1
|
Xue H, Wang L, Yao H, Shen S, Zhao X, Yuan C, Yu L, Chen G, Liu J. Single-Cell Endoscopy for Multifunctional Live-Cell Molecular Analysis. BIOSENSORS 2025; 15:244. [PMID: 40277557 PMCID: PMC12024890 DOI: 10.3390/bios15040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
Molecular analyses of individual cells with high resolution, specificity, and sensitivity can not only reveal cellular heterogeneity but also provide a better understanding of diseases and accelerate drug discoveries. Single-cell endoscopy is an advanced live-cell technique that relies on a smart endoscope that allows minimally invasive probing of the interiors of individual cells. Compared with other single-cell analysis techniques, single-cell endoscopy has shown great promise in applications such as flexible single-cell manipulation, ultrasensitive sensing, and precise intracellular delivery. In this review, we aim to map out the landscape of recent advances in single-cell endoscopy techniques by focusing on both fundamental considerations and significant progress over the past decade. Specifically, we summarize the predominant live-cell endoscopes, including their fabrication and characterization. Furthermore, a series of valuable intracellular molecular sensing events, such as nucleic acids, proteins, ions, etc., are introduced with a main emphasis on how single-cell endoscopy can solve these issues and what merits single-cell endoscopy can provide. Finally, we briefly outline the remaining challenges and directions for the future development of single-cell endoscopy techniques.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Luting Yu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (H.X.); (L.W.); (H.Y.); (S.S.); (X.Z.); (C.Y.); (G.C.)
| | | | - Jia Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (H.X.); (L.W.); (H.Y.); (S.S.); (X.Z.); (C.Y.); (G.C.)
| |
Collapse
|
2
|
Zhang C, Li T, Zhao Q, Ma R, Hong Z, Huang X, Gao P, Liu J, Zhao J, Wang Z. Advances and Prospects in Liquid Biopsy Techniques for Malignant Tumor Diagnosis and Surveillance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404709. [PMID: 39082395 DOI: 10.1002/smll.202404709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Indexed: 11/02/2024]
Abstract
Liquid biopsy technology provides invaluable support for the early diagnosis of tumors and surveillance of disease course by detecting tumor-related biomarkers in bodily fluids. Currently, liquid biopsy techniques are mainly divided into two categories: biomarker and label-free. Biomarker liquid biopsy techniques utilize specific antibodies or probes to identify and isolate target cells, exosomes, or molecules, and these techniques are widely used in clinical practice. However, they have certain limitations including dependence on tumor markers, alterations in cell biological properties, and high cost. In contrast, label-free liquid biopsy techniques directly utilize physical or chemical properties of cells, exosomes, or molecules for detection and isolation. These techniques have the advantage of not needing labeling, not impacting downstream analysis, and low detection cost. However, most are still in the research stage and not yet mature. This review first discusses recent advances in liquid biopsy techniques for early tumor diagnosis and disease surveillance. Several current techniques are described in detail. These techniques exploit differences in biomarkers, size, density, deformability, electrical properties, and chemical composition in tumor components to achieve highly sensitive tumor component identification and separation. Finally, the current research progress is summarized and the future research directions of the field are discussed.
Collapse
Affiliation(s)
- Chengzhi Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Tenghui Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Qian Zhao
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Rui Ma
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhengchao Hong
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Jingjing Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Junhua Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| |
Collapse
|
3
|
Krakowski P, Rejniak A, Sobczyk J, Karpiński R. Cartilage Integrity: A Review of Mechanical and Frictional Properties and Repair Approaches in Osteoarthritis. Healthcare (Basel) 2024; 12:1648. [PMID: 39201206 PMCID: PMC11353818 DOI: 10.3390/healthcare12161648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Osteoarthritis (OA) is one of the most common causes of disability around the globe, especially in aging populations. The main symptoms of OA are pain and loss of motion and function of the affected joint. Hyaline cartilage has limited ability for regeneration due to its avascularity, lack of nerve endings, and very slow metabolism. Total joint replacement (TJR) has to date been used as the treatment of end-stage disease. Various joint-sparing alternatives, including conservative and surgical treatment, have been proposed in the literature; however, no treatment to date has been fully successful in restoring hyaline cartilage. The mechanical and frictional properties of the cartilage are of paramount importance in terms of cartilage resistance to continuous loading. OA causes numerous changes in the macro- and microstructure of cartilage, affecting its mechanical properties. Increased friction and reduced load-bearing capability of the cartilage accelerate further degradation of tissue by exerting increased loads on the healthy surrounding tissues. Cartilage repair techniques aim to restore function and reduce pain in the affected joint. Numerous studies have investigated the biological aspects of OA progression and cartilage repair techniques. However, the mechanical properties of cartilage repair techniques are of vital importance and must be addressed too. This review, therefore, addresses the mechanical and frictional properties of articular cartilage and its changes during OA, and it summarizes the mechanical outcomes of cartilage repair techniques.
Collapse
Affiliation(s)
- Przemysław Krakowski
- Department of Trauma Surgery and Emergency Medicine, Medical University, 20-059 Lublin, Poland
- Orthopaedic and Sports Traumatology Department, Carolina Medical Center, Pory 78, 02-757 Warsaw, Poland; (A.R.); (J.S.)
| | - Adrian Rejniak
- Orthopaedic and Sports Traumatology Department, Carolina Medical Center, Pory 78, 02-757 Warsaw, Poland; (A.R.); (J.S.)
| | - Jakub Sobczyk
- Orthopaedic and Sports Traumatology Department, Carolina Medical Center, Pory 78, 02-757 Warsaw, Poland; (A.R.); (J.S.)
| | - Robert Karpiński
- Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, University of Technology, 20-618 Lublin, Poland
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University, 20-059 Lublin, Poland
| |
Collapse
|
4
|
Tufoni C, Battistella A, Luppi S, Boscolo R, Ricci G, Lazzarino M, Andolfi L. Flagellar beating forces of human spermatozoa with different motility behaviors. Reprod Biol Endocrinol 2024; 22:28. [PMID: 38448984 PMCID: PMC10916019 DOI: 10.1186/s12958-024-01197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND One of the causes of male infertility is associated with altered spermatozoa motility. These sperm features are frequently analyzed by image-based approaches, which, despite allowing the acquisition of crucial parameters to assess sperm motility, they are unable to provide details regarding the flagellar beating forces, which have been neglected until now. RESULTS In this work we exploit Fluidic Force Microscopy to investigate and quantify the forces associated with the flagellar beating frequencies of human spermatozoa. The analysis is performed on two groups divided according to the progressive motility of semen samples, as identified by standard clinical protocols. In the first group, 100% of the spermatozoa swim linearly (100% progressive motility), while, in the other, spermatozoa show both linear and circular motility (identified as 80 - 20% progressive motility). Significant differences in flagellar beating forces between spermatozoa from semen sample with different progressive motility are observed. Particularly, linear motile spermatozoa exhibit forces higher than those with a circular movement. CONCLUSIONS This research can increase our understanding of sperm motility and the role of mechanics in fertilization, which could help us unveil some of the causes of idiopathic male infertility.
Collapse
Affiliation(s)
- Cristina Tufoni
- University of Trieste, Trieste, 34100, Italy
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5 Area Science Park Basovizza, Trieste, 34149, Italy
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Alice Battistella
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5 Area Science Park Basovizza, Trieste, 34149, Italy
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Stefania Luppi
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Rita Boscolo
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| | - Marco Lazzarino
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5 Area Science Park Basovizza, Trieste, 34149, Italy
| | - Laura Andolfi
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5 Area Science Park Basovizza, Trieste, 34149, Italy.
| |
Collapse
|
5
|
Belluzzi E, Todros S, Pozzuoli A, Ruggieri P, Carniel EL, Berardo A. Human Cartilage Biomechanics: Experimental and Theoretical Approaches towards the Identification of Mechanical Properties in Healthy and Osteoarthritic Conditions. Processes (Basel) 2023. [DOI: 10.3390/pr11041014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Articular cartilage is a complex connective tissue with the fundamental functions of load bearing, shock absorption and lubrication in joints. However, traumatic events, aging and degenerative pathologies may affect its structural integrity and function, causing pain and long-term disability. Osteoarthritis represents a health issue, which concerns an increasing number of people worldwide. Moreover, it has been observed that this pathology also affects the mechanical behavior of the articular cartilage. To better understand this correlation, the here proposed review analyzes the physiological aspects that influence cartilage microstructure and biomechanics, with a special focus on the pathological changes caused by osteoarthritis. Particularly, the experimental data on human articular cartilage are presented with reference to different techniques adopted for mechanical testing and the related theoretical mechanical models usually applied to articular cartilage are briefly discussed.
Collapse
|
6
|
Riachy L, Ferrand T, Chasserot-Golaz S, Galas L, Alexandre S, Montero-Hadjadje M. Advanced Imaging Approaches to Reveal Molecular Mechanisms Governing Neuroendocrine Secretion. Neuroendocrinology 2023; 113:107-119. [PMID: 34915491 DOI: 10.1159/000521457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022]
Abstract
Identification of the molecular mechanisms governing neuroendocrine secretion and resulting intercellular communication is one of the great challenges of cell biology to better understand organism physiology and neurosecretion disruption-related pathologies such as hypertension, neurodegenerative, or metabolic diseases. To visualize molecule distribution and dynamics at the nanoscale, many imaging approaches have been developed and are still emerging. In this review, we provide an overview of the pioneering studies using transmission electron microscopy, atomic force microscopy, total internal reflection microscopy, and super-resolution microscopy in neuroendocrine cells to visualize molecular mechanisms driving neurosecretion processes, including exocytosis and associated fusion pores, endocytosis and associated recycling vesicles, and protein-protein or protein-lipid interactions. Furthermore, the potential and the challenges of these different advanced imaging approaches for application in the study of neuroendocrine cell biology are discussed, aiming to guide researchers to select the best approach for their specific purpose around the crucial but not yet fully understood neurosecretion process.
Collapse
Affiliation(s)
- Lina Riachy
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Thomas Ferrand
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg University, Strasbourg, France
| | - Ludovic Galas
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Stéphane Alexandre
- Polymères, Biopolymères, Surfaces Laboratory, CNRS, Normandie University, UNIROUEN, UMR 6270, Rouen, France
| | - Maité Montero-Hadjadje
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| |
Collapse
|
7
|
Byvalov AA, Belozerov VS, Ananchenko BA, Konyshev IV. Specific and Nonspecific Interactions of Yersinia pseudotuberculosis Lipopolysaccharide with Monoclonal Antibodies Assessed by Atomic Force Microscopy. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922060033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
8
|
Qiu Y, Chien CC, Maroulis B, Bei J, Gaitas A, Gong B. Extending applications of AFM to fluidic AFM in single living cell studies. J Cell Physiol 2022; 237:3222-3238. [PMID: 35696489 PMCID: PMC9378449 DOI: 10.1002/jcp.30809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/30/2022]
Abstract
In this article, a review of a series of applications of atomic force microscopy (AFM) and fluidic Atomic Force Microscopy (fluidic AFM, hereafter fluidFM) in single-cell studies is presented. AFM applications involving single-cell and extracellular vesicle (EV) studies, colloidal force spectroscopy, and single-cell adhesion measurements are discussed. FluidFM is an offshoot of AFM that combines a microfluidic cantilever with AFM and has enabled the research community to conduct biological, pathological, and pharmacological studies on cells at the single-cell level in a liquid environment. In this review, capacities of fluidFM are discussed to illustrate (1) the speed with which sequential measurements of adhesion using coated colloid beads can be done, (2) the ability to assess lateral binding forces of endothelial or epithelial cells in a confluent cell monolayer in an appropriate physiological environment, and (3) the ease of measurement of vertical binding forces of intercellular adhesion between heterogeneous cells. Furthermore, key applications of fluidFM are reviewed regarding to EV absorption, manipulation of a single living cell by intracellular injection, sampling of cellular fluid from a single living cell, patch clamping, and mass measurements of a single living cell.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chen-Chi Chien
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Basile Maroulis
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,BioMedical Engineering & Imaging Institute, Leon and Norma Hess Center for Science and Medicine, New York City, New York, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.,Sealy Center for Vector Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Institute for Human Infectious and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
9
|
Haque RI, Waafi AK, Jaemin K, Briand D, Han A. 80 K cryogenic stage for ice lithography. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2021.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Tassinari R, Cavallini C, Olivi E, Facchin F, Taglioli V, Zannini C, Marcuzzi M, Ventura C. Cell Responsiveness to Physical Energies: Paving the Way to Decipher a Morphogenetic Code. Int J Mol Sci 2022; 23:3157. [PMID: 35328576 PMCID: PMC8949133 DOI: 10.3390/ijms23063157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
We discuss emerging views on the complexity of signals controlling the onset of biological shapes and functions, from the nanoarchitectonics arising from supramolecular interactions, to the cellular/multicellular tissue level, and up to the unfolding of complex anatomy. We highlight the fundamental role of physical forces in cellular decisions, stressing the intriguing similarities in early morphogenesis, tissue regeneration, and oncogenic drift. Compelling evidence is presented, showing that biological patterns are strongly embedded in the vibrational nature of the physical energies that permeate the entire universe. We describe biological dynamics as informational processes at which physics and chemistry converge, with nanomechanical motions, and electromagnetic waves, including light, forming an ensemble of vibrations, acting as a sort of control software for molecular patterning. Biomolecular recognition is approached within the establishment of coherent synchronizations among signaling players, whose physical nature can be equated to oscillators tending to the coherent synchronization of their vibrational modes. Cytoskeletal elements are now emerging as senders and receivers of physical signals, "shaping" biological identity from the cellular to the tissue/organ levels. We finally discuss the perspective of exploiting the diffusive features of physical energies to afford in situ stem/somatic cell reprogramming, and tissue regeneration, without stem cell transplantation.
Collapse
Affiliation(s)
- Riccardo Tassinari
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Claudia Cavallini
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Elena Olivi
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Valentina Taglioli
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Chiara Zannini
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Martina Marcuzzi
- INBB, Biostructures and Biosystems National Institute, Viale Medaglie d’Oro 305, 00136 Rome, Italy;
| | - Carlo Ventura
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| |
Collapse
|
11
|
Zhang KS, Nadkarni AV, Paul R, Martin AM, Tang SKY. Microfluidic Surgery in Single Cells and Multicellular Systems. Chem Rev 2022; 122:7097-7141. [PMID: 35049287 DOI: 10.1021/acs.chemrev.1c00616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microscale surgery on single cells and small organisms has enabled major advances in fundamental biology and in engineering biological systems. Examples of applications range from wound healing and regeneration studies to the generation of hybridoma to produce monoclonal antibodies. Even today, these surgical operations are often performed manually, but they are labor intensive and lack reproducibility. Microfluidics has emerged as a powerful technology to control and manipulate cells and multicellular systems at the micro- and nanoscale with high precision. Here, we review the physical and chemical mechanisms of microscale surgery and the corresponding design principles, applications, and implementations in microfluidic systems. We consider four types of surgical operations: (1) sectioning, which splits a biological entity into multiple parts, (2) ablation, which destroys part of an entity, (3) biopsy, which extracts materials from within a living cell, and (4) fusion, which joins multiple entities into one. For each type of surgery, we summarize the motivating applications and the microfluidic devices developed. Throughout this review, we highlight existing challenges and opportunities. We hope that this review will inspire scientists and engineers to continue to explore and improve microfluidic surgical methods.
Collapse
Affiliation(s)
- Kevin S Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ambika V Nadkarni
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, United States
| | - Rajorshi Paul
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Adrian M Martin
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Luo M, Yang W, Cartwright TN, Higgins JMG, Chen J. Simultaneous Measurement of Single-Cell Mechanics and Cell-to-Materials Adhesion Using Fluidic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:620-628. [PMID: 34981921 DOI: 10.1021/acs.langmuir.1c01973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The connection between cells and their substrate is essential for biological processes such as cell migration. Atomic force microscopy nanoindentation has often been adopted to measure single-cell mechanics. Very recently, fluidic force microscopy has been developed to enable rapid measurements of cell adhesion. However, simultaneous characterization of the cell-to-material adhesion and viscoelastic properties of the same cell is challenging. In this study, we present a new approach to simultaneously determine these properties for single cells, using fluidic force microscopy. For MCF-7 cells grown on tissue-culture-treated polystyrene surfaces, we found that the adhesive force and adhesion energy were correlated for each cell. Well-spread cells tended to have stronger adhesion, which may be due to the greater area of the contact between cellular adhesion receptors and the surface. By contrast, the viscoelastic properties of MCF-7 cells cultured on the same surface appeared to have little dependence on cell shape. This methodology provides an integrated approach to better understand the biophysics of multiple cell types.
Collapse
Affiliation(s)
- Ma Luo
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| | - Wenjian Yang
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Research Center for Intelligent Sensing Systems, Zhijiang Laboratory, Hangzhou 311100, China
| | - Tyrell N Cartwright
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| |
Collapse
|
13
|
Devi S, Chaturvedi M, Fatima S, Priya S. Environmental factors modulating protein conformations and their role in protein aggregation diseases. Toxicology 2022; 465:153049. [PMID: 34818560 DOI: 10.1016/j.tox.2021.153049] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
The adverse physiological conditions have been long known to impact protein synthesis, folding and functionality. Major physiological factors such as the effect of pH, temperature, salt and pressure are extensively studied for their impact on protein structure and homeostasis. However, in the current scenario, the environmental risk factors (pollutants) have gained impetus in research because of their increasing concentrations in the environment and strong epidemiologic link with protein aggregation disorders. Here, we review the physiological and environmental risk factors for their impact on protein conformational changes, misfolding, aggregation, and associated pathological conditions, especially environmental risk factors associated pathologies.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Minal Chaturvedi
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Siraj Fatima
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Mishra YG, Manavathi B. Focal adhesion dynamics in cellular function and disease. Cell Signal 2021; 85:110046. [PMID: 34004332 DOI: 10.1016/j.cellsig.2021.110046] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Acting as a bridge between the cytoskeleton of the cell and the extra cellular matrix (ECM), the cell-ECM adhesions with integrins at their core, play a major role in cell signalling to direct mechanotransduction, cell migration, cell cycle progression, proliferation, differentiation, growth and repair. Biochemically, these adhesions are composed of diverse, yet an organised group of structural proteins, receptors, adaptors, various enzymes including protein kinases, phosphatases, GTPases, proteases, etc. as well as scaffolding molecules. The major integrin adhesion complexes (IACs) characterised are focal adhesions (FAs), invadosomes (podosomes and invadopodia), hemidesmosomes (HDs) and reticular adhesions (RAs). The varied composition and regulation of the IACs and their signalling, apart from being an integral part of normal cell survival, has been shown to be of paramount importance in various developmental and pathological processes. This review per-illustrates the recent advancements in the research of IACs, their crucial roles in normal as well as diseased states. We have also touched on few of the various methods that have been developed over the years to visualise IACs, measure the forces they exert and study their signalling and molecular composition. Having such pertinent roles in the context of various pathologies, these IACs need to be understood and studied to develop therapeutical targets. We have given an update to the studies done in recent years and described various techniques which have been applied to study these structures, thereby, providing context in furthering research with respect to IAC targeted therapeutics.
Collapse
Affiliation(s)
- Yasaswi Gayatri Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
15
|
Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. Int J Biol Macromol 2020; 165:3088-3105. [DOI: 10.1016/j.ijbiomac.2020.10.104] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
|
16
|
Xu X, Jia J, Guo M. The Most Recent Advances in the Application of Nano-Structures/Nano-Materials for Single-Cell Sampling. Front Chem 2020; 8:718. [PMID: 32974282 PMCID: PMC7469254 DOI: 10.3389/fchem.2020.00718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
The research in endogenous biomolecules from a single cell has grown rapidly in recent years since it is critical for dissecting and scrutinizing the complexity of heterogeneous tissues, especially under pathological conditions, and it is also of key importance to understand the biological processes and cellular responses to various perturbations without the limitation of population averaging. Although conventional techniques, such as micromanipulation or cell sorting methods, are already used along with subsequent molecular examinations, it remains a big challenge to develop new approaches to manipulate and directly extract small quantities of cytosol from single living cells. In this sense, nanostructure or nanomaterial may play a critical role in overcoming these challenges in cellular manipulation and extraction of very small quantities of cells, and provide a powerful alternative to conventional techniques. Since the nanostructures or nanomaterial could build channels between intracellular and extracellular components across cell membrane, through which cytosol could be pumped out and transferred to downstream analyses. In this review, we will first brief the traditional methods for single cell analyses, and then shift our focus to some most promising methods for single-cell sampling with nanostructures, such as glass nanopipette, nanostraw, carbon nanotube probes and other nanomaterial. In this context, particular attentions will be paid to their principles, preparations, operations, superiorities and drawbacks, and meanwhile the great potential of nano-materials for single-cell sampling will also be highlighted and prospected.
Collapse
Affiliation(s)
- Xiaolong Xu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
| | - Jianbo Jia
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
| | - Mingquan Guo
- School of Biotechnology and Health Science, Wuyi University, Jiangmen, China.,CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
17
|
Ren W, Xu J, Lian Z, Yu P, Yu H. Modeling and Experimental Study of the Localized Electrochemical Micro Additive Manufacturing Technology Based on the FluidFM. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2783. [PMID: 32575589 PMCID: PMC7345769 DOI: 10.3390/ma13122783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 12/02/2022]
Abstract
In this work, the localized electrochemical micro additive manufacturing technology based on the FluidFM (fluidic force microscope) has been introduced to fabricate micro three-dimensional overhang metal structures at sub-micron resolution. It breaks through the localized deposition previously achieved by micro-anode precision movement, and the micro-injection of the electrolyte is achieved in a stable electric field distribution. The structure of electrochemical facilities has been designed and optimized. More importantly, the local electrochemical deposition process has been analyzed with positive source diffusion, and the mathematical modeling has been revealed in the particle conversion process. A mathematical model is proposed for the species flux under the action of pulsed pressure in an innovatively localized liquid feeding process. Besides, the linear structure, bulk structure, complex structure, and large-area structure of the additive manufacturing are analyzed separately. The experimental diameter of the deposited cylinder structure is linearly fitted. The aspect ratio of the structure is greater than 20, the surface roughness value is between 0.1-0.2 μm at the surface of bulk structures, and the abilities are verified for deposition of overhang, hollow complex structures. Moreover, this work verifies the feasibility of 3D overhang array submicron structure additive manufacturing, with the application of pulsed pressure. Furthermore, this technology opens new avenues for the direct fabrication of nano circuit interconnection, tiny sensors, and micro antennas.
Collapse
Affiliation(s)
| | - Jinkai Xu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Department of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130012, China; (W.R.); (Z.L.); (P.Y.)
| | | | | | - Huadong Yu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Department of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130012, China; (W.R.); (Z.L.); (P.Y.)
| |
Collapse
|
18
|
Shibata T, Furukawa H, Ito Y, Nagahama M, Hayashi T, Ishii-Teshima M, Nagai M. Photocatalytic Nanofabrication and Intracellular Raman Imaging of Living Cells with Functionalized AFM Probes. MICROMACHINES 2020; 11:E495. [PMID: 32414191 PMCID: PMC7281467 DOI: 10.3390/mi11050495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Atomic force microscopy (AFM) is an effective platform for in vitro manipulation and analysis of living cells in medical and biological sciences. To introduce additional new features and functionalities into a conventional AFM system, we investigated the photocatalytic nanofabrication and intracellular Raman imaging of living cells by employing functionalized AFM probes. Herein, we investigated the effect of indentation speed on the cell membrane perforation of living HeLa cells based on highly localized photochemical oxidation with a catalytic titanium dioxide (TiO2)-functionalized AFM probe. On the basis of force-distance curves obtained during the indentation process, the probability of cell membrane perforation, penetration force, and cell viability was determined quantitatively. Moreover, we explored the possibility of intracellular tip-enhanced Raman spectroscopy (TERS) imaging of molecular dynamics in living cells via an AFM probe functionalized with silver nanoparticles in a homemade Raman system integrated with an inverted microscope. We successfully demonstrated that the intracellular TERS imaging has the potential to visualize distinctly different features in Raman spectra between the nucleus and the cytoplasm of a single living cell and to analyze the dynamic behavior of biomolecules inside a living cell.
Collapse
Affiliation(s)
- Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Hiromi Furukawa
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Yasuharu Ito
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Masahiro Nagahama
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Terutake Hayashi
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
| | - Miho Ishii-Teshima
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; (H.F.); (Y.I.); (M.N.); (M.I.-T.); (M.N.)
| |
Collapse
|
19
|
Goss JW, Volle CB. Using Atomic Force Microscopy To Illuminate the Biophysical Properties of Microbes. ACS APPLIED BIO MATERIALS 2019; 3:143-155. [PMID: 32851362 DOI: 10.1021/acsabm.9b00973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since its invention in 1986, atomic force microscopy (AFM) has grown from a system designed for imaging inorganic surfaces to a tool used to probe the biophysical properties of living cells and tissues. AFM is a scanning probe technique and uses a pyramidal tip attached to a flexible cantilever to scan across a surface, producing a highly detailed image. While many research articles include AFM images, fewer include force-distance curves, from which several biophysical properties can be determined. In a single force-distance curve, the cantilever is lowered and raised from the surface, while the forces between the tip and the surface are monitored. Modern AFM has a wide variety of applications, but this review will focus on exploring the mechanobiology of microbes, which we believe is of particular interest to those studying biomaterials. We briefly discuss experimental design as well as different ways of extracting meaningful values related to cell surface elasticity, cell stiffness, and cell adhesion from force-distance curves. We also highlight both classic and recent experiments using AFM to illuminate microbial biophysical properties.
Collapse
Affiliation(s)
- John W Goss
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Catherine B Volle
- Departments of Biology and Chemistry, Cornell College, Mount Vernon, Iowa 52314, United States
| |
Collapse
|
20
|
Beaussart A, El-Kirat-Chatel S. Microbial adhesion and ultrastructure from the single-molecule to the single-cell levels by Atomic Force Microscopy. Cell Surf 2019; 5:100031. [PMID: 32743147 PMCID: PMC7389263 DOI: 10.1016/j.tcsw.2019.100031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/29/2022] Open
Abstract
In the last decades, atomic force microscopy (AFM) has evolved towards an accurate and lasting tool to study the surface of living cells in physiological conditions. Through imaging, single-molecule force spectroscopy and single-cell force spectroscopy modes, AFM allows to decipher at multiple scales the morphology and the molecular interactions taking place at the cell surface. Applied to microbiology, these approaches have been used to elucidate biophysical properties of biomolecules and to directly link the molecular structures to their function. In this review, we describe the main methods developed for AFM-based microbial surface analysis that we illustrate with examples of molecular mechanisms unravelled with unprecedented resolution.
Collapse
|
21
|
Ungai-Salánki R, Peter B, Gerecsei T, Orgovan N, Horvath R, Szabó B. A practical review on the measurement tools for cellular adhesion force. Adv Colloid Interface Sci 2019; 269:309-333. [PMID: 31128462 DOI: 10.1016/j.cis.2019.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
Cell-cell and cell-matrix adhesions are fundamental in all multicellular organisms. They play a key role in cellular growth, differentiation, pattern formation and migration. Cell-cell adhesion is substantial in the immune response, pathogen-host interactions, and tumor development. The success of tissue engineering and stem cell implantations strongly depends on the fine control of live cell adhesion on the surface of natural or biomimetic scaffolds. Therefore, the quantitative and precise measurement of the adhesion strength of living cells is critical, not only in basic research but in modern technologies, too. Several techniques have been developed or are under development to quantify cell adhesion. All of them have their pros and cons, which has to be carefully considered before the experiments and interpretation of the recorded data. Current review provides a guide to choose the appropriate technique to answer a specific biological question or to complete a biomedical test by measuring cell adhesion.
Collapse
|
22
|
Facchin F, Canaider S, Tassinari R, Zannini C, Bianconi E, Taglioli V, Olivi E, Cavallini C, Tausel M, Ventura C. Physical energies to the rescue of damaged tissues. World J Stem Cells 2019; 11:297-321. [PMID: 31293714 PMCID: PMC6600852 DOI: 10.4252/wjsc.v11.i6.297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Rhythmic oscillatory patterns sustain cellular dynamics, driving the concerted action of regulatory molecules, microtubules, and molecular motors. We describe cellular microtubules as oscillators capable of synchronization and swarming, generating mechanical and electric patterns that impact biomolecular recognition. We consider the biological relevance of seeing the inside of cells populated by a network of molecules that behave as bioelectronic circuits and chromophores. We discuss the novel perspectives disclosed by mechanobiology, bioelectromagnetism, and photobiomodulation, both in term of fundamental basic science and in light of the biomedical implication of using physical energies to govern (stem) cell fate. We focus on the feasibility of exploiting atomic force microscopy and hyperspectral imaging to detect signatures of nanomotions and electromagnetic radiation (light), respectively, generated by the stem cells across the specification of their multilineage repertoire. The chance is reported of using these signatures and the diffusive features of physical waves to direct specifically the differentiation program of stem cells in situ, where they already are resident in all the tissues of the human body. We discuss how this strategy may pave the way to a regenerative and precision medicine without the needs for (stem) cell or tissue transplantation. We describe a novel paradigm based upon boosting our inherent ability for self-healing.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | | | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy.
| |
Collapse
|