1
|
Chen L, Wu X, Wang P. Coffee consumption during pregnancy increases the risk of preeclampsia in rats by inhibiting 2-methoxyestradiol production†. Biol Reprod 2024; 111:1129-1141. [PMID: 39012043 DOI: 10.1093/biolre/ioae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/29/2024] [Accepted: 07/14/2024] [Indexed: 07/17/2024] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific disease that causes maternal symptoms such as high blood pressure and adverse pregnancy outcomes. 2-methoxyestradiol (2-MeO-E2), an endogenous metabolite of 17β-estradiol (E2) formed by catechol-O-methyltransferase (COMT), plays an important role in pregnancy. Our earlier studies have shown that polyphenols present in coffee can inhibit COMT activity, which may inhibit the formation of 2-MeO-E2 and contribute to PE. Therefore, the current study aims to investigate the possible effect and mechanism of coffee intake during pregnancy on PE in rats. Coffee is administered with or without the co-treatment of 2-MeO-E2 to pregnant rats from the10th to the18th day of pregnancy. The results show that pregnant rats with coffee intake had prominent fetal growth restriction, hypertension, and proteinuria, which can be ameliorated by co-treatment of 2-MeO-E2. In addition, coffee treatment leads to significantly decreased serum 2-MeO-E2. Therefore, the PE symptoms induced by coffee treatment are probably mediated by decreased 2-MeO-E2. In sum, our findings provide a new mechanistic insight into how coffee intake could lead to increased risk of PE, and demonstrate the effectiveness of 2-MeO-E2 supplementation as a potential therapeutic agent for PE.
Collapse
Affiliation(s)
- Linyan Chen
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Xiyuan Wu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Shehadeh SA, Tabbara M, Martinez L, Vazquez-Padron RI. A snapshot of early venous remodeling in a 7-day-old arteriovenous fistula. J Vasc Access 2023; 24:1529-1534. [PMID: 35441557 PMCID: PMC9974240 DOI: 10.1177/11297298221091757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Early remodeling of the arteriovenous fistula (AVF) determines maturation outcomes. However, the cellular response of the venous wall early after AVF creation remains largely enigmatic because of the lack of venous biopsies obtained shortly after anastomosis. This report presents a detailed immunohistochemistry analysis of a pre-access cephalic vein and the resulting seven-day-old AVF that required ligation due to steal syndrome. We test for markers of mature and progenitor endothelial cells (CD31, CD34, VWF), contractile smooth muscle cells and myofibroblasts (MYH11, SMA), and immune cell populations (CEACAM8, CD3, CD20, CD11b, CD45, CD68, CD163, tryptase). We demonstrated near complete endothelial coverage of the fistula at 7 days, a high degree of wall neovascularization, pronounced loss of myofibroblasts and smooth muscle cells, and significant infiltration of mast cells, neutrophils, monocytes, and macrophages. Of interest, the presence of CD163+ macrophages in the AVF suggests a reactive response to increased intramural oxygenation. In conclusion, these images provide for the first time a glimpse of early remodeling in a human AVF by immunohistochemistry. This case demonstrates the possibility to obtain additional precious samples of this early stage through future multicenter collaborative efforts.
Collapse
Affiliation(s)
- Serene A Shehadeh
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Xiang Y, Zhou Z, Zhu L, Li C, Luo Y, Zhou J. Omentin-1 enhances the inhibitory effect of endothelial progenitor cells on neointimal hyperplasia by inhibiting the p38 MAPK/CREB pathway. Life Sci 2023; 331:122061. [PMID: 37652153 DOI: 10.1016/j.lfs.2023.122061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
AIMS Endothelial progenitor cells (EPCs) play an important role in vascular repair. However, they are dysfunctional in the inflammatory microenvironment during restenosis. In this study, we investigated whether omentin-1, an anti-inflammatory factor, could reduce neointima formation after carotid artery injury (CAI) in rats by improving EPC functions that were damaged by inflammation and the underlying mechanisms. MAIN METHODS EPCs were transfected with adenoviral vectors expressing human omentin-1 or green fluorescent protein (GFP). Then, the rats received 2 × 106 EPCs expressing omentin-1 or GFP by tail vein injection directly after CAI and again 24 h later. Hematoxylin-eosin staining and immunohistochemistry were used for analyzing neointimal hyperplasia. Besides, EPCs were treated with omentin-1 and TNF-α to examine the underlying mechanism. KEY FINDINGS Our results showed that omentin-1 could significantly improve EPC functions, including proliferation, apoptosis and tube formation. Meanwhile, EPCs overexpressed with omentin-1 could significantly reduce neointimal hyperplasia and tumor necrosis factor-α (TNF-α) expression after CAI in rats. TNF-α could notably induce EPC dysfunction, which could be markedly reversed by omentin-1 through the inhibition of the p38 MAPK/CREB pathway. Furthermore, a p38 MAPK agonist (anisomycin) significantly abrogated the protective effects of omentin-1 on EPCs damaged by TNF-α. SIGNIFICANCE Our results indicated that genetically modifying EPC with omentin-1 could be an alternative strategy for the treatment of restenosis.
Collapse
Affiliation(s)
- Yuan Xiang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengshi Zhou
- Department of Laboratory Animal, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Lingping Zhu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chuanchang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ying Luo
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Jipeng Zhou
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
4
|
Xia X, Li G, Dong Q, Wang JW, Kim JE. Endothelial progenitor cells as an emerging cardiovascular risk factor in the field of food and nutrition research: advances and challenges. Crit Rev Food Sci Nutr 2023; 64:12166-12183. [PMID: 37599627 DOI: 10.1080/10408398.2023.2248506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Dietary modifications can help prevent many cardiovascular disease (CVD) events. Endothelial progenitor cells (EPCs) actively contribute to cardiovascular system maintenance and could function as surrogate markers for evaluating improvement in cardiovascular health resulting from nutritional interventions. This review summarizes the latest research progress on the impact of food and nutrients on EPCs, drawing on evidence from human, animal, and in vitro studies. Additionally, current trends and challenges faced in the field are highlighted. Findings from studies examining cells as EPCs are generally consistent, demonstrating that a healthy diet, such as the Mediterranean diet or a supervised diet for overweight people, specific foods like olive oil, fruit, vegetables, red wine, tea, chia, and nutraceuticals, and certain nutrients such as polyphenols, unsaturated fats, inorganic nitrate, and vitamins, generally promote higher EPC numbers and enhanced EPC function. Conversely, an unhealthy diet, such as one high in sugar substitutes, salt, or fructose, impairs EPC function. Research on outgrowth EPCs has revealed that various pathways are involved in the modulation effects of food and nutrients. The potential of EPCs as a biomarker for assessing the effectiveness of nutritional interventions in preventing CVDs is immense, while further clarification on definition and characterization of EPCs is required.
Collapse
Affiliation(s)
- Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Guannan Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass, Southwest University, Chongqing, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
5
|
Parra-Lucares A, Romero-Hernández E, Villa E, Weitz-Muñoz S, Vizcarra G, Reyes M, Vergara D, Bustamante S, Llancaqueo M, Toro L. New Opportunities in Heart Failure with Preserved Ejection Fraction: From Bench to Bedside… and Back. Biomedicines 2022; 11:70. [PMID: 36672578 PMCID: PMC9856156 DOI: 10.3390/biomedicines11010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a growing public health problem in nearly 50% of patients with heart failure. Therefore, research on new strategies for its diagnosis and management has become imperative in recent years. Few drugs have successfully improved clinical outcomes in this population. Therefore, numerous attempts are being made to find new pharmacological interventions that target the main mechanisms responsible for this disease. In recent years, pathological mechanisms such as cardiac fibrosis and inflammation, alterations in calcium handling, NO pathway disturbance, and neurohumoral or mechanic impairment have been evaluated as new pharmacological targets showing promising results in preliminary studies. This review aims to analyze the new strategies and mechanical devices, along with their initial results in pre-clinical and different phases of ongoing clinical trials for HFpEF patients. Understanding new mechanisms to generate interventions will allow us to create methods to prevent the adverse outcomes of this silent pandemic.
Collapse
Affiliation(s)
- Alfredo Parra-Lucares
- Critical Care Unit, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- MD PhD Program, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Esteban Romero-Hernández
- MD PhD Program, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Eduardo Villa
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Sebastián Weitz-Muñoz
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Geovana Vizcarra
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Martín Reyes
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Diego Vergara
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Sergio Bustamante
- Coronary Care Unit, Cardiovascular Department, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Marcelo Llancaqueo
- Coronary Care Unit, Cardiovascular Department, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Luis Toro
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- Centro de Investigación Clínica Avanzada, Hospital Clínico, Universidad de Chile, Santiago 8380420, Chile
| |
Collapse
|
6
|
Atherosclerotic Cardiovascular Disease: Risk Assessment, Prevention and Treatment Strategies. J Cardiovasc Dev Dis 2022; 9:jcdd9120460. [PMID: 36547456 PMCID: PMC9781134 DOI: 10.3390/jcdd9120460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Despite enormous advances in both surgical and pharmacological treatment, cardiovascular diseases are still the most common cause of morbidity and disability in the western world [...].
Collapse
|
7
|
Banovic M, Poglajen G, Vrtovec B, Ristic A. Contemporary Challenges of Regenerative Therapy in Patients with Ischemic and Non-Ischemic Heart Failure. J Cardiovasc Dev Dis 2022; 9:jcdd9120429. [PMID: 36547426 PMCID: PMC9783726 DOI: 10.3390/jcdd9120429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
It has now been almost 20 years since first clinical trials of stem cell therapy for heart repair were initiated. While initial preclinical data were promising and suggested that stem cells may be able to directly restore a diseased myocardium, this was never unequivocally confirmed in the clinical setting. Clinical trials of cell therapy did show the process to be feasible and safe. However, the clinical benefits of this treatment modality in patients with ischemic and non-ischemic heart failure have not been consistently confirmed. What is more, in the rapidly developing field of stem cell therapy in patients with heart failure, relevant questions regarding clinical trials' protocol streamlining, optimal patient selection, stem cell type and dose, and the mode of cell delivery remain largely unanswered. Recently, novel approaches to myocardial regeneration, including the use of pluripotent and allogeneic stem cells and cell-free therapeutic approaches, have been proposed. Thus, in this review, we aim to outline current knowledge and highlight contemporary challenges and dilemmas in clinical aspects of stem cell and regenerative therapy in patients with chronic ischemic and non-ischemic heart failure.
Collapse
Affiliation(s)
- Marko Banovic
- Cardiology Department, University Clinical Center of Serbia, 11000 Beograd, Serbia
- Belgrade Medical School, 11000 Belgrade, Serbia
- Correspondence: (M.B.); (G.P.)
| | - Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Medical Faculty Ljubljana, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (M.B.); (G.P.)
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Medical Faculty Ljubljana, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Arsen Ristic
- Cardiology Department, University Clinical Center of Serbia, 11000 Beograd, Serbia
- Belgrade Medical School, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Ugovšek S, Rehberger Likozar A, Finderle S, Poglajen G, Okrajšek R, Vrtovec B, Šebeštjen M. TNF-α Predicts Endothelial Function and Number of CD34 + Cells after Stimulation with G-CSF in Patients with Advanced Heart Failure. J Cardiovasc Dev Dis 2022; 9:jcdd9080281. [PMID: 36005445 PMCID: PMC9410381 DOI: 10.3390/jcdd9080281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with advanced heart failure (HF) have reduced cardiac output and impaired peripheral blood flow, which diminishes endothelial shear stress and consequently flow-mediated dilatation (FMD). The aim of our study was to find out whether endothelial dysfunction is associated with the number of CD34+ cells and TNF-α levels in patients with ischemic and non-ischemic HF after stimulation with granulocyte colony-stimulating factor (G-CSF). We included 56 patients with advanced HF (LVEF < 35%). Eighteen patients (32.14%) had ischemic and 38 (67.86%) patients had non-ischemic HF. FMD of the brachial artery was performed before the patients underwent 5-day bone marrow stimulation with daily subcutaneous injections of G-CSF (5 μg/kg bid). On the fifth day peripheral blood CD34+ cell count was measured. No statistically significant differences were found between the patient groups in NT-proBNP levels ((1575 (425−2439) vs. 1273 (225−2239)) pg/mL; p = 0.40), peripheral blood CD34+ cell count ((67.54 ± 102.32 vs. 89.76 ± 71.21) × 106; p = 0.32), TNF-α ((8.72 ± 10.30 vs. 4.96 ± 6.16) ng/mL; p = 0.13) and FMD (6.7 ± 5.4 vs. 7.2 ± 5.9%; p = 0.76). In a linear regression model, only FMD (p = 0.001) and TNF-α (p = 0.003) emerged as statistically significant predictors of CD34+ cells counts. Our study suggests that TNF-α is a good predictor of impaired endothelial function and of CD34+ cells mobilization after G-CSF stimulation in patients with advanced HF of ischemic and non-ischemic origin.
Collapse
Affiliation(s)
- Sabina Ugovšek
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | - Sanjo Finderle
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Gregor Poglajen
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Renata Okrajšek
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Bojan Vrtovec
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Miran Šebeštjen
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
9
|
Evidence of Stem Cells Mobilization in the Blood of Patients with Pancreatitis: A Potential Link with Disease Severity. Stem Cells Int 2022; 2022:5395248. [PMID: 35846982 PMCID: PMC9286984 DOI: 10.1155/2022/5395248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
A growing number of studies indicate the potential involvement of various populations of bone marrow-derived stem cells (BMSCs) in tissue repair. However, the mobilization of BMSCs to the peripheral blood (PB) in acute and chronic pancreatitis (AP and CP) has not been investigated. A total of 78 patients were assigned into AP, CP, and healthy control groups in this study. Using flow cytometry, we found that VSELs, EPCs, and CD133+SCs were mobilized to the PB of patients with both AP and CP. Interestingly, AP and CP patients exhibited lower absolute number of circulating MSCs in the PB compared to healthy individuals. SC mobilization to the PB was more evident in patients with AP than CP and in patients with moderate/severe AP than mild AP. Using ELISA, we found a significantly increased HGF concentration in the PB of patients with AP and SDF1α in the PB of patients with CP. We noted a significant positive correlation between SDF1α concentration and the mobilized population of CD133+SCs in AP and between C5a and the mobilized population of VSELs moderate/severe AP. Thus, bone marrow-derived SCs may play a role in the regeneration of pancreatic tissue in both AP and CP, and mobilization of VSELs to the PB depends on the severity of AP.
Collapse
|
10
|
Zeng L, Zhang C, Cai G, Zhang B, Huang Z, Wu M, Zhu Y, Luo L, He H, Yang Z. Aging-Related Endothelial Progenitor Cell Dysfunction and Its Association with IL-17 and IL-23 in HFmrEF Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2281870. [PMID: 35795858 PMCID: PMC9251143 DOI: 10.1155/2022/2281870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Aging is an independent risk factor for heart failure (HF), and endothelial progenitor cell (EPC) function decreases with aging. Here, we further investigated whether age has a detrimental effect on circulating EPC function in HF with mildly reduced ejection fraction (HFmrEF) and its relationship with systemic inflammation. METHODS 58 HFmrEF patients were recruited. The adhesive, migrative, and proliferative activities of circulating EPCs, MAGGIC scores, and plasma interleukin (IL)-17 and IL-23 levels of these patients were assessed. RESULTS Older patients with HFmrEF had higher MAGGIC scores and lower circulating EPC adhesion, migration, and proliferation than younger patients. The similar tendency was observed in plasma IL-17 and IL-23 levels. The EPC functions were negatively associated with MAGGIC scores and plasma IL-17 or IL-23 levels. CONCLUSIONS In patients with HFmrEF, aging leads to attenuated circulating EPC function, which is correlated with disease severity and systemic inflammation. The present investigation provides some novel insights into the mechanism and intervention targets of HFmrEF.
Collapse
Affiliation(s)
- Lijin Zeng
- Division of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Cong Zhang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Guoyi Cai
- Division of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Zhang
- Department of Cardiovascular Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Zixia Huang
- Department of Anesthesiology, The Second Affiliated Hospital, Nanhua University, Hengyang, China
| | - Mingyue Wu
- Department of Anesthesiology, The Second Affiliated Hospital, Nanhua University, Hengyang, China
| | - Yuanting Zhu
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Liang Luo
- Department of Critical Care Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hao He
- Department of Cardiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Zhen Yang
- Division of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
11
|
Dose-dependent impact of statin therapy intensity on circulating progenitor cells in patients undergoing percutaneous coronary intervention for the treatment of acute versus chronic coronary syndrome. PLoS One 2022; 17:e0267433. [PMID: 35587929 PMCID: PMC9119492 DOI: 10.1371/journal.pone.0267433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background By low-density lipoprotein (LDL) reduction, statins play an important role in cardiovascular risk modification. Incompletely understood pleiotropic statin effects include vasoprotection that might originate from mobilisation and differentiation of vascular progenitor cells. Data on the potentially differential impact of statin treatment intensity on circulating progenitor cells in patients undergoing percutaneous coronary intervention (PCI) are scarce. This study examines the potential association of different permanent statin treatment regimens on circulating progenitor cells in patients with coronary syndrome. Methods and results In a monocentric prospective all-comers study, 105 consecutive cases scheduled for coronary angiography due to either (A) non-invasive proof of ischemia and chronic coronary syndrome (CCS) or (B) troponin-positive acute coronary syndrome (ACS) were included. According to the 2018 American College of Cardiology Guidelines on Blood Cholesterol, patients were clustered depending on their respective permanent statin treatment regimen in either a high- to moderate-intensity statin treatment (HIST) or a low-intensity statin treatment (LIST) group. Baseline characteristics including LDL levels were comparable. From blood drawn at the time of PCI, peripheral blood mononuclear cells were isolated, cultivated and counted and, by density gradient centrifugation, levels of circulating progenitor cells were determined using fluorescence-activated cell sorting (FACS) analysis. In ACS patients both absolute and relative numbers of circulating early-outgrowth endothelial progenitor cells (EPCs) concurrently were significantly lower in the HIST group as compared to the LIST group. This effect was more pronounced in ACS patients than in CCS patients. Both in ACS and CCS patients, HIST caused a significant reduction of the number of circulating SMPCs. Conclusions In patients undergoing PCI, a dose intensity-dependent and LDL level-independent pro-differentiating vasoprotective pleiotropic capacity of statins for EPC and SMPC is demonstrated.
Collapse
|
12
|
Ferentinos P, Tsakirides C, Swainson M, Davison A, Martyn-St James M, Ispoglou T. The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease. Eur J Appl Physiol 2022. [PMID: 35022875 DOI: 10.1007/s00421-021-04876-1.pmid:35022875;pmcid:pmc8927049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
UNLABELLED Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs. OBJECTIVES to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction. CONCLUSION the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.
Collapse
Affiliation(s)
| | | | - Michelle Swainson
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Adam Davison
- Flow Cytometry Facility, Leeds Institute of Cancer and Pathology St James's University Hospital, University of Leeds, Leeds, UK
- Cytec Biosciences B.V, Amsterdam, The Netherlands
| | | | | |
Collapse
|
13
|
Lopes J, Teixeira M, Cavalcante S, Gouveia M, Duarte A, Ferreira M, Simões MI, Conceição M, Ribeiro IP, Gonçalves AC, Schmidt C, de Jesus BB, Almeida R, Viamonte S, Santos M, Ribeiro F. Reduced Levels of Circulating Endothelial Cells and Endothelial Progenitor Cells in Patients with Heart Failure with Reduced Ejection Fraction. Arch Med Res 2022; 53:289-295. [DOI: 10.1016/j.arcmed.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/03/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
|
14
|
Ferentinos P, Tsakirides C, Swainson M, Davison A, Martyn-St James M, Ispoglou T. The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease. Eur J Appl Physiol 2022; 122:815-860. [PMID: 35022875 PMCID: PMC8927049 DOI: 10.1007/s00421-021-04876-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs. OBJECTIVES to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction. CONCLUSION the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.
Collapse
Affiliation(s)
| | | | - Michelle Swainson
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Adam Davison
- Flow Cytometry Facility, Leeds Institute of Cancer and Pathology St James's University Hospital, University of Leeds, Leeds, UK
- Cytec Biosciences B.V, Amsterdam, The Netherlands
| | | | | |
Collapse
|
15
|
Sen A, Vincent V, Thakkar H, Abraham R, Ramakrishnan L. Beneficial Role of Vitamin D on Endothelial Progenitor Cells (EPCs) in Cardiovascular Diseases. J Lipid Atheroscler 2022; 11:229-249. [PMID: 36212746 PMCID: PMC9515729 DOI: 10.12997/jla.2022.11.3.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the world. Endothelial progenitor cells (EPCs) are currently being explored in the context of CVD risk. EPCs are bone marrow derived progenitor cells involved in postnatal endothelial repair and neovascularization. A large body of evidence from clinical, animal, and in vitro studies have shown that EPC numbers in circulation and their functionality reflect endogenous vascular regenerative capacity. Traditionally vitamin D is known to be beneficial for bone health and calcium metabolism and in the last two decades, its role in influencing CVD and cancer risk has generated significant interest. Observational studies have shown that low vitamin D levels are associated with an adverse cardiovascular risk profile. Still, Mendelian randomization studies and randomized control trials (RCTs) have not shown significant effects of vitamin D on cardiovascular events. The criticism regarding the RCTs on vitamin D and CVD is that they were not designed to investigate cardiovascular outcomes in vitamin D-deficient individuals. Overall, the association between vitamin D and CVD remains inconclusive. Recent clinical and experimental studies have demonstrated the beneficial role of vitamin D in increasing the circulatory level of EPC as well as their functionality. In this review we present evidence supporting the beneficial role of vitamin D in CVD through its modulation of EPC homeostasis.
Collapse
Affiliation(s)
- Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ransi Abraham
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
16
|
Endothelial Progenitor Cells: An Appraisal of Relevant Data from Bench to Bedside. Int J Mol Sci 2021; 22:ijms222312874. [PMID: 34884679 PMCID: PMC8657735 DOI: 10.3390/ijms222312874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The mobilization of endothelial progenitor cells (EPCs) into circulation from bone marrow is well known to be present in several clinical settings, including acute coronary syndrome, heart failure, diabetes and peripheral vascular disease. The aim of this review was to explore the current literature focusing on the great opportunity that EPCs can have in terms of regenerative medicine.
Collapse
|
17
|
Diagnostic biomarkers of dilated cardiomyopathy. Immunobiology 2021; 226:152153. [PMID: 34784575 DOI: 10.1016/j.imbio.2021.152153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a condition involving dilation of cardiac chambers, which results in contraction impairment. Besides invasive and non-invasive diagnostic procedures, cardiac biomarkers are of great importance in both diagnosis and prognosis of the disease. These biomarkers are categorized into three groups based on their site; cardiomyocyte biomarkers, microenvironmental biomarkers and macroenvironmental biomarkers. AIMS In this review, an overview of characteristics, epidemiology, etiology and clinical manifestations of DCM is provided. In addition, the most important biomarkers, of all three categories, and their diagnostic and prognostic values are discussed. CONCLUSION Considering the association of DCM with conditions such as infections and autoimmunity, which are prevalent among the population, introducing efficient diagnostic tools is of high value for the early detection of DCM to prevent its severe complications. The three discussed classes of biomarkers are potential candidates for the detection of DCM. However, further studies are necessary in this regard.
Collapse
|
18
|
Markopoulou P, Papanikolaou E, Loukopoulou S, Galina P, Mantzou A, Siahanidou T. Increased circulating endothelial progenitor cells (EPCs) in prepubertal children born prematurely: a possible link between prematurity and cardiovascular risk. Pediatr Res 2021; 90:156-165. [PMID: 33038874 DOI: 10.1038/s41390-020-01190-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) ensure vascular integrity and neovascularization. No studies have investigated EPCs in preterm-born children beyond infancy. METHODS One hundred and thirty-six prepubertal children were enrolled: 63 preterm and 73 born at term (controls). Circulating CD34(+)/VEGFR-2(+)/CD45(-) and CD34(+)/VEGFR-2(+)/CD45dim EPCs were measured in preterm-born children compared to controls. Body mass index (BMI), waist-to-hip ratio (WHR), neck circumference, systolic and diastolic blood pressure (SBP and DBP, respectively), fasting glucose, insulin, lipid profile, common carotid and abdominal aortic intima-media thickness (cIMT and aIMT, respectively), endothelium-dependent brachial artery flow-mediated dilation (FMD), and echocardiographic parameters were also assessed. RESULTS Circulating CD34(+)/VEGFR-2(+)/CD45(-) and CD34(+)/VEGFR-2(+)/CD45dim EPCs were significantly higher in preterm-born children compared to controls (p < 0.001 and p < 0.001, respectively). In total study population and in the preterm-born group, EPCs were significantly lower in children born to mothers with gestational diabetes compared to non-diabetic mothers. Prematurity was associated with higher WHR, neck circumference, SBP, DBP, cIMT, aIMT, mean pressure, and velocity of pulmonary artery; the peak velocity of the brachial artery was significantly lower in children born prematurely. In multiple regression analysis, preterm birth and maternal gestational diabetes were recognized as independent predictors of EPCs. CONCLUSIONS Circulating EPCs were increased in prepubertal preterm-born children in comparison with peers born full-term. Maternal gestational diabetes was associated with a decrease in EPCs. IMPACT Mounting evidence supports the adverse effect of prematurity on cardiovascular health. However, the underlying mechanisms that could lead to endothelial dysfunction in preterm-born individuals are not fully understood. Endothelial progenitor cells (EPCs) ensure vascular integrity, normal endothelial function and neovascularization. No studies have investigated the EPCs counts in peripheral blood beyond infancy in children born prematurely. Circulating EPCs were significantly higher in preterm-born prepubertal children compared to controls, thus indicating that prematurity is possibly associated with endothelial damage. In total study population and in the preterm-born group, maternal gestational diabetes was associated with decreased EPCs concentrations.
Collapse
Affiliation(s)
- Panagiota Markopoulou
- Neonatal Unit, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Papanikolaou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Loukopoulou
- Department of Cardiology, "Agia Sofia" Children's Hospital, Athens, Greece
| | - Paraskevi Galina
- Radiology Department, "Agia Sofia" Children's Hospital, Athens, Greece
| | - Aimilia Mantzou
- Unit of Clinical and Translational Research in Endocrinology, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Tania Siahanidou
- Neonatal Unit, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
19
|
Beliën H, Evens L, Hendrikx M, Bito V, Bronckaers A. Combining stem cells in myocardial infarction: The road to superior repair? Med Res Rev 2021; 42:343-373. [PMID: 34114238 DOI: 10.1002/med.21839] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/04/2021] [Accepted: 05/29/2021] [Indexed: 12/25/2022]
Abstract
Myocardial infarction irreversibly destroys millions of cardiomyocytes in the ventricle, making it the leading cause of heart failure worldwide. Over the past two decades, many progenitor and stem cell types were proposed as the ideal candidate to regenerate the heart after injury. The potential of stem cell therapy has been investigated thoroughly in animal and human studies, aiming at cardiac repair by true tissue replacement, by immune modulation, or by the secretion of paracrine factors that stimulate endogenous repair processes. Despite some successful results in animal models, the outcome from clinical trials remains overall disappointing, largely due to the limited stem cell survival and retention after transplantation. Extensive interest was developed regarding the combinational use of stem cells and various priming strategies to improve the efficacy of regenerative cell therapy. In this review, we provide a critical discussion of the different stem cell types investigated in preclinical and clinical studies in the field of cardiac repair. Moreover, we give an update on the potential of stem cell combinations as well as preconditioning and explore the future promises of these novel regenerative strategies.
Collapse
Affiliation(s)
- Hanne Beliën
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Lize Evens
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Marc Hendrikx
- Faculty of Medicine and Life Sciences, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Virginie Bito
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Agoralaan, Diepenbeek, Belgium
| |
Collapse
|
20
|
Tickle PG, Hendrickse PW, Weightman A, Nazir MH, Degens H, Egginton S. Impaired skeletal muscle fatigue resistance during cardiac hypertrophy is prevented by functional overload- or exercise-induced functional capillarity. J Physiol 2021; 599:3715-3733. [PMID: 34107075 DOI: 10.1113/jp281377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/04/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Capillary rarefaction is hypothesized to contribute to impaired exercise tolerance in cardiovascular disease, but it remains a poorly exploited therapeutic target for improving skeletal muscle performance. Using an abdominal aortic coarctation rat model of compensatory cardiac hypertrophy, we determine the efficacy of aerobic exercise for the prevention of, and mechanical overload for, restoration of hindlimb muscle fatigue resistance and microvascular impairment in the early stages of heart disease. Impaired muscle fatigue resistance was found after development of cardiac hypertrophy, but this impairment was prevented by low-intensity aerobic exercise and recovered after mechanical stretch due to muscle overload. Changes in muscle fatigue resistance were closely related to functional (i.e. perfused) microvascular density, independent of arterial blood flow, emphasizing the critical importance of optimal capillary diffusion for skeletal muscle function. Pro-angiogenic therapies are an important tool for improving skeletal muscle function in the incipient stages of heart disease. ABSTRACT Microvascular rarefaction may contribute to declining skeletal muscle performance in cardiac and vascular diseases. It remains uncertain to what extent microvascular rarefaction occurs in the earliest stages of these conditions, if impaired blood flow is an aggravating factor and whether angiogenesis restores muscle performance. To investigate this, the effects of aerobic exercise (voluntary wheel running) and functional muscle overload on the performance, femoral blood flow (FBF) and microvascular perfusion of the extensor digitorum longus (EDL) were determined in a chronic rat model of compensatory cardiac hypertrophy (CCH, induced by surgically imposed abdominal aortic coarctation). CCH was associated with hypertension (P = 0.001 vs. Control) and increased relative heart mass (P < 0.001). Immediately upon placing the aortic band (i.e. before development of CCH), post-fatigue test FBF was reduced (P < 0.003), coinciding with attenuated fatigue resistance (P = 0.039) indicating an acute arterial perfusion constraint on muscle performance. While FBF was normalized during CCH in chronic groups (P > 0.05) fatigue resistance remained reduced (P = 0.039) and was associated with reduced (P = 0.009) functional capillarity after development of CCH without intervention, indicating a microvascular limitation to muscle performance. Normalization of functional capillarity after aerobic exercise (P = 0.065) and overload (P = 0.329) in CCH coincided with restoration to control levels of muscle fatigue resistance (P > 0.999), although overload-induced EDL hypertrophy (P = 0.027) and wheel-running velocity and duration (both P < 0.05) were attenuated after aortic banding. These data show that reductions in skeletal muscle performance during CCH can be countered by improving functional capillarity, providing a therapeutic target to improve skeletal muscle function in chronic diseases.
Collapse
Affiliation(s)
- Peter G Tickle
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Paul W Hendrickse
- Department of Life Sciences, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester, UK.,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Andrew Weightman
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, UK
| | - M Hakam Nazir
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Hans Degens
- Department of Life Sciences, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester, UK.,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
21
|
Zilberman L, Zalik A, Fugenfirov I, Shimoni S, George J, Goland S. Residual alterations of cardiac and endothelial function in patients who recovered from Takotsubo cardiomyopathy. Clin Cardiol 2021; 44:797-804. [PMID: 33955558 PMCID: PMC8207966 DOI: 10.1002/clc.23604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Takotsubo cardiomyopathy (TCM) is characterized by transient left ventricle dysfunction. Hypothesis A residual cardiac and endothelial dysfunction is present in patients who recovered from TCM. Methods In this single‐center prospective study, patients with prior TCM were included and followed for 6.4 ± 1.6 years. All underwent comprehensive cardiac function assessment, including tissue Doppler imaging (TDI) and 2‐dimensional strain (2DS) echocardiography at their first visit. The number of circulating endothelial progenitor cells and levels of proangiogenic vascular endothelial growth factor (VEGF) and its receptor (VEGF‐R) were measured. All measurements were compared with healthy controls. Results Forty‐two women (age 58. ±8.6 years, LVEF 58.1 ± 6.1%) comprised the TCM group. Patients post‐TCM had significantly lower early velocities E′ (6 (5.0–8.0) vs. 9 (7.0–11.0) cm/s, p = .001) by TDI and higher E/E′ ratio (p = .002), lower LV global average longitudinal strain (LGS) (−18.9 ± 3.5% vs. −21.7 ± 2.3%, p = .002) and RV LGS (−20.1 ± 3.9% vs. −23.4 ± 2.8%, p = .003) were evident. There was a trend toward a higher VEGF‐R (p = .09) along with decreased VEGF/VEGF‐R ratio representing inadequate VEGF production. In‐hospital mortality was not reported and only two non‐cardiac deaths occurred at long‐term follow‐up. Conclusions Altered TDI and 2DS indices suggest residual biventricular myocardial injury in post‐TCM patients with the apparent LV function recovery. Inappropriate production of VEGF and VEGF‐R were observed, suggesting a possible underlying endothelial dysfunction in these patients.
Collapse
Affiliation(s)
- Liaz Zilberman
- The Heart Institute, Kaplan Medical Center, Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Adi Zalik
- The Heart Institute, Kaplan Medical Center, Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Irina Fugenfirov
- The Heart Institute, Kaplan Medical Center, Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Sara Shimoni
- The Heart Institute, Kaplan Medical Center, Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Jacob George
- The Heart Institute, Kaplan Medical Center, Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Sorel Goland
- The Heart Institute, Kaplan Medical Center, Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
22
|
Chioh FW, Fong SW, Young BE, Wu KX, Siau A, Krishnan S, Chan YH, Carissimo G, Teo LL, Gao F, Tan RS, Zhong L, Koh AS, Tan SY, Tambyah PA, Renia L, Ng LF, Lye DC, Cheung C. Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation. eLife 2021; 10:64909. [PMID: 33752798 PMCID: PMC7987341 DOI: 10.7554/elife.64909] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Numerous reports of vascular events after an initial recovery from COVID-19 form our impetus to investigate the impact of COVID-19 on vascular health of recovered patients. We found elevated levels of circulating endothelial cells (CECs), a biomarker of vascular injury, in COVID-19 convalescents compared to healthy controls. In particular, those with pre-existing conditions (e.g., hypertension, diabetes) had more pronounced endothelial activation hallmarks than non-COVID-19 patients with matched cardiovascular risk. Several proinflammatory and activated T lymphocyte-associated cytokines sustained from acute infection to recovery phase, which correlated positively with CEC measures, implicating cytokine-driven endothelial dysfunction. Notably, we found higher frequency of effector T cells in our COVID-19 convalescents compared to healthy controls. The activation markers detected on CECs mapped to counter receptors found primarily on cytotoxic CD8+ T cells, raising the possibility of cytotoxic effector cells targeting activated endothelial cells. Clinical trials in preventive therapy for post-COVID-19 vascular complications may be needed.
Collapse
Affiliation(s)
- Florence Wj Chioh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Siew-Wai Fong
- A*STAR ID Labs, Agency for Science, Technology and Research, Singapore, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Barnaby E Young
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,National Centre for Infectious Diseases, Singapore, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kan-Xing Wu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Anthony Siau
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Shuba Krishnan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Yi-Hao Chan
- A*STAR ID Labs, Agency for Science, Technology and Research, Singapore, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Guillaume Carissimo
- A*STAR ID Labs, Agency for Science, Technology and Research, Singapore, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Louis Ly Teo
- National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Fei Gao
- National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Ru San Tan
- National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Liang Zhong
- National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Angela S Koh
- National Heart Centre Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Seow-Yen Tan
- Department of Infectious Diseases, Changi General Hospital, Singapore, Singapore
| | - Paul A Tambyah
- Department of Medicine, National University Hospital, Singapore, Singapore
| | - Laurent Renia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,A*STAR ID Labs, Agency for Science, Technology and Research, Singapore, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Lisa Fp Ng
- A*STAR ID Labs, Agency for Science, Technology and Research, Singapore, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - David C Lye
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,National Centre for Infectious Diseases, Singapore, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
23
|
Huang WP, Yin WH, Chen JS, Huang PH, Chen JW, Lin SJ. Fenofibrate attenuates doxorubicin-induced cardiac dysfunction in mice via activating the eNOS/EPC pathway. Sci Rep 2021; 11:1159. [PMID: 33441969 PMCID: PMC7806979 DOI: 10.1038/s41598-021-80984-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Endothelial progenitor cells (EPCs) improve endothelial impairment, which in turn restores endothelial function in patients with heart failure (HF). In the present study, we tested whether fenofibrate, with its anti-inflammatory and vasoprotective effects, could improve myocardial function by activating EPCs through the eNOS pathway in a doxorubicin (DOX)-induced cardiomyopathy mouse model. Wild-type mice were divided into 4 groups and treated with vehicle, DOX + saline, DOX + fenofibrate, and DOX + fenofibrate + L-NAME (N(ω)-nitro-L-arginine methyl ester). DOX-induced cardiac atrophy, myocardial dysfunction, the number of circulating EPCs and tissue inflammation were analyzed. Mice in the DOX + fenofibrate group had more circulating EPCs than those in the DOX + saline group (2% versus 0.5% of total events, respectively) after 4 weeks of treatment with fenofibrate. In addition, the inhibition of eNOS by L-NAME in vivo further abolished the fenofibrate-induced suppression of DOX-induced cardiotoxic effects. Protein assays revealed that, after DOX treatment, the differential expression of MMP-2 (matrix metalloproteinase-2), MMP-9 (matrix metalloproteinase-9), TNF-α (tumor necrosis factor-α), and NT-pro-BNP (N-terminal pro-B-type natriuretic peptide) between saline- and DOX-treated mice was involved in the progression of HF. Mechanistically, fenofibrate promotes Akt/eNOS and VEGF (vascular endothelial growth factor), which results in the activation of EPC pathways, thereby ameliorating DOX-induced cardiac toxicity.
Collapse
Affiliation(s)
- Wen-Pin Huang
- Division of Cardiology, Cheng-Hsin Rehabilitation Medical Centre, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Hsian Yin
- Division of Cardiology, Cheng-Hsin Rehabilitation Medical Centre, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Shiong Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Critical Care Medicine, Taipei Veterans General Hospital, 112, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Healthcare and Management Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
24
|
Human aortic valve interstitial cells obtained from patients with aortic valve stenosis are vascular endothelial growth factor receptor 2 positive and contribute to ectopic calcification. J Pharmacol Sci 2020; 145:213-221. [PMID: 33451756 DOI: 10.1016/j.jphs.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/08/2023] Open
Abstract
Since aortic valve stenosis (AVS) is the most frequent and serious valvular heart disease in the elderly, and is accompanied by irreversible valve calcification, medicinal prevention of AVS is important. Although we recently demonstrated that human aortic valve interstitial cells (HAVICs) obtained from patients with AVS were highly sensitive to ectopic calcification stimulation, the cell types contributing to calcification are unknown. We aimed to immunocytochemically characterize HAVICs and identify their contribution to valve calcification. HAVICs were isolated from patients with AVS and cultured on non-coated dishes. Immunocytochemical features and HAVIC differentiation were analyzed in passage 1 (P1). The immunohistochemical features of the calcified aortic valve were analyzed. Most cultured P1 HAVICs were CD73-, CD90-, and CD105-positive, and CD45-and CD34-negative. HAVICs were vascular endothelial growth factor receptor 2 (VEGFR2)-positive; however, approximately half were α-smooth muscle actin (SMA)-positive, colonized, and easily differentiated into osteoblastic cells. Calcified aortic valve immunohistochemistry showed that all cells were positive for VEGFR2 and partly α-SMA. Further, VEGFR2-positive cells were more sensitive to tumor necrosis factor-α-induced ectopic calcification with or without α-SMA positivity. We conclude that HAVICs obtained from patients with AVS are VEGFR2-positive undifferentiated mesenchymal cells and may contribute to aortic valve ectopic calcification.
Collapse
|
25
|
Fadini GP, Mehta A, Dhindsa DS, Bonora BM, Sreejit G, Nagareddy P, Quyyumi AA. Circulating stem cells and cardiovascular outcomes: from basic science to the clinic. Eur Heart J 2020; 41:4271-4282. [PMID: 31891403 PMCID: PMC7825095 DOI: 10.1093/eurheartj/ehz923] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/19/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
The cardiovascular and haematopoietic systems have fundamental inter-relationships during development, as well as in health and disease of the adult organism. Although haematopoietic stem cells (HSCs) emerge from a specialized haemogenic endothelium in the embryo, persistence of haemangioblasts in adulthood is debated. Rather, the vast majority of circulating stem cells (CSCs) is composed of bone marrow-derived HSCs and the downstream haematopoietic stem/progenitors (HSPCs). A fraction of these cells, known as endothelial progenitor cells (EPCs), has endothelial specification and vascular tropism. In general, the levels of HSCs, HSPCs, and EPCs are considered indicative of the endogenous regenerative capacity of the organism as a whole and, particularly, of the cardiovascular system. In the last two decades, the research on CSCs has focused on their physiologic role in tissue/organ homoeostasis, their potential application in cell therapies, and their use as clinical biomarkers. In this review, we provide background information on the biology of CSCs and discuss in detail the clinical implications of changing CSC levels in patients with cardiovascular risk factors or established cardiovascular disease. Of particular interest is the mounting evidence available in the literature on the close relationships between reduced levels of CSCs and adverse cardiovascular outcomes in different cohorts of patients. We also discuss potential mechanisms that explain this association. Beyond CSCs' ability to participate in cardiovascular repair, levels of CSCs need to be interpreted in the context of the broader connections between haematopoiesis and cardiovascular function, including the role of clonal haematopoiesis and inflammatory myelopoiesis.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Anurag Mehta
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - Devinder Singh Dhindsa
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
| | | | - Gopalkrishna Sreejit
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Prabhakara Nagareddy
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Arshed Ali Quyyumi
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Elżbieta R, Iwona K, Joanna B, Karina JR, Piotr R. Role of fibrocytes and endothelial progenitor cells among low-differentiated CD34+ cells in the progression of lung sarcoidosis. BMC Pulm Med 2020; 20:306. [PMID: 33218322 PMCID: PMC7678043 DOI: 10.1186/s12890-020-01345-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
Background Sarcoidosis is a multisystemic granulomatous disease with still unknown etiology. Our previous studies showed a significantly higher percentage of CD34 + cells in the peripheral blood in patients with sarcoidosis (SA) compared to the control group. The objective of the present study was to characterized of the CD34 + cell population in peripheral blood in patients with SA with reference to the control group. Moreover in patients with SA, fibrocytes and endothelial cells were analysed and their relationship to the fibrosis process based on assessment of diffusing capacity for carbon monoxide (DLCO). Methods Data from patients diagnosed with SA at Military Institute of Medicine (Warsaw, Poland) between January 2018 and December 2019 were collected and analysed ongoing basis. Peripheral blood was collected from 26 patients with newly diagnosed pulmonary SA and 16 healthy subjects. The immunomagnetic method and flow cytometry were used. Among the CD34+ progenitor cells were assessed: low-differentiated cells, hematopoietic progenitor cells and endothelial progenitor cells. The Statistica 12.0 software was used for a statistical analysis. Results We observed a significantly higher percentage of low-differentiated cells (13.8 vs. 2.3, P = 0.001) and endothelial cells (0.3 vs. 0.0, P = 0.001) in patients with SA compared to the control group. In the study group the median proportion of fibrocytes was 1.877% (0.983–2.340) in patients with DLCO< 80%, while in patients with DLCO> 80% was 0.795% (0.139–1.951) (P = 0.72). The median proportion of endothelial progenitor cells was higher in patients with DLCO< 80%: 0.889% (0.391–1.741), than in patients with DLCO> 80%: 0.451% (0.177–0.857) (P = 0.44). Conclusions In conclusion we demonstrated for the first time the immunophenotype of peripheral CD34 + cells with the degree of their differentiation. The study confirmed the involvement of low differentiated cells and endothelial cells in patients with SA.
Collapse
Affiliation(s)
- Rutkowska Elżbieta
- Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Military Institute of Medicine, Warsaw, Poland.
| | - Kwiecień Iwona
- Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Military Institute of Medicine, Warsaw, Poland
| | - Bednarek Joanna
- Department of Internal Medicine, Pulmonology, Allergology and Clinical Immunology, Military Institute of Medicine, Warsaw, Poland
| | - Jahnz-Różyk Karina
- Department of Internal Medicine, Pulmonology, Allergology and Clinical Immunology, Military Institute of Medicine, Warsaw, Poland
| | - Rzepecki Piotr
- Department of Internal Medicine and Hematology, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
27
|
Poglajen G, Frljak S, Zemljič G, Cerar A, Okrajšek R, Šebeštjen M, Vrtovec B. Stem Cell Therapy for Chronic and Advanced Heart Failure. Curr Heart Fail Rep 2020; 17:261-270. [PMID: 32783146 DOI: 10.1007/s11897-020-00477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss recent advances in the field of cell therapy in patients with heart failure with reduced ejection fraction (HFrEF) of ischemic (iCMP) and nonischemic (dCMP) etiology, heart failure with preserved ejection fraction (HFpEF), and in advanced heart failure patients undergoing mechanical circulatory support (LVAD). RECENT FINDINGS In HFrEF patients (iCMP and dCMP cohorts), autologous and/or allogeneic cell therapy was shown to improve myocardial performance, patients' functional capacity, and neurohumoral activation. In HFpEF patient population, the concept of cell therapy in novel and remains largely unexplored. However, initial data are very encouraging and suggest at least a similar benefit in improvements of myocardial performance (also diastolic function of the left ventricle), exercise capacity, and neurohumoral activation. Recently, cell therapy was explored in the sickest population of advanced heart failure patients undergoing LVAD support also showing a potential benefit in promoting myocardial reverse remodeling and recovery. In the past decade, several cell therapy-based clinical trials showed promising results in various chronic and advanced heart failure patient cohorts. Future cell treatment strategies should aim for more personalized therapeutic approaches by defining optimal stem cell type or their combination, dose, and delivery method for an individual patient adjusted for patient's age and stage/duration of heart failure.
Collapse
Affiliation(s)
- Gregor Poglajen
- Department of Cardiology, Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Zaloška cesta 7, 1000, Ljubljana, Slovenia. .,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Sabina Frljak
- Department of Cardiology, Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Zaloška cesta 7, 1000, Ljubljana, Slovenia
| | - Gregor Zemljič
- Department of Cardiology, Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Zaloška cesta 7, 1000, Ljubljana, Slovenia
| | - Andraž Cerar
- Department of Cardiology, Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Zaloška cesta 7, 1000, Ljubljana, Slovenia
| | - Renata Okrajšek
- Department of Cardiology, Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Zaloška cesta 7, 1000, Ljubljana, Slovenia
| | - Miran Šebeštjen
- Department of Cardiology, Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Zaloška cesta 7, 1000, Ljubljana, Slovenia
| | - Bojan Vrtovec
- Department of Cardiology, Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Zaloška cesta 7, 1000, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
28
|
Cristóvão G, Milner J, Sousa P, Ventura M, Cristóvão J, Elvas L, Paiva A, Gonçalves L, Ribeiro CF, António N. Improvement in circulating endothelial progenitor cells pool after cardiac resynchronization therapy: increasing the list of benefits. Stem Cell Res Ther 2020; 11:194. [PMID: 32448383 PMCID: PMC7245793 DOI: 10.1186/s13287-020-01713-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Background Recent studies suggest that circulating endothelial progenitor cells (EPCs) may influence the response to cardiac resynchronization therapy (CRT). The aim of this study was to evaluate the effect of CRT on EPC levels and to assess the impact of EPCs on long-term clinical outcomes. Population and methods Prospective study of 50 patients submitted to CRT. Two populations of circulating EPCs were quantified previously to CRT implantation: CD34+KDR+ and CD133+KDR+ cells. EPC levels were reassessed 6 months after CRT. Endpoints during the long-term follow-up were all-cause mortality, heart transplantation, and hospitalization for heart failure (HF) management. Results The proportion of non-responders to CRT was 42% and tended to be higher in patients with an ischemic vs non-ischemic etiology (64% vs 35%, p = 0.098). Patients with ischemic cardiomyopathy (ICM) showed significantly lower CD34+KDR+ EPC levels when compared to non-ischemic dilated cardiomyopathy patients (DCM) (0.0010 ± 0.0007 vs 0.0030 ± 0.0024 cells/100 leukocytes, p = 0.032). There were no significant differences in baseline EPC levels between survivors and non-survivors nor between patients who were rehospitalized for HF management during follow-up or not. At 6-month follow-up, circulating EPC levels were significantly higher than baseline levels (0.0024 ± 0.0023 vs 0.0047 ± 0.0041 CD34+KDR+ cells/100 leukocytes, p = 0.010 and 0.0007 ± 0.0004 vs 0.0016 vs 0.0013 CD133+/KDR+ cells/100 leukocytes, p = 0.007). Conclusions Patients with ICM showed significantly lower levels of circulating EPCs when compared to their counterparts. CRT seems to improve the pool of endogenously circulating EPCs and reduced baseline EPC levels seem not to influence long-term outcomes after CRT. Graphical abstract ![]()
Collapse
Affiliation(s)
- Gonçalo Cristóvão
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - James Milner
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Pedro Sousa
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Miguel Ventura
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - João Cristóvão
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Luís Elvas
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Artur Paiva
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal.,Cytometry Operational Management Unit, Clinical Pathology Service, Coimbra Hospital and University Centre, Coimbra, Portugal.,Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Department Biomedical Laboratory Sciences, Coimbra, Portugal
| | - Lino Gonçalves
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
| | - Carlos Fontes Ribeiro
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
| | - Natália António
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, Coimbra, Portugal. .,Clinical Academic Center of Coimbra, Coimbra, Portugal. .,Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal.
| |
Collapse
|
29
|
Li X, Zhang F, Zhou H, Hu Y, Guo D, Fang X, Chen Y. Interplay of TNF-α, soluble TNF receptors and oxidative stress in coronary chronic total occlusion of the oldest patients with coronary heart disease. Cytokine 2020; 125:154836. [DOI: 10.1016/j.cyto.2019.154836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022]
|
30
|
Clinical significance of endothelial progenitor cells in patients with liver cirrhosis with or without hepatocellular carcinoma. Eur J Gastroenterol Hepatol 2020; 32:87-94. [PMID: 31790004 DOI: 10.1097/meg.0000000000001484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE The role of endothelial progenitor cells in patients with cirrhosis has seldom been investigated. This study was conducted to assess the clinical significance of circulating endothelial progenitor cells in patients with liver cirrhosis with or without hepatocellular carcinoma. METHODS A blood sample was collected once from patients with cirrhosis alone (n = 34) or cirrhosis and hepatocellular carcinoma (n = 46) and healthy controls (n = 27) for assessing levels of endothelial progenitor cells and vascular endothelial growth factor. Blood cells staining positive for CD34/CD133/KDR using flow cytometry were characterized as endothelial progenitor cells. Plasma vascular endothelial growth factor was quantified by ELISA. RESULTS The levels of CD34/KDR-positive endothelial progenitor cells, CD133/KDR-positive endothelial progenitor cells, and vascular endothelial growth factor were higher in patients with cirrhosis ± hepatocellular carcinoma than in healthy controls (P = 0.017, P < 0.001 and P < 0.001, respectively). The levels of endothelial progenitor cells and vascular endothelial growth factor did not show statistical difference according to Child-Turcotte-Pugh class. There was a moderately significant correlation between vascular endothelial growth factor levels and hepatocellular carcinoma stage (ρ = 0.464, P = 0.001). Smoking, ascites, and portal vein thrombosis were independently related to lower levels of circulating CD34/KDR-positive endothelial progenitor cells, higher levels of CD133/KDR-positive endothelial progenitor cells, and higher levels of vascular endothelial growth factor, respectively (P = 0.041, P = 0.023, and P < 0.001, respectively). CONCLUSION Circulating endothelial progenitor cells and plasma vascular endothelial growth factor levels were higher in patients with liver cirrhosis ± hepatocellular carcinoma compared to healthy controls. The increase in endothelial progenitor cells and vascular endothelial growth factor may have a possible role in the development of complications, especially ascites and portal vein thrombosis, or in progression of hepatocellular carcinoma.
Collapse
|
31
|
Emmi G, Mannucci A, Argento FR, Silvestri E, Vaglio A, Bettiol A, Fanelli A, Stefani L, Taddei N, Prisco D, Fiorillo C, Becatti M. Stem-Cell-Derived Circulating Progenitors Dysfunction in Behçet's Syndrome Patients Correlates With Oxidative Stress. Front Immunol 2019; 10:2877. [PMID: 31921141 PMCID: PMC6923242 DOI: 10.3389/fimmu.2019.02877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/22/2019] [Indexed: 12/29/2022] Open
Abstract
Behçet's syndrome (BS) is a systemic vasculitis considered as the prototype of a systemic inflammation-induced thrombotic condition whose pathogenesis cannot be explained just by coagulation abnormalities. Circulating hematopoietic progenitor cells (CPC), a population of rare, pre-differentiated adult stem cells originating in the bone marrow and capable of both self-renewal and multi-lineage differentiation, are mobilized in response to vascular injury and play a key role in tissue repair. In cardiovascular and thrombotic diseases, low circulating CPC number and reduced CPC function have been observed. Oxidative stress may be one of the relevant culprits that account for the dysfunctional and numerically reduced CPC in these conditions. However, the detailed mechanisms underlying CPC number reduction are unknown. On this background, the present study was designed to evaluate for the first time the possible relationship between CPC dysfunction and oxidative stress in BS patients. In BS patients, we found signs of plasma oxidative stress and significantly lower CD34+/CD45−/dim and CD34+/CD45−/dim/CD133+ CPC levels. Importantly, in all the considered CPC subsets, significantly higher ROS levels with respect to controls were observed. Higher levels of caspase-3 activity in all the considered CPC population and a strong reduction in GSH content in CPC subpopulation from BS patients with respect to controls were also observed. Interestingly, in BS patients, ROS significantly correlated with CPC number and CPC caspase-3 activity and CPC GSH content significantly correlated with CPC number, in all CPC subsets. Collectively, these data demonstrate for the first time that CPC from BS patients show signs of oxidative stress and apoptosis and that a reduced CPC number is present in BS patients with respect to controls. Interestingly, we observed an inverse correlation between circulating CPC number and CPC ROS production, suggesting a possible toxic ROS effect on CPC in BS patients. The significant correlations between ROS production/GSH content and caspase-3 activity point out that oxidative stress can represent a determinant in the onset of apoptosis in CPC. These data support the hypothesis that oxidative-stress-mediated CPC dysfunctioning may counteract their vascular repair actions, thereby contributing to the pathogenesis and the progression of vascular disease in BS.
Collapse
Affiliation(s)
- Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Amanda Mannucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Elena Silvestri
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Augusto Vaglio
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Alessandra Fanelli
- Central Laboratory, Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Laura Stefani
- Department of Clinical and Experimental Medicine, Center of Sports Medicine, University of Firenze, Firenze, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| |
Collapse
|
32
|
Fenofibrate Reverses Dysfunction of EPCs Caused by Chronic Heart Failure. J Cardiovasc Transl Res 2019; 13:158-170. [PMID: 31701352 DOI: 10.1007/s12265-019-09889-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
Abstract
The enhanced activity of endothelial progenitor cells (EPCs) by AMP-activated protein kinase (AMPK) agonists might explain the reversal of chronic heart failure (CHF)-mediated endothelial dysfunction. We studied baseline circulating EPC numbers in patients with heart failure and clarified the effect of fenofibrate on both circulating angiogenic cell (CAC) and late EPC activity. The numbers of circulating EPCs in CHF patients were quantified by flow cytometry. Blood-derived mononuclear cells were cultured, and CAC and late EPC functions, including fibronectin adhesion, tube formation, and migration, were evaluated. We focused on the effect of fenofibrate, an AMPK agonist, on EPC function and Akt/eNOS cascade activation in vitro. The number of circulating EPCs (CD34+/KDR+) was significantly lower in CHF patients (ischemic cardiomyopathy (ICMP): 0.07%, dilated cardiomyopathy (DCMP): 0.068%; p < 0.05) than in healthy subjects (0.102% of the gating region). In CACs, fibronectin adhesion function was reversed by fenofibrate treatment (p < 0.05). Similar results were also found for tube formation and migration in late EPCs, which were significantly improved by fenofibrate in an AMPK-dependent manner (p < 0.05), suggesting that fenofibrate reversed CACs and late EPC dysfunction in CHF patients. The present findings reveal the potential application of the AMPK agonist fenofibrate to reverse endothelial dysfunction in CHF patients.
Collapse
|
33
|
Kaihan AB, Hishida M, Imaizumi T, Okazaki M, Kaihan AN, Katsuno T, Taguchi A, Yasuda Y, Tsuboi N, Kosugi T, Maruyama S. Circulating levels of CD34+ cells predict long-term cardiovascular outcomes in patients on maintenance hemodialysis. PLoS One 2019; 14:e0223390. [PMID: 31584974 PMCID: PMC6777758 DOI: 10.1371/journal.pone.0223390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
CD34+ cells maintain vascular homeostasis and predict cardiovascular outcomes. We previously evaluated the association of CD34+ cells with cardiovascular disease (CVD) events over 23 months, but long-term CVD outcomes in relation to levels of CD34+ cells in patients on maintenance hemodialysis are unclear. Herein, we analyzed the long-term predictive potential levels of CD34+ cells for CVD outcomes and all-cause mortality. Between March 2005 and May 2005, we enrolled 215 patients on maintenance hemodialysis at Nagoya Kyoritsu Hospital and followed them up to 12.8 years. According to the CD34+ cell counts, patients were classified into the lowest, medium, and highest tertiles. Levels of CD34+ cells were analyzed in association with four-point major adverse CV events (MACEs), CVD death, and all-cause mortality. In univariate analysis age, smoking habit, lower geriatric nutrition risk index, lower calcium × phosphate product, and lower intact parathyroid hormone were significantly associated with the lowest tertile. Whereas, in multivariate analysis, age and smoking habit were significantly associated with the lowest tertile. Among 139 (64.7%) patients who died during a mean follow-up period of 8.0 years, 39 (28.1%) patients died from CVD. Patients in the lowest tertile had a significantly lower survival rate than those in the medium and highest tertiles (p ≤ 0.001). Using multivariable analyses, the lowest tertile was significantly associated with four-point MACEs (hazard ratio 1.80, p = 0.023) and CVD death (hazard ratio 2.50, p = 0.011). In conclusion, our long-term observational study revealed that a low level of CD34+ cells in the circulation predicts CVD outcomes among patients on maintenance hemodialysis.
Collapse
Affiliation(s)
- Ahmad Baseer Kaihan
- Department of Nephrology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Faculty of Medicine, Balkh University, Mazar-i-Sharif, Afghanistan
| | - Manabu Hishida
- Department of Nephrology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Takahiro Imaizumi
- Department of Nephrology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Masaki Okazaki
- Department of Nephrology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Graduate School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Yoshinari Yasuda
- Department of Nephrology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Department of Nephrology, Fujita Health University Graduate School of Medicine, Toyoake, Japan
| | - Tomoki Kosugi
- Department of Nephrology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
34
|
Endothelial injury is closely related to osteopontin and TNF receptor-mediated inflammation in end-stage renal disease. Cytokine 2019; 121:154729. [DOI: 10.1016/j.cyto.2019.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/27/2019] [Accepted: 05/19/2019] [Indexed: 12/19/2022]
|
35
|
Marvasti TB, Alibhai FJ, Weisel RD, Li RK. CD34 + Stem Cells: Promising Roles in Cardiac Repair and Regeneration. Can J Cardiol 2019; 35:1311-1321. [PMID: 31601413 DOI: 10.1016/j.cjca.2019.05.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/12/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022] Open
Abstract
Cell therapy has received significant attention as a novel therapeutic approach to restore cardiac function after injury. CD34-positive (CD34+) stem cells have been investigated for their ability to promote angiogenesis and contribute to the prevention of remodelling after infarct. However, there are significant differences between murine and human CD34+ cells; understanding these differences might benefit the therapeutic use of these cells. Herein we discuss the function of the CD34 cell and highlight the similarities and differences between murine and human CD34 cell function, which might explain some of the differences between the animal and human evolutions. We also summarize the studies that report the application of murine and human CD34+ cells in preclinical studies and clinical trials and current limitations with the application of cell therapy for cardiac repair. Finally, to overcome these limitations we discuss the application of novel humanized rodent models that can bridge the gap between preclinical and clinical studies as well as rejuvenation strategies for improving the quality of old CD34+ cells for future clinical trials of autologous cell transplantation.
Collapse
Affiliation(s)
- Tina Binesh Marvasti
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Ontario, Canada
| | - Faisal J Alibhai
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Ontario, Canada
| | - Richard D Weisel
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Ontario, Canada; Division of Cardiac Surgery, Department of Surgery, University of Toronto; Toronto, Ontario, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Ontario, Canada; Division of Cardiac Surgery, Department of Surgery, University of Toronto; Toronto, Ontario, Canada.
| |
Collapse
|
36
|
Poglajen G, Gregoric ID, Radovancevic R, Vrtovec B. Stem Cell and Left Ventricular Assist Device Combination Therapy. Circ Heart Fail 2019; 12:e005454. [PMID: 30759999 DOI: 10.1161/circheartfailure.118.005454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ventricular assist device (VAD) technology has evolved significantly over the past decades and currently represents one of the most important treatment strategies for patients with advanced chronic heart failure. There is increasing evidence that in selected patients undergoing long-term VAD support, improvement of myocardial structure and function may occur. However, there seems to be a significant discrepancy between structural and functional recovery of the failing myocardium, as only a small fraction of VAD-supported patients demonstrate reverse structural remodeling and eventually reach clinically significant and stable, functional improvement. More recently, cell therapy has gained a growing interest in the heart failure community because of its potential to augment reverse remodeling of the failing myocardium. Although theoretically the combination of long-term VAD support and cell therapy may offer significant advantages over using these therapeutic modalities separately, it remains largely unexplored. This review aims to summarize the current state of the art of the effects of VAD support and cell therapy on the reverse remodeling of the failing myocardium and to discuss the rationale for using a combined treatment strategy to further promote myocardial recovery in patients with advanced chronic heart failure.
Collapse
Affiliation(s)
- Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Slovenia (G.P., B.V.).,Department of Advanced Cardiopulmonary Therapies and Transplantation, Center for Advanced Heart Failure, University of Texas Health Science Center at Houston (G.P., I.D.G., R.R.)
| | - Igor D Gregoric
- Department of Advanced Cardiopulmonary Therapies and Transplantation, Center for Advanced Heart Failure, University of Texas Health Science Center at Houston (G.P., I.D.G., R.R.)
| | - Rajko Radovancevic
- Department of Advanced Cardiopulmonary Therapies and Transplantation, Center for Advanced Heart Failure, University of Texas Health Science Center at Houston (G.P., I.D.G., R.R.)
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Slovenia (G.P., B.V.)
| |
Collapse
|
37
|
McNeill B, Ostojic A, Rayner KJ, Ruel M, Suuronen EJ. Collagen biomaterial stimulates the production of extracellular vesicles containing microRNA-21 and enhances the proangiogenic function of CD34 + cells. FASEB J 2018; 33:4166-4177. [PMID: 30526047 DOI: 10.1096/fj.201801332r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CD34+ cells are promising for revascularization therapy, but their clinical use is limited by low cell counts, poor engraftment, and reduced function after transplantation. In this study, a collagen type I biomaterial was used to expand and enhance the function of human peripheral blood CD34+ cells, and potential underlying mechanisms were examined. Compared to the fibronectin control substrate, biomaterial-cultured CD34+ cells from healthy donors had enhanced proliferation, migration toward VEGF, angiogenic potential, and increased secretion of CD63+CD81+ extracellular vesicles (EVs). In the biomaterial-derived EVs, greater levels of the angiogenic microRNAs (miRs), miR-21 and -210, were detected. Notably, biomaterial-cultured CD34+ cells had reduced mRNA and protein levels of Sprouty (Spry)1, which is an miR-21 target and negative regulator of endothelial cell proliferation and angiogenesis. Similar to the results of healthy donor cells, biomaterial culture increased miR-21 and -210 expression in CD34+ cells from patients who underwent coronary artery bypass surgery, which also exhibited improved VEGF-mediated migration and angiogenic capacity. Therefore, collagen biomaterial culture may be useful for expanding the number and enhancing the function of CD34+ cells in patients, possibly mediated through suppression of Spry1 activity by EV-derived miR-21. These results may provide a strategy to enhance the therapeutic potency of CD34+ cells for vascular regeneration.-McNeill, B., Ostojic, A., Rayner, K. J., Ruel, M., Suuronen, E. J. Collagen biomaterial stimulates the production of extracellular vesicles containing microRNA-21 and enhances the proangiogenic function of CD34+ cells.
Collapse
Affiliation(s)
- Brian McNeill
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Aleksandra Ostojic
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katey J Rayner
- Atherosclerosis, Genomics, and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc Ruel
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Erik J Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
38
|
Djohan AH, Sia CH, Lee PS, Poh KK. Endothelial Progenitor Cells in Heart Failure: an Authentic Expectation for Potential Future Use and a Lack of Universal Definition. J Cardiovasc Transl Res 2018; 11:393-402. [PMID: 29777508 DOI: 10.1007/s12265-018-9810-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023]
Abstract
Congestive heart failure (CHF) is a prevalent disease (especially among the elderly) with high mortality and morbidity rates. The pathological hallmark of CHF is a loss of cardiomyocytes leading to cardiac fibrosis and dysfunctional cardiac remodeling, which culminates in organ failure. Endothelial progenitor cells (EPCs) are bone marrow-derived cells that contribute to maintenance of the integrity of endothelial wall and protect ischemic myocardium through forming new blood vessels (vasculogenesis) or proliferation of pre-existing vasculature (angiogenesis). Despite its potential, little is known about EPCs and their function in CHF. Here, we define EPC and its role in health and CHF, highlighting their contributions as a cornerstone in the maintenance of a healthy endothelium. Thereafter, we explore the behavior and relevance of EPCs in the pathophysiology of CHF, their prognostic importance, and possible utilization of EPCs as therapy for CHF. Lastly, the restrictions surrounding the use of EPCs in clinical practice will be discussed.
Collapse
Affiliation(s)
- Andie H Djohan
- Department of Medicine, National University Health System, Singapore, Singapore
| | - Ching-Hui Sia
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
| | - Poay Sian Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore. .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
39
|
Ozkok A, Yildiz A. Endothelial Progenitor Cells and Kidney Diseases. Kidney Blood Press Res 2018; 43:701-718. [PMID: 29763891 DOI: 10.1159/000489745] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/03/2018] [Indexed: 01/12/2023] Open
Abstract
Endothelial progenitor cells (EPC) are bone marrow derived or tissue-resident cells that play major roles in the maintenance of vascular integrity and repair of endothelial damage. Although EPCs may be capable of directly engrafting and regenerating the endothelium, the most important effects of EPCs seem to be depended on paracrine effects. In recent studies, specific microvesicles and mRNAs have been found to mediate the pro-angiogenic and regenerative effects of EPCs on endothelium. EPC counts have important prognostic implications in cardiovascular diseases (CVD). Uremia and inflammation are associated with lower EPC counts which probably contribute to increased CVD risks in patients with chronic kidney disease. Beneficial effects of the EPC therapies have been shown in studies performed on different models of CVD and kidney diseases such as acute and chronic kidney diseases and glomerulonephritis. However, lack of a clear definition and specific marker of EPCs is the most important problem causing difficulties in interpretation of the results of the studies investigating EPCs.
Collapse
Affiliation(s)
- Abdullah Ozkok
- University of Health Sciences, Umraniye Training and Research Hospital, Department of Nephrology, Istanbul, Turkey,
| | - Alaattin Yildiz
- Istanbul University, Istanbul Faculty of Medicine, Department of Nephrology, Istanbul, Turkey
| |
Collapse
|
40
|
Skrzypkowska M, Słomiński B, Ryba-Stanisławowska M, Gutknecht P, Siebert J. Circulating CD34+ and CD34+VEGFR2+ progenitor cells are associated with KLOTHO KL-VS polymorphism. Microvasc Res 2018; 119:1-6. [PMID: 29604296 DOI: 10.1016/j.mvr.2018.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND KLOTHO is a regulator of endothelial cells activity and integrity. It has been described for the first time because of its anti-aging properties. KLOTHO encoding gene is present in many functional variants in humans, including "KL-VS" variant that has been connected with longevity and cardiovascular disease development. Few mechanisms have been proposed to explain these associations, but none of them focused on cells from CD34+ population. The aim of our study was to investigate influence of KLOTHO KL-VS polymorphism on populations of CD34+ and CD34+VEGFR2+ cells. METHODS AND RESULTS We examined 167 Polish subjects from Pomeranian region. The analysis concerned KL-VS polymorphism, flow cytometry evaluation of whole blood cells and determination of endothelium-associated serum/plasma factors. Our results indicate that individuals possessing at least one KL-VS allele are characterized by greater number of CD34+ and CD34+VEGFR2+ and their various subpopulations (CD34+CD133+, CD34+c-Kit+, CD34+CXCR4+ and CD34+VEGFR2+c-Kit+) than wild-type volunteers. This group also exhibited more favorable lipid profile and statistically insignificant decrease of vWF and angiotensin II in their blood, whereas VEGF levels were elevated. CONCLUSION One of the mechanisms that are responsible for previously described KL-VS heterozygote advantage may be connected with maintaining greater size of hematopoietic and endothelial progenitor cells population.
Collapse
Affiliation(s)
- Maria Skrzypkowska
- Department of Immunology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Bartosz Słomiński
- Department of Immunology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | | | - Piotr Gutknecht
- University Center for Cardiology Department of Family Medicine, Medical University of Gdansk, M. Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland
| | - Janusz Siebert
- University Center for Cardiology Department of Family Medicine, Medical University of Gdansk, M. Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland
| |
Collapse
|
41
|
Niemiro GM, Edwards T, Barfield JP, Beals JW, Broad EM, Motl RW, Burd NA, Pilutti LA, DE Lisio M. Circulating Progenitor Cell Response to Exercise in Wheelchair Racing Athletes. Med Sci Sports Exerc 2018; 50:88-97. [PMID: 28806276 DOI: 10.1249/mss.0000000000001402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Circulating progenitor cells (CPC) are a heterogeneous population of stem/progenitor cells in peripheral blood that participate in tissue repair. CPC mobilization has been well characterized in able-bodied persons but has not been previously investigated in wheelchair racing athletes. The purpose of this study was to characterize CPC and CPC subpopulation mobilization in elite wheelchair racing athletes in response to acute, upper-extremity aerobic exercise to determine whether CPC responses are similar to ambulatory populations. METHODS Eight participants (three females; age = 27.5 ± 4.0 yr, supine height = 162.5 ± 18.6 cm, weight = 53.5 ± 10.9 kg, V˙O2peak = 2.4 ± 0.62 L·min, years postinjury = 21.5 ± 6.2 yr) completed a 25-km time trial on a road course. Blood sampling occurred before and immediately after exercise for quantification of CPC (CD34), hematopoietic stem and progenitor cells (HSPC) (CD34/CD45), hematopoietic stem cells (HSC) (CD34/CD45/CD38), CD34 adipose tissue (AT)-derived mesenchymal stromal cells (MSC) (CD45/CD34/CD105/CD31), CD34 bone marrow (BM)-derived MSC (CD45/CD34/CD105/CD31), and endothelial progenitor cells (EPC) (CD45/CD34/VEGFR2) via flow cytometry. Blood lactate was measured before and after trial as an indicator of exercise intensity. RESULTS CPC concentration increased 5.7-fold postexercise (P = 0.10). HSPC, HSC, EPC, and both MSC populations were not increased postexercise. Baseline HSPC populations were significantly positively correlated to absolute V˙O2peak (rho = 0.71, P < 0.05) with HSC trending to positively correlate to V˙O2peak (rho = 0.62, P = 0.10). AT-MSC populations were trending to be negatively correlated to baseline V˙O2peak (rho = -0.62, P = 0.058). The change in CPC, EPC, and AT-MSC pre- and postexercise significantly positively correlated to the change in lactate concentrations (rho = 0.91 P = 0.002, 0.71 P = 0.047, 0.81 P = 0.02, respectively, all P < 0.05). CONCLUSION These data suggest that CPC content in wheelchair racing athletes is related to cardiorespiratory fitness, and responses to exercise are positively related to exercise intensity.
Collapse
Affiliation(s)
- Grace M Niemiro
- 1Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL; 2Department of Health and Human Performance, Radford University, Radford, VA; 3U.S. Paralympics, Colorado Springs, CO; 4Department of Physical Therapy, University of Alabama-Birmingham, Birmingham, AL; 5Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, CANADA; and 6School of Human Kinetics, Brain and Mind Research Institute, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, CANADA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee SH, Oh HJ, Kim MJ, Setyawan EMN, Choi YB, Lee BC. Effect of co-culture human endothelial progenitor cells with porcine oocytes during maturation and subsequent embryo development of parthenotes in vitro. Mol Reprod Dev 2018; 85:336-347. [PMID: 29442425 DOI: 10.1002/mrd.22969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022]
Abstract
Human endothelial progenitor cells (EPCs) have been applied to regenerative medicine for their roles in angiogenesis as well as neovascularization, and these angiogenetic functions have beneficial effects on maturation of ovarian follicles. However, little information is available on whether EPCs on culture systems affect oocyte maturation and subsequent embryo development. Therefore, the objective of this study was to investigate the effect of EPC co-culture on porcine oocytes during in vitro maturation (IVM) and subsequent embryo development, and to examine gene expression in cumulus cells, oocytes and blastocysts. The effect of co-culture using EPC on porcine oocyte IVM was investigated. Oocytes were activated using electrical stimulation and embryo developmental competence was estimated. The expression of the genes related to cumulus expansion, oocyte maturation, embryo development, and apoptosis were analyzed. In result, there was a significantly increased maturation rate in EPC group compared with control (p < 0.05). Also, oocytes co-cultured with EPCs exhibited significantly improved blastocyst formation rates (p < 0.05). The expression of mRNAs associated with cumulus expansion and apoptosis in cumulus cells was significantly up-regulated in EPC group. Also, markedly increased levels of GDF9, BMP15, and BCL2 were observed in oocytes from the EPC group. Blastocysts in the co-culture group showed significantly higher SOX2, OCT4, and NANOG levels. In conclusion, co-culturing porcine oocytes with EPCs improves their maturation by regulating genes involved in cumulus cell expansion, oocyte maturation, and apoptosis. Moreover, EPC co-culture during IVM enhanced embryo development as shown by increased blastocyst formation rate and pluripotency-related gene expression.
Collapse
Affiliation(s)
- Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Erif M N Setyawan
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoo Bin Choi
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
43
|
Cole-Jeffrey CT, Pepine CJ, Katovich MJ, Grant MB, Raizada MK, Hazra S. Beneficial Effects of Angiotensin-(1-7) on CD34+ Cells From Patients With Heart Failure. J Cardiovasc Pharmacol 2018; 71:155-159. [PMID: 29140957 PMCID: PMC5839943 DOI: 10.1097/fjc.0000000000000556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The dysfunctional nature of CD34 cells from patients with heart failure (HF) may make them unsuitable for autologous stem-cell therapy. In view of evidence that the vasoprotective axis of the renin-angiotensin system (RAS) improves CD34 cell functions, we hypothesized that CD34 cells from patients with HF will be dysfunctional and that angiotensin-(1-7) [Ang-(1-7)] would improve their function. Peripheral blood was collected from New York Heart Association class II-IV patients with HF (n = 31) and reference subjects (n = 16). CD34 cell numbers from patients with HF were reduced by 47% (P < 0.05) and also displayed 76% reduction in migratory capacity and 56% (P < 0.05) lower production of nitric oxide. These alterations were associated with increases in RAS genes angiotensin-converting enzyme and AT2R (595%, P < 0.05) mRNA levels and 80% and 85% decreases in angiotensin-converting enzyme 2 and Mas mRNA levels, respectively. Treatment with Ang-(1-7) enhanced CD34 cell function through increased migratory potential and nitric oxide production, and reduced reactive oxygen species generation. These data show that HF CD34 cells are dysfunctional, and Ang-(1-7) improves their functions. This suggests that activation of the vasoprotective axis of the RAS may hold therapeutic potential for autologous stem-cell therapy in patients with HF.
Collapse
Affiliation(s)
- Colleen T. Cole-Jeffrey
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Carl J. Pepine
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Maria B. Grant
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Sugata Hazra
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
44
|
Abstract
Aim of the Review The aim of this review is to discuss recent advances in clinical aspects of stem cell therapy in chronic nonischemic heart failure (DCMP) with emphasis on patient selection, stem cell types, and delivery methods. Recent Findings Several stem cell types have been considered for the treatment of DCMP patients. Bone marrow-derived cells and CD34+ cells have been demonstrated to improve myocardial performance, functional capacity, and neurohumoral activation. Furthermore, allogeneic mesenchymal stem cells were also shown to be effective in improving heart function in this patient population; this may represent an important step towards the development of a standardized stem cell product for widespread clinical use in patients with DCMP. Summary The trials of stem cell therapy in DCMP patients have shown some promising results, thus making DCMP apparently more inviting target for stem cell therapy than chronic ischemic heart failure, where studies to date failed to demonstrate a consistent effect of stem cells on myocardial performance. Future stem cell strategies should aim for more personalized therapeutic approach by establishing the optimal stem cell type or their combination, dose, and delivery method for an individual patient adjusted for patient's age and stage of the disease.
Collapse
|
45
|
Samman Tahhan A, Hammadah M, Sandesara PB, Hayek SS, Kalogeropoulos AP, Alkhoder A, Mohamed Kelli H, Topel M, Ghasemzadeh N, Chivukula K, Ko YA, Aida H, Hesaroieh I, Mahar E, Kim JH, Wilson P, Shaw L, Vaccarino V, Waller EK, Quyyumi AA. Progenitor Cells and Clinical Outcomes in Patients With Heart Failure. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.004106. [PMID: 28790053 DOI: 10.1161/circheartfailure.117.004106] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Endogenous regenerative capacity, assessed as circulating progenitor cell (PC) numbers, is an independent predictor of adverse outcomes in patients with cardiovascular disease. However, their predictive role in heart failure (HF) remains controversial. We assessed the relationship between the number of circulating PCs and the pathogenesis and severity of HF and their impact on incident HF events. METHODS AND RESULTS We recruited 2049 adults of which 651 had HF diagnosis. PCs were enumerated by flow cytometry as CD45med+ blood mononuclear cells expressing CD34, CD133, vascular endothelial growth factor receptor-2, and chemokine (C-X-C motif) receptor 4 epitopes. PC subsets were lower in number in HF and after adjustment for clinical characteristics in multivariable analyses, a low CD34+ and CD34+/CXCR+ cell count remained independently associated with a diagnosis of HF (P<0.01). PC levels were not significantly different in reduced versus preserved ejection fraction patients. In 514 subjects with HF, there were 98 (19.1%) all-cause deaths during a 2.2±1.5-year follow-up. In a Cox regression model adjusting for clinical variables, hematopoietic-enriched PCs (CD34+, CD34+/CD133+, and CD34+/CXCR4+) were independent predictors of all-cause death (hazard ratio 2.0, 1.6, 1.6-fold higher mortality, respectively; P<0.03) among HF patients. Endothelial-enriched PCs (CD34+/VEGF+) were independent predictors of mortality in patients with HF with preserved ejection fraction only (hazard ratio, 5.0; P=0.001). CONCLUSIONS PC levels are lower in patients with HF, and lower PC counts are strongly and independently predictive of mortality. Strategies to increase PCs and exogenous stem cell therapies designed to improve regenerative capacity in HF, especially, in HF with preserved ejection fraction, need to be further explored.
Collapse
Affiliation(s)
- Ayman Samman Tahhan
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Muhammad Hammadah
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Pratik B Sandesara
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Salim S Hayek
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Andreas P Kalogeropoulos
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Ayman Alkhoder
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Heval Mohamed Kelli
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Matthew Topel
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Nima Ghasemzadeh
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Kaavya Chivukula
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Yi-An Ko
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Hiroshi Aida
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Iraj Hesaroieh
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Ernestine Mahar
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Jonathan H Kim
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Peter Wilson
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Leslee Shaw
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Viola Vaccarino
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Edmund K Waller
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Arshed A Quyyumi
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA.
| |
Collapse
|
46
|
Carmona MD, Cañadillas S, Romero M, Blanco A, Nogueras S, Herrera C. Intramyocardial bone marrow mononuclear cells versus bone marrow-derived and adipose mesenchymal cells in a rat model of dilated cardiomyopathy. Cytotherapy 2017; 19:947-961. [PMID: 28673775 DOI: 10.1016/j.jcyt.2017.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Effects of cell therapy on dilated cardiomyopathy (DCM) have been investigated in pre-clinical models using distinct cellular types in each study. A single study that compares the effectiveness of different cells is lacking. METHODS We have compared the effects of intramyocardial injection (IMI) of bone marrow (BM)-derived mononuclear cells (MNCs), BM and adipose tissue (AT) mesenchymal stromal cells (BM-MSCs and AT-MSCs) on heart function, histological changes and myocardial ultrastructure in a rat model of DCM. Isogenic Wistar rats were used to isolate the different cell types and to induce DCM by autoimmune myocarditis. Animals were randomly assigned to receive BM-MNCs, BM-MSCs, AT-MSCs or placebo at day 42 by IMI. Serial echocardiography was used to assess cardiac function and hearts obtained after sacrifice at day 70, were used for histological and ultrastructural analysis. Serum levels of type B-natriuretic peptide (BNP) and vascular endothelial growth-factor (VEGF) were determined at different time points. RESULTS BM-MSC treatment induced significant improvement in ejection fraction (EF), fractional shortening (FS), left ventricular systolic diameter (LVESD) and systolic volume (LVESV). In contrast, changes in echocardiographic parameters with respect to pre-treatment values in animals receiving placebo, AT-MSCs or BM-MNCs were not statistically significant. EF and FS in animals receiving AT-MSCs were superior to those receiving placebo. BM-MSC transplantation induced also improvement in cardiac fibers organization and capillary density, fibrotic tissue reduction, increase in final VEGF concentration and BNP decrease. DISCUSSION IMI of BM or AT-MSCs improves LV function and induces more angiogenesis processes than BM-MNCs. In addition, BM-MSCs showed more anti-fibrotic effects and more ability to reorganize myocardial tissue compared with the other cell types.
Collapse
Affiliation(s)
- M Dolores Carmona
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain.
| | - Sagrario Cañadillas
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain
| | - Miguel Romero
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; University of Cordoba, Spain; Cardiology Department, Reina Sofia University Hospital, Cordoba, Spain
| | - Alfonso Blanco
- Anatomy and Comparative Pathology Department, University of Cordoba, Spain
| | - Sonia Nogueras
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain; Hematology Department, Reina Sofia University Hospital, Cordoba, Spain
| |
Collapse
|
47
|
Stamm C, Liebold A, Steinhoff G, Strunk D. Stem Cell Therapy for Ischemic Heart Disease: Beginning or End of the Road? Cell Transplant 2017; 15 Suppl 1:S47-56. [PMID: 16826795 DOI: 10.3727/000000006783982313] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite improvements in emergency treatment, myocardial infarction is often the beginning of a downward spiral leading to congestive heart failure. Other than heart transplantation, current therapeutic means aim at enabling the organism to survive with a heart that is working at a fraction of its original capacity. It is therefore no surprise that cardiac stem cell therapy has raised many hopes. However, neither the ideal source and type of stem cell nor the critical cell number and mode of application have been defined so far. Early reports on myocardial repair by adult bone marrow stem cells from rodent models promoted an unparalleled boost of clinical and experimental cell therapy studies. The phenomenon of stem/progenitor cell-induced angiogenesis in ischemic myocardium has ever since been reproduced by numerous groups in a variety of small and large animal models. Myogenesis, however, is an altogether different matter. Many of the initial clinical studies were fueled by the suggestion that early hematopoietic stem cells have a plasticity high enough to enable cross-lineage differentiation into cells of cardiomyocyte phenotype, but the initial enthusiasm has largely faded. The myogenic potential of stroma cell-derived mesenchymal stem cells is much better documented in animal models, but transfer to the clinical setting faces a variety of obstacles. In clinical pilot trials, we and others have demonstrated the feasibility and safety of administering progenitor cells derived from autologous bone marrow to the myocardium of patients with ischemic heart disease. Clinical efficacy data are still rare, but the few controlled trials that have been completed uniformly show a tendency towards better heart function in cell-treated patients. This review is an attempt to describe the scientific basis for cardiac cell therapy from the point of view of the clinician, focusing on problems that arise with beginning translation into the clinical setting.
Collapse
Affiliation(s)
- Christof Stamm
- Department of Cardiac Surgery, University of Rostock, Germany.
| | | | | | | |
Collapse
|
48
|
Lu H, Mei H, Wang F, Zhao Q, Wang S, Liu L, Cheng L. Decreased phosphorylation of PDGFR-β impairs the angiogenic potential of expanded endothelial progenitor cells via the inhibition of PI3K/Akt signaling. Int J Mol Med 2017; 39:1492-1504. [PMID: 28487975 PMCID: PMC5428960 DOI: 10.3892/ijmm.2017.2976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/21/2017] [Indexed: 11/06/2022] Open
Abstract
Human umbilical cord blood-derived endothelial progenitor cells (EPCs) have been proven to contribute to post-natal angiogenesis, and have been applied in various models of ischemia. However, to date, to the best of our knowledge, there is no available data on the angiogenic properties of EPCs during the process of in vitro expansion. In this study, we expanded EPCs to obtain cells at different passages, and analyzed their cellular properties and angiogenic ability. In the process of expansion, no changes were observed in cell cobblestone-like morphology, apoptotic rate and telomere length. However, the cell proliferative ability was significantly decreased. Additionally, the expression of CD144, CD90 and KDR was significantly downregulated in the later-passage cells. Vascular formation assay in vitro revealed that EPCs at passage 4 and 6 formed more integrated and organized capillary-like networks. In a murine model of hind limb ischemia, the transplantation of EPCs at passage 4 and 6 more effectively promoted perfusion recovery in the limbs on days 7 and 14, and promoted limb salvage and histological recovery. Furthermore, the phosphorylation levels of platelet‑derived growth factor receptor-β (PDGFR-β) were found to be significantly decreased with the in vitro expansion process, accompanied by the decreased activation of the PI3K/Akt signaling pathway. When PDGFR inhibitor was used to treat the EPCs, the differences in the angiogenic potential and migratory ability among the EPCs at different passages were no longer observed; no significant differences were also observed in the levels of phosphorylated PI3K/Akt between the EPCs at different passages following treatment with the inhibitor. On the whole, our findings indicate that the levels of phosphorylated PDGFR-β are decreased in EPCs with the in vitro expansion process, which impairs their angiogenic potential by inhibiting PI3K/Akt signaling. Our findings may aid in the more effective selection of EPCs of different passages for the clinical therapy of ischemic disease.
Collapse
Affiliation(s)
- Haiyuan Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, P.R. China
| | - Hua Mei
- National Center of Human Stem Cell Research and Engineering, Changsha, Hunan 410000, P.R. China
| | - Fan Wang
- National Center of Human Stem Cell Research and Engineering, Changsha, Hunan 410000, P.R. China
| | - Qian Zhao
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, P.R. China
| | - Siqi Wang
- National Center of Human Stem Cell Research and Engineering, Changsha, Hunan 410000, P.R. China
| | - Lvjun Liu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, P.R. China
| | - Lamei Cheng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
49
|
Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema. PLoS One 2017; 12:e0173446. [PMID: 28291826 PMCID: PMC5349667 DOI: 10.1371/journal.pone.0173446] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 02/21/2017] [Indexed: 01/19/2023] Open
Abstract
Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema.
Collapse
|
50
|
Circulating progenitor and angiogenic cell frequencies are abnormally static over pregnancy in women with preconception diabetes: A pilot study. PLoS One 2017; 12:e0172988. [PMID: 28278173 PMCID: PMC5344347 DOI: 10.1371/journal.pone.0172988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/13/2017] [Indexed: 11/30/2022] Open
Abstract
Type 1 and 2 diabetes decrease the frequencies and functional capacities of circulating angiogenic cells (CAC). Diabetes also elevates gestational complications. These observations may be interrelated. We undertook pilot studies to address the hypothesis that preconception diabetes deviates known gestational increases in CACs. Cross-sectional study of type 1 diabetic, type 2 diabetic and normoglycemic pregnant women was conducted at 1st, 2nd, and 3rd trimester and compared to a 6mo postpartum surrogate baseline. Circulating progenitor cells (CPC; CD34+CD45dimSSlow) and CACs (CD34+CD45dimSSlow expressing CD133 without or with KDR) were quantified by flow cytometry and by colony assay (CFU-Hill). In pregnant normoglycemic women, CD34+CD45dimSSlow cell frequency was greater in 1st and 3rd trimester than postpartum but frequency of these cells was static over type 1 or 2 diabetic pregnancies. Type 1 and type 2 diabetic women showed CACs variance versus normal controls. Type 1 diabetic women had more total CD34+KDR+ CACs in 1st trimester and a higher ratio of CD133+KDR+ to total CD133+ cells in 1st and 2nd trimesters than control women, demonstrating an unbalance in CD133+KDR+ CACs. Type 2 diabetic women had more CD133+KDR+ CACs in 1st trimester and fewer CD133+KDR- CACs at mid-late pregnancy than normal pregnant women. Thus, pregnancy stage-specific physiological fluctuation in CPCs (CD34+) and CACs (CD133+KDR+ and CD133+KDR-) did not occur in type 1 and type 2 diabetic women. Early outgrowth colonies were stable across normal and diabetic pregnancies. Therefore, preconception diabetes blocks the normal dynamic pattern of CAC frequencies across gestation but does not alter colony growth. The differences between diabetic and typical women were seen at specific gestational stages that may be critical for initiation of the uterine vascular pathologies characterizing diabetic gestations.
Collapse
|