and GLP-1 expression in macaque, which is characterized by ultrasound-guided biopsy to monitor the dynamic process of islet cells for 6 months. Also, improvement of pancreatic beta cell regeneration, and regulation of plasma glucose in macaque with T2D is achieved. The approach would serve as promising alternatives for the treatment of T2D.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Ultrasound and Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Shuyuan Chen
- Department of Internal Medicine, UT Southwestern medical center at Dallas, Dallas, TX, 75390, USA
| | - Qunying Li
- Department of Ultrasound and Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jiao Wu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fuqiang Qiu
- Department of Ultrasound and Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, 510000, China
| | - Yang Sun
- Department of Ultrasound and Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jieli Luo
- Department of Ultrasound and Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | | | - Paul A Grayburn
- Department of Internal Medicine, Division of Cardiology, Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall St, Suite H030, Dallas, Texas, 75226, USA
| | - Ralph A DeFronzo
- Department of Medicine, Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, University Health System, San Antonio, TX, 78229, USA
| | - Yajing Liu
- Department of Ultrasound and Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Pintong Huang
- Department of Ultrasound and Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| |
Collapse
|
9
|
Hu D, Pan M, Yang Y, Sun A, Chen Y, Yuan L, Huang K, Qu Y, He C, Wei Q, Qian Z. Trimodal Sono/Photoinduced Focal Therapy for Localized Prostate Cancer: Single‐Drug‐Based Nanosensitizer under Dual‐Activation. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202104473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- DanRong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - Meng Pan
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - Yun Yang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - Ao Sun
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - Yu Chen
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - LiPing Yuan
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - KangKang Huang
- Department of Orthopedics West China Hospital Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Ying Qu
- Department of Hematology and Research Laboratory of Hematology State Key Laboratory of Biotherapy West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - ChengQi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| | - ZhiYong Qian
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine Key Laboratory of Rehabilitation Medicine in Sichuan Province State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center Chengdu Sichuan 610041 P. R. China
| |
Collapse
|
10
|
Abstract
With the increasing insight into molecular mechanisms of cardiovascular disease, a promising solution involves directly delivering genes, cells, and chemicals to the infarcted myocardium or impaired endothelium. However, the limited delivery efficiency after administration fails to reach the therapeutic dose and the adverse off-target effect even causes serious safety concerns. Controlled drug release via external stimuli seems to be a promising method to overcome the drawbacks of conventional drug delivery systems (DDSs). Microbubbles and magnetic nanoparticles responding to ultrasound and magnetic fields respectively have been developed as an important component of novel DDSs. In particular, several attempts have also been made for the design and fabrication of dual-responsive DDS. This review presents the recent advances in the ultrasound and magnetic fields responsive DDSs in cardiovascular application, followed by their current problems and future reformation.
Collapse
|
11
|
Yang L, Ma J, Guan L, Mu Y. General Characteristics of Microbubble-Adenovirus Vectors Carrying Genes. Cell Mol Bioeng 2020; 14:201-208. [PMID: 33868500 DOI: 10.1007/s12195-020-00663-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/18/2020] [Indexed: 01/12/2023] Open
Abstract
Introduction Transferring genes safely, targeting cells and achieving efficient transfection are urgent problems in gene therapy that need to be solved. Combining microbubbles (MBs) and viruses to construct double vectors has become a promising approach for gene delivery. Understanding the characteristic performance of MBs that carry genes is key to promoting effective gene transfer. Therefore, in this study, we constructed MB-adenovirus vectors and discussed their general characteristics. Methods We constructed MB-adenovirus vectors carrying the chemokine (C-X-C motif) ligand 12 (Cxcl12) and bone morphogenetic protein-2 (Bmp2) genes (pAd-Cxcl12 and pAd-Bmp2, respectively) to explore the general characteristics of double vectors carrying genes. Results The MB-adenovirus vectors had stable physical properties, and no significant differences in diameter, concentration, or pH were noted compared with naked MBs (p > 0.05). Flow cytometry and RT-PCR were used to detect the gene-loading capacity of MBs. The gene-loading efficiency of MBs increased with increasing virus amounts and was highest (91%) when 10.0 µL of virus was added. Beyond 10.0 µL of added virus, the gene-loading efficiency of MBs decreased with the continuous addition of virus. The maximum amounts of pAd-Cxcl12 and pAd-Bmp2 in 100 µL of MBs were approximately 14 and 10 µL, respectively. Conclusions This study indicates that addition of an inappropriate viral load will result in low MB loading efficiency, and the maximum amount of genes loaded by MBs may differ based on the genes carried by the virus.
Collapse
Affiliation(s)
- Lingjie Yang
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, 830011 China.,Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Juan Ma
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, 830011 China.,Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lina Guan
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, 830011 China.,Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuming Mu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urmuqi, 830011 China.,Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
12
|
Yao Z, Yuan Z, Bai Y, Gu H, Jia H, Liu D, Yang Z, Wang W. Altered mRNA and lncRNA expression profiles in the striated muscle complex of anorectal malformation rats. Pediatr Surg Int 2020; 36:1287-1297. [PMID: 32915273 DOI: 10.1007/s00383-020-04741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Striated muscle complex (SMC) dysplasia has been confirmed to contribute to postoperative defecation dysfunction of patients with anorectal malformations (ARMs). To date, the potential molecular mechanisms of SMC dysplasia underlying the development of ARMs have not been clearly explained. This study examined the expression profiles of mRNAs and lncRNAs in the malformed SMC of ARM rats using RNA sequencing (RNA-seq). METHODS A rat model of ARMs was established by the intragastric administration of 1% ethylene thiourea (ETU) on an embryonic day 10 (E10). The rats were subjected to euthanasia and the SMC samples were collected on E19. The expression of mRNAs and lncRNAs was analyzed by RNA-seq on the Illumina HiSeq2500 platform. qRT-PCR was used to confirm the results of RNA-seq. RESULTS Compared with the levels in control rats, 1408 mRNAs and 472 lncRNAs were differentially expressed in the SMC of E19 ARM rats. GO and KEGG pathway analyses showed that the top enriched GO terms were mainly related to muscle development and the enriched pathways were associated with muscle and synaptic development. Protein-protein interaction network analysis was also performed using the STRING database. The network map revealed the interaction between the WNT3 protein and NTRK1, NTF4, MUSK, and BMP5 proteins. Finally, the qRT-PCR results further confirmed the RNA-seq data. CONCLUSION Our findings indicate the involvement of these dysregulated mRNAs and lncRNAs in the pathogenesis of SMC dysplasia in ARMs, providing a theoretical foundation for developing interventions to improve postoperative defecation function.
Collapse
Affiliation(s)
- Zhiya Yao
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, 36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
13
|
Yang Q, Fang J, Lei Z, Sluijter JPG, Schiffelers R. Repairing the heart: State-of the art delivery strategies for biological therapeutics. Adv Drug Deliv Rev 2020; 160:1-18. [PMID: 33039498 DOI: 10.1016/j.addr.2020.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/23/2022]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality worldwide. It is caused by an acute imbalance between oxygen supply and demand in the myocardium, usually caused by an obstruction in the coronary arteries. The conventional therapy is based on the application of (a combination of) anti-thrombotics, reperfusion strategies to open the occluded artery, stents and bypass surgery. However, numerous patients cannot fully recover after these interventions. In this context, new therapeutic methods are explored. Three decades ago, the first biologicals were tested to improve cardiac regeneration. Angiogenic proteins gained popularity as potential therapeutics. This is not straightforward as proteins are delicate molecules that in order to have a reasonably long time of activity need to be stabilized and released in a controlled fashion requiring advanced delivery systems. To ensure long-term expression, DNA vectors-encoding for therapeutic proteins have been developed. Here, the nuclear membrane proved to be a formidable barrier for efficient expression. Moreover, the development of delivery systems that can ensure entry in the target cell, and also correct intracellular trafficking towards the nucleus are essential. The recent introduction of mRNA as a therapeutic entity has provided an attractive intermediate: prolonged but transient expression from a cytoplasmic site of action. However, protection of the sensitive mRNA and correct delivery within the cell remains a challenge. This review focuses on the application of synthetic delivery systems that target the myocardium to stimulate cardiac repair using proteins, DNA or RNA.
Collapse
Affiliation(s)
- Qiangbing Yang
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Juntao Fang
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Zhiyong Lei
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands; Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Utrecht, Circulatory Health Laboratory, Utrecht University, Utrecht, the Netherlands
| | - Raymond Schiffelers
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
14
|
Applications of Ultrasound to Stimulate Therapeutic Revascularization. Int J Mol Sci 2019; 20:ijms20123081. [PMID: 31238531 PMCID: PMC6627741 DOI: 10.3390/ijms20123081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Many pathological conditions are characterized or caused by the presence of an insufficient or aberrant local vasculature. Thus, therapeutic approaches aimed at modulating the caliber and/or density of the vasculature by controlling angiogenesis and arteriogenesis have been under development for many years. As our understanding of the underlying cellular and molecular mechanisms of these vascular growth processes continues to grow, so too do the available targets for therapeutic intervention. Nonetheless, the tools needed to implement such therapies have often had inherent weaknesses (i.e., invasiveness, expense, poor targeting, and control) that preclude successful outcomes. Approximately 20 years ago, the potential for using ultrasound as a new tool for therapeutically manipulating angiogenesis and arteriogenesis began to emerge. Indeed, the ability of ultrasound, especially when used in combination with contrast agent microbubbles, to mechanically manipulate the microvasculature has opened several doors for exploration. In turn, multiple studies on the influence of ultrasound-mediated bioeffects on vascular growth and the use of ultrasound for the targeted stimulation of blood vessel growth via drug and gene delivery have been performed and published over the years. In this review article, we first discuss the basic principles of therapeutic ultrasound for stimulating angiogenesis and arteriogenesis. We then follow this with a comprehensive cataloging of studies that have used ultrasound for stimulating revascularization to date. Finally, we offer a brief perspective on the future of such approaches, in the context of both further research development and possible clinical translation.
Collapse
|