1
|
Kavakebian F, Rezapour A, Seyedebrahimi R, Eslami Farsani M, Jabbari Fakhr M, Zare Jalise S, Ababzadeh S. Intrinsic and extrinsic modulators of human dental pulp stem cells: advancing strategies for tissue engineering applications. Mol Biol Rep 2025; 52:190. [PMID: 39899148 DOI: 10.1007/s11033-025-10281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
This review focuses on dental pulp stem cells (DPSCs) which are mesenchymal stem cells (MSCs) and originating from the neural crest. These cells possess a high capacity for self-renewal and multilineage differentiation. Because of these traits, they represent promising sources for tissue engineering, regenerative medicine, and clinical applications. The objective of this study was to assess the extrinsic and intrinsic factors influencing DPSC characteristics and their potential in tissue engineering. This review discusses the external and internal factors affecting DPSC properties, including proliferation, migration, differentiation, and gene expression post extraction. Additionally, it explores the impact of the microenvironment-its composition and physical properties-and genetic and epigenetic regulation on DPSC behavior. Variations in the microenvironment and genetic regulation play pivotal roles in modulating DPSC functions, including their proliferation and differentiation potential. Intrinsic and extrinsic factors are key barriers to realizing the full therapeutic potential of DPSCs. A deeper understanding of the extrinsic and intrinsic factors affecting DPSC behavior is critical for optimizing their use in regenerative medicine, particularly for dental and craniofacial applications. Although DPSCs hold significant promise, challenges remain, and this review provides insights into the current limitations and future directions for DPSC-based therapies. Researchers and clinicians are offered a comprehensive resource for advancing the field.
Collapse
Affiliation(s)
- Fatemeh Kavakebian
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Alireza Rezapour
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Reihaneh Seyedebrahimi
- Anatomy Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Eslami Farsani
- Anatomy Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Massoumeh Jabbari Fakhr
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Saeedeh Zare Jalise
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
2
|
Zhan Y, Qian A, Gao J, Ma S, Deng P, Yang H, Zhang X, Li J. Enhancing clinical safety in bioengineered-root regeneration: The use of animal component-free medium. Heliyon 2024; 10:e34173. [PMID: 39092243 PMCID: PMC11292241 DOI: 10.1016/j.heliyon.2024.e34173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
Background Most studies used animal serum-containing medium for bioengineered-root regeneration, but ethical and safety issues raised by animal serum are a potentially significant risk for clinical use. Thus, this study aimed to find a safer method for bioengineered-root regeneration. Methods The biological properties of human dental pulp stem cells (hDPSCs) cultured in animal component-free (ACF) medium or serum-containing medium (5%, 10% serum-containing medium, SCM) were compared in vitro. hDPSCs were cultured in a three-dimensional (3D) environment with human-treated dentin matrix (hTDM). The capacity for odontogenesis was compared using quantitative real-time PCR (qPCR) and Western blot. Subsequently, the hDPSCs/hTDM complexes were transplanted into nude mice subcutaneously. Histological staining was then used to verify the regeneration effect in vivo. Results ACF medium promoted the migration of hDPSCs, but slightly inhibited the proliferation of hDPSCs in the first three days of culture compared to SCM. However, it had no significant effect on cell aging and apoptosis. After 7 days of 3D culture in ACF medium with hTDM, qPCR showed that DMP1, DSPP, OCN, RUNX2, and β-tubulin III were highly expressed in hDPSCs. In addition, 3D cultured hDPSCs/hTDM complexes in ACF medium regenerated dentin, pulp, and periodontal ligament-like tissues similar to SCM groups in vivo. Conclusion ACF medium was proved to be an alternative medium for bioengineered-root regeneration. The strategy of using ACF medium to regenerate bioengineered-root can improve clinical safety for tooth tissue engineering.
Collapse
Affiliation(s)
- Yuzhen Zhan
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Aizhuo Qian
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Jieya Gao
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, The Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Shiyong Ma
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, The Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Pingmeng Deng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Wang X, Li F, Wu S, Xing W, Fu J, Wang R, He Y. Research progress on optimization of in vitro isolation, cultivation and preservation methods of dental pulp stem cells for clinical application. Front Bioeng Biotechnol 2024; 12:1305614. [PMID: 38633667 PMCID: PMC11021638 DOI: 10.3389/fbioe.2024.1305614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Due to high proliferative capacity, multipotent differentiation, immunomodulatory abilities, and lack of ethical concerns, dental pulp stem cells (DPSCs) are promising candidates for clinical application. Currently, clinical research on DPSCs is in its early stages. The reason for the failure to obtain clinically effective results may be problems with the production process of DPSCs. Due to the different preparation methods and reagent formulations of DPSCs, cell characteristics may be affected and lead to inconsistent experimental results. Preparation of clinical-grade DPSCs is far from ready. To achieve clinical application, it is essential to transit the manufacturing of stem cells from laboratory grade to clinical grade. This review compares and analyzes experimental data on optimizing the preparation methods of DPSCs from extraction to resuscitation, including research articles, invention patents and clinical trials. The advantages and disadvantages of various methods and potential clinical applications are discussed, and factors that could improve the quality of DPSCs for clinical application are proposed. The aim is to summarize the current manufacture of DPSCs in the establishment of a standardized, reliable, safe, and economic method for future preparation of clinical-grade cell products.
Collapse
Affiliation(s)
- Xinxin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Fenyao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Shuting Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Wenbo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Ruoxuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Takeshita-Umehara M, Tokuyama-Toda R, Takebe Y, Terada-Ito C, Tadokoro S, Inoue A, Ijichi K, Yudo T, Satomura K. Improved Method for Dental Pulp Stem Cell Preservation and Its Underlying Cell Biological Mechanism. Cells 2023; 12:2138. [PMID: 37681870 PMCID: PMC10486868 DOI: 10.3390/cells12172138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are considered a valuable cell source for regenerative medicine because of their high proliferative potential, multipotency, and availability. We established a new cryopreservation method (NCM) for collecting DPSCs, in which the tissue itself is cryopreserved and DPSCs are collected after thawing. We improved the NCM and developed a new method for collecting and preserving DPSCs more efficiently. Dental pulp tissue was collected from an extracted tooth, divided into two pieces, sandwiched from above and below using cell culture inserts, and cultured. As a result, the cells in the pulp tissue migrated vertically over time and localized near the upper and lower membranes over 2-3 days. With regard to the underlying molecular mechanism, SDF1 was predominantly involved in cell migration. This improved method is valuable and enables the more efficient collection and reliable preservation of DPSCs. It has the potential to procure a large number of DPSCs stably.
Collapse
Affiliation(s)
| | - Reiko Tokuyama-Toda
- Department of Oral Medicine and Stomatology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan; (M.T.-U.); (Y.T.); (C.T.-I.); (S.T.); (A.I.); (K.I.); (T.Y.); (K.S.)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
ANIL SUKUMARAN, RAMADOSS RAMYA, G. THOMAS NEBU, M. GEORGE JASMIN, K. SWEETY VISHNUPRIYA. Dental pulp stem cells and banking of teeth as a lifesaving therapeutic vista. BIOCELL 2023; 47:71-80. [DOI: 10.32604/biocell.2023.024334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Fabrication of Low-Molecular-Weight Hyaluronic Acid-Carboxymethyl Cellulose Hybrid to Promote Bone Growth in Guided Bone Regeneration Surgery: An Animal Study. Polymers (Basel) 2022; 14:polym14153211. [PMID: 35956724 PMCID: PMC9370888 DOI: 10.3390/polym14153211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Guided bone regeneration surgery is an important dental operation used to regenerate enough bone to successfully heal dental implants. When this technique is performed on maxilla sinuses, hyaluronic acid (HLA) can be used as an auxiliary material to improve the graft material handling properties. Recent studies have indicated that low-molecular hyaluronic acid (L-HLA) provides a better regeneration ability than high-molecular-weight (H-HLA) analogues. The aim of this study was to fabricate an L-HLA-carboxymethyl cellulose (CMC) hybrid to promote bone regeneration while maintaining viscosity. The proliferation effect of fabricated L-HLA was tested using dental pulp stem cells (DPSCs). The mitogen-activated protein kinase (MAPK) pathway was examined using cells cultured with L-HLA combined with extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 inhibitors. The bone growth promotion of fabricated L-HLA/CMC hybrids was tested using an animal model. Micro-computer tomography (Micro-CT) and histological images were evaluated quantitatively to compare the differences in the osteogenesis between the H-HLA and L-HLA. Our results show that the fabricated L-HLA can bind to CD44 on the DPSC cell membranes and affect MAPK pathways, resulting in a prompt proliferation rate increase. Micro CT images show that new bone formation in rabbit calvaria defects treated with L-HLA/CMC was almost two times higher than in defects filled with H-HLA/CMC (p < 0.05) at 4 weeks, a trend that remained at 8 weeks and was confirmed by HE-stained images. According to these findings, it is reasonable to conclude that L-HLA provides better bone healing than H-HLA, and that the L-HLA/CMC fabricated in this study is a potential candidate for improving bone healing efficiency when a guided bone regeneration surgery was performed.
Collapse
|
7
|
Kaur M, Kumar M, Sethi VP. Maintaining the freeze thawing characteristics of tomato through development and evaluation of magnetic field assisted freezing system. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maninder Kaur
- Department of Processing and Food Engineering Punjab Agricultural University
| | - Mahesh Kumar
- Department of Processing and Food Engineering Punjab Agricultural University
| | - V. P. Sethi
- Department of Mechanical Engineering Punjab Agricultural University
| |
Collapse
|
8
|
Pilbauerova N, Schmidt J, Soukup T, Prat T, Nesporova K, Velebny V, Suchanek J. Innovative Approach in the Cryogenic Freezing Medium for Mesenchymal Stem Cells. Biomolecules 2022; 12:610. [PMID: 35625538 PMCID: PMC9138570 DOI: 10.3390/biom12050610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
The physical stresses during cryopreservation affect stem cell survival and further proliferation. To minimize or prevent cryoinjury, cryoprotective agents (CPAs) are indispensable. Despite the widespread use of 10% dimethyl sulfoxide (DMSO), there are concerns about its potential adverse effects. To bypass those effects, combinations of CPAs have been investigated. This study aimed to verify whether high-molecular-hyaluronic acid (HMW-HA) serves as a cryoprotectant when preserving human mesenchymal stem cells (hMSCs) to reduce the DMSO concentration in the cryopreservation medium. We studied how 0.1% or 0.2% HMW-HA combined with reduced DMSO concentrations (from 10% to 5%, and 3%) affected total cell count, viability, immunophenotype, and differentiation potential post-cryopreservation. Immediately after cell revival, the highest total cell count was observed in 10% DMSO-stored hMSC. However, two weeks after cell cultivation an increased cell count was seen in the HMW-HA-stored groups along with a continued increase in hMSCs stored using 3% DMSO and 0.1% HMW-HA. The increased total cell count corresponded to elevated expression of stemness marker CD49f. The HA-supplemented cryomedium did not affect the differential potential of hMSC. Our results will participate in producing a ready-to-use product for cryopreservation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Nela Pilbauerova
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (N.P.); (J.S.); (J.S.)
| | - Jan Schmidt
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (N.P.); (J.S.); (J.S.)
| | - Tomas Soukup
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 50003 Hradec Kralove, Czech Republic;
| | - Tomas Prat
- Contipro a.s., Dolni Dobrouc 401, 56102 Dolni Dobrouc, Czech Republic; (K.N.); (V.V.)
| | - Kristina Nesporova
- Contipro a.s., Dolni Dobrouc 401, 56102 Dolni Dobrouc, Czech Republic; (K.N.); (V.V.)
| | - Vladimir Velebny
- Contipro a.s., Dolni Dobrouc 401, 56102 Dolni Dobrouc, Czech Republic; (K.N.); (V.V.)
| | - Jakub Suchanek
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (N.P.); (J.S.); (J.S.)
| |
Collapse
|
9
|
Wu Y, Chung YY, Chin YT, Lin CY, Kuo PJ, Chen TY, Lin TY, Chiu HC, Huang HM, Jeng JH, Lee SY. Comparison of 2,3,5,4'-tetrahydroxystilbene-2-O-b-D-glucoside-induced proliferation and differentiation of dental pulp stem cells in 2D and 3D culture systems-gene analysis. J Dent Sci 2022; 17:14-29. [PMID: 35028016 PMCID: PMC8740205 DOI: 10.1016/j.jds.2021.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Indexed: 12/05/2022] Open
Abstract
Background/purpose Culture environments play a critical role in stem cell expansion. This study aimed to evaluate the effects of 2,3,5,4′-tetrahydroxystilbene-2-O-b-D-glucoside (THSG) on the proliferation and differentiation of human dental pulp stem cells (DPSCs) in 2-dimensional (2D) and 3-dimensional (3D) culture systems. Materials and methods Human DPSCs were seeded in T25 flasks for 2D cultivation. For the 3D culture system, DPSCs were mixed with microcarriers and cultured in spinner flasks. Cells in both culture systems were treated with THSG, and cell proliferation was determined using a cell counter and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. In THSG-treated DPSCs, the genes associated with proliferation, adipogenesis, neurogenesis, osteogenesis, pluripotency, oncogenesis, and apoptosis were analyzed using real-time polymerase chain reactions. Results The spinner flask time-dependently improved cell numbers, cell viability, and expansion rates in THSG-treated DPSCs. In both the T25 and spinner flasks, the messenger RNA (mRNA) levels of proliferation, osteogenesis, and pluripotent-related genes had a significant maximum expression with 10 μM THSG treatment. However, 0.1 μM of THSG may be the most suitable condition for triggering neurogenesis and adipogenesis gene expression when DPSCs were cultured in spinner flasks. Furthermore, the number of oncogenes and apoptotic genes decreased considerably in the presence of THSG in both the T25 and spinner flasks. Conclusion The spinner flask bioreactor combined with THSG may upregulate proliferation and lineage-specific differentiation in DPSCs. Thus, the combination can be used to mass-produce and cultivate human DPSCs for regenerative dentistry.
Collapse
Affiliation(s)
- Yen Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Yao-Yu Chung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tang Chin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Po-Jan Kuo
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Ting-Yi Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Dentistry, Kaohsiung Medical, University Hospital, Kaohsiung, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Erol OD, Pervin B, Seker ME, Aerts-Kaya F. Effects of storage media, supplements and cryopreservation methods on quality of stem cells. World J Stem Cells 2021; 13:1197-1214. [PMID: 34630858 PMCID: PMC8474714 DOI: 10.4252/wjsc.v13.i9.1197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/21/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Despite a vast amount of different methods, protocols and cryoprotective agents (CPA), stem cells are often frozen using standard protocols that have been optimized for use with cell lines, rather than with stem cells. Relatively few comparative studies have been performed to assess the effects of cryopreservation methods on these stem cells. Dimethyl sulfoxide (DMSO) has been a key agent for the development of cryobiology and has been used universally for cryopreservation. However, the use of DMSO has been associated with in vitro and in vivo toxicity and has been shown to affect many cellular processes due to changes in DNA methylation and dysregulation of gene expression. Despite studies showing that DMSO may affect cell characteristics, DMSO remains the CPA of choice, both in a research setting and in the clinics. However, numerous alternatives to DMSO have been shown to hold promise for use as a CPA and include albumin, trehalose, sucrose, ethylene glycol, polyethylene glycol and many more. Here, we will discuss the use, advantages and disadvantages of these CPAs for cryopreservation of different types of stem cells, including hematopoietic stem cells, mesenchymal stromal/stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Ozgur Dogus Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Burcu Pervin
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Mehmet Emin Seker
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
11
|
Maxillofacial-Derived Mesenchymal Stem Cells: Characteristics and Progress in Tissue Regeneration. Stem Cells Int 2021; 2021:5516521. [PMID: 34426741 PMCID: PMC8379387 DOI: 10.1155/2021/5516521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Maxillofacial-derived mesenchymal stem cells (MFSCs) are a particular collective type of mesenchymal stem cells (MSCs) that originate from the hard and soft tissue of the maxillofacial region. Recently, many types of MFSCs have been isolated and characterized. MFSCs have the common characteristics of being extremely accessible and amazingly multipotent and thus have become a promising stem cell resource in tissue regeneration. However, different MFSCs can give rise to different cell lineages, have different advantages in clinical use, and regulate the immune and inflammation microenvironment through paracrine mechanisms in different ways. Hence, in this review, we will concentrate on the updated new findings of all types of MFSCs in tissue regeneration and also introduce the recently discovered types of MFSCs. Important issues about proliferation and differentiation in vitro and in vivo, up-to-date clinical application, and paracrine effect of MFSCs in tissue regeneration will also be discussed. Our review may provide a better guide for the clinical use of MFSCs and further direction of research in MFSC regeneration medicine.
Collapse
|
12
|
Huang H, He X, Yarmush ML. Advanced technologies for the preservation of mammalian biospecimens. Nat Biomed Eng 2021; 5:793-804. [PMID: 34426675 PMCID: PMC8765766 DOI: 10.1038/s41551-021-00784-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
The three classical core technologies for the preservation of live mammalian biospecimens-slow freezing, vitrification and hypothermic storage-limit the biomedical applications of biospecimens. In this Review, we summarize the principles and procedures of these three technologies, highlight how their limitations are being addressed via the combination of microfabrication and nanofabrication, materials science and thermal-fluid engineering and discuss the remaining challenges.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States.
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
13
|
Khaseb S, Orooji M, Pour MG, Safavi SM, Eghbal MJ, Rezai Rad M. Dental stem cell banking: Techniques and protocols. Cell Biol Int 2021; 45:1851-1865. [PMID: 33979004 DOI: 10.1002/cbin.11626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022]
Abstract
Dental tissue-derived stem cells (DSCs) provide an easy, accessible, relatively noninvasive promising source of adult stem cells (ASCs), which brought encouraging prospective for their clinical applications. DSCs provide a perfect opportunity to apply for a patient's own ASC, which poses a low risk of immune rejection. However, problems associated with the long-term culture of stem cells, including loss of proliferation and differentiation capacities, senescence, genetic instability, and the possibility of microbial contamination, make cell banking necessary. With the rapid development of advanced cryopreservation technology, various international DSC banks have been established for both research and clinical applications around the world. However, few studies have been published that provide step-by-step guidance on DSCs isolation and banking methods. The purpose of this review is to present protocols and technical details for all steps of cryopreserved DSCs, from donor selection, isolation, cryopreservation, to characterization and quality control. Here, the emphasis is on presenting practical principles in accordance with the available valid guidelines.
Collapse
Affiliation(s)
- Sanaz Khaseb
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mahdi Orooji
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - Majid Ghasemian Pour
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammadreza Safavi
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Jafar Eghbal
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Li X, Nakamura M, Tian W, Sasano Y. Application of cryopreservation to tooth germ transplantation for root development and tooth eruption. Sci Rep 2021; 11:9522. [PMID: 33947923 PMCID: PMC8096938 DOI: 10.1038/s41598-021-88975-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/19/2021] [Indexed: 02/05/2023] Open
Abstract
We cryopreserved mouse tooth germs with widely open cervical margins of the enamel organ to overcome difficulties in cryoprotectant permeation and tested their efficacy by transplanting them into recipient mice. The upper right first molar germs of 8-day-old donor mice were extracted and categorized into the following four groups according to cryopreservation time: no cryopreservation, 1 week, 1 month, and 3 months. The donor tooth germs were transplanted into the upper right first molar germ sockets of the 8-day-old recipient mice. The upper left first molars of the recipient mice were used as controls. The outcome of the transplantation was assessed at 1, 2, and 3 weeks after transplantation. Stereomicroscopic evaluation revealed that most of the transplanted teeth erupted by 3 weeks after transplantation. Micro-computed tomography analysis revealed root elongation in the transplanted groups as well as in the controls. There was no significant difference between the cryopreserved and non-cryopreserved transplanted teeth, but the roots of the cryopreserved teeth were significantly shorter than those of the control teeth. Histological examination revealed root and periodontal ligament formations in all the transplanted groups. These results suggest that the transplantation of cryopreserved tooth germs facilitates subsequent root elongation and tooth eruption.
Collapse
Affiliation(s)
- Xinghan Li
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan, China.,Department of Stomatology, Shenzhen University General Hospital, Shenzhen, China
| | - Megumi Nakamura
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Yasuyuki Sasano
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
15
|
Paes SM, Pupo YM, Cavenago BC, Fonseca-Silva T, Santos CCDO. Cryopreservation of mesenchymal stem cells derived from dental pulp: a systematic review. Restor Dent Endod 2021; 46:e26. [PMID: 34123762 PMCID: PMC8170376 DOI: 10.5395/rde.2021.46.e26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 11/11/2022] Open
Abstract
Objectives The aim of the present systematic review was to investigate the cryopreservation process of dental pulp mesenchymal stromal cells and whether cryopreservation is effective in promoting cell viability and recovery. Materials and Methods This systematic review was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and the research question was determined using the population, exposure, comparison, and outcomes strategy. Electronic searches were conducted in the PubMed, Cochrane Library, Science Direct, LILACS, and SciELO databases and in the gray literature (dissertations and thesis databases and Google Scholar) for relevant articles published up to March 2019. Clinical trial studies performed with dental pulp of human permanent or primary teeth, containing concrete information regarding the cryopreservation stages, and with cryopreservation performed for a period of at least 1 week were included in this study. Results The search strategy resulted in the retrieval of 185 publications. After the application of the eligibility criteria, 21 articles were selected for a qualitative analysis. Conclusions The cryopreservation process must be carried out in 6 stages: tooth disinfection, pulp extraction, cell isolation, cell proliferation, cryopreservation, and thawing. In addition, it can be inferred that the use of dimethyl sulfoxide, programmable freezing, and storage in liquid nitrogen are associated with a high rate of cell viability after thawing and a high rate of cell proliferation in both primary and permanent teeth.
Collapse
Affiliation(s)
- Sabrina Moreira Paes
- Department of Restorative Dentistry, Universidade Federal do Paraná, Curitiba/PR, Brazil
| | - Yasmine Mendes Pupo
- Department of Restorative Dentistry, Universidade Federal do Paraná, Curitiba/PR, Brazil
| | | | - Thiago Fonseca-Silva
- Department of Dentistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina/MG, Brazil
| | - Carolina Carvalho de Oliveira Santos
- Department of Restorative Dentistry, Universidade Federal do Paraná, Curitiba/PR, Brazil.,Department of Dentistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina/MG, Brazil
| |
Collapse
|
16
|
Modulation of the Dental Pulp Stem Cell Secretory Profile by Hypoxia Induction Using Cobalt Chloride. J Pers Med 2021; 11:jpm11040247. [PMID: 33808091 PMCID: PMC8066657 DOI: 10.3390/jpm11040247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
The action of stem cells is mediated by their paracrine secretions which comprise the secretory profile. Various approaches can be used to modify the secretory profile of stem cells. Creating a hypoxic environment is one method. The present study aims to demonstrate the influence of CoCl2 in generating hypoxic conditions in a dental pulp stem cell (DPSCs) culture, and the effect of this environment on their secretory profile. DPSCs that were isolated from human permanent teeth were characterized and treated with different concentrations of CoCl2 to assess their viability by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and proliferation by a cell counting kit (CCK)-8 assay. The gene expression level of hypoxia-inducible factor 1-alpha (HIF-1α) was analyzed by quantitative real time polymerase chain reaction (qRT-PCR) to demonstrate a hypoxic environment. Comparative evaluation of the growth factors and cytokines were done by cytometric bead array. Gene expression levels of transcription factors OCT4 and SOX2 were analyzed by qRT-PCR to understand the effect of CoCl2 on stemness in DPSCs. DPSCs were positive for MSC-specific markers. Doses of CoCl2, up to 20 µM, did not negatively affect cell viability; in low doses (5 µM), it promoted cell survival. Treatment with 10 µM of CoCl2 significantly augmented the genetic expression of HIF-1α. Cells treated with 10 µM of CoCl2 showed changes in the levels of growth factors and cytokines produced. It was very evident that CoCl2 also increased the expression of OCT4 and SOX2, which is the modulation of stemness of DPSCs. A CoCl2 treatment-induced hypoxic environment modulates the secretory profile of DPSCs.
Collapse
|
17
|
Huang YW, Lin CY, Chin YT, Kuo PJ, Wu Y, Weng IT, Chen TY, Wang HH, Huang HM, Hsiung CN, Lee SY. 2,3,5,4'-tetrahydroxystilbene-2-O-b-D-glucoside triggers the pluripotent-like possibility of dental pulp stem cells by activating the JAK2/STAT3 axis: Preliminary observations. J Dent Sci 2020; 16:599-607. [PMID: 33854708 PMCID: PMC8025197 DOI: 10.1016/j.jds.2020.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/23/2020] [Indexed: 11/24/2022] Open
Abstract
Abstract Background/Purpose Although 2,3,5,4′-Tetrahydroxystilbene-2-O-beta-glucoside (THSG) reportedly has anti-inflammatory properties, its role in inducing the dedifferentiation of human dental pulp stem cells (DPSC) into pluripotent-like stem cells remains to be determined. The purpose of this study is to evaluate the effects of THSG on the pluripotent-like possibility and mechanism of DPSC. Materials and methods DPSCs were treated with THSG, and cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTS) assay. Real-time polymerase chain reaction was used to analyze the mRNA expression levels of pluripotency-associated genes and oncogenes and to detect telomerase activity in the cells. Embryoid body formation assay was conducted, and pluripotency-related proteins were identified using Western blotting. Data were analyzed using one-way analysis of variance. Results Cell viability, telomerase activity, and embryoid body formation were enhanced in THSG-treated DPSCs. The mRNA expression levels of pluripotent-like genes (including Nanog homeobox [NANOG], SRY-box 2 [SOX2], and POU class 5 homeobox 1 [POU5F1/OCT4]) significantly increased after THSG treatment. The expression levels of pluripotency-related genes (Janus kinase-signal transducer 2 [JAK2] and signal transducer and activator of transcription 3 [STAT3]) increased, whereas those of oncogenes (Ras, SRC, HER2, and C-sis) decreased. Furthermore, the expression levels of the phosphorylated JAK2 and STAT3 proteins significantly increased after THSG treatment. Conclusion THSG treatment may enhance the pluripotent-like possibility of DPSC through the JAK2/STAT3 axis. Hence, it may be used as an alternative cell-based therapeutic strategy in regenerative dentistry.
Collapse
Affiliation(s)
- Yen-Wen Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tang Chin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Po-Jan Kuo
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Yen Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - I-Tsen Weng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yi Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Hui Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Nan Hsiung
- College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
- Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
- Corresponding author. School of Dentistry, College of Oral Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
| |
Collapse
|
18
|
Lin CY, Tsai MS, Kuo PJ, Chin YT, Weng IT, Wu Y, Huang HM, Hsiung CN, Lin HY, Lee SY. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside promotes the effects of dental pulp stem cells on rebuilding periodontal tissues in experimental periodontal defects. J Periodontol 2020; 92:306-316. [PMID: 32790879 DOI: 10.1002/jper.19-0563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND This study aimed to investigate the regenerative effects of 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside (THSG)-treated human dental pulp stem cells (DPSC) on the healing of experimental periodontal defects in rats. METHODS The maxillary first molars of 30 male Sprague-Dawley rats were extracted, and after healing, bilateral periodontal defects were surgically created mesially in second molars. The defects were treated with Matrigel (as control), DPSC, or DPSC + THSG. After 2 weeks, the healed defects were evaluated using microcomputed tomography and through histological and immunohistochemical analyses. RESULTS In the microcomputed tomography analysis, more new bone formation in the DPSC and DPSC + THSG groups was observed compared with the control group. The periodontal bone supporting ratio in site with DPSC + THSG was significantly higher than that in DPSC. Histologically, an enhanced new bone formation and more significant periodontal attachment were observed in the DPSC + THSG group. The expression levels of proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), and osteopontin (OPN) in the DPSC + THSG group were significantly greater than those in other groups. CONCLUSIONS THSG-revolutionized DPSCs significantly shortened the regenerative period of periodontal defects by enhancing the cell recruitment and possibly the angiogenesis in rat models, which illustrate the critical implications for a clinical application and provide a novel tactic for periodontitis treatment.
Collapse
Affiliation(s)
- Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Min-Shi Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
| | - Po-Jan Kuo
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - I-Tsen Weng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
| | - Yen Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Nan Hsiung
- College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
19
|
Kaur M, Kumar M. An Innovation in Magnetic Field Assisted Freezing of Perishable Fruits and Vegetables: A Review. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1683746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Maninder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, India
| | - Mahesh Kumar
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
20
|
Park KR, Yun HM, Yeo IJ, Cho S, Hong JT, Jeong YS. Peroxiredoxin 6 Inhibits Osteogenic Differentiation and Bone Formation Through Human Dental Pulp Stem Cells and Induces Delayed Bone Development. Antioxid Redox Signal 2019; 30:1969-1982. [PMID: 29792351 DOI: 10.1089/ars.2018.7530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aims: Peroxiredoxins (PRDXs) are thiol-specific antioxidant enzymes that regulate redox balance that are critical for maintaining the cellular potential for self-renewal and stemness. Stem cell-based regenerative medicine is a promising approach in tissue reconstruction. However, to obtain functional cells for use in clinical applications, stem cell technology still requires improvements. Results: In this study, we found that PRDX6 levels were decreased during osteogenic differentiation in human dental pulp stem cells (hDPSCs). hDPSCs stably expressing Myc-PRDX6 (hDPSC/myc-PRDX6) inhibited cell growth in hDPSCs during osteogenic differentiation and impaired osteogenic phenotypes such as alkaline phosphatase (ALP) activity, mineralized nodule formation, and osteogenic marker genes [ALP and osteocalcin (OCN)]. hDPSC cell lines stably expressing mutant glutathione peroxidase (PRDX6(C47S)) and independent phospholipase A2 (PRDX6(S32A)) were also generated. Each mutant form of PRDX6 abolished the impaired osteogenic phenotypes, the transforming growth factor-β-mediated Smad2 and p38 pathways, and RUNX2 expression. Furthermore, in vivo experiments revealed that hDPSC/myc-PRDX6 suppressed hDPSC-based bone regeneration in calvarial defect mice, and newborn PRDX6 transgenic mice exhibited delayed bone development and reduced RUNX2 expression. Innovation and Conclusion: These findings illuminate the effects of PRDX6 during osteogenic differentiation of hDPSCs, and also suggest that regulating PRDX6 may improve the clinical utility of stem cell-based regenerative medicine for the treatment of bone diseases. Antioxid. Redox Signal. 30, 1969-1982.
Collapse
Affiliation(s)
- Kyung-Ran Park
- 1 Department of Oral and Maxillofacial Regeneration, Kyung Hee University, Seoul, Republic of Korea.,2 College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyung-Mun Yun
- 3 Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - In Jun Yeo
- 2 College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sehyung Cho
- 4 Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Jin Tae Hong
- 2 College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yong Seok Jeong
- 5 Department of Biology and Research Institute of Basic Sciences, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Lin CY, Kuo PJ, Chin YT, Weng IT, Lee HW, Huang HM, Lin HY, Hsiung CN, Chan YH, Lee SY. Dental Pulp Stem Cell Transplantation with 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside Accelerates Alveolar Bone Regeneration in Rats. J Endod 2019; 45:435-441. [DOI: 10.1016/j.joen.2018.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/06/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022]
|
22
|
Abstract
Adult stem cells are excellent cell resource for cell therapy and regenerative medicine. Dental pulp stem cells (DPSCs) have been discovered and well known in various application. Here, we reviewed the history of dental pulp stem cell study and the detail experimental method including isolation, culture, cryopreservation, and the differentiation strategy to different cell lineage. Moreover, we discussed the future potential application of the combination of tissue engineering and of DPSC differentiation. This review will help the new learner to quickly get into the DPSC filed.
Collapse
Affiliation(s)
- Xianrui Yang
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062 Hubei China
| | - Li Xiao
- Department of Stomatology, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chengdu, 610072 China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062 Hubei China
| |
Collapse
|
23
|
Pilbauerová N, Suchánek J. Cryopreservation of Dental Stem Cells. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018; 61:1-7. [PMID: 30012243 DOI: 10.14712/18059694.2018.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nowadays, regenerative and reparative medicine has grown in popularity. Dental stem cells are easily accessible source of adult stem cells. They can be harvested by a tooth extraction or spontaneous deciduous tooth exfoliation. They have to be isolated, expanded and stored until time they would be needed for individual stem cell therapy. Cryopreservation is both a short-term and long-term storage of tissues or cells at sub-zero temperatures. There are several methods of cryopreservation requiring different technologies. The objective of this review is to compare them and highlight their advantages and disadvantages.
Collapse
Affiliation(s)
- Nela Pilbauerová
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Králové, and University Hospital, Hradec Králové, Czech Republic.
| | - Jakub Suchánek
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Králové, and University Hospital, Hradec Králové, Czech Republic
| |
Collapse
|
24
|
Xia Y, Sun J, Zhao L, Zhang F, Liang XJ, Guo Y, Weir MD, Reynolds MA, Gu N, Xu HHK. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 2018; 183:151-170. [PMID: 30170257 DOI: 10.1016/j.biomaterials.2018.08.040] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Novel strategies utilizing magnetic nanoparticles (MNPs) and magnetic fields are being developed to enhance bone tissue engineering efficacy. This article first reviewed cutting-edge research on the osteogenic enhancements via magnetic fields and MNPs. Then the current developments in magnetic strategies to improve the cells, scaffolds and growth factor deliveries were described. The magnetic-cell strategies included cell labeling, targeting, patterning, and gene modifications. MNPs were incorporated to fabricate magnetic composite scaffolds, as well as to construct delivery systems for growth factors, drugs and gene transfections. The novel methods using magnetic nanoparticles and scaffolds with magnetic fields and stem cells increased the osteogenic differentiation, angiogenesis and bone regeneration by 2-3 folds over those of the controls. The mechanisms of magnetic nanoparticles and scaffolds with magnetic fields and stem cells to enhance bone regeneration were identified as involving the activation of signaling pathways including MAPK, integrin, BMP and NF-κB. Potential clinical applications of magnetic nanoparticles and scaffolds with magnetic fields and stem cells include dental, craniofacial and orthopedic treatments with substantially increased bone repair and regeneration efficacy.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Liang Zhao
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
25
|
Kobayashi A, Horikawa M, Kirschvink JL, Golash HN. Magnetic control of heterogeneous ice nucleation with nanophase magnetite: Biophysical and agricultural implications. Proc Natl Acad Sci U S A 2018; 115:5383-5388. [PMID: 29735681 PMCID: PMC6003474 DOI: 10.1073/pnas.1800294115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In supercooled water, ice nucleation is a stochastic process that requires ∼250-300 molecules to transiently achieve structural ordering before an embryonic seed crystal can nucleate. This happens most easily on crystalline surfaces, in a process termed heterogeneous nucleation; without such surfaces, water droplets will supercool to below -30 °C before eventually freezing homogeneously. A variety of fundamental processes depends on heterogeneous ice nucleation, ranging from desert-blown dust inducing precipitation in clouds to frost resistance in plants. Recent experiments have shown that crystals of nanophase magnetite (Fe3O4) are powerful nucleation sites for this heterogeneous crystallization of ice, comparable to other materials like silver iodide and some cryobacterial peptides. In natural materials containing magnetite, its ferromagnetism offers the possibility that magneto-mechanical motion induced by external oscillating magnetic fields could act to disrupt the water-crystal interface, inhibiting the heterogeneous nucleation process in subfreezing water and promoting supercooling. For this to act, the magneto-mechanical rotation of the particles should be higher than the magnitude of Brownian motions. We report here that 10-Hz precessing magnetic fields, at strengths of 1 mT and above, on ∼50-nm magnetite crystals dispersed in ultrapure water, meet these criteria and do indeed produce highly significant supercooling. Using these rotating magnetic fields, we were able to elicit supercooling in two representative plant and animal tissues (celery and bovine muscle), both of which have detectable, natural levels of ferromagnetic material. Tailoring magnetic oscillations for the magnetite particle size distribution in different tissues could maximize this supercooling effect.
Collapse
Affiliation(s)
- Atsuko Kobayashi
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, 152-8550 Tokyo, Japan;
| | - Masamoto Horikawa
- Department of Systems and Control Engineering, Tokyo Institute of Technology, Meguro, 152-8552 Tokyo, Japan
| | - Joseph L Kirschvink
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, 152-8550 Tokyo, Japan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Harry N Golash
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
26
|
Lin CY, Chin YT, Kuo PJ, Lee HW, Huang HM, Lin HY, Weng IT, Hsiung CN, Chan YH, Lee SY. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-glucoside potentiates self-renewal of human dental pulp stem cells via the AMPK/ERK/SIRT1 axis. Int Endod J 2018; 51:1159-1170. [DOI: 10.1111/iej.12935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- C.-Y. Lin
- School of Dentistry; College of Oral Medicine; Taipei Medical University; Taipei Taiwan
- Research Center of Tooth Bank and Dental Stem Cell Technology; Taipei Medical University; Taipei Taiwan
| | - Y.-T. Chin
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
- PhD Program for Cancer Biology and Drug Discovery College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | - P.-J. Kuo
- Department of Periodontology School of Dentistry; National Defense Medical Center and Tri-Service General Hospital; Taipei Taiwan
- Graduate Institute of Medical Sciences; National Defense Medical Center; Taipei Taiwan
| | - H.-W. Lee
- Department of Medicine; Taipei Veterans General Hospital; Taipei Taiwan
| | - H.-M. Huang
- School of Dentistry; College of Oral Medicine; Taipei Medical University; Taipei Taiwan
| | - H.-Y. Lin
- Taipei Cancer Center; Taipei Medical University; Taipei Taiwan
- PhD Program for Cancer Biology and Drug Discovery College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | - I.-T. Weng
- School of Dentistry; College of Oral Medicine; Taipei Medical University; Taipei Taiwan
| | - C.-N. Hsiung
- College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
| | - Y.-H. Chan
- School of Dentistry; College of Oral Medicine; Taipei Medical University; Taipei Taiwan
| | - S.-Y. Lee
- School of Dentistry; College of Oral Medicine; Taipei Medical University; Taipei Taiwan
- Research Center of Tooth Bank and Dental Stem Cell Technology; Taipei Medical University; Taipei Taiwan
- Department of Dentistry; Wan-Fang Medical Center; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
27
|
Alsulaimani RS, Ajlan SA, Aldahmash AM, Alnabaheen MS, Ashri NY. Isolation of dental pulp stem cells from a single donor and characterization of their ability to differentiate after 2 years of cryopreservation. Saudi Med J 2017; 37:551-60. [PMID: 27146619 PMCID: PMC4880656 DOI: 10.15537/smj.2016.5.13615] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objectives: To investigate the viability and differentiation capacity of dental pulp stem cells (DPSCs) isolated from single donors after two years of cryopreservation. Methods: This prospective study was conducted between October 2010 and February 2014 in the Stem Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia. Seventeen teeth extracted from 11 participants were processed separately to assess the minimum tissue weight needed to yield cells for culturing in vitro. Cell stemness was evaluated before passage 4 using the colony forming unit assay, immunofluorescence staining, and bi-lineage differentiation. Dental pulp stem cells were cryopreserved for 2 years. Post-thaw DPSCs were cultured until senescence and differentiated toward osteogenic, odontogenic, adipogenic, and chondrogenic lineages. Results: Viable cells were isolated successfully from 6 of the 11 participants. Three of these 6 cultured cell lines were identified as DPSCs. A minimum of 0.2 g of dental pulp tissue was required for successful isolation of viable cells from a single donor. Post-thaw DPSCs successfully differentiated towards osteogenic, odontogenic, chondrogenic, and adipogenic lineages. The post-thaw DPSCs were viable in vitro up to 70 days before senescence. There was no significant difference between the cells. Conclusion: Within the limitations of this investigation, viable cells from dental pulp tissue were isolated successfully from the same donor using a minimum of 2 extracted teeth. Not all isolated cells from harvested dental pulp tissue had the characteristics of DPSCs. Post-thaw DPSCs maintained their multi-lineage differentiation capacity.
Collapse
Affiliation(s)
- Reem S Alsulaimani
- Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail.
| | | | | | | | | |
Collapse
|
28
|
Conde MCM, Chisini LA, Grazioli G, Francia A, Carvalho RVD, Alcázar JCB, Tarquinio SBC, Demarco FF. Does Cryopreservation Affect the Biological Properties of Stem Cells from Dental Tissues? A Systematic Review. Braz Dent J 2017; 27:633-640. [PMID: 27982171 DOI: 10.1590/0103-6440201600980] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/12/2016] [Indexed: 01/09/2023] Open
Abstract
This systematic review evaluated if different cryopreservation protocols could affect biological properties (Cell survival rate (CSR), proliferation, differentiation, maintenance of stem cell markers) of stem cells obtained from dental tissues (DSC) post-thaw. An electronic search was carried out within PubMed and ISI Web Science by using specific keyword. Two independent reviewers read the titles and abstracts of all reports respecting predetermined inclusion/exclusion criteria. Data were extracted considering the biological properties of previously cryopreserved DSCs and previously cryopreserved dental tissues. DSCs cryopreserved as soon as possible after their isolation presents a CSR quite similar to the non-cryopreserved DSC. Dimethyl sulfoxide (DMSO) [10%] showed good results related to cell recovery post-thaw to cryopreserve cells and tissues for periods of up to 2 years. The cryopreservation of DSC in a mechanical freezer (-80°C) allows the recovery of stem cells post-thaw. The facilities producing magnetic field (MF), demand a lower concentration of cryoprotectant, but their use is not dispensable. It is possible to isolate and cryopreserve dental pulp stem cell (DPSC) from healthy and diseased vital teeth. Cryopreservation of dental tissues for late DSC isolation, combined with MF dispensability, could be valuable to reduce costs and improve the logistics to develop teeth banks.
Collapse
Affiliation(s)
| | - Luiz Alexandre Chisini
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Guillermo Grazioli
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Alejandro Francia
- School of Dentistry, University of the Republic, Montevideo, Uruguay
| | | | - Jose Carlos Bernedo Alcázar
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil.,Post-Graduate Program in Science and Material Engineering, Federal University of Pelotas, Pelotas, Brazil
| | - Sandra Beatriz Chavez Tarquinio
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil.,Department of Semiology and Clinics, Federal University of Pelotas, Pelotas, Brazil
| | - Flávio Fernando Demarco
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil.,Post-Graduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
29
|
Lew WZ, Huang YC, Huang KY, Lin CT, Tsai MT, Huang HM. Static magnetic fields enhance dental pulp stem cell proliferation by activating the p38 mitogen-activated protein kinase pathway as its putative mechanism. J Tissue Eng Regen Med 2017; 12:19-29. [PMID: 27688068 DOI: 10.1002/term.2333] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/02/2016] [Accepted: 09/26/2016] [Indexed: 01/09/2023]
Abstract
Dental pulp stem cells (DPSCs) can be a potential stem cell resource for clinical cell therapy and tissue engineering. However, obtaining a sufficient number of DPSCs for repairing defects is still an issue in clinical applications. Static magnetic fields (SMFs) enhance the proliferation of several cell types. Whether or not SMFs have a positive effect on DPSC proliferation is unknown. Therefore, the aim of this study was to investigate the effect of SMFs on DPSC proliferation and its possible intracellular mechanism of action. For methodology, isolated DPSCs were cultured with a 0.4-T SMF. Anisotropy of the lipid bilayer was examined using a fluorescence polarization-depolarization assay. The intracellular calcium ions of the SMF-treated cells were analysed using Fura-2 acetoxymethyl ester labelling. The cytoskeletons of exposed and unexposed control cells were labelled with actin fluorescence dyes. Cell viability was checked when the tested cells were cultured with inhibitors of ERK, JNK and p38 to discern the possible signalling cascade involved in the proliferative effect of the SMF on the DPSCs. Our results showed that SMF-treated cells demonstrated a higher proliferation rate and anisotropy value. The intracellular calcium ions were activated by SMFs. In addition, fluorescence microscopy images demonstrated that SMF-treated cells exhibit higher fluorescence intensity of the actin cytoskeletal structure. Cell viability and real-time polymerase chain reaction suggested that the p38 signalling cascade was activated when the DPSCs were exposed to a 0.4-T SMF. F-actin intensity tests showed that SB203580-treated cells decreased even with SMF exposure. Additionally, the F-/G-actin ratio increased due to slowing of the cytoskeleton reorganization by p38 mitogen-activated protein kinase inhibition. According to these results, we suggest that a 0.4-T SMF affected the cellular membranes of the DPSCs and activated intracellular calcium ions. This effect may activate p38 mitogen-activated protein kinase signalling, and thus reorganize the cytoskeleton, which contributes to the increased cell proliferation of the DPSCs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei-Zhen Lew
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Huang
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Kuen-Yu Huang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Che-Tong Lin
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Ming-Tzu Tsai
- Department of Biomedical Engineering, Hungkuang University, Taichung, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
30
|
Rodas-Junco BA, Villicaña C. Dental Pulp Stem Cells: Current Advances in Isolation, Expansion and Preservation. Tissue Eng Regen Med 2017; 14:333-347. [PMID: 30603490 DOI: 10.1007/s13770-017-0036-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 01/09/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells with high self-renewal potential that have the ability to differentiate into several cell types. Thus, DPSCs have become a promising source of cells for several applications in regenerative medicine, tissue engineering, and stem cell therapy. Numerous methods have been reported for the isolation, expansion, and preservation of DPSCs. However, methods are diverse and do not follow specific rules or parameters, which can affect stem cell properties, adding more variation to experimental results. In this review, we compare and analyze current experimental evidence to propose some factors that can be useful to establish better methods or improved protocols to prolong the quality of DPSCs. In addition, we highlight other factors related to biological aspects of dental tissue source (e.g., age, genetic background) that should be considered before tooth selection. Although current methods have reached significant advances, optimization is still required to improve culture stability and its maintenance for an extended period without losing stem cell properties. In addition, there is still much that needs to be done toward clinical application due to the fact that most of DPSCs procedures are not currently following good manufacturing practices. The establishment of optimized general or tailored protocols will allow obtaining well-defined DPSCs cultures with specific properties, which enable more reproducible results that will be the basis to develop effective and safe therapies.
Collapse
Affiliation(s)
- Beatriz A Rodas-Junco
- CONACYT - Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán (UADY), Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, CP 97203 Mérida, Yucatán México
| | - Claudia Villicaña
- CONACYT - Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán (UADY), Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, CP 97203 Mérida, Yucatán México
| |
Collapse
|
31
|
|
32
|
Lo YJ, Pan YH, Lin CY, Chang WJ, Huang HM. Static Magnetic Field Increases Survival Rate of Thawed RBCs Frozen in DMSO-Free Solution. J Med Biol Eng 2017. [DOI: 10.1007/s40846-016-0195-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Stem Cells of Dental Origin: Current Research Trends and Key Milestones towards Clinical Application. Stem Cells Int 2016; 2016:4209891. [PMID: 27818690 PMCID: PMC5081960 DOI: 10.1155/2016/4209891] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 12/17/2022] Open
Abstract
Dental Mesenchymal Stem Cells (MSCs), including Dental Pulp Stem Cells (DPSCs), Stem Cells from Human Exfoliated Deciduous teeth (SHED), and Stem Cells From Apical Papilla (SCAP), have been extensively studied using highly sophisticated in vitro and in vivo systems, yielding substantially improved understanding of their intriguing biological properties. Their capacity to reconstitute various dental and nondental tissues and the inherent angiogenic, neurogenic, and immunomodulatory properties of their secretome have been a subject of meticulous and costly research by various groups over the past decade. Key milestone achievements have exemplified their clinical utility in Regenerative Dentistry, as surrogate therapeutic modules for conventional biomaterial-based approaches, offering regeneration of damaged oral tissues instead of simply “filling the gaps.” Thus, the essential next step to validate these immense advances is the implementation of well-designed clinical trials paving the way for exploiting these fascinating research achievements for patient well-being: the ultimate aim of this ground breaking technology. This review paper presents a concise overview of the major biological properties of the human dental MSCs, critical for the translational pathway “from bench to clinic.”
Collapse
|
34
|
Recent Advances and Future Direction in Lyophilisation and Desiccation of Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:3604203. [PMID: 27597869 PMCID: PMC5002305 DOI: 10.1155/2016/3604203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/03/2016] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) are a promising mammalian cell type as they can be used for the reconstruction of human tissues and organs. MSCs are shown to form bone, cartilage, fat, and muscle-like cells under specific cultivation conditions. Current technology of MSCs cryopreservation has significant disadvantages. Alternative technologies of mammalian cells preservation through lyophilisation or desiccation (air-drying) are among the upcoming domains of investigation in the field of cryobiology. Different protectants and their combinations were studied in this context. Loading of the protectant in the live cell can be a challenging issue but recent studies have shown encouraging results. This paper deals with a review of the protectants, methods of their delivery, and physical boundary conditions adopted for the desiccation and lyophilisation of mammalian cells, including MSCs. A hybrid technique combining both methods is also proposed as a promising way of MSCs dry preservation.
Collapse
|
35
|
Chinnadurai R, Copland IB, Garcia MA, Petersen CT, Lewis CN, Waller EK, Kirk AD, Galipeau J. Cryopreserved Mesenchymal Stromal Cells Are Susceptible to T-Cell Mediated Apoptosis Which Is Partly Rescued by IFNγ Licensing. Stem Cells 2016; 34:2429-42. [PMID: 27299362 DOI: 10.1002/stem.2415] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
Abstract
We have previously demonstrated that cryopreservation and thawing lead to altered Mesenchymal stromal cells (MSC) functionalities. Here, we further analyzed MSC's fitness post freeze-thaw. We have observed that thawed MSC can suppress T-cell proliferation when separated from them by transwell membrane and the effect is lost in a MSC:T-cell coculture system. Unlike actively growing MSCs, thawed MSCs were lysed upon coculture with activated autologous Peripheral Blood Mononuclear Cells (PBMCs) and the lysing effect was further enhanced with allogeneic PBMCs. The use of DMSO-free cryoprotectants or substitution of Human Serum Albumin (HSA) with human platelet lysate in freezing media and use of autophagy or caspase inhibitors did not prevent thaw defects. We tested the hypothesis that IFNγ prelicensing before cryobanking can enhance MSC fitness post thaw. Post thawing, IFNγ licensed MSCs inhibit T cell proliferation as well as fresh MSCs and this effect can be blocked by 1-methyl Tryptophan, an Indoleamine 2,3-dioxygenase (IDO) inhibitor. In addition, IFNγ prelicensed thawed MSCs inhibit the degranulation of cytotoxic T cells while IFNγ unlicensed thawed MSCs failed to do so. However, IFNγ prelicensed thawed MSCs do not deploy lung tropism in vivo following intravenous injection as well as fresh MSCs suggesting that IFNγ prelicensing does not fully rescue thaw-induced lung homing defect. We identified reversible and irreversible cryoinjury mechanisms that result in susceptibility to host T-cell cytolysis and affect MSC's cell survival and tissue distribution. The susceptibility of MSC to negative effects of cryopreservation and the potential to mitigate the effects with IFNγ prelicensing may inform strategies to enhance the therapeutic efficacy of MSC in clinical use. Stem Cells 2016;34:2429-2442.
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Ian B Copland
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA.,Emory Personalized Immunotherapy Center, Emory Healthcare, Atlanta, Georgia, USA
| | - Marco A Garcia
- Emory Personalized Immunotherapy Center, Emory Healthcare, Atlanta, Georgia, USA
| | - Christopher T Petersen
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Christopher N Lewis
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Edmund K Waller
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA.,Emory Personalized Immunotherapy Center, Emory Healthcare, Atlanta, Georgia, USA
| | - Allan D Kirk
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Jacques Galipeau
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia, USA. .,Winship Cancer Institute, Emory University, Atlanta, Georgia, USA. .,Department of Pediatrics, Emory University, Atlanta, Georgia, USA. .,Emory Personalized Immunotherapy Center, Emory Healthcare, Atlanta, Georgia, USA.
| |
Collapse
|
36
|
Kobayashi A, Golash HN, Kirschvink JL. A first test of the hypothesis of biogenic magnetite-based heterogeneous ice-crystal nucleation in cryopreservation. Cryobiology 2016; 72:216-24. [PMID: 27087604 DOI: 10.1016/j.cryobiol.2016.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 10/22/2022]
Abstract
An outstanding biophysical puzzle is focused on the apparent ability of weak, extremely low-frequency oscillating magnetic fields to enhance cryopreservation of many biological tissues. A recent theory holds that these weak magnetic fields could be inhibiting ice-crystal nucleation on the nanocrystals of biological magnetite (Fe3O4, an inverse cubic spinel) that are present in many plant and animal tissues by causing them to oscillate. In this theory, magnetically-induced mechanical oscillations disrupt the ability of water molecules to nucleate on the surface of the magnetite nanocrystals. However, the ability of the magnetite crystal lattice to serve as a template for heterogeneous ice crystal nucleation is as yet unknown, particularly for particles in the 10-100 nm size range. Here we report that the addition of trace-amounts of finely-dispersed magnetite into ultrapure water samples reduces strongly the incidence of supercooling, as measured in experiments conducted using a controlled freezing apparatus with multiple thermocouples. SQUID magnetometry was used to quantify nanogram levels of magnetite in the water samples. We also report a relationship between the volume change of ice, and the degree of supercooling, that may indicate lower degassing during the crystallization of supercooled water. In addition to supporting the role of ice-crystal nucleation by biogenic magnetite in many tissues, magnetite nanocrystals could provide inexpensive, non-toxic, and non-pathogenic ice nucleating agents needed in a variety of industrial processes, as well as influencing the dynamics of ice crystal nucleation in many natural environments.
Collapse
Affiliation(s)
- Atsuko Kobayashi
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan.
| | - Harry N Golash
- Division of Mechanical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joseph L Kirschvink
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
37
|
Otero L, Rodríguez AC, Pérez-Mateos M, Sanz PD. Effects of Magnetic Fields on Freezing: Application to Biological Products. Compr Rev Food Sci Food Saf 2016; 15:646-667. [DOI: 10.1111/1541-4337.12202] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Laura Otero
- Inst. of Food Science, Technology; and Nutrition (ICTAN-CSIC); c/ José Antonio Novais; 10, 28040 Madrid Spain
| | - Antonio C. Rodríguez
- Inst. of Food Science, Technology; and Nutrition (ICTAN-CSIC); c/ José Antonio Novais; 10, 28040 Madrid Spain
| | - Miriam Pérez-Mateos
- Inst. of Food Science, Technology; and Nutrition (ICTAN-CSIC); c/ José Antonio Novais; 10, 28040 Madrid Spain
| | - Pedro D. Sanz
- Inst. of Food Science, Technology; and Nutrition (ICTAN-CSIC); c/ José Antonio Novais; 10, 28040 Madrid Spain
| |
Collapse
|
38
|
Neves LS, Rodrigues MT, Reis RL, Gomes ME. Current approaches and future perspectives on strategies for the development of personalized tissue engineering therapies. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1140004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Cryopreservation and Banking of Dental Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:199-235. [DOI: 10.1007/978-3-319-45457-3_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Yong KW, Choi JR, Wan Safwani WKZ. Biobanking of Human Mesenchymal Stem Cells: Future Strategy to Facilitate Clinical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:99-110. [PMID: 27837557 DOI: 10.1007/978-3-319-45457-3_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human mesenchymal stem cells (hMSCs), a type of adult stem cells that hold great potential in clinical applications (e.g., regenerative medicine and cell-based therapy) due to their ability to differentiate into multiple types of specialized cells and secrete soluble factors which can initiate tissue repair and regulate immune response. hMSCs need to be expanded in vitro or cryopreserved to obtain sufficient cell numbers required for clinical applications. However, long-term in vitro culture-expanded hMSCs may raise some biosafety concerns (e.g., chromosomal abnormality and malignant transformation) and compromised functional properties, limiting their use in clinical applications. To avoid those adverse effects, it is essential to cryopreserve hMSCs at early passage and pool them for off-the-shelf use in clinical applications. However, the existing cryopreservation methods for hMSCs have some notable limitations. To address these limitations, several approaches have to be taken in order to produce healthy and efficacious cryopreserved hMSCs for clinical trials, which remains challenging to date. Therefore, a noteworthy amount of resources has been utilized in research in optimization of the cryopreservation methods, development of freezing devices, and formulation of cryopreservation media to ensure that hMSCs maintain their therapeutic characteristics without raising biosafety concerns following cryopreservation. Biobanking of hMSCs would be a crucial strategy to facilitate clinical applications in the future.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Wan Kamarul Zaman Wan Safwani
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
41
|
Hata M, Omi M, Kobayashi Y, Nakamura N, Tosaki T, Miyabe M, Kojima N, Kubo K, Ozawa S, Maeda H, Tanaka Y, Matsubara T, Naruse K. Transplantation of cultured dental pulp stem cells into the skeletal muscles ameliorated diabetic polyneuropathy: therapeutic plausibility of freshly isolated and cryopreserved dental pulp stem cells. Stem Cell Res Ther 2015; 6:162. [PMID: 26345292 PMCID: PMC4562193 DOI: 10.1186/s13287-015-0156-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
Introduction Dental pulp stem cells (DPSCs) are mesenchymal stem cells located in dental pulp and are thought to be a potential source for cell therapy since DPSCs can be easily obtained from teeth extracted for orthodontic reasons. Obtained DPSCs can be cryopreserved until necessary and thawed and expanded when needed. The aim of this study is to evaluate the therapeutic potential of DPSC transplantation for diabetic polyneuropathy. Methods DPSCs isolated from the dental pulp of extracted incisors of Sprague–Dawley rats were partly frozen in a −80 °C freezer for 6 months. Cultured DPSCs were transplanted into the unilateral hindlimb skeletal muscles 8 weeks after streptozotocine injection and the effects of DPSC transplantation were evaluated 4 weeks after the transplantation. Results Transplantation of DPSCs significantly improved the impaired sciatic nerve blood flow, sciatic motor/sensory nerve conduction velocity, capillary number to muscle fiber ratio and intra-epidermal nerve fiber density in the transplanted side of diabetic rats. Cryopreservation of DPSCs did not impair their proliferative or differential ability. The transplantation of cryopreserved DPSCs ameliorated sciatic nerve blood flow and sciatic nerve conduction velocity as well as freshly isolated DPSCs. Conclusions We demonstrated the effectiveness of DPSC transplantation for diabetic polyneuropathy even when using cryopreserved DPSCs, suggesting that the transplantation of DPSCs could be a promising tool for the treatment of diabetic neuropathy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0156-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masaki Hata
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Maiko Omi
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Yasuko Kobayashi
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Nobuhisa Nakamura
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Takahiro Tosaki
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Megumi Miyabe
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Norinaga Kojima
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Katsutoshi Kubo
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Shogo Ozawa
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Hatsuhiko Maeda
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Yoshinobu Tanaka
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Tatsuaki Matsubara
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| |
Collapse
|
42
|
Ducret M, Fabre H, Degoul O, Atzeni G, McGuckin C, Forraz N, Alliot-Licht B, Mallein-Gerin F, Perrier-Groult E, Farges JC. Manufacturing of dental pulp cell-based products from human third molars: current strategies and future investigations. Front Physiol 2015; 6:213. [PMID: 26300779 PMCID: PMC4526817 DOI: 10.3389/fphys.2015.00213] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/16/2015] [Indexed: 01/01/2023] Open
Abstract
In recent years, mesenchymal cell-based products have been developed to improve surgical therapies aimed at repairing human tissues. In this context, the tooth has recently emerged as a valuable source of stem/progenitor cells for regenerating orofacial tissues, with easy access to pulp tissue and high differentiation potential of dental pulp mesenchymal cells. International guidelines now recommend the use of standardized procedures for cell isolation, storage and expansion in culture to ensure optimal reproducibility, efficacy and safety when cells are used for clinical application. However, most dental pulp cell-based medicinal products manufacturing procedures may not be fully satisfactory since they could alter the cells biological properties and the quality of derived products. Cell isolation, enrichment and cryopreservation procedures combined to long-term expansion in culture media containing xeno- and allogeneic components are known to affect cell phenotype, viability, proliferation and differentiation capacities. This article focuses on current manufacturing strategies of dental pulp cell-based medicinal products and proposes a new protocol to improve efficiency, reproducibility and safety of these strategies.
Collapse
Affiliation(s)
- Maxime Ducret
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR5305 Centre National de la Recherche Scientifique/Université Claude Bernard Lyon 1 Lyon, France ; Faculté d'Odontologie, Université de Lyon, Université Claude Bernard Lyon 1 Lyon, France ; Hospices Civils de Lyon, Service de Consultations et Traitements Dentaires Lyon, France
| | - Hugo Fabre
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR5305 Centre National de la Recherche Scientifique/Université Claude Bernard Lyon 1 Lyon, France
| | - Olivier Degoul
- CTI-BIOTECH, Cell Therapy Research Institute Meyzieu, France
| | | | - Colin McGuckin
- CTI-BIOTECH, Cell Therapy Research Institute Meyzieu, France
| | - Nico Forraz
- CTI-BIOTECH, Cell Therapy Research Institute Meyzieu, France
| | - Brigitte Alliot-Licht
- Faculté d'Odontologie, Institut National de la Santé et de la Recherche Médicale UMR1064, Centre de Recherche en Transplantation et Immunologie, Université de Nantes Nantes, France
| | - Frédéric Mallein-Gerin
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR5305 Centre National de la Recherche Scientifique/Université Claude Bernard Lyon 1 Lyon, France
| | - Emeline Perrier-Groult
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR5305 Centre National de la Recherche Scientifique/Université Claude Bernard Lyon 1 Lyon, France
| | - Jean-Christophe Farges
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR5305 Centre National de la Recherche Scientifique/Université Claude Bernard Lyon 1 Lyon, France ; Faculté d'Odontologie, Université de Lyon, Université Claude Bernard Lyon 1 Lyon, France ; Hospices Civils de Lyon, Service de Consultations et Traitements Dentaires Lyon, France
| |
Collapse
|
43
|
Yong KW, Wan Safwani WKZ, Xu F, Wan Abas WAB, Choi JR, Pingguan-Murphy B. Cryopreservation of Human Mesenchymal Stem Cells for Clinical Applications: Current Methods and Challenges. Biopreserv Biobank 2015; 13:231-239. [PMID: 26280501 DOI: 10.1089/bio.2014.0104] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) hold many advantages over embryonic stem cells (ESCs) and other somatic cells in clinical applications. MSCs are multipotent cells with strong immunosuppressive properties. They can be harvested from various locations in the human body (e.g., bone marrow and adipose tissues). Cryopreservation represents an efficient method for the preservation and pooling of MSCs, to obtain the cell counts required for clinical applications, such as cell-based therapies and regenerative medicine. Upon cryopreservation, it is important to preserve MSCs functional properties including immunomodulatory properties and multilineage differentiation ability. Further, a biosafety evaluation of cryopreserved MSCs is essential prior to their clinical applications. However, the existing cryopreservation methods for MSCs are associated with notable limitations, leading to a need for new or improved methods to be established for a more efficient application of cryopreserved MSCs in stem cell-based therapies. We review the important parameters for cryopreservation of MSCs and the existing cryopreservation methods for MSCs. Further, we also discuss the challenges to be addressed in order to preserve MSCs effectively for clinical applications.
Collapse
Affiliation(s)
- Kar Wey Yong
- 1 Department of Biomedical Engineering, Faculty of Engineering, University of Malaya , Kuala Lumpur, Malaysia
- 2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an, P.R. China
| | | | - Feng Xu
- 2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an, P.R. China
- 3 The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, P.R. China
| | - Wan Abu Bakar Wan Abas
- 1 Department of Biomedical Engineering, Faculty of Engineering, University of Malaya , Kuala Lumpur, Malaysia
| | - Jane Ru Choi
- 1 Department of Biomedical Engineering, Faculty of Engineering, University of Malaya , Kuala Lumpur, Malaysia
- 2 Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an, P.R. China
| | - Belinda Pingguan-Murphy
- 1 Department of Biomedical Engineering, Faculty of Engineering, University of Malaya , Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Production of Human Dental Pulp Cells with a Medicinal Manufacturing Approach. J Endod 2015; 41:1492-9. [PMID: 26189777 DOI: 10.1016/j.joen.2015.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/01/2015] [Accepted: 05/20/2015] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Human dental pulp cells (HDPCs) are generally isolated and cultured with xenogeneic products and in stress conditions that may alter their biological features. However, guidelines from the American Food and Drug Administration and the European Medicines Agency currently recommend the use of protocols compliant with medicinal manufacturing. Our aim was to design an ex vivo procedure to produce large amounts of HDPCs for dentin/pulp and bone engineering according to these international recommendations. METHODS HDPC isolation was performed from pulp explant cultures. After appropriate serum-free medium selection, cultured HDPCs were immunophenotyped with flow cytometry. Samples were then cryopreserved for 510 days. The post-thaw cell doubling time was determined up to passage 4 (P4). Karyotyping was performed by G-band analysis. Osteo/odontoblastic differentiation capability was determined after culture in a differentiation medium by gene expression analysis of osteo/odontoblast markers and mineralization quantification. RESULTS Immunophenotyping of cultured HDPCs revealed a mesenchymal profile of the cells, some of which also expressed the stem/progenitor cell markers CD271, Stro-1, CD146, or MSCA-1. The post-thaw cell doubling times were stable and similar to fresh HDPCs. Cells displayed no karyotype abnormality. Alkaline phosphatase, osteocalcin, and dentin sialophosphoprotein gene expression and culture mineralization were increased in post-thaw HDPC cultures performed in differentiation medium compared with cultures in control medium. CONCLUSIONS We successfully isolated, cryopreserved, and amplified human dental pulp cells with a medicinal manufacturing approach. These findings may constitute a basis on which to investigate how HDPC production can be optimized for human pulp/dentin and bone tissue engineering.
Collapse
|
45
|
Hilkens P, Meschi N, Lambrechts P, Bronckaers A, Lambrichts I. Dental Stem Cells in Pulp Regeneration: Near Future or Long Road Ahead? Stem Cells Dev 2015; 24:1610-22. [PMID: 25869156 DOI: 10.1089/scd.2014.0510] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although regenerative endodontic procedures have yielded an impressive body of favorable outcomes, the treatment of necrotic immature permanent teeth in particular remains to be a challenge. Recent advances in dental stem cell (DSC) research have gained increasing insight in their regenerative potential and prospective use in the formation of viable dental tissues. Numerous studies have already reported successful dental pulp regeneration following application of dental pulp stem cells, stem cells from the apical papilla, or dental follicle precursor cells in different in vivo models. Next to responsive cells, dental tissue engineering also requires the support of an appropriate scaffold material, ranging from naturally occurring polymers to treated dentin matrix components. However, the routine use and banking of DSCs still holds some major challenges, such as culture-associated differences, patient-related variability, and the effects of culture medium additives. Only in-depth evaluation of these problems and the implementation of standardized models and protocols will effectively lead to better alternatives for patients who no longer benefit from current treatment protocols.
Collapse
Affiliation(s)
- Petra Hilkens
- 1 Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University , Diepenbeek, Belgium
| | - Nastaran Meschi
- 2 Department of Oral Health Sciences, KU Leuven and Dentistry, University Hospitals Leuven , Leuven, Belgium
| | - Paul Lambrechts
- 2 Department of Oral Health Sciences, KU Leuven and Dentistry, University Hospitals Leuven , Leuven, Belgium
| | - Annelies Bronckaers
- 1 Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University , Diepenbeek, Belgium
| | - Ivo Lambrichts
- 1 Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University , Diepenbeek, Belgium
| |
Collapse
|
46
|
Static magnetic field attenuates lipopolysaccharide-induced inflammation in pulp cells by affecting cell membrane stability. ScientificWorldJournal 2015; 2015:492683. [PMID: 25884030 PMCID: PMC4391652 DOI: 10.1155/2015/492683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/28/2014] [Indexed: 12/02/2022] Open
Abstract
One of the causes of dental pulpitis is lipopolysaccharide- (LPS-) induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs), and dental pulp stem cells (DPSCs) will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF) can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.
Collapse
|
47
|
Chinnadurai R, Garcia M, Sakurai Y, Lam W, Kirk A, Galipeau J, Copland I. Actin cytoskeletal disruption following cryopreservation alters the biodistribution of human mesenchymal stromal cells in vivo. Stem Cell Reports 2014; 3:60-72. [PMID: 25068122 PMCID: PMC4110775 DOI: 10.1016/j.stemcr.2014.05.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells have shown clinical promise; however, variations in treatment responses are an ongoing concern. We previously demonstrated that MSCs are functionally stunned after thawing. Here, we investigated whether this cryopreservation/thawing defect also impacts the postinfusion biodistribution properties of MSCs. Under both static and physiologic flow, compared with live MSCs in active culture, MSCs thawed from cryopreservation bound poorly to fibronectin (40% reduction) and human endothelial cells (80% reduction), respectively. This reduction correlated with a reduced cytoskeletal F-actin content in post-thaw MSCs (60% reduction). In vivo, live human MSCs could be detected in murine lung tissues for up to 24 hr, whereas thawed MSCs were undetectable. Similarly, live MSCs whose actin cytoskeleton was chemically disrupted were undetectable at 24 hr postinfusion. Our data suggest that post-thaw cryopreserved MSCs are distinct from live MSCs. This distinction could significantly affect the utility of MSCs as a cellular therapeutic.
Immediately after thawing, MSCs display attenuated binding and engraftment potential Immediately after thawing, MSCs display defective actin polymerization Disrupting actin cytoskeleton in MSCs replicates post-thaw MSC engraftment defect A 48 hr culture recovery of MSCs post-thaw restores in vivo engraftment potential
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | - Yumiko Sakurai
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA 30322, USA
| | - Wilbur A. Lam
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA 30322, USA
| | - Allan D. Kirk
- Department of Surgery, Division of Transplantation, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Transplant Center, Emory University, Atlanta, GA 30322, USA
| | - Jacques Galipeau
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Ian B. Copland
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Corresponding author
| |
Collapse
|
48
|
Differences of isolated dental stem cells dependent on donor age and consequences for autologous tooth replacement. Arch Oral Biol 2014; 59:559-67. [DOI: 10.1016/j.archoralbio.2014.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/28/2014] [Accepted: 02/24/2014] [Indexed: 01/09/2023]
|
49
|
Lin SL, Chang WJ, Lin CY, Hsieh SC, Lee SY, Fan KH, Lin CT, Huang HM. Static magnetic field increases survival rate of dental pulp stem cells during DMSO-free cryopreservation. Electromagn Biol Med 2014; 34:302-8. [PMID: 24856869 DOI: 10.3109/15368378.2014.919588] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful and efficient cryopreservation of living cells and organs is a key clinical application of regenerative medicine. Recently, magnetic cryopreservation has been reported for intact tooth banking and cryopreservation of dental tissue. The aim of this study was to assess the cryoprotective effects of static magnetic fields (SMFs) on human dental pulp stem cells (DPSCs) during cryopreservation. Human DPSCs isolated from extracted teeth were frozen with a 0.4-T or 0.8-T SMF and then stored at -196 °C for 24 h. During freezing, the cells were suspended in freezing media containing with 0, 3 or 10% DMSO. After thawing, the changes in survival rate of the DPSCs were determined by flow cytometry. To understand the possible cryoprotective mechanisms of the SMF, the membrane fluidity of SMF-exposed DPSCs was tested. The results showed that when the freezing medium was DMSO-free, the survival rates of the thawed DPSCs increased 2- or 2.5-fold when the cells were exposed to 0.4-T or 0.8-T SMFs, respectively (p < 0.01). In addition, after exposure to the 0.4-T SMF, the fluorescence anisotropy of the DPSCs increased significantly (p < 0.01) in the hydrophilic region. These results show that SMF exposure improved DMSO-free cryopreservation. This phenomenon may be due to the improvement of membrane stability for resisting damage caused by ice crystals during the freezing procedure.
Collapse
Affiliation(s)
- Shu-Li Lin
- a Dental Department , Cathay General Hospital , Taipei , Taiwan
| | - Wei-Jen Chang
- b School of Dentistry, College of Oral Medicine, Taipei Medical University , Taipei , Taiwan
| | - Chun-Yen Lin
- b School of Dentistry, College of Oral Medicine, Taipei Medical University , Taipei , Taiwan
| | - Sung-Chih Hsieh
- b School of Dentistry, College of Oral Medicine, Taipei Medical University , Taipei , Taiwan
| | - Sheng-Yang Lee
- b School of Dentistry, College of Oral Medicine, Taipei Medical University , Taipei , Taiwan
| | - Kang-Hsin Fan
- c Dental Department , En-Chu-Kong Hospital , Taipei , Taiwan , and
| | - Che-Tong Lin
- b School of Dentistry, College of Oral Medicine, Taipei Medical University , Taipei , Taiwan
| | - Haw-Ming Huang
- d Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University , Taipei , Taiwan
| |
Collapse
|
50
|
Eubanks EJ, Tarle SA, Kaigler D. Tooth Storage, Dental Pulp Stem Cell Isolation, and Clinical Scale Expansion without Animal Serum. J Endod 2014; 40:652-7. [DOI: 10.1016/j.joen.2014.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/11/2013] [Accepted: 01/06/2014] [Indexed: 12/14/2022]
|