1
|
Zhu W, Tanday N, Flatt PR, Irwin N. The Beneficial Impact of a Novel Pancreatic Polypeptide Analogue on Islet Cell Lineage. Int J Mol Sci 2025; 26:4215. [PMID: 40362452 PMCID: PMC12071604 DOI: 10.3390/ijms26094215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
(Proline3)PP, or (P3)PP, is an enzymatically stable, neuropeptide Y4 receptor (NPY4R)-selective, pancreatic polypeptide (PP) analogue with established weight-lowering and pancreatic islet morphology benefits in obesity-diabetes. In the current study, we now investigate the impact of twice-daily (P3)PP administration (25 nmol/kg) for 11 days on islet cell lineage, using streptozotocin (STZ) diabetic Ins1Cre/+;Rosa26-eYFP and GluCreERT2;Rosa26-eYFP transgenic mice with enhanced yellow fluorescent protein (eYFP) labelling of beta-cell and alpha-cells, respectively. (P3)PP had no obvious impact on body weight or blood glucose levels in STZ-diabetic mice at the dose tested, but did return food intake towards control levels in Ins1Cre/+;Rosa26-eYFP mice. Notably, pancreatic insulin content was augmented by (P3)PP treatment in both Ins1Cre/+;Rosa26-eYFP and GluCreERT2;Rosa26-eYFP mice, alongside enhanced beta-cell area and reduced alpha-cell area. Beneficial (P3)PP-induced changes on islet morphology were consistently associated with decreased beta-cell apoptosis, while (P3)PP also augmented beta-cell proliferation in Ins1Cre/+;Rosa26-eYFP mice. Alpha-cell turnover rates were returned towards healthy control levels by (P3)PP intervention in both mouse models. In terms of islet cell lineage, increased transition of alpha- to beta-cells as well as decreased beta- to alpha-cell differentiation were shown to contribute towards the enhancement of beta-cell area in (P3)PP-treated mice. Together these data reveal, for the first time, sustained NPY4R activation positively modulates beta-cell turnover, as well as islet cell plasticity, to help preserve pancreatic islet architecture following STZ-induced metabolic stress.
Collapse
Affiliation(s)
| | | | | | - Nigel Irwin
- Diabetes Research Centre, Schools of Biomedical Science and Pharmacy, Ulster University, Co. Londonderry, Coleraine BT52 1SA, UK (N.T.); (P.R.F.)
| |
Collapse
|
2
|
Takahashi T, Takase Y, Shiraishi A, Matsubara S, Watanabe T, Kirimoto S, Yamagaki T, Osawa M. Weight Gain With Advancing Age Is Controlled by the Muscarinic Acetylcholine Receptor M4 in Male Mice. Endocrinology 2025; 166:bqaf064. [PMID: 40179260 PMCID: PMC12012353 DOI: 10.1210/endocr/bqaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/04/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Obesity is characterized by the excessive accumulation of adipose tissue, and it is a serious global health issue. Understanding the pathology of obesity is crucial for developing effective interventions. In this study, we investigated the role of muscarinic acetylcholine receptor M4 (mAChR-M4) in the regulation of obesity in Chrm4-knockout (M4-KO) mice. Male M4-KO mice showed higher weight gain and accumulation of white adipose tissue (WAT) with advancing age than the wild-type mice. The M4-KO mice also showed increased leptin expression at both the transcription and the translation levels. RNA sequencing and quantitative reverse transcription polymerase chain reaction analyses of subcutaneous adipose tissues revealed that the expression of WAT marker genes was significantly enhanced in the M4-KO mice. In contrast, the expression levels of brown adipose tissue/beige adipose tissue markers were strongly decreased in the M4-KO mice. To identify the Chrm4-expressing cell types, we generated Chrm4-mScarlet reporter mice and examined the localization of the mScarlet fluorescent signals in subcutaneous tissues. Fluorescent signals were prominently detected in WAT and mesenchymal stem cells. Additionally, we also found that choline acetyltransferase was expressed in macrophages, suggesting their involvement in acetylcholine (ACh) secretion. Corroborating this notion, we were able to quantitatively measure the ACh in subcutaneous tissues by liquid chromatography tandem mass spectrometry. Collectively, our findings suggest that endogenous ACh released from macrophages maintains the homeostasis of adipose cell growth and differentiation via mAChR-M4 in male mice. This study provides new insights into the molecular mechanisms underlying obesity and potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Toshio Takahashi
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto 619-0284, Japan
| | - Yuta Takase
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto 619-0284, Japan
| | - Akira Shiraishi
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto 619-0284, Japan
| | - Shin Matsubara
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto 619-0284, Japan
| | - Takehiro Watanabe
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto 619-0284, Japan
| | - Shinji Kirimoto
- Animal Science Business Unit, KAC Co., Ltd., Kyoto 604-8423, Japan
| | - Tohru Yamagaki
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto 619-0284, Japan
| | - Masatake Osawa
- Department of Regenerative Medicine and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, Gifu 501-1194, Japan
| |
Collapse
|
3
|
Chen K, Wu X, Li X, Pan H, Zhang W, Shang J, Di Y, Liu R, Zheng Z, Hou X. Antimicrobial Neuropeptides and Their Receptors: Immunoregulator and Therapeutic Targets for Immune Disorders. Molecules 2025; 30:568. [PMID: 39942672 PMCID: PMC11820534 DOI: 10.3390/molecules30030568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The interaction between the neuroendocrine system and the immune system plays a key role in the onset and progression of various diseases. Neuropeptides, recognized as common biochemical mediators of communication between these systems, are receiving increasing attention because of their potential therapeutic applications in immune-related disorders. Additionally, many neuropeptides share significant similarities with antimicrobial peptides (AMPs), and evidence shows that these antimicrobial neuropeptides are directly involved in innate immunity. This review examines 10 antimicrobial neuropeptides, including pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), α-melanocyte stimulating hormone (α-MSH), ghrelin, adrenomedullin (AM), neuropeptide Y (NPY), urocortin II (UCN II), calcitonin gene-related peptide (CGRP), substance P (SP), and catestatin (CST). Their expression characteristics and the immunomodulatory mechanisms mediated by their specific receptors are summarized, along with potential drugs targeting these receptors. Future studies should focus on further investigating antimicrobial neuropeptides and advancing the development of related drugs in preclinical and/or clinical studies to improve the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Kaiqi Chen
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Xiaojun Wu
- College of Medical Engineering, Jining Medical University, Jining 272067, China; (X.W.); (R.L.)
| | - Xiaoke Li
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Haoxuan Pan
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Wenhui Zhang
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Jinxi Shang
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Yinuo Di
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining 272067, China; (X.W.); (R.L.)
| | - Zhaodi Zheng
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Xitan Hou
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| |
Collapse
|
4
|
Tanday N, Zhu W, Tarasov AI, Flatt PR, Irwin N. [P 3]PP, a stable, long-acting pancreatic polypeptide analogue, evokes weight lowering and pancreatic beta-cell-protective effects in obesity-associated diabetes. Diabetes Obes Metab 2024; 26:4945-4957. [PMID: 39192525 DOI: 10.1111/dom.15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
AIM To thoroughly investigate the impact of sustained neuropeptide Y4 receptor (NPY4R) activation in obesity-associated diabetes. METHODS Initially, the prolonged pharmacodynamic profile of the enzymatically stable pancreatic polypeptide (PP) analogue, [P3]PP, was confirmed in normal mice up to 24 h after injection. Subsequent to this, [P3]PP was administered twice daily (25 nmol/kg) for 28 days to high-fat-fed mice with streptozotocin-induced insulin deficiency, known as HFF/STZ mice. RESULTS Treatment with [P3]PP for 28 days reduced energy intake and was associated with notable weight loss. In addition, circulating glucose was returned to values of approximately 8 mmol/L in [P3]PP-treated mice, with significantly increased plasma insulin and decreased glucagon concentrations. Glucose tolerance and glucose-stimulated insulin secretion were improved in [P3]PP-treated HFF/STZ mice, with no obvious effect on peripheral insulin sensitivity. Benefits on insulin secretion were associated with elevated pancreatic insulin content as well as islet and beta-cell areas. Positive effects on islet architecture were linked to increased beta-cell proliferation and decreased apoptosis. Treatment intervention also decreased islet alpha-cell area, but pancreatic glucagon content remained unaffected. In addition, [P3]PP-treated HFF/STZ mice presented with reduced plasma alanine transaminase and aspartate transaminase levels, with no change in circulating amylase concentrations. In terms of plasma lipid profile, triglyceride and cholesterol levels were significantly decreased by [P3]PP treatment, when compared to saline controls. CONCLUSION Collectively, these data highlight for the first time the potential of enzymatically stable PP analogues for the treatment of obesity and related diabetes.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Centre, Ulster University, Coleraine, UK
| | - Wuyun Zhu
- Diabetes Research Centre, Ulster University, Coleraine, UK
| | | | - Peter R Flatt
- Diabetes Research Centre, Ulster University, Coleraine, UK
| | - Nigel Irwin
- Diabetes Research Centre, Ulster University, Coleraine, UK
| |
Collapse
|
5
|
Zhu W, Tanday N, Lafferty RA, Flatt PR, Irwin N. Novel enzyme-resistant pancreatic polypeptide analogs evoke pancreatic beta-cell rest, enhance islet cell turnover, and inhibit food intake in mice. Biofactors 2024; 50:1101-1112. [PMID: 38635341 PMCID: PMC11627468 DOI: 10.1002/biof.2059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Pancreatic polypeptide (PP) is a postprandial hormone secreted from pancreatic islets that activates neuropeptide Y4 receptors (NPY4Rs). PP is known to induce satiety but effects at the level of the endocrine pancreas are less well characterized. In addition, rapid metabolism of PP by dipeptidyl peptidase-4 (DPP-4) limits the investigation of the effects of the native peptide. Therefore, in the present study, five novel amino acid substituted and/or fatty acid derivatized PP analogs were synthesized, namely [P3]PP, [K13Pal]PP, [P3,K13Pal]PP, [N-Pal]PP, and [N-Pal,P3]PP, and their impact on pancreatic beta-cell function, as well as appetite regulation and glucose homeostasis investigated. All PP analogs displayed increased resistance to DPP-4 degradation. In addition, all peptides inhibited alanine-induced insulin secretion from BRIN-BD11 beta cells. Native PP and related analogs (10-8 and 10-6 M), and especially [P3]PP and [K13Pal]PP, significantly protected against cytokine-induced beta-cell apoptosis and promoted cellular proliferation, with effects dependent on the NPY4R for all peptides barring [N-Pal,P3]PP. In mice, all peptides, except [N-Pal]PP and [N-Pal,P3]PP, evoked a dose-dependent (25, 75, and 200 nmol/kg) suppression of appetite, with native PP and [P3]PP further augmenting glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) induced reductions of food intake. The PP peptides had no obvious detrimental effect on glucose tolerance and they did not noticeably impair the glucose-regulatory actions of GLP-1 or CCK. In conclusion, Pro3 amino acid substitution of PP, either alone or together with mid-chain acylation, creates PP analogs with benefits on beta-cell rest, islet cell turnover, and energy regulation that may be applicable to the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Wuyun Zhu
- Diabetes Research CentreSchools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster UniversityColeraineUK
| | - Neil Tanday
- Diabetes Research CentreSchools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster UniversityColeraineUK
| | - Ryan A. Lafferty
- Diabetes Research CentreSchools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster UniversityColeraineUK
| | - Peter R. Flatt
- Diabetes Research CentreSchools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster UniversityColeraineUK
| | - Nigel Irwin
- Diabetes Research CentreSchools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster UniversityColeraineUK
| |
Collapse
|
6
|
Ferreira AH, Real CC, Malafaia O. Heterobivalent Dual-Target Peptide for Integrin-α vβ 3 and Neuropeptide Y Receptors on Breast Tumor. Pharmaceuticals (Basel) 2024; 17:1328. [PMID: 39458969 PMCID: PMC11510292 DOI: 10.3390/ph17101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Heterodimer peptides targeting more than one receptor can be advantageous, as tumors can simultaneously express more than one receptor type. For human breast cancer, a promising biological target is tumor angiogenesis through αvβ3 integrin expression. Another promising target is Neuropeptide Y receptors, considering Y1R is overexpressed in 90% of human breast tumors. This article details the development and preclinical evaluation, both in vitro and in vivo, of a novel heterodimer peptide dual-receptor-targeting probe, [99mTc]HYNIC-cRGDfk-NPY, designed for imaging breast tumors. Methods: Female BALB/c healthy mice were used to perform biodistrubution studies and female SCID mice were subcutaneously injected with MCF-7 and MDA-MB-231 tumor cells. [99mTc]HYNIC-cRGDfk-NPY was intravenously administered to the mice, followed by ex vivo biodistribution studies and small-animal SPECT/CT imaging. Nonspecific tracer uptake in both models was determined by coinjecting an excess of unlabeled HYNIC-cRGDfk-NPY (100 µg) along with the radiolabeled tracer. Results: Imaging and biodistribution data demonstrate good uptake to estrogen receptor-positive (MCF-7) and triple-negative (MDA-MB-231) tumor models. The in vivo tumor uptakes of radiolabeled conjugate were 9.30 ± 3.25% and 4.93 ± 1.01% for MCF-7 and MDA-MB231, respectively. The tumor/muscle ratios were 5.65 ± 0.94 for the MCF-7 model and 7.78 ± 3.20 for MDA-MB231. Conclusions: [99mTc]HYNIC-cRGDfk-NPY demonstrated rapid blood clearance, renal excretion, and in vivo tumor uptake, highlighting its potential as a tumor imaging agent.
Collapse
Affiliation(s)
- Aryel H. Ferreira
- MackGraphe-Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil
- Mackenzie Evangelical College of Paraná, Mackenzie Presbyterian University, Curitiba 80730-000, Brazil
- Nuclear and Energy Research Institute, Instituto de Pesquisas Energéticas e Nucleares da Comissão Nacional de Energia Nuclear—São Paulo (IPEN-CNEN/SP), São Paulo 05508-000, Brazil
| | - Caroline C. Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Osvaldo Malafaia
- Mackenzie Evangelical College of Paraná, Mackenzie Presbyterian University, Curitiba 80730-000, Brazil
| |
Collapse
|
7
|
Eitmann S, Füredi N, Gaszner B, Kormos V, Berta G, Pólai F, Kovács DK, Balaskó M, Pétervári E. Activity of the hypothalamic neuropeptide Y increases in adult and decreases in old rats. Sci Rep 2024; 14:22676. [PMID: 39349740 PMCID: PMC11442438 DOI: 10.1038/s41598-024-73825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Middle-aged obesity and aging anorexia with muscle loss (sarcopenia) of old people present public health burden. These alterations may appear both in humans and rodents suggesting the role for regulatory alterations. Previously, we demonstrated that biphasic changes in the weight-reducing (catabolic) effects of neuropeptides of the hypothalamus-adipose tissue axis (e.g. leptin) may contribute to both trends. With regard to the anabolic effects of the hypothalamic neuropeptide Y (NPY) inhibited by leptin, we hypothesized non-linear age-related changes with shifts in the opposite directions. We investigated the orexigenic and hypometabolic effects of intracerebroventricularly administered NPY (hyperphagia induced by NPY injection or changes in food intake, body weight, heart rate, body temperature, locomotor activity during a 7-day NPY infusion), the immunoreactivity and gene expression of NPY in the hypothalamic arcuate nucleus of male Wistar rats of five age groups from young to old. The orexigenic/hypometabolic efficacy and the immunoreactivity of NPY increased in middle-aged animals preceding the peak of adiposity observed in aging rats, then decreased preceding anorexia and weight loss in old rats. These shifts may contribute to the development of both age-related obesity and aging anorexia, sarcopenia, and should be considered in future drug development targeting the NPY system.
Collapse
Affiliation(s)
- Szimonetta Eitmann
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti street, Pécs, 7624, Hungary
| | - Nóra Füredi
- Research Group for Mood Disorders, Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Gaszner
- Research Group for Mood Disorders, Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, Pécs, Hungary
| | - Fanni Pólai
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti street, Pécs, 7624, Hungary
| | - Dóra K Kovács
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti street, Pécs, 7624, Hungary
| | - Márta Balaskó
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti street, Pécs, 7624, Hungary
| | - Erika Pétervári
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti street, Pécs, 7624, Hungary.
| |
Collapse
|
8
|
Pavlenko D, Todurga-Seven ZG, Sanders K, Markan A, Verpile R, Ishida H, Costo D, Akiyama T. Activation of NPY2R-expressing amygdala neurons inhibits itch behavior in mice without lateralization. Sci Rep 2024; 14:22125. [PMID: 39333236 PMCID: PMC11437048 DOI: 10.1038/s41598-024-73483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
The central amygdala (CeA) is a crucial hub in the processing of affective itch, containing a diverse array of neuronal populations. Among these components, Neuropeptide Y (NPY) and its receptors, such as NPY2R, affect various physiological and psychological processes. Despite this broad impact, the precise role of NPY2R+ CeA neurons in itch modulation remains unknown, particularly concerning any potential lateralization effects. To address this, we employed optogenetics to selectively stimulate NPY2R+ CeA neurons in mice, investigating their impact on itch modulation. Optogenetic activation of NPY2R+ CeA neurons reduced scratching behavior elicited by pruritogens without exhibiting any lateralization effects. Electrophysiological recordings confirmed increased neuronal activity upon stimulation. However, this modulation did not affect thermal sensitivity, mechanical sensitivity, or formalin-induced hyperalgesia. Additionally, no alterations in anxiety-like behaviors or locomotion were observed upon stimulation. Projection tracing revealed connections of NPY2R+ CeA neurons to brain regions implicated in itch processing. Overall, this comprehensive study highlights the role of NPY2R+ CeA neurons in itch regulation without any lateralization effects.
Collapse
Affiliation(s)
- Darya Pavlenko
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Zeynep Gizem Todurga-Seven
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kristen Sanders
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Anika Markan
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Rebecca Verpile
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Hirotake Ishida
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Dylan Costo
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Tasuku Akiyama
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA.
| |
Collapse
|
9
|
Inceu G, Nechifor RE, Rusu A, Ciobanu DM, Draghici NC, Pop RM, Craciun AE, Porojan M, Negrut M, Roman G, Fodor A, Bala C. Post-COVID-19 Changes in Appetite-An Exploratory Study. Nutrients 2024; 16:2349. [PMID: 39064794 PMCID: PMC11280350 DOI: 10.3390/nu16142349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
In this analysis, we aimed to investigate the effect of COVID-19 disease on eating behavior. A total of 55 right-handed adults, <50 years of age, without overweight or obesity, from two cross-sectional studies were included. The first one enrolled subjects between September 2018 and December 2019 (non-COVID-19 group). The second one included subjects enrolled between March 2022 and May 2023; for this analysis, 28 with a history of COVID-19 (COVID-19 group) were retained. Hunger, TFEQ-18, plasma ghrelin, neuropeptide Y (NPY) and resting-state fMRI were assessed during fasting. Intraregional neuronal synchronicity and connectivity were assessed by voxel-based regional homogeneity (ReHo) and degree of centrality (DC). Significantly higher ghrelin and NPY levels were observed in the COVID-19 group than in the non-COVID-19 group (ghrelin 197.5 pg/mL vs. 67.1 pg/mL, p < 0.001; NPY 128.0 pg/mL vs. 84.5 pg/mL, p = 0.005). The NPY levels positively correlated with the DC and ReHo in the left lingual (r = 0.67785 and r = 0.73604, respectively). Similar scores were noted for cognitive restraint, uncontrolled eating and emotional eating in both groups according to the TFEQ-18 questionnaire results (p > 0.05 for all). Our data showed increased levels of appetite-related hormones, correlated with activity in brain regions involved in appetite regulation, persisting long after COVID-19 infection.
Collapse
Affiliation(s)
- Georgeta Inceu
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (G.I.); (A.R.); (A.E.C.); (G.R.); (A.F.); (C.B.)
- Department of Diabetes, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Ruben Emanuel Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health Department of Clinical Psychology, Psychotherapy Babes-Bolyai University, 400294 Cluj-Napoca, Romania;
| | - Adriana Rusu
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (G.I.); (A.R.); (A.E.C.); (G.R.); (A.F.); (C.B.)
- Department of Diabetes, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Dana Mihaela Ciobanu
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (G.I.); (A.R.); (A.E.C.); (G.R.); (A.F.); (C.B.)
- Department of Diabetes, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Nicu Catalin Draghici
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- “IMOGEN” Institute, Centre of Advanced Research Studies, Emergency Clinical County Hospital Cluj, 400012 Cluj-Napoca, Romania
| | - Raluca Maria Pop
- Department of Morphofunctional Sciences, Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Anca Elena Craciun
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (G.I.); (A.R.); (A.E.C.); (G.R.); (A.F.); (C.B.)
- Department of Diabetes, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Mihai Porojan
- Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Department of Internal Medicine, Emergency Clinical County Hospital Cluj, 400012 Cluj-Napoca, Romania
| | - Matei Negrut
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Gabriela Roman
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (G.I.); (A.R.); (A.E.C.); (G.R.); (A.F.); (C.B.)
- Department of Diabetes, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Adriana Fodor
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (G.I.); (A.R.); (A.E.C.); (G.R.); (A.F.); (C.B.)
- Department of Diabetes, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Cornelia Bala
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (G.I.); (A.R.); (A.E.C.); (G.R.); (A.F.); (C.B.)
- Department of Diabetes, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Mellott JG, Duncan S, Busby J, Almassri LS, Wawrzyniak A, Iafrate MC, Ohl AP, Slabinski EA, Beaver AM, Albaba D, Vega B, Mafi AM, Buerke M, Tokar NJ, Young JW. Age-related upregulation of dense core vesicles in the central inferior colliculus. Front Cell Neurosci 2024; 18:1396387. [PMID: 38774486 PMCID: PMC11107844 DOI: 10.3389/fncel.2024.1396387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024] Open
Abstract
Presbycusis is one of the most prevalent disabilities in aged populations of industrialized countries. As we age less excitation reaches the central auditory system from the periphery. To compensate, the central auditory system [e.g., the inferior colliculus (IC)], downregulates GABAergic inhibition to maintain homeostatic balance. However, the continued downregulation of GABA in the IC causes a disruption in temporal precision related to presbycusis. Many studies of age-related changes to neurotransmission in the IC have therefore focused on GABAergic systems. However, we have discovered that dense core vesicles (DCVs) are significantly upregulated with age in the IC. DCVs can carry neuropeptides, co-transmitters, neurotrophic factors, and proteins destined for the presynaptic zone to participate in synaptogenesis. We used immuno transmission electron microscopy across four age groups (3-month; 19-month; 24-month; and 28-month) of Fisher Brown Norway rats to examine the ultrastructure of DCVs in the IC. Tissue was stained post-embedding for GABA immunoreactivity. DCVs were characterized by diameter and by the neurochemical profile (GABAergic/non-GABAergic) of their location (bouton, axon, soma, and dendrite). Our data was collected across the dorsolateral to ventromedial axis of the central IC. After quantification, we had three primary findings. First, the age-related increase of DCVs occurred most robustly in non-GABAergic dendrites in the middle and low frequency regions of the central IC during middle age. Second, the likelihood of a bouton having more than one DCV increased with age. Lastly, although there was an age-related loss of terminals throughout the IC, the proportion of terminals that contained at least one DCV did not decline. We interpret this finding to mean that terminals carrying proteins packaged in DCVs are spared with age. Several recent studies have demonstrated a role for neuropeptides in the IC in defining cell types and regulating inhibitory and excitatory neurotransmission. Given the age-related increase of DCVs in the IC, it will be critical that future studies determine whether (1) specific neuropeptides are altered with age in the IC and (2) if these neuropeptides contribute to the loss of inhibition and/or increase of excitability that occurs during presbycusis and tinnitus.
Collapse
Affiliation(s)
- Jeffrey G. Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- University Hospitals Hearing Research Center, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Syllissa Duncan
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Justine Busby
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Laila S. Almassri
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- University Hospitals Hearing Research Center, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Alexa Wawrzyniak
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Milena C. Iafrate
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Andrew P. Ohl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Elizabeth A. Slabinski
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Abigail M. Beaver
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Diana Albaba
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Brenda Vega
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Amir M. Mafi
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Morgan Buerke
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| | - Nick J. Tokar
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jesse W. Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
11
|
Gleixner J, Kopanchuk S, Grätz L, Tahk MJ, Laasfeld T, Veikšina S, Höring C, Gattor AO, Humphrys LJ, Müller C, Archipowa N, Köckenberger J, Heinrich MR, Kutta RJ, Rinken A, Keller M. Illuminating Neuropeptide Y Y 4 Receptor Binding: Fluorescent Cyclic Peptides with Subnanomolar Binding Affinity as Novel Molecular Tools. ACS Pharmacol Transl Sci 2024; 7:1142-1168. [PMID: 38633582 PMCID: PMC11019746 DOI: 10.1021/acsptsci.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
The neuropeptide Y (NPY) Y4 receptor (Y4R), a member of the family of NPY receptors, is physiologically activated by the linear 36-amino acid peptide pancreatic polypeptide (PP). The Y4R is involved in the regulation of various biological processes, most importantly pancreatic secretion, gastrointestinal motility, and regulation of food intake. So far, Y4R binding affinities have been mostly studied in radiochemical binding assays. Except for a few fluorescently labeled PP derivatives, fluorescence-tagged Y4R ligands with high affinity have not been reported. Here, we introduce differently fluorescence-labeled (Sulfo-Cy5, Cy3B, Py-1, Py-5) Y4R ligands derived from recently reported cyclic hexapeptides showing picomolar Y4R binding affinity. With pKi values of 9.22-9.71 (radioligand competition binding assay), all fluorescent ligands (16-19) showed excellent Y4R affinity. Y4R saturation binding, binding kinetics, and competition binding with reference ligands were studied using different fluorescence-based methods: flow cytometry (Sulfo-Cy5, Cy3B, and Py-1 label), fluorescence anisotropy (Cy3B label), and NanoBRET (Cy3B label) binding assays. These experiments confirmed the high binding affinity to Y4R (equilibrium pKd: 9.02-9.9) and proved the applicability of the probes for fluorescence-based Y4R competition binding studies and imaging techniques such as single-receptor molecule tracking.
Collapse
Affiliation(s)
- Jakob Gleixner
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Sergei Kopanchuk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Lukas Grätz
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Maris-Johanna Tahk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Santa Veikšina
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Carina Höring
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Albert O. Gattor
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Laura J. Humphrys
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Christoph Müller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Nataliya Archipowa
- Institute
of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical
Medicine, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Johannes Köckenberger
- Department
of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Markus R. Heinrich
- Department
of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Roger Jan Kutta
- Institute
of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ago Rinken
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| |
Collapse
|
12
|
Jiang T, Zheng T, Li R, Sun J, Luan X, Wang M. The role of NPY signaling pathway in diagnosis, prognosis and treatment of stroke. Neuropeptides 2024; 104:102412. [PMID: 38330680 DOI: 10.1016/j.npep.2024.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Neuropeptide Y (NPY), an extensively distributed neurotransmitter within the central nervous system (CNS), was initially detected and isolated from the brain of a pig in 1982. By binding to its G protein-coupled receptors, NPY regulates immune responses and contributes to the pathogenesis of numerous inflammatory diseases. The hippocampus contained the maximum concentration in the CNS, with the cerebral cortex, hypothalamus, thalamus, brainstem, and cerebellum following suit. This arrangement suggests that the substance has a specific function within the CNS. More and more studies have shown that NPY is involved in the physiological and pathological mechanism of stroke, and its serum concentration can be one of the specific biomarkers of stroke and related complications because of its high activity, broad and complex effects. By summarizing relevant literature, this article aims to gain a thorough understanding of the potential clinical applications of NPY in the treatment of stroke, identification of stroke and its related complications, and assessment of prognosis.
Collapse
Affiliation(s)
- Taotao Jiang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ting Zheng
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Rundong Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Jingjing Sun
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Xiaoqing Luan
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Manxia Wang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
13
|
Rai G, Sharma S, Bhasin J, Aggarwal K, Ahuja A, Dang S. Nanotechnological advances in the treatment of epilepsy: a comprehensive review. NANOTECHNOLOGY 2024; 35:152002. [PMID: 38194705 DOI: 10.1088/1361-6528/ad1c95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Epilepsy is one of the most prevalent chronic neurological disorders characterized by frequent unprovoked epileptic seizures. Epileptic seizures can develop from a broad range of underlying abnormalities such as tumours, strokes, infections, traumatic brain injury, developmental abnormalities, autoimmune diseases, and genetic predispositions. Sometimes epilepsy is not easily diagnosed and treated due to the large diversity of symptoms. Undiagnosed and untreated seizures deteriorate over time, impair cognition, lead to injuries, and can sometimes result in death. This review gives details about epilepsy, its classification on the basis of International League Against Epilepsy, current therapeutics which are presently offered for the treatment of epilepsy. Despite of the fact that more than 30 different anti-epileptic medication and antiseizure drugs are available, large number of epileptic patients fail to attain prolonged seizure independence. Poor onsite bioavailability of drugs due to blood brain barrier poses a major challenge in drug delivery to brain. The present review covers the limitations with the state-of-the-art strategies for managing seizures and emphasizes the role of nanotechnology in overcoming these issues. Various nano-carriers like polymeric nanoparticles, dendrimers, lipidic nanoparticles such as solid lipid nanoparticles, nano-lipid carriers, have been explored for the delivery of anti-epileptic drugs to brain using oral and intranasal routes. Nano-carries protect the encapsulated drugs from degradation and provide a platform to deliver controlled release over prolonged periods, improved permeability and bioavailability at the site of action. The review also emphasises in details about the role of neuropeptides for the treatment of epilepsy.
Collapse
Affiliation(s)
- Garima Rai
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Surbhi Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Jasveen Bhasin
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Kanica Aggarwal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Alka Ahuja
- College of Pharmacy, National University of Science and Technology, Muscat, Oman
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| |
Collapse
|
14
|
Dalamaga M, Kounatidis D, Tsilingiris D, Vallianou NG, Karampela I, Psallida S, Papavassiliou AG. The Role of Endocrine Disruptors Bisphenols and Phthalates in Obesity: Current Evidence, Perspectives and Controversies. Int J Mol Sci 2024; 25:675. [PMID: 38203845 PMCID: PMC10779569 DOI: 10.3390/ijms25010675] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Excess body weight constitutes one of the major health challenges for societies and healthcare systems worldwide. Besides the type of diet, calorie intake and the lack of physical exercise, recent data have highlighted a possible association between endocrine-disrupting chemicals (EDCs), such as bisphenol A, phthalates and their analogs, and obesity. EDCs represent a heterogeneous group of chemicals that may influence the hormonal regulation of body mass and adipose tissue morphology. Based on the available data from mechanistic, animal and epidemiological studies including meta-analyses, the weight of evidence points towards the contribution of EDCs to the development of obesity, associated disorders and obesity-related adipose tissue dysfunction by (1) impacting adipogenesis; (2) modulating epigenetic pathways during development, enhancing susceptibility to obesity; (3) influencing neuroendocrine signals responsible for appetite and satiety; (4) promoting a proinflammatory milieu in adipose tissue and inducing a state of chronic subclinical inflammation; (5) dysregulating gut microbiome and immune homeostasis; and (6) inducing dysfunction in thermogenic adipose tissue. Critical periods of exposure to obesogenic EDCs are the prenatal, neonatal, pubertal and reproductive periods. Interestingly, EDCs even at low doses may promote epigenetic transgenerational inheritance of adult obesity in subsequent generations. The aim of this review is to summarize the available evidence on the role of obesogenic EDCs, specifically BPA and phthalate plasticizers, in the development of obesity, taking into account in vitro, animal and epidemiologic studies; discuss mechanisms linking EDCs to obesity; analyze the effects of EDCs on obesity in critical chronic periods of exposure; and present interesting perspectives, challenges and preventive measures in this research area.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Kounatidis
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Irene Karampela
- Second Department of Critical Care, ‘Attikon’ General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Sotiria Psallida
- Department of Microbiology, ‘KAT’ General Hospital of Attica, 14561 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
15
|
Clark RM, Clark CM, Lewis KE, Dyer MS, Chuckowree JA, Hoyle JA, Blizzard CA, Dickson TC. Intranasal neuropeptide Y1 receptor antagonism improves motor deficits in symptomatic SOD1 ALS mice. Ann Clin Transl Neurol 2023; 10:1985-1999. [PMID: 37644692 PMCID: PMC10647012 DOI: 10.1002/acn3.51885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Neuropeptide Y (NPY) is a 36 amino acid peptide widely considered to provide neuroprotection in a range of neurodegenerative diseases. In the fatal motor neuron disease amyotrophic lateral sclerosis (ALS), recent evidence supports a link between NPY and ALS disease processes. The goal of this study was to determine the therapeutic potential and role of NPY in ALS, harnessing the brain-targeted intranasal delivery of the peptide, previously utilised to correct motor and cognitive phenotypes in other neurological conditions. METHODS To confirm the association with clinical disease characteristics, NPY expression was quantified in post-mortem motor cortex tissue of ALS patients and age-matched controls. The effect of NPY on ALS cortical pathophysiology was investigated using slice electrophysiology and multi-electrode array recordings of SOD1G93A cortical cultures in vitro. The impact of NPY on ALS disease trajectory was investigated by treating SOD1G93A mice intranasally with NPY and selective NPY receptor agonists and antagonists from pre-symptomatic and symptomatic phases of disease. RESULTS In the human post-mortem ALS motor cortex, we observe a significant increase in NPY expression, which is not present in the somatosensory cortex. In vitro, we demonstrate that NPY can ameliorate ALS hyperexcitability, while brain-targeted nasal delivery of NPY and a selective NPY Y1 receptor antagonist modified survival and motor deficits specifically within the symptomatic phase of the disease in the ALS SOD1G93A mouse. INTERPRETATION Taken together, these findings highlight the capacity for non-invasive brain-targeted interventions in ALS and support antagonism of NPY Y1Rs as a novel strategy to improve ALS motor function.
Collapse
Affiliation(s)
- Rosemary M. Clark
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Courtney M. Clark
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Katherine E.A. Lewis
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Marcus S. Dyer
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Jyoti A. Chuckowree
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Joshua A. Hoyle
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Catherine A. Blizzard
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmania7000Australia
| | - Tracey C. Dickson
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| |
Collapse
|
16
|
Gleixner J, Gattor AO, Humphrys LJ, Brunner T, Keller M. [ 3H]UR-JG102-A Radiolabeled Cyclic Peptide with High Affinity and Excellent Selectivity for the Neuropeptide Y Y 4 Receptor. J Med Chem 2023; 66:13788-13808. [PMID: 37773891 DOI: 10.1021/acs.jmedchem.3c01224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The family of human neuropeptide Y receptors (YRs) comprises four subtypes (Y1R, Y2R, Y4R, and Y5R) that are involved in the regulation of numerous physiological processes. Until now, Y4R binding studies have been predominantly performed in hypotonic sodium-free buffers using 125I-labeled derivatives of the endogenous YR agonists pancreatic polypeptide or peptide YY. A few tritium-labeled Y4R ligands have been reported; however, when used in buffers containing sodium at a physiological concentration, their Y4R affinities are insufficient. Based on the cyclic hexapeptide UR-AK86C, we developed a new tritium-labeled Y4R radioligand ([3H]UR-JG102, [3H]20). In sodium-free buffer, [3H]20 exhibits a very low Y4R dissociation constant (Kd 0.012 nM). In sodium-containing buffer (137 mM Na+), the Y4R affinity is lower (Kd 0.11 nM) but still considerably higher compared to previously reported tritiated Y4R ligands. Therefore, [3H]20 represents a useful tool compound for the determination of Y4R binding affinities under physiological-like conditions.
Collapse
Affiliation(s)
- Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Albert O Gattor
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Thomas Brunner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
17
|
Chen WH, Shi YC, Huang QY, Chen JM, Wang ZY, Lin S, Shi QY. Potential for NPY receptor-related therapies for polycystic ovary syndrome: an updated review. Hormones (Athens) 2023; 22:441-451. [PMID: 37452264 PMCID: PMC10449684 DOI: 10.1007/s42000-023-00460-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disease that can cause female infertility and bring economic burden to families and to society. The clinical and/or biochemical manifestations include hyperandrogenism, persistent anovulation, and polycystic ovarian changes, often accompanied by insulin resistance and obesity. Although its pathogenesis is unclear, PCOS involves the abnormal regulation of the hypothalamic-pituitary-ovarian axis and the abnormal activation of GnRH neurons. Neuropeptide Y (NPY) is widely distributed in the arcuate nucleus of the hypothalamus and functions as the physiological integrator of two neuroendocrine systems, one governing feeding and the other controlling reproduction. In recent years, an increasing number of studies have focused on the improvement of the reproductive and metabolic status of PCOS through the therapeutic application of NPY and its receptors. In this review, we summarize the central and peripheral regulation of NPY and its receptors in the development of PCOS and discuss the potential for NPY receptor-related therapies for PCOS.
Collapse
Affiliation(s)
- Wei-Hong Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Qiao-Yi Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Jia-Ming Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Zhi-Yi Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Qi-Yang Shi
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
18
|
Sigorski D, Wesołowski W, Gruszecka A, Gulczyński J, Zieliński P, Misiukiewicz S, Kitlińska J, Iżycka-Świeszewska E. Neuropeptide Y and its receptors in prostate cancer: associations with cancer invasiveness and perineural spread. J Cancer Res Clin Oncol 2023; 149:5803-5822. [PMID: 36583743 PMCID: PMC10356636 DOI: 10.1007/s00432-022-04540-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE Neuropeptide Y (NPY) is a pleiotropic peptide, which is involved in many biological mechanisms important in regulation of cell growth and survival. The aim of this study was a comprehensive analysis of the NPY system in prostate pathology. METHODS The study was based on immunohistochemical analysis of NPY and its receptors, Y1R, Y2R and Y5R, in tissue samples from benign prostate (BP), primary prostate cancer (PCa) and PCa bone metastases. Tissue microarray (TMA) technique was employed, with analysis of multiple cores from each specimen. Intensity of the immunoreactivity and expression index (EI), as well as distribution of the immunostaining in neoplastic cells and stromal elements were evaluated. Perineural invasion (PNI) and extraprostatic extension (EPE) were areas of special interests. Moreover, a transwell migration assay on the LNCaP PCa cell line was used to assess the chemotactic properties of NPY. RESULTS Morphological analysis revealed homogeneous membrane and cytoplasmic pattern of NPY staining in cancer cells and its membrane localization with apical accentuation in BP glands. All elements of the NPY system were upregulated in pre-invasive prostate intraepithelial neoplasia, PCa and metastases. EI and staining intensity of NPY receptors were significantly higher in PCa then in BP with correlation between Y2R and Y5R. The strength of expression of the NPY system was further increased in the PNI and EPE areas. In bone metastases, Y1R and Y5R presented high expression scores. CONCLUSION The results of our study suggest that the NPY system is involved in PCa, starting from early stages of its development to disseminated states of the disease, and participates in the invasion of PCa into the auto and paracrine matter.
Collapse
Affiliation(s)
- Dawid Sigorski
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, 10-228, Olsztyn, Poland
- Department of Oncology and Immuno-Oncology, Warmian-Masurian Cancer Center of the Ministry of the Interior and Administration Hospital, 10-228, Olsztyn, Poland
| | | | - Agnieszka Gruszecka
- Department of Radiology Informatics and Statistics, Medical University of Gdansk, 80-210, Gdansk, Poland
| | - Jacek Gulczyński
- Department of Pathology and Neuropathology, Medical University of Gdańsk, 80-210, Gdańsk, Poland
- Department of Pathomorphology, Copernicus Hospital, 80-803, Gdańsk, Poland
| | - Piotr Zieliński
- Division of Tropical and Parasitic Diseases, University Center of Maritime and Tropical Medicine, 81-519, Gdynia, Poland
| | - Sara Misiukiewicz
- Human Science Department, School of Nursing and Health Studies, Georgetown University Medical Center, Washington, DC, USA
| | - Joanna Kitlińska
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdańsk, 80-210, Gdańsk, Poland.
- Department of Pathomorphology, Copernicus Hospital, 80-803, Gdańsk, Poland.
| |
Collapse
|
19
|
Wygas MM, Laugwitz JM, Schmidt P, Elgeti M, Kaiser A. Dynamics of the Second Extracellular Loop Control Transducer Coupling of Peptide-Activated GPCRs. Int J Mol Sci 2023; 24:12197. [PMID: 37569573 PMCID: PMC10419011 DOI: 10.3390/ijms241512197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Many peptide-activated rhodopsin-like GPCRs share a β-hairpin folding motif in the extracellular loop 2 (ECL2), which interacts with the peptide ligand while at the same time being connected to transmembrane helix 3 (TM3) via a highly conserved disulfide bond. Currently, it remains unknown whether the coupling of the specifically shaped ECL2 to TM3 influences the activation of peptide-activated GPCRs. We investigated this possibility in a selection of peptide GPCRs with known structures. Most of the receptors with cysteine to alanine mutations folded like the respective wild-type and resided in the cell membrane, challenging pure folding stabilization by the disulfide bridge. G-protein signaling of the disulfide mutants was retained to a greater extent in secretin-like GPCRs than in rhodopsin-like GPCRs, while recruitment of arrestin was completely abolished in both groups, which may be linked to alterations in ligand residence time. We found a correlation between receptor activity of the neuropeptide Y2 receptor and alterations in ECL2 dynamics using engineered disulfide bridges or site-directed spin labeling and EPR spectroscopy. These data highlight the functional importance of the TM3-ECL2 link for the activation of specific signaling pathways in peptide-activated GPCRs, which might have implications for future drug discovery.
Collapse
Affiliation(s)
- Marcel M. Wygas
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Jeannette M. Laugwitz
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Haertelstasse 16-18, 04107 Leipzig, Germany
| | - Peter Schmidt
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Haertelstasse 16-18, 04107 Leipzig, Germany
| | - Matthias Elgeti
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Haertelstasse 16-18, 04107 Leipzig, Germany
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Haertelstasse 16-18, 04107 Leipzig, Germany
| | - Anette Kaiser
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
- Medical Faculty, Department of Anesthesiology and Intensive Care, Leipzig University, Liebigstrasse 19, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Wong AR, Hung A, Yang AWH, Gill H, Lenon GB. Poria cocos compounds targeting neuropeptide Y1 receptor (Y1R) for weight management: A computational ligand- and structure-based study with molecular dynamics simulations identified beta-amyrin acetate as a putative Y1R inhibitor. PLoS One 2023; 18:e0277873. [PMID: 37390097 PMCID: PMC10313034 DOI: 10.1371/journal.pone.0277873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/09/2022] [Indexed: 07/02/2023] Open
Abstract
Poria cocos (PC) is a medicinal herb frequently used in weight-loss clinical trials, however the mechanisms by which its compounds target orexigenic receptors including the neuropeptide Y1 receptor (Y1R) remain largely unknown. This study aimed to screen PC compounds for favourable pharmacokinetics profiles and examine their molecular mechanisms targeting Y1R. Forty-three PC compounds were systematically sought from pharmacological databases and docked with Y1R (PDB: 5ZBQ). By comparing the relative binding affinities, pharmacokinetics and toxicity profiles, we hypothesised that compounds designated PC1 3,4-Dihydroxybenzoic acid, PC8 Vanillic acid, PC40 1-(alpha-L-Ribofuranosyl)uracil, could be potential antagonists as they contact major residues Asn283 and Asp287, similar to various potent Y1R antagonists. In addition, PC21 Poricoic acid B, PC22 Poricoic acid G and PC43 16alpha,25-Dihydroxy-24-methylene-3,4-secolanosta-4(28),7,9(11)-triene-3,21-dioic acid, contacting Asn299, Asp104 and Asp200 proximal to the extracellular surface could also interfere with agonist binding by stabilising the extracellular loop (ECL) 2 of Y1R in a closed position. Owing to their selective interaction with Phe302, an important residue in binding of selective Y1R antagonists, PC12 beta-Amyrin acetate, PC26 3-Epidehydrotumulosic acid and PC27 Cerevisterol were proposed as putative antagonists. Following the consensus approach, PC12 beta-Amyrin acetate, PC26 3-Epidehydrotumulosic acid and PC27 Cerevisterol were identified as candidate compounds due to their high affinities (-12.2, -11.0 and -10.8 kcal, respectively), high drug-likeness and low toxicity profiles. Trajectory analyses and energy contributions of PC12-Y1R complex further confirmed their structural stability and favourable binding free energies, highlighting the feasibility and possible development of PC12 beta-Amyrin acetate as a future Y1R inhibitor.
Collapse
Affiliation(s)
- Ann Rann Wong
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Andrew Hung
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Angela Wei Hong Yang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - George Binh Lenon
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
21
|
Rerick MT, Chen J, Weber SG. Electroosmotic Perfusion, External Microdialysis: Simulation and Experiment. ACS Chem Neurosci 2023. [PMID: 37379416 PMCID: PMC10360060 DOI: 10.1021/acschemneuro.3c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Information about the rates of hydrolysis of neuropeptides by extracellular peptidases can lead to a quantitative understanding of how the steady-state and transient concentrations of neuropeptides are controlled. We have created a small microfluidic device that electroosmotically infuses peptides into, through, and out of the tissue to a microdialysis probe outside the head. The device is created by two-photon polymerization (Nanoscribe). Inferring quantitative estimates of a rate process from the change in concentration of a substrate that has passed through tissue is challenging for two reasons. One is that diffusion is significant, so there is a distribution of peptide substrate residence times in the tissue. This affects the product yield. The other is that there are multiple paths taken by the substrate as it passes through tissue, so there is a distribution of residence times and thus reaction times. Simulation of the process is essential. The simulations presented here imply that a range of first order rate constants of more than 3 orders of magnitude is measurable and that 5-10 min is required to reach a steady state value of product concentration following initiation of substrate infusion. Experiments using a peptidase-resistant d-amino acid pentapeptide, yaGfl, agree with simulations.
Collapse
Affiliation(s)
- Michael T Rerick
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
22
|
Schüß C, Vu O, Mishra NM, Tough IR, Du Y, Stichel J, Cox HM, Weaver CD, Meiler J, Emmitte KA, Beck-Sickinger AG. Structure-Activity Relationship Study of the High-Affinity Neuropeptide Y 4 Receptor Positive Allosteric Modulator VU0506013. J Med Chem 2023. [PMID: 37339079 DOI: 10.1021/acs.jmedchem.3c00383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Positive allosteric modulators targeting the Y4 receptor (Y4R), a G protein-coupled receptor (GPCR) involved in the regulation of satiety, offer great potential in anti-obesity research. In this study, we selected 603 compounds by using quantitative structure-activity relationship (QSAR) models and tested them in high-throughput screening (HTS). Here, the novel positive allosteric modulator (PAM) VU0506013 was identified, which exhibits nanomolar affinity and pronounced selectivity toward the Y4R in engineered cell lines and mouse descending colon mucosa natively expressing the Y4R. Based on this lead structure, we conducted a systematic SAR study in two regions of the scaffold and presented a series of 27 analogues with modifications in the N- and C-terminal heterocycles of the molecule to obtain insight into functionally relevant positions. By mutagenesis and computational docking, we present a potential binding mode of VU0506013 in the transmembrane core of the Y4R. VU0506013 presents a promising scaffold for developing in vivo tools to move toward anti-obesity drug research focused on the Y4R.
Collapse
Affiliation(s)
- Corinna Schüß
- Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Oanh Vu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nigam M Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Iain R Tough
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, London SE1 1UL, U.K
| | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jan Stichel
- Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Helen M Cox
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, London SE1 1UL, U.K
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Institute for Drug Discovery, Leipzig University, Leipzig 04103, Germany
| | - Kyle A Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | | |
Collapse
|
23
|
Sánchez ML, Rodríguez FD, Coveñas R. Neuropeptide Y Peptide Family and Cancer: Antitumor Therapeutic Strategies. Int J Mol Sci 2023; 24:9962. [PMID: 37373115 DOI: 10.3390/ijms24129962] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Currently available data on the involvement of neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) and their receptors (YRs) in cancer are updated. The structure and dynamics of YRs and their intracellular signaling pathways are also studied. The roles played by these peptides in 22 different cancer types are reviewed (e.g., breast cancer, colorectal cancer, Ewing sarcoma, liver cancer, melanoma, neuroblastoma, pancreatic cancer, pheochromocytoma, and prostate cancer). YRs could be used as cancer diagnostic markers and therapeutic targets. A high Y1R expression has been correlated with lymph node metastasis, advanced stages, and perineural invasion; an increased Y5R expression with survival and tumor growth; and a high serum NPY level with relapse, metastasis, and poor survival. YRs mediate tumor cell proliferation, migration, invasion, metastasis, and angiogenesis; YR antagonists block the previous actions and promote the death of cancer cells. NPY favors tumor cell growth, migration, and metastasis and promotes angiogenesis in some tumors (e.g., breast cancer, colorectal cancer, neuroblastoma, pancreatic cancer), whereas in others it exerts an antitumor effect (e.g., cholangiocarcinoma, Ewing sarcoma, liver cancer). PYY or its fragments block tumor cell growth, migration, and invasion in breast, colorectal, esophageal, liver, pancreatic, and prostate cancer. Current data show the peptidergic system's high potential for cancer diagnosis, treatment, and support using Y2R/Y5R antagonists and NPY or PYY agonists as promising antitumor therapeutic strategies. Some important research lines to be developed in the future will also be suggested.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37008 Salamanca, Spain
| | - Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
24
|
Karnošová A, Strnadová V, Železná B, Kuneš J, Kašpárek P, Maletínská L. NPFFR2-deficient mice fed a high-fat diet develop strong intolerance to glucose. Clin Sci (Lond) 2023; 137:847-862. [PMID: 37191311 PMCID: PMC10240834 DOI: 10.1042/cs20220880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/17/2023]
Abstract
A previous study on neuropeptide FF receptor 2 (NPFFR2)-deficient mice has demonstrated that NPFFR2 is involved in the control of energy balance and thermogenesis. Here, we report on the metabolic impact of NPFFR2 deficiency in male and female mice that were fed either a standard diet (STD) or a high-fat diet (HFD) and each experimental group consisted of ten individuals. Both male and female NPFFR2 knockout (KO) mice exhibited severe glucose intolerance that was exacerbated by a HFD diet. In addition, reduced insulin pathway signaling proteins in NPFFR2 KO mice fed a HFD resulted in the development of hypothalamic insulin resistance. HFD feeding did not cause liver steatosis in NPFFR2 KO mice of either sex, but NPFFR2 KO male mice fed a HFD had lower body weights, white adipose tissues, and liver and lower plasma leptin levels compared with their wild-type (WT) controls. Lower liver weight in NPFFR2 KO male mice compensated for HFD-induced metabolic stress by increased liver PPARα and plasma FGF21 hepatokine, which supported fatty acid β-oxidation in the liver and white adipose tissue. Conversely, NPFFR2 deletion in female mice attenuated the expression of Adra3β and Pparγ, which inhibited lipolysis in adipose tissue.
Collapse
Affiliation(s)
- Alena Karnošová
- Biochemistry and molecular biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
- First Faculty of Medicine, Charles University, 12108 Prague, Czech Republic
| | - Veronika Strnadová
- Biochemistry and molecular biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Blanka Železná
- Biochemistry and molecular biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jaroslav Kuneš
- Biochemistry and molecular biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
- Experimental hypertension, Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Petr Kašpárek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| | - Lenka Maletínská
- Biochemistry and molecular biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| |
Collapse
|
25
|
Yang M, Li XL, Zhang YT, Deng YW, Jiao Y. miR-10a-3p Participates in Nacre Formation in the Pearl Oyster Pinctada fucata martensii by Targeting NPY. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023:10.1007/s10126-023-10216-5. [PMID: 37246207 DOI: 10.1007/s10126-023-10216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression via the recognition of their target messenger RNAs. MiR-10a-3p plays an important role in the process of ossification. In this study, we obtained the precursor sequence of miR-10a-3p in the pearl oyster Pinctada fucata martensii (Pm-miR-10a-3p) and verified its sequence by miR-RACE technology, and detected its expression level in the mantle tissues of the pearl oyster P. f. martensii. Pm-nAChRsα and Pm-NPY were identified as the potential target genes of Pm-miR-10a-3p. After the over-expression of Pm-miR-10a-3p, the target genes Pm-nAChRsα and Pm-NPY were downregulated, and the nacre microstructure became disordered. The Pm-miR-10a-3p mimic obviously inhibited the luciferase activity of the 3' untranslated region of the Pm-NPY gene. When the interaction site was mutated, the inhibitory effect disappeared. Our results suggested that Pm-miR-10a-3p participates in nacre formation in P. f. martensii by targeting Pm-NPY. This study can expand our understanding of the mechanism of biomineralization in pearl oysters.
Collapse
Affiliation(s)
- Min Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Xin Lei Li
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yu Ting Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yue Wen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China.
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China.
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| |
Collapse
|
26
|
Rahman MM, Islam MR, Supti FA, Dhar PS, Shohag S, Ferdous J, Shuvo SK, Akter A, Hossain MS, Sharma R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: at a Glance. Mol Neurobiol 2023:10.1007/s12035-023-03328-5. [PMID: 37052791 DOI: 10.1007/s12035-023-03328-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
27
|
Schurman CA, Burton JB, Rose J, Ellerby LM, Alliston T, Schilling B. Molecular and Cellular Crosstalk between Bone and Brain: Accessing Bidirectional Neural and Musculoskeletal Signaling during Aging and Disease. J Bone Metab 2023; 30:1-29. [PMID: 36950837 PMCID: PMC10036181 DOI: 10.11005/jbm.2023.30.1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 03/24/2023] Open
Abstract
Molecular omics technologies, including proteomics, have enabled the elucidation of key signaling pathways that mediate bidirectional communication between the brain and bone tissues. Here we provide a brief summary of the clinical and molecular evidence of the need to study the bone-brain axis of cross-tissue cellular communication. Clear clinical and molecular evidence suggests biological interactions and similarities between bone and brain cells. Here we review the current mass spectrometric techniques for studying brain and bone diseases with an emphasis on neurodegenerative diseases and osteoarthritis/osteoporosis, respectively. Further study of the bone-brain axis on a molecular level and evaluation of the role of proteins, neuropeptides, osteokines, and hormones in molecular pathways linked to bone and brain diseases is critically needed. The use of mass spectrometry and other omics technologies to analyze these cross-tissue signaling events and interactions will help us better understand disease progression and comorbidities and potentially identify new pathways and targets for therapeutic interventions. Proteomic measurements are particularly favorable for investigating the role of signaling and secreted and circulating analytes and identifying molecular and metabolic pathways implicated in age-related diseases.
Collapse
Affiliation(s)
| | | | - Jacob Rose
- Buck Institute for Research on Aging, Novato, CA,
USA
| | | | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA,
USA
| | | |
Collapse
|
28
|
Zhu W, Tanday N, Flatt PR, Irwin N. Pancreatic polypeptide revisited: Potential therapeutic effects in obesity-diabetes. Peptides 2023; 160:170923. [PMID: 36509169 DOI: 10.1016/j.peptides.2022.170923] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Pancreatic polypeptide (PP), a member of the neuropeptide Y (NPY) family of peptides, is a hormone secreted from the endocrine pancreas with established actions on appetite regulation. Thus, through activation of hypothalamic neuropeptide Y4 (NPY4R or Y4) receptors PP induces satiety in animals and humans, suggesting potential anti-obesity actions. In addition, despite being actively secreted from pancreatic islets and evidence of local Y4 receptor expression, PP mediated effects on the endocrine pancreas have not been fully elucidated. To date, it appears that PP possesses an acute insulinostatic effect, similar to the impact of other peptides from the NPY family. However, it is interesting that prolonged activation of pancreatic Y1 receptors leads to established benefits on beta-cell turnover, preservation of beta-cell identity and improved insulin secretory responsiveness. This may hint towards possible similar anti-diabetic actions of sustained Y4 receptor modulation, since the Y1 and Y4 receptors trigger comparable cell signalling pathways. In terms of exploiting the prospective therapeutic promise of PP, this is severely restricted by a short circulating half-life as is the case for many regulatory peptide hormones. It follows that long-acting, enzyme resistant, forms of PP will be required to determine viability of the Y4 receptor as an anti-obesity and -diabetes drug target. The current review aims to refocus interest on the biology of PP and highlight opportunities for therapeutic development.
Collapse
|
29
|
Kang H, Park C, Choi YK, Bae J, Kwon S, Kim J, Choi C, Seok C, Im W, Choi HJ. Structural basis for Y2 receptor-mediated neuropeptide Y and peptide YY signaling. Structure 2023; 31:44-57.e6. [PMID: 36525977 DOI: 10.1016/j.str.2022.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Neuropeptide Y (NPY) and its receptors are expressed in various human tissues including the brain where they regulate appetite and emotion. Upon NPY stimulation, the neuropeptide Y1 and Y2 receptors (Y1R and Y2R, respectively) activate GI signaling, but their physiological responses to food intake are different. In addition, deletion of the two N-terminal amino acids of peptide YY (PYY(3-36)), the endogenous form found in circulation, can stimulate Y2R but not Y1R, suggesting that Y1R and Y2R may have distinct ligand-binding modes. Here, we report the cryo-electron microscopy structures of the PYY(3-36)‒Y2R‒Gi and NPY‒Y2R‒Gi complexes. Using cell-based assays, molecular dynamics simulations, and structural analysis, we revealed the molecular basis of the exclusive binding of PYY(3-36) to Y2R. Furthermore, we demonstrated that Y2R favors G protein signaling over β-arrestin signaling upon activation, whereas Y1R does not show a preference between these two pathways.
Collapse
Affiliation(s)
- Hyunook Kang
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaehee Park
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeol Kyo Choi
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Jungnam Bae
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chulwon Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
30
|
Itano J, Taniguchi A, Senoo S, Asada N, Gion Y, Egusa Y, Guo L, Oda N, Araki K, Sato Y, Toyooka S, Kiura K, Maeda Y, Miyahara N. Neuropeptide Y Antagonizes Development of Pulmonary Fibrosis through IL-1β Inhibition. Am J Respir Cell Mol Biol 2022; 67:654-665. [PMID: 36122332 DOI: 10.1165/rcmb.2021-0542oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neuropeptide Y (NPY), a 36 amino acid residue polypeptide distributed throughout the nervous system, acts on various immune cells in many organs, including the respiratory system. However, little is known about its role in the pathogenesis of pulmonary fibrosis. This study was performed to determine the effects of NPY on pulmonary fibrosis. NPY-deficient and wild-type mice were intratracheally administered bleomycin. Inflammatory cells, cytokine concentrations, and morphological morphometry of the lungs were analyzed. Serum NPY concentrations were also measured in patients with idiopathic pulmonary fibrosis and healthy control subjects. NPY-deficient mice exhibited significantly enhanced pulmonary fibrosis and higher IL-1β concentrations in the lungs compared with wild-type mice. Exogenous NPY treatment suppressed the development of bleomycin-induced lung fibrosis and decreased IL-1β concentrations in the lungs. Moreover, IL-1β neutralization in NPY-deficient mice attenuated the fibrotic changes. NPY decreased IL-1β release, and Y1 receptor antagonists inhibited IL-1β release and induced epithelial-mesenchymal transition in human alveolar epithelial cells. Patients with idiopathic pulmonary fibrosis had lower NPY and greater IL-1β concentrations in the serums compared with healthy control subjects. NPY expression was mainly observed around bronchial epithelial cells in human idiopathic pulmonary fibrosis lungs. These data suggest that NPY plays a protective role against pulmonary fibrosis by suppressing IL-1β release, and manipulating the NPY-Y1 receptor axis could be a potential therapeutic strategy for delaying disease progression.
Collapse
Affiliation(s)
- Junko Itano
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiko Taniguchi
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Satoru Senoo
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Yuka Gion
- Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Yuria Egusa
- Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Lili Guo
- Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Naohiro Oda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kota Araki
- Department of General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuharu Sato
- Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuaki Miyahara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan.,Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| |
Collapse
|
31
|
Palanivel V, Gupta V, Mirshahvaladi SSO, Sharma S, Gupta V, Chitranshi N, Mirzaei M, Graham SL, Basavarajappa D. Neuroprotective Effects of Neuropeptide Y on Human Neuroblastoma SH-SY5Y Cells in Glutamate Excitotoxicity and ER Stress Conditions. Cells 2022; 11:cells11223665. [PMID: 36429093 PMCID: PMC9688085 DOI: 10.3390/cells11223665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Neuropeptide Y (NPY), a sympathetic neurotransmitter, is involved in various physiological functions, and its dysregulation is implicated in several neurodegenerative diseases. Glutamate excitotoxicity, endoplasmic reticulum (ER) stress, and oxidative stress are the common mechanisms associated with numerous neurodegenerative illnesses. The present study aimed to elucidate the protective effects of NPY against glutamate toxicity and tunicamycin-induced ER stress in the human neuroblastoma SH-SY5Y cell line. We exposed the SH-SY5Y cells to glutamate and tunicamycin for two different time points and analyzed the protective effects of NPY at different concentrations. The protective effects of NPY treatments were assessed by cell viability assay, and the signalling pathway changes were evaluated by biochemical techniques such as Western blotting and immunofluorescence assays. Our results showed that treatment of SH-SY5Y cells with NPY significantly increased the viability of the cells in both glutamate toxicity and ER stress conditions. NPY treatments significantly attenuated the glutamate-induced pro-apoptotic activation of ERK1/2 and JNK/BAD pathways. The protective effects of NPY were further evident against tunicamycin-induced ER stress. NPY treatments significantly suppressed the ER stress activation by downregulating BiP, phospho-eIF2α, and CHOP expression. In addition, NPY alleviated the Akt/FoxO3a pathway in acute oxidative conditions caused by glutamate and tunicamycin in SH-SY5Y cells. Our results demonstrated that NPY is neuroprotective against glutamate-induced cell toxicity and tunicamycin-induced ER stress through anti-apoptotic actions.
Collapse
Affiliation(s)
- Viswanthram Palanivel
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Correspondence: (V.P.); (D.B.)
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Seyed Shahab Oddin Mirshahvaladi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Samridhi Sharma
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Correspondence: (V.P.); (D.B.)
| |
Collapse
|
32
|
Impact of the Gut-Brain Hormonal Axis and Enteric Peptides in the Development of Food Neophobia in Children with Genetically Determined Hypersensitivity to the Bitter Taste. GASTROINTESTINAL DISORDERS 2022. [DOI: 10.3390/gidisord4040023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: The aim of this prospective study was to determine the role of the gut-brain hormonal axis and the effect of the enteric peptides, as well as the role of genetically determined sensitivity to the bitter taste, on the development of child food neophobia (CFN). Methods: 114 children were enrolled in the study: 43 in food neophobia group (FNG), 21 In the control group (CG) and 50 in prospective group (PG). All patients were assessed with the child food neophobia scale (CFNS), underwent an oral 6-propylthiouracil (6-PROP) test, buccal swab for bitter-taste genotyping, anthropometric measurements, and were tested for serum levels of leptin, adiponectin, insulin-like growth factor-1(IGF-1), ghrelin, and neuropeptide Y (NPY), and complete blood count (CBC); measurements were taken from a blood sample after 4 h fasting. Results: Subjects from FNG were more often hypersensitive to bitter taste (6-PROP) than CG (p = 0.001). There was no correlation between the result of genetic analysis and CFNS (p = 0.197), nor the body mass index (BMI) at the age of 18–36 months (p = 0.946) found. Correlation between 6-PRO perception and genotype have not been confirmed (p = 0.064). The score of CFNS was positively related to the serum level of NPY (p = 0.03). BMI percentile was negatively related to serum level of NPY (p = 0.03), but positively related to leptin serum level (p = 0.027). Conclusions: Bitter taste sensitivity to 6-PROP plays an important role in the development of the CFN, but correlation between 6-PROP perception and genotype have not been confirmed. Children with food neophobia due to elevated serum NPY level should be constantly monitored in order to control the nutritional status at a later age.
Collapse
|
33
|
Smith-Cohn MA, Burley NB, Grossman SA. Transient Opening of the Blood-Brain Barrier by Vasoactive Peptides to Increase CNS Drug Delivery: Reality Versus Wishful Thinking? Curr Neuropharmacol 2022; 20:1383-1399. [PMID: 35100958 PMCID: PMC9881081 DOI: 10.2174/1570159x20999220131163504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The blood-brain barrier inhibits the central nervous system penetration of 98% of small molecule drugs and virtually all biologic agents, which has limited progress in treating neurologic disease. Vasoactive peptides have been shown in animal studies to transiently disrupt the blood-brain barrier and regadenoson is currently being studied in humans to determine if it can improve drug delivery to the brain. However, many other vasoactive peptides could potentially be used for this purpose. METHODS We performed a review of the literature evaluating the physiologic effects of vasoactive peptides on the vasculature of the brain and systemic organs. To assess the likelihood that a vasoactive peptide might transiently disrupt the blood-brain barrier, we devised a four-tier classification system to organize the available evidence. RESULTS We identified 32 vasoactive peptides with potential blood-brain barrier permeabilityaltering properties. To date, none of these are shown to open the blood-brain barrier in humans. Twelve vasoactive peptides increased blood-brain barrier permeability in rodents. The remaining 20 had favorable physiologic effects on blood vessels but lacked specific information on permeability changes to the blood-brain barrier. CONCLUSION Vasoactive peptides remain an understudied class of drugs with the potential to increase drug delivery and improve treatment in patients with brain tumors and other neurologic diseases. Dozens of vasoactive peptides have yet to be formally evaluated for this important clinical effect. This narrative review summarizes the available data on vasoactive peptides, highlighting agents that deserve further in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Matthew A. Smith-Cohn
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA; ,Address correspondence to these authors at the The Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Swedish Health Services, 500 17th Ave, James Tower, Suite 540, Seattle, WA 98122, USA; Tel: 206-320-2300; Fax: 206-320-8149; E-mail: , Sidney Kimmel Cancer Center, Skip Viragh Building, 201 North Broadway, 9th Floor (Mailbox #3), Baltimore, MD 21287, USA; E-mail:
| | - Nicholas B. Burley
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, USA;
| | - Stuart A. Grossman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA,Address correspondence to these authors at the The Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Swedish Health Services, 500 17th Ave, James Tower, Suite 540, Seattle, WA 98122, USA; Tel: 206-320-2300; Fax: 206-320-8149; E-mail: , Sidney Kimmel Cancer Center, Skip Viragh Building, 201 North Broadway, 9th Floor (Mailbox #3), Baltimore, MD 21287, USA; E-mail:
| |
Collapse
|
34
|
Lopresti AL, Smith SJ. An examination into the mental and physical effects of a saffron extract (affron®) in recreationally-active adults: A randomized, double-blind, placebo-controlled study. J Int Soc Sports Nutr 2022; 19:219-238. [PMID: 35813851 PMCID: PMC9261746 DOI: 10.1080/15502783.2022.2083455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Adrian L Lopresti
- Clinical Research Australia, Perth, Australia
- Murdoch University, College of Science, Health, Engineering and Education, Perth, Australia
| | - Stephen J Smith
- Clinical Research Australia, Perth, Australia
- Murdoch University, College of Science, Health, Engineering and Education, Perth, Australia
| |
Collapse
|
35
|
Teleanu RI, Niculescu AG, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters-Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. Int J Mol Sci 2022; 23:5954. [PMID: 35682631 PMCID: PMC9180936 DOI: 10.3390/ijms23115954] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Neurotransmitters are molecules that amplify, transmit, and convert signals in cells, having an essential role in information transmission throughout the nervous system. Hundreds of such chemicals have been discovered in the last century, continuing to be identified and studied concerning their action on brain health. These substances have been observed to influence numerous functions, including emotions, thoughts, memories, learning, and movements. Thus, disturbances in neurotransmitters' homeostasis started being correlated with a plethora of neurological and neurodegenerative disorders. In this respect, the present paper aims to describe the most important neurotransmitters, broadly classified into canonical (e.g., amino acids, monoamines, acetylcholine, purines, soluble gases, neuropeptides) and noncanonical neurotransmitters (e.g., exosomes, steroids, D-aspartic acid), and explain their link with some of the most relevant neurological conditions. Moreover, a brief overview of the recently developed neurotransmitters' detection methods is offered, followed by several considerations on the modulation of these substances towards restoring homeostasis.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Eugenia Roza
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Oana Vladâcenco
- Department of Pediatric Neurology, “Dr. Victor Gomoiu” Children’s Hospital, 022102 Bucharest, Romania; (R.I.T.); (E.R.); (O.V.)
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | | |
Collapse
|
36
|
Greene ES, Abdelli N, Dridi JS, Dridi S. Avian Neuropeptide Y: Beyond Feed Intake Regulation. Vet Sci 2022; 9:171. [PMID: 35448669 PMCID: PMC9028514 DOI: 10.3390/vetsci9040171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropeptide Y (NPY) is one of the most abundant and ubiquitously expressed neuropeptides in both the central and peripheral nervous systems, and its regulatory effects on feed intake and appetite- have been extensively studied in a wide variety of animals, including mammalian and non-mammalian species. Indeed, NPY has been shown to be involved in the regulation of feed intake and energy homeostasis by exerting stimulatory effects on appetite and feeding behavior in several species including chickens, rabbits, rats and mouse. More recent studies have shown that this neuropeptide and its receptors are expressed in various peripheral tissues, including the thyroid, heart, spleen, adrenal glands, white adipose tissue, muscle and bone. Although well researched centrally, studies investigating the distribution and function of peripherally expressed NPY in avian (non-mammalian vertebrates) species are very limited. Thus, peripherally expressed NPY merits more consideration and further in-depth exploration to fully elucidate its functions, especially in non-mammalian species. The aim of the current review is to provide an integrated synopsis of both centrally and peripherally expressed NPY, with a special focus on the distribution and function of the latter.
Collapse
Affiliation(s)
- Elizabeth S. Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
| | - Nedra Abdelli
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jalila S. Dridi
- École Universitaire de Kinésithérapie, Université d’Orléans, Rue de Chartres, 45100 Orleans, France;
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
| |
Collapse
|
37
|
Naomi R, Yazid MD, Bahari H, Keong YY, Rajandram R, Embong H, Teoh SH, Halim S, Othman F. Bisphenol A (BPA) Leading to Obesity and Cardiovascular Complications: A Compilation of Current In Vivo Study. Int J Mol Sci 2022; 23:2969. [PMID: 35328389 PMCID: PMC8949383 DOI: 10.3390/ijms23062969] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
BPA is one of the most common endocrine disruptors that is widely being manufactured daily nationwide. Although scientific evidence supports claims of negative effects of BPA on humans, there is also evidence suggesting that a low level of BPA is safe. However, numerous in vivo trials contraindicate with this claim and there is a high possibility of BPA exposure could lead to obesity. It has been speculated that this does not stop with the exposed subjects only, but may also cause transgenerational effects. Direct disruption of endocrine regulation, neuroimmune and signaling pathways, as well as gut microbiata, has been identified to be interrupted by BPA exposure, leading to overweight or obesity. In these instances, cardiovascular complications are one of the primary notable clinical signs. In regard to this claim, this review paper discusses the role of BPA on obesity in the perspective of endocrine disruptions and possible cardiovascular complications that may arise due to BPA. Thus, the aim of this review is to outline the changes in gut microbiota and neuroimmune or signaling mechanisms involved in obesity in relation to BPA. To identify potentially relevant articles, a depth search was done on the databases Nature, PubMed, Wiley Online Library, and Medline & Ovid from the past 5 years. According to Boolean operator guideline, selected keywords such as (1) BPA OR environmental chemical AND fat OR LDL OR obese AND transgenerational effects or phenocopy (2) Endocrine disruptors OR chemical AND lipodystrophy AND phenocopy (3) Lipid profile OR weight changes AND cardiovascular effect (4) BPA AND neuroimmune OR gene signaling, were used as search terms. Upon screening, 11 articles were finalized to be further reviewed and data extraction tables containing information on (1) the type of animal model (2) duration and dosage of BPA exposure (3) changes in the lipid profile or weight (4) genes, signaling mechanism, or any neuroimmune signal involved, and (5) transgenerational effects were created. In toto, the study indicates there are high chances of BPA exposure affecting lipid profile and gene associated with lipolysis, leading to obesity. Therefore, this scoping review recapitulates the possible effects of BPA that may lead to obesity with the evidence of current in vivo trials. The biomarkers, safety concerns, recommended dosage, and the impact of COVID-19 on BPA are also briefly described.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yong Yoke Keong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Retnagowri Rajandram
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Soo Huat Teoh
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Shariff Halim
- Neuroscience Research Group, International Medical School, Management & Science University, University Drive, Off Persiaran Olahraga, Shah Alam 40100, Malaysia
| | - Fezah Othman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| |
Collapse
|
38
|
Rudolf S, Kaempf K, Vu O, Meiler J, Beck‐Sickinger AG, Coin I. Binding of Natural Peptide Ligands to the Neuropeptide Y
5
Receptor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sarina Rudolf
- Institute of Biochemistry Faculty of Life Science Leipzig University 04103 Leipzig Germany
| | - Kerstin Kaempf
- Institute of Biochemistry Faculty of Life Science Leipzig University 04103 Leipzig Germany
| | - Oanh Vu
- Chemistry Department Vanderbilt University Nashville TN 37212 USA
| | - Jens Meiler
- Chemistry Department Vanderbilt University Nashville TN 37212 USA
- Center for Structural Biology Department of Biological Sciences Vanderbilt University Nashville TN 37212 USA
- Institute of Drug Design Faculty of Medicine Leipzig University 04103 Leipzig Germany
| | | | - Irene Coin
- Institute of Biochemistry Faculty of Life Science Leipzig University 04103 Leipzig Germany
| |
Collapse
|
39
|
Rudolf S, Kaempf K, Vu O, Meiler J, Beck-Sickinger AG, Coin I. Binding of Natural Peptide Ligands to the Neuropeptide Y 5 Receptor. Angew Chem Int Ed Engl 2022; 61:e202108738. [PMID: 34822209 PMCID: PMC8766924 DOI: 10.1002/anie.202108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 01/28/2023]
Abstract
The binding mode of natural peptide ligands to the Y5 G protein-coupled receptor (Y5 R), an attractive therapeutic target for the treatment of obesity, is largely unknown. Here, we apply complementary biochemical and computational approaches, including scanning of the receptor surface with a genetically encoded crosslinker, Ala-scanning of the ligand and double-cycle mutagenesis, to map interactions in the ligand-receptor interface and build a structural model of the NPY-Y5 R complex guided by the experimental data. In the model, the carboxyl (C)-terminus of bound NPY is placed close to the extracellular loop (ECL) 3, whereas the characteristic α-helical segment of the ligand drapes over ECL1 and is tethered towards ECL2 by a hydrophobic cluster. We further show that the other two natural ligands of Y5 R, peptide YY (PYY) and pancreatic polypeptide (PP) dock to the receptor in a similar pose.
Collapse
Affiliation(s)
- Sarina Rudolf
- Institute of Biochemistry, Faculty of Life Science, Leipzig University, Leipzig 04103, Germany
| | - Kerstin Kaempf
- Institute of Biochemistry, Faculty of Life Science, Leipzig University, Leipzig 04103, Germany
| | - Oanh Vu
- Chemistry Department, Vanderbilt University, Nashville, Tennessee 37212, U.S.A
| | - Jens Meiler
- Chemistry Department, Vanderbilt University, Nashville, Tennessee 37212, U.S.A
- Center for Structural Biology, Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37212, U.S.A
- Institute of Drug Design, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | | | - Irene Coin
- Institute of Biochemistry, Faculty of Life Science, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
40
|
Oliveira RC, Souto RQ, Santos JLGD, Reichert APDS, Ramalho ELR, Collet N. Control del sobrepeso y la obesidad en niños y adolescentes por enfermeras: un estudio de métodos mixtos. Rev Lat Am Enfermagem 2022. [DOI: 10.1590/1518-8345.6294.3788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Resumen Objetivo: analizar el manejo del sobrepeso y la obesidad en niños y adolescentes por las enfermeras de la Estrategia Salud de la Familia (ESF). Método: se trata de un estudio de método mixto paralelo convergente, desarrollado en Centros de Salud (UBS) de un municipio del nordeste de Brasil En la etapa cuantitativa, los datos fueron recolectados a partir de un cuestionario aplicado a 98 enfermeras y evaluados mediante estadística descriptiva. Para la etapa cualitativa, se realizaron entrevistas semiestructuradas con siete enfermeras, interpretadas por análisis temático inductivo. Se combinaron los resultados cuantitativos y cualitativos y se mostraron a través de joint display. Resultados: la mayoría de los enfermeros raramente verificaba el perímetro de cintura (77,6%), la dislipidemia (55,7%), la glucemia (42,3%) y tampoco evaluaba la presión arterial (75,3%). En los resultados cualitativos se identificó que hay enfermeras que no clasificaban el índice de masa corporal según sexo y edad. En cuanto a la solicitación de pruebas, las peticiones se trataban principalmente sobre la rutina asociada a la puericultura. Las orientaciones con respecto a la actividad física y nutrición se efectuaban de forma básica o eran asignadas a otros profesionales, y también no se hizo un seguimiento cuando fueron direccionados a otros servicios o profesionales. Conclusión: existen deficiencias en el conocimiento y la práctica de las enfermeras de atención primaria en el control del sobrepeso y la obesidad en niños y adolescentes. Es imperativo capacitar a los enfermeros para el manejo del sobrepeso y la obesidad en la atención primaria de niños y adolescentes, con miras a la calidad de la atención para la prevención de comorbilidades.
Collapse
|
41
|
Oliveira RC, Souto RQ, Santos JLGD, Reichert APDS, Ramalho ELR, Collet N. Management of overweight and obesity in children and adolescents by nurses: a mixed-method study. Rev Lat Am Enfermagem 2022; 30:e3789. [DOI: 10.1590/1518-8345.6294.3789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract Objective: to analyze the management of overweight and obesity in children and adolescents by nurses of the Family Health Strategy. Method: this is a study of convergent parallel mixed methods, developed in Health Centers of a municipality in northeastern Brazil. In the quantitative stage, data were collected from a questionnaire applied to 98 nurses and analyzed by descriptive statistics. For the qualitative stage, semi-structured interviews were conducted with seven nurses, interpreted by inductive thematic analysis. The quantitative and qualitative results were integrated and presented by a joint display. Results: most nurses rarely checked waist circumference (77.6%), dyslipidemia (55.7%), blood glucose (42.3%), and neither evaluated blood pressure (75.3%). In the qualitative results, we identified that there are nurses who did not classify body mass index according to sex and age. As for medical tests, the requests were mainly related to the routine of childcare. Guidance on physical activity and diet were given in a basic way or attributed to other professionals, and referrals to other services or professionals were not followed up. Conclusion: it is imperative to train nurses for the management of overweight and obesity in primary care for children and adolescents, with a view to quality of care for the prevention of comorbidities.
Collapse
|
42
|
Oliveira RC, Souto RQ, Santos JLGD, Reichert APDS, Ramalho ELR, Collet N. Manejo do sobrepeso e obesidade em crianças e adolescentes por enfermeiras: estudo de métodos mistos. Rev Lat Am Enfermagem 2022. [DOI: 10.1590/1518-8345.6294.3790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Resumo Objetivo: analisar o manejo do sobrepeso e da obesidade de crianças e adolescentes por enfermeiras da Estratégia Saúde da Família. Método: estudo de método misto paralelo convergente, desenvolvido em Unidades Básicas de Saúde, de um município do nordeste brasileiro. Na etapa quantitativa, os dados foram coletados a partir de um questionário aplicado a 98 enfermeiras e analisados por meio de estatística descritiva. Para a etapa qualitativa, foram realizadas entrevistas semiestruturadas com sete enfermeiras, interpretadas pela análise temática indutiva. Os resultados quantitativos e qualitativos foram integrados e apresentados por meio de joint display. Resultados: a maioria dos enfermeiros raramente verificava a circunferência da cintura (77,6%), dislipidemia (55,7%), glicemia (42,3%) e nenhum avaliava a pressão arterial (75,3%). Nos resultados qualitativos, identificamos que há enfermeiros que não classificavam o índice de massa corporal segundo sexo e idade. Quanto aos exames, as solicitações estavam relacionadas principalmente à rotina de puericultura. As orientações sobre atividade física e alimentação foram dadas de forma básica ou atribuídas a outros profissionais, e os encaminhamentos para outros serviços ou profissionais sem seguimento pelos enfermeiros. Conclusão: é imperioso a capacitação dos enfermeiros para o manejo do sobrepeso e obesidade na atenção primária para crianças e adolescentes com vistas a qualidade do atendimento para a prevenção de comorbidades.
Collapse
|
43
|
Turan S, Sarioglu FC, Erbas IM, Cavusoglu B, Karagöz E, Şişman AR, Güney SA, Güleryüz H, Abaci A, Ozturk Y, Akay AP. Altered regional grey matter volume and appetite-related hormone levels in adolescent obesity with or without binge-eating disorder. Eat Weight Disord 2021; 26:2555-2562. [PMID: 33548051 DOI: 10.1007/s40519-021-01117-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Binge eating disorder (BED) is characterized by frequent and persistent overeating episodes of binge eating without compensatory behaviors. The aim was to evaluate regional gray matter volume (GMV) abnormalities and appetite-regulating hormone levels (NPY and Leptin) in obese subjects either with or without BED compared to healthy controls (HC). METHODS Twenty-six obese patients with BED, 25 obese patients without BED and 27 healthy subjects as an age-matched control group with neuroimaging and appetite-regulating hormone levels were found eligible for regional GMV abnormalities. A structural magnetic resonance scan and timely blood samples were drawn to assess the appetite-regulating hormone levels. RESULTS The BED obese patients had a greater GMVs of the right medial orbitofrontal cortex (OFC) and the left medial OFC compared to the non-BED obese patients. BED patients were characterized by greater GMV of the left medial OFC than HCs. Relative to the HCs, higher serum NPY levels were found in BED obese and non-BED obese groups. Serum leptin levels (pg/mL) had positively correlations with GMV in right medial OFC, left medial OFC, right lateral OFC, and left anterior cingulate cortex. CONCLUSION Among the reward processing network, which is largely associated with feeding behaviours in individuals with obesity and binge eating disorder, the OFC volumes was correlated with serum leptin concentrations. The results of our study may provide a rationale for exploring the link between regional grey matter volumes and appetite-related hormone levels in people with BED. LEVEL OF EVIDENCE Level III, case-control analytic study.
Collapse
Affiliation(s)
- Serkan Turan
- Department of Child and Adolescent Psychiatry, Tekirdağ State Hospital, Tekirdağ, Turkey.
| | - Fatma Ceren Sarioglu
- Department of Radiology, Division of Pediatric Radiology, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Ibrahim Mert Erbas
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Berrin Cavusoglu
- Health Sciences Institutes, Department of Medical Physics, Institute of HealthSciences, Dokuz Eylül University, Izmir, Turkey
| | - Ezgi Karagöz
- Department of Child and Adolescent Psychiatry, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Ali Riza Şişman
- Department of Medical Microbiology, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Sevay Alsen Güney
- Department of Child and Adolescent Psychiatry, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Handan Güleryüz
- Department of Radiology, Division of Pediatric Radiology, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Ayhan Abaci
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Yesim Ozturk
- Department of Pediatric Gastroenterology, Faculty of Medicine, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| | - Aynur Pekcanlar Akay
- Department of Child and Adolescent Psychiatry, Dokuz Eylül University Medical Faculty, Izmir, Turkey
| |
Collapse
|
44
|
Zoccali C, Ortiz A, Blumbyte IA, Rudolf S, Beck-Sickinger AG, Malyszko J, Spasovski G, Carriazo S, Viggiano D, Kurganaite J, Sarkeviciene V, Rastenyte D, Figurek A, Rroji M, Mayer C, Arici M, Martino G, Tedeschi G, Bruchfeld A, Spoto B, Rychlik I, Wiecek A, Okusa M, Remuzzi G, Mallamaci F. Neuropeptide Y as a risk factor for cardiorenal disease and cognitive dysfunction in CKD: translational opportunities and challenges. Nephrol Dial Transplant 2021; 37:ii14-ii23. [PMID: 34724060 PMCID: PMC8713155 DOI: 10.1093/ndt/gfab284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Neuropeptide Y (NPY) is a 36-amino-acid peptide member of a family also including peptide YY and pancreatic polypeptide, which are all ligands to Gi/Go coupled receptors. NPY regulates several fundamental biologic functions including appetite/satiety, sex and reproduction, learning and memory, cardiovascular and renal function and immune functions. The mesenteric circulation is a major source of NPY in the blood in man and this peptide is considered a key regulator of gut–brain cross talk. A progressive increase in circulating NPY accompanies the progression of chronic kidney disease (CKD) toward kidney failure and NPY robustly predicts cardiovascular events in this population. Furthermore, NPY is suspected as a possible player in accelerated cognitive function decline and dementia in patients with CKD and in dialysis patients. In theory, interfering with the NPY system has relevant potential for the treatment of diverse diseases from cardiovascular and renal diseases to diseases of the central nervous system. Pharmaceutical formulations for effective drug delivery and cost, as well as the complexity of diseases potentially addressable by NPY/NPY antagonists, have been a problem until now. This in part explains the slow progress of knowledge about the NPY system in the clinical arena. There is now renewed research interest in the NPY system in psychopharmacology and in pharmacology in general and new studies and a new breed of clinical trials may eventually bring the expected benefits in human health with drugs interfering with this system.
Collapse
Affiliation(s)
- Carmine Zoccali
- Renal Research Institute, New York,USA and Associazione Ipertensione Nefrologia Trapianto Renale (IPNET) Reggio Cal., Italy c/o CNR-IFC, Ospedali Riuniti, Reggio Calabria, Italy
| | - Alberto Ortiz
- Institute of Biochemistry, Leipzig University, Faculty of Life Sciences, Leipzig, Germany
| | - Inga Arune Blumbyte
- Lithuanian University of Health Sciences, Nephrology Department, Kaunas, Lithuania
| | - Sarina Rudolf
- Institute of Biochemistry, Leipzig University, Faculty of Life Sciences, Leipzig, Germany
| | | | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Medicine, Warsaw Medical University, Warsaw, Poland
| | - Goce Spasovski
- Department of Nephrology, University "Sts. Cyril and Methodius", Skopje, MK, Republic of Macedonia
| | - Sol Carriazo
- Institute of Biochemistry, Leipzig University, Faculty of Life Sciences, Leipzig, Germany
| | - Davide Viggiano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy. and Biogem Scarl, Ariano Irpino, Italy
| | - Justina Kurganaite
- Lithuanian University of Health Sciences, Nephrology Department, Kaunas, Lithuania
| | - Vaiva Sarkeviciene
- Lithuanian University of Health Sciences, Nephrology Department, Kaunas, Lithuania
| | - Daiva Rastenyte
- Lithuanian University of Health Sciences, Neurology Department, Kaunas, Lithuania
| | - Andreja Figurek
- Department of Nephrology, University "Sts. Cyril and Methodius", Skopje, MK, Republic of Macedonia
| | - Merita Rroji
- Department of Nephrology, University "Sts. Cyril and Methodius", Skopje, MK, Republic of Macedonia
| | - Christopher Mayer
- Health and Bioresources, Biomedical Systems, Austrian Institute of Technology, Vienna, Austria
| | - Mustapha Arici
- Department of Nephrology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Gianvito Martino
- Neurology Department, San Raffaele Scientific Institute and Vita-Salute University San Raffaele, Milan, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, and 3T-MRI Research Center, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden and Department of Renal Medicine, CLINTEC Karolinska Institutet, Stockholm, Sweden
| | | | - Ivan Rychlik
- Department of Medicine, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady,Prague, Czech Republic
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Katowice, Poland
| | - Mark Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Francesca Mallamaci
- Nephrology and Transplantation Unit, Grande Ospedale Metropolitano and CNR-IFC, Reggio Cal, Italy
| | | |
Collapse
|
45
|
NPF activates a specific NPF receptor and regulates food intake in Pacific abalone Haliotis discus hannai. Sci Rep 2021; 11:20912. [PMID: 34686694 PMCID: PMC8536682 DOI: 10.1038/s41598-021-00238-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/07/2021] [Indexed: 01/13/2023] Open
Abstract
Neuropeptides function through G protein-coupled receptors (GPCRs) with high specificity, implying a significant degree of neuropeptide-GPCR coevolution. However, potential neuropeptide signaling systems in non-chordates are relatively elusive. We determined the specificity of the neuropeptide F (Hdh-NPF) signaling system with a cognate receptor (Hdh-NPFR) in the Pacific abalone, Haliotis discus hannai. Phylogenetic and exon–intron arrangement analyses of bilaterian NPF and the chordate ortholog NPY with their receptor sequences revealed a likely common ancestor, and Hdh-NPFR was similar to the NPYR2 subtype among the NPYR1, NPYR2, and NPYR5 subtypes. Among four Hdh-NPFR-related receptors, Hdh-NPFR specifically responded to Hdh-NPF peptide, supported by the dose–response luciferase reporter curve, intracellular Ca2+ mobilization, and phosphorylation of ERK1/2 and its inhibition with a protein kinase C inhibitor. Peptide fragmentations and shuffling of Hdh-NPF with human NPY could not activate the cellular response of Hdh-NPFR. Three-dimensional in silico modeling suggested that interaction of Hdh-NPF C-terminal amino acids with the extracellular loops of Hdh-NPFR is critical for Hdh-NPFR activation. In vivo injection of Hdh-NPF peptide increased food consumption, and knockdown of Hdh-NPF expression decreased food consumption in Pacific abalone. These findings provide evidence for co-evolution of the NPF/Y ligand-receptor system, enabling further research on mollusk orexigenic neuropeptides.
Collapse
|
46
|
Dhamad A, Zampiga M, Greene ES, Sirri F, Dridi S. Neuropeptide Y and its receptors are expressed in chicken skeletal muscle and regulate mitochondrial function. Gen Comp Endocrinol 2021; 310:113798. [PMID: 33961876 DOI: 10.1016/j.ygcen.2021.113798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Neuropeptide Y (NPY) is a highly conserved 36-amino acid neurotransmitter, which is primarily expressed in the mammalian arcuate nucleus of the hypothalamus. It is a potent orexigenic neuropeptide, stimulating appetite and inducing feed intake in a variety of species. Recent research has shown that NPY and its receptors can be expressed by peripheral tissues, but their role is not yet well defined. Specifically, this information is particularly sparse in avian species. Therefore, the aim of this study was to determine the expression of NPY and its receptors, and determine their regulation by environmental and nutritional stressors, in the skeletal muscle of avian species using in vivo and in vitro approaches. Here, we show that NPY and its receptors are expressed in chicken breast and leg muscle as well as in quail myoblast (QM7) cell line. Intraperitoneal injection of recombinant NPY increased feed intake in 9-d old chicks and upregulated the expression of NPY and NPY receptors in breast and leg muscle, suggesting autocrine and/or paracrine roles for NPY. Additionally, NPY is able to modulate the mitochondrial network. In breast muscle, a low dose of NPY upregulated (P < 0.05) the expression of genes involved in ATP production (uncoupling protein, UCP; nuclear factor erythroid 2 like 2, NFE2L2) and dynamics (mitofusin 1, MFN1), while a high dose decreased (P < 0.05) markers of mitochondrial dynamics (mitofusin 2, MFN2; OPA1 mitochondrial dynamin like GTPase, OPA1) and increased (P < 0.05) genes involved in mitochondrial biogenesis (D-loop, peroxisome proliferator activated receptor gamma, PPARG). In leg muscle, NPY decreased (P < 0.05) markers of mitochondrial biogenesis and ATP synthesis (D-loop; peroxisome proliferator activated receptor alpha, PCG1A; peroxisome proliferator-activated receptor gamma, coactivator 1 beta, PPARGC1B; PPARG; NFE2L2). In QM7 cells, genes associated with mitochondrial biogenesis, dynamics, and ATP synthesis were all upregulated (P < 0.05), even though basal respiration and ATP production were decreased (P < 0.05) with NPY treatment as measured by XF Flux analysis. Together, these data show that the NPY system is expressed in avian skeletal muscle and plays a role in mitochondrial function.
Collapse
Affiliation(s)
- Ahmed Dhamad
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elizabeth S Greene
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Sami Dridi
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States.
| |
Collapse
|
47
|
Saad L, Zwiller J, Kalsbeek A, Anglard P. Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction. Genes (Basel) 2021; 12:1263. [PMID: 34440437 PMCID: PMC8394526 DOI: 10.3390/genes12081263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Based on studies describing an increased prevalence of addictive behaviours in several rare sleep disorders and shift workers, a relationship between circadian rhythms and addiction has been hinted for more than a decade. Although circadian rhythm alterations and molecular mechanisms associated with neuropsychiatric conditions are an area of active investigation, success is limited so far, and further investigations are required. Thus, even though compelling evidence connects the circadian clock to addictive behaviour and vice-versa, yet the functional mechanism behind this interaction remains largely unknown. At the molecular level, multiple mechanisms have been proposed to link the circadian timing system to addiction. The molecular mechanism of the circadian clock consists of a transcriptional/translational feedback system, with several regulatory loops, that are also intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape shows profound changes in the addictive brain, with significant alterations in histone modification, DNA methylation, and small regulatory RNAs. The combination of these two observations raises the possibility that epigenetic regulation is a common plot linking the circadian clocks with addiction, though very little evidence has been reported to date. This review provides an elaborate overview of the circadian system and its involvement in addiction, and we hypothesise a possible connection at the epigenetic level that could further link them. Therefore, we think this review may further improve our understanding of the etiology or/and pathology of psychiatric disorders related to drug addiction.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
| |
Collapse
|
48
|
Zhang Y, Liu CY, Chen WC, Shi YC, Wang CM, Lin S, He HF. Regulation of neuropeptide Y in body microenvironments and its potential application in therapies: a review. Cell Biosci 2021; 11:151. [PMID: 34344469 PMCID: PMC8330085 DOI: 10.1186/s13578-021-00657-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
Neuropeptide Y (NPY), one of the most abundant neuropeptides in the body, is widely expressed in the central and peripheral nervous systems and acts on the cardiovascular, digestive, endocrine, and nervous systems. NPY affects the nutritional and inflammatory microenvironments through its interaction with immune cells, brain-derived trophic factor (BDNF), and angiogenesis promotion to maintain body homeostasis. Additionally, NPY has great potential for therapeutic applications against various diseases, especially as an adjuvant therapy for stem cells. In this review, we discuss the research progress regarding NPY, as well as the current evidence for the regulation of NPY in each microenvironment, and provide prospects for further research on related diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Chu-Yun Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Cong-Mei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Shu Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia. .,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
49
|
Yang CH, Onda DA, Oakhill JS, Scott JW, Galic S, Loh K. Regulation of Pancreatic β-Cell Function by the NPY System. Endocrinology 2021; 162:6213414. [PMID: 33824978 DOI: 10.1210/endocr/bqab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 01/24/2023]
Abstract
The neuropeptide Y (NPY) system has been recognized as one of the most critical molecules in the regulation of energy homeostasis and glucose metabolism. Abnormal levels of NPY have been shown to contribute to the development of metabolic disorders including obesity, cardiovascular diseases, and diabetes. NPY centrally promotes feeding and reduces energy expenditure, while the other family members, peptide YY (PYY) and pancreatic polypeptide (PP), mediate satiety. New evidence has uncovered additional functions for these peptides that go beyond energy expenditure and appetite regulation, indicating a more extensive function in controlling other physiological functions. In this review, we will discuss the role of the NPY system in the regulation of pancreatic β-cell function and its therapeutic implications for diabetes.
Collapse
Affiliation(s)
- Chieh-Hsin Yang
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Danise-Ann Onda
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jonathan S Oakhill
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - John W Scott
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| | - Sandra Galic
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kim Loh
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
50
|
Grossmann M, Fui MNT, Nie T, Hoermann R, Clarke MV, Cheung AS, Zajac JD, Davey RA. Changes in white adipose tissue gene expression in a randomized control trial of dieting obese men with lowered serum testosterone alone or in combination with testosterone treatment. Endocrine 2021; 73:463-471. [PMID: 33864607 DOI: 10.1007/s12020-021-02722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The aim of this study was to determine early weight loss-associated changes in subcutaneous abdominal white adipose tissue (WAT) gene expression in obese men with lowered serum testosterone by RNA next-generation sequencing. METHODS Fourteen men, mean age (IQR) 51.6 years (43.4-54.5), BMI 38.3 kg/m2 (34.6-40.8) and total testosterone 8.4 nmol/L (7.5-9.5) provided subcutaneous WAT samples at baseline and after 2 weeks of a very low energy diet. RESULTS Body weight loss was similar in participants receiving testosterone (n = 6), -5.27 kg [95% CI -6.17; -4.26], and placebo (n = 8), -4.57 kg [95% CI -6.10; -3.55], p = 0.86. In placebo-treated men, of the 14,410 genes expressed in subcutaneous WAT, four genes, Angiopoietin-like 4, Semaphorin 3 G, Neuropilin 2 and Angiopoietin 4, were upregulated (adjusted false discovery rate P < 0.05). In an exploratory analysis comparing men receiving testosterone and placebo, the most-upregulated gene in the testosterone group (exploratory p < 0.0005) was the neuropeptide y receptor 2. CONCLUSIONS In obese men, dieting is associated with upregulation of WAT-expressed Angiopoietin-like 4, a secreted protein that regulates lipid metabolism, Semaphorin 3 G, a proposed adipocyte differentiation factor and secreted adipokine, and its receptor Neuropilin 2, as well as Angiopoietin 4, a vascular integrity factor. In an exploratory analysis, testosterone was associated with the upregulation of neuropeptide y receptor 2, a receptor involved in appetite regulation. Further studies are needed to confirm these observations and their potential biological implications. TRIAL REGISTRATION clinicaltrials.gov, Identifier NCT01616732, Registration date: June 8, 2012.
Collapse
Affiliation(s)
- Mathis Grossmann
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Mark Ng Tang Fui
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Tian Nie
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Rudolf Hoermann
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Michele V Clarke
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Ada S Cheung
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Jeffrey D Zajac
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Rachel A Davey
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.
| |
Collapse
|