1
|
Hoang VT, Nguyen QT, Phan TTK, Pham TH, Dinh NTH, Anh LPH, Dao LTM, Bui VD, Dao H, Le DS, Ngo ATL, Le Q, Nguyen Thanh L. Tissue Engineering and Regenerative Medicine: Perspectives and Challenges. MedComm (Beijing) 2025; 6:e70192. [PMID: 40290901 PMCID: PMC12022429 DOI: 10.1002/mco2.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/30/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
From the pioneering days of cell therapy to the achievement of bioprinting organs, tissue engineering, and regenerative medicine have seen tremendous technological advancements, offering solutions for restoring damaged tissues and organs. However, only a few products and technologies have received United States Food and Drug Administration approval. This review highlights significant progress in cell therapy, extracellular vesicle-based therapy, and tissue engineering. Hematopoietic stem cell transplantation is a powerful tool for treating many diseases, especially hematological malignancies. Mesenchymal stem cells have been extensively studied. The discovery of induced pluripotent stem cells has revolutionized disease modeling and regenerative applications, paving the way for personalized medicine. Gene therapy represents an innovative approach to the treatment of genetic disorders. Additionally, extracellular vesicle-based therapies have emerged as rising stars, offering promising solutions in diagnostics, cell-free therapeutics, drug delivery, and targeted therapy. Advances in tissue engineering enable complex tissue constructs, further transforming the field. Despite these advancements, many technical, ethical, and regulatory challenges remain. This review addresses the current bottlenecks, emphasizing novel technologies and interdisciplinary research to overcome these hurdles. Standardizing practices and conducting clinical trials will balance innovation and regulation, improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Van T. Hoang
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Trang Thi Kieu Phan
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Trang H. Pham
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Nhung Thi Hong Dinh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Le Phuong Hoang Anh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Lan Thi Mai Dao
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Van Dat Bui
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Hong‐Nhung Dao
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Duc Son Le
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Anh Thi Lan Ngo
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Quang‐Duong Le
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene TechnologyCollege of Health SciencesVinUniversityVinhomes Ocean ParkHanoiVietnam
- Vinmec Health Care SystemHanoiVietnam
| |
Collapse
|
2
|
Wang C, Hu X, Liu Y, Xiao Y, Jiang P, Lin Y, Liu X, Zhang Z, Li LC, Qi Z. Immunological Safety Evaluation of Exosomes Derived From Human Umbilical Cord Mesenchymal Stem Cells in Mice. Stem Cells Int 2025; 2025:9986368. [PMID: 40321170 PMCID: PMC12049250 DOI: 10.1155/sci/9986368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 05/08/2025] Open
Abstract
Mounting evidence indicates that exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-exosomes) combine the advantages of hucMSC pluripotency with their nanoscale dimensions, enhancing their clinical potential through prolonged circulation half-life. Despite these promising characteristics, research on their immunological toxicity remains insufficient. This study focuses on the impact of hucMSC-exosomes on the general toxicity and immunopathological indicators. When mice received tail vein injections of 6 × 1010 hucMSC-exosomes particles, we observed no significant changes in body weight, feed intake, blood composition, organ indices, or histopathological findings throughout the 14 days observation period. Similarly, blood levels of immunoglobulins, cytokines, and lymphocyte subpopulations remained stable. The hucMSC-exosomes produced no detectable negative effects on immune organs including the thymus, spleen, and bone marrow. These findings indicate that intravenous administration of 6 × 1010 particles of hucMSC-exosomes appears relatively safe at the murine level. This assessment of safety and immunological impact following intravenous hucMSC-exosomes infusion offers experimental support for potential clinical applications and future analyses in this field.
Collapse
Affiliation(s)
- Cancan Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Xinmei Hu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Yu Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Yu Xiao
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Peng Jiang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Yunjing Lin
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Xiaomin Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Zhengmian Zhang
- Fujian Provincial Sperm Bank, Fujian Maternity and Child Health Hospital, Fuzhou 350001, China
| | - Liang-cheng Li
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zhongquan Qi
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
- Fujian Provincial Sperm Bank, Fujian Maternity and Child Health Hospital, Fuzhou 350001, China
| |
Collapse
|
3
|
Lu W, Yan L, Peng L, Wang X, Tang X, Du J, Lin J, Zou Z, Li L, Ye J, Zhou L. Efficacy and safety of mesenchymal stem cell therapy in acute on chronic liver failure: a systematic review and meta-analysis of randomized controlled clinical trials. Stem Cell Res Ther 2025; 16:197. [PMID: 40254564 PMCID: PMC12010635 DOI: 10.1186/s13287-025-04303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Acute-on-chronic liver failure has become a serious global health burden, which is characterized by an acute deterioration of liver function, rapidly evolving organ failure, and high short-term mortality in patients with chronic liver disease. The pathogenesis includes extensive hepatic necrosis, which is related to intense systemic inflammation and subsequently causes the inflammatory cytokine storm, resulting in portal hypertension, organ dysfunction, and organ failure. Mesenchymal stem cells can function as seed cells to remodel and repair damaged liver tissues, thus showing potential therapeutic alternatives for patients with chronic liver disease. However, standard treatment protocols for mesenchymal stem cells in acute-on-chronic liver failure patients have not been established. METHODS We conducted a detailed search from PubMed/Medline, Web of Science, EMBASE, and Cochrane Library to find randomized controlled trials published before October 23, 2021. We formulated criteria for the literature screening according to the PICOS principle (Population, Intervention, Comparison, Outcome, Study design). Subsequently, the bias risk assessment tool was used to assess the quality of all enrolled studies. Finally, outcome measurements including the model of end-stage liver disease score, albumin, total bilirubin, coagulation function, and aminotransferase were extracted for statistical analysis. RESULTS A total of 7 clinical trials were included. The results of enrolled studies indicated that patients with acute-on-chronic liver failure who received mesenchymal stem cells inoculation showed a decreased MELD score in 4 weeks and 24 weeks, compared with counterparts who received conventional treatment. Reciprocally, mesenchymal stem cells inoculation improved the ALB levels in 4 weeks and 24 weeks. For secondary indicators, mesenchymal stem cells treatment significantly reduced INR levels and ALT levels, compared with the control group. Our results showed no significant differences in the incidence of adverse reactions or serious adverse events monitored in patients after mesenchymal stem cells inoculation. CONCLUSION This meta-analysis indicated that mesenchymal stem cell infusion is effective and safe in the treatment of patients with acute-on-chronic liver failure. Without increasing the incidence of adverse events or serious adverse events, MSC treatment improved liver function including a decrease in MELD score and an increase in ALB levels in patients with acute-on-chronic liver failure. However, large-cohort randomized controlled trials with longer follow-up periods are required to further confirm our conclusions.
Collapse
Affiliation(s)
- Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Longxiang Yan
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Lulu Peng
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
| | - Jing Du
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, Jiangxi, 341000, PR China
| | - Jing Lin
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
- Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, 341000, PR China.
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China.
- Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China.
| |
Collapse
|
4
|
Meriç G, Eren O, Yaba A, Aksu BÇ, Başdelioğlu K, Ateş U. Comparative analysis of the therapeutic effects of mesenchymal stem cells and exosomes on cartilage regeneration: exploring their synergistic potential with hyaluronic acid for treating articular cartilage defects. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2025; 35:154. [PMID: 40210743 DOI: 10.1007/s00590-025-04284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/30/2025] [Indexed: 04/12/2025]
Abstract
PURPOSE Articular cartilage exhibits a low regenerative capacity and limited potential for self-renewal. Recent research has demonstrated that exosomes and mesenchymal stem cells (MSCs) significantly enhance cartilage repair by promoting cellular proliferation, increasing extracellular matrix synthesis, and modulating the immune response. Additionally, hyaluronic acid (HA), a critical component of synovial fluid, plays a key role in facilitating cell migration. This study aims to compare the regenerative effects of Wharton's jelly-derived MSCs, MSC-derived exosomes, and their combination with hyaluronic acid in the treatment of cartilage defects. Additionally, we seek to evaluate the impact of hyaluronic acid when combined with MSCs and exosomes through histological analysis in a rat model. METHODS In this study, full-thickness cartilage defects were created in the trochlear grooves of both distal femurs in 48 adult rats. The knees were randomly assigned to six groups: Group I: Control-saline, Group II: Wharton's jelly mesenchymal stem cells (MSCs), Group III: Wharton's jelly MSC-derived exosomes (Exo), Group IV: Hyaluronic acid (HA), Group V: MSC and HA combination, and Group VI: Exo and HA combination. Each rat received a total of three intra-articular injections at weekly intervals, beginning two weeks post-surgery. Four weeks following the final injection, all rats were euthanized, and their femurs were dissected for analysis. All groups were assessed macroscopically using the International Cartilage Repair Society (ICRS) scoring system, following histological staining with hematoxylin-eosin (HE) and toluidine blue, and immunohistochemical staining with type II collagen antibodies. The quality of the repaired cartilage was subsequently evaluated according to the ICRS histological grading system by an independent, blinded observer. RESULTS Macroscopic evaluations indicated that the ICRS scores of the MSC group (8.2 ± 0.7) were significantly higher (P < 0.05) than those of the control group (4.3 ± 0.7). The cartilage defects in the MSC group showed substantial repair, displaying the most effective cartilage regeneration among all groups. Furthermore, comparison between groups revealed that both the MSC and Exo groups demonstrated a higher rate of defect depth repair, a smaller demarcation border, and a smoother cartilage surface. CONCLUSIONS This study demonstrates that exosomes are as effective as stem cell therapies in promoting cartilage repair, suggesting that exosomes may serve as a viable alternative to cell-based therapies for cartilage damage. However, the addition of hyaluronic acid to stem cells and exosomes showed no significant enhancement in cartilage repair. Our findings highlight a potentially effective therapeutic strategy for the treatment of osteochondral cartilage defects.
Collapse
Affiliation(s)
| | - Olcay Eren
- Fatih Sultan Mehmet (FSM) Research and Training Hospital, Istanbul, Turkey
| | | | | | | | - Utku Ateş
- Biotech4life Cell Tissue and Gene Translational Medicine Institute, Istanbul, Turkey
| |
Collapse
|
5
|
Aldali F, Yang Y, Deng C, Li X, Cao X, Xu J, Li Y, Ding J, Chen H. Induced Pluripotent Stem Cell-Derived Exosomes Promote Peripheral Nerve Regeneration in a Rat Sciatic Nerve Crush Injury Model: A Safety and Efficacy Study. Cells 2025; 14:529. [PMID: 40214483 PMCID: PMC11989054 DOI: 10.3390/cells14070529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Peripheral nerve injury (PNI) remains a significant clinical challenge, often leading to long-term functional impairment. Despite advances in therapies, current repair strategies offer unsatisfactory clinical outcomes. Exosomes derived from induced pluripotent stem cells (iPSC-Exos) have emerged as a promising therapeutic approach in regenerative medicine. This study assesses the efficacy and safety of iPSC-Exos in a rat model of sciatic nerve crush injury. Briefly, iPSCs were generated from peripheral blood mononuclear cells (PBMCs) of healthy donors using Sendai virus vectors and validated for pluripotency. iPSC-Exos were characterized and injected at the injury site. Functional recovery was assessed through gait analysis, grip strength, and pain response. Histological and molecular analyses were used to examine axonal regeneration, myelination, Schwann cell (SC) activation, angiogenesis, and changes in gene expression. iPSC-Exos were efficiently internalized by SC, promoting their proliferation. No adverse effects were observed between groups on body weight, organ histology, or hematological parameters. iPSC-Exos injection significantly enhanced nerve regeneration, muscle preservation, and vascularization, with RNA sequencing revealing activation of PI3K-AKT and focal adhesion pathways. These findings support iPSC-Exos as a safe and effective non-cell-based therapy for PNIs, highlighting their potential for clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Fatima Aldali
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Yujie Yang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Xiangling Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Xiaojian Cao
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Jia Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yajie Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Jianlin Ding
- Department of Gynecology & Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Li L, Liu Y, Wang K, Mo J, Weng Z, Jiang H, Jin C. Stem cell exosomes: new hope and future potential for relieving liver fibrosis. Clin Mol Hepatol 2025; 31:333-349. [PMID: 39510097 PMCID: PMC12016649 DOI: 10.3350/cmh.2024.0854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024] Open
Abstract
Liver fibrosis is a chronic liver injury resulting from factors like viral hepatitis, autoimmune hepatitis, non-alcoholic steatohepatitis, fatty liver disease, and cholestatic liver disease. Liver transplantation is currently the gold standard for treating severe liver diseases. However, it is limited by a shortage of donor organs and the necessity for lifelong immunosuppressive therapy. Mesenchymal stem cells (MSCs) can differentiate into various liver cells and enhance liver function when transplanted into patients due to their differentiation and proliferation capabilities. Therefore, it can be used as an alternative therapy for treating liver diseases, especially for liver cirrhosis, liver failure, and liver transplant complications. However, due to the potential tumorigenic effects of MSCs, researchers are exploring a new approach to treating liver fibrosis using extracellular vesicles (exosomes) secreted by stem cells. Many studies show that exosomes released by stem cells can promote liver injury repair through various pathways, contributing to the treatment of liver fibrosis. In this review, we focus on the molecular mechanisms by which stem cell exosomes affect liver fibrosis through different pathways and their potential therapeutic targets. Additionally, we discuss the advantages of exosome therapy over stem cell therapy and the possible future directions of exosome research, including the prospects for clinical applications and the challenges to be overcome.
Collapse
Affiliation(s)
- Lihua Li
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| | - Yongjie Liu
- Department of Cell biology, School of Medicine, Taizhou University, Taizhou, Zhejiang Province, P. R. China
- Department of Pathophysiology, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning Province, P. R. China
| | - Kunpeng Wang
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| | - Jinggang Mo
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| | - Zhiyong Weng
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| | - Hao Jiang
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| | - Chong Jin
- 1 Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, P. R. China
| |
Collapse
|
7
|
Lai S, Tang D, Feng J. Mitochondrial targeted therapies in MAFLD. Biochem Biophys Res Commun 2025; 753:151498. [PMID: 39986088 DOI: 10.1016/j.bbrc.2025.151498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a clinical-pathological syndrome primarily characterized by excessive accumulation of fat in hepatocytes, independent of alcohol consumption and other well-established hepatotoxic agents. Mitochondrial dysfunction is widely acknowledged as a pivotal factor in the pathogenesis of various diseases, including cardiovascular diseases, cancer, neurodegenerative disorders, and metabolic diseases such as obesity and obesity-associated MAFLD. Mitochondria are dynamic cellular organelles capable of modifying their functions and structures to accommodate the metabolic demands of cells. In the context of MAFLD, the excess production of reactive oxygen species induces oxidative stress, leading to mitochondrial dysfunction, which subsequently promotes metabolic disorders, fat accumulation, and the infiltration of inflammatory cells in liver and adipose tissue. This review aims to systematically analyze the role of mitochondria-targeted therapies in MAFLD, evaluate current therapeutic strategies, and explore future directions in this rapidly evolving field. We specifically focus on the molecular mechanisms underlying mitochondrial dysfunction, emerging therapeutic approaches, and their clinical implications. This is of significant importance for the development of new therapeutic approaches for these metabolic disorders.
Collapse
Affiliation(s)
- Sien Lai
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| | - Dongsheng Tang
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| | - Juan Feng
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| |
Collapse
|
8
|
Ma X, Peng L, Zhu X, Chu T, Yang C, Zhou B, Sun X, Gao T, Zhang M, Chen P, Chen H. Isolation, identification, and challenges of extracellular vesicles: emerging players in clinical applications. Apoptosis 2025; 30:422-445. [PMID: 39522104 DOI: 10.1007/s10495-024-02036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs) serve as critical mediators of intercellular communication, encompassing exosomes, microvesicles, and apoptotic vesicles that play significant roles in diverse physiological and pathological contexts. Numerous studies have demonstrated that EVs derived from mesenchymal stem cells (MSC-EVs) play a pivotal role in facilitating tissue and organ repair, alleviating inflammation and apoptosis, enhancing the proliferation of endogenous stem cells within tissues and organs, and modulating immune function-these functions have been extensively utilized in clinical applications. The precise classification, isolation, and identification of MSC-EVs are essential for their clinical applications. This article provides a comprehensive overview of the biological properties of EVs, emphasizing both their advantages and limitations in isolation and identification methodologies. Additionally, we summarize the protein markers associated with MSC-EVs, emphasizing their significance in the treatment of various diseases. Finally, this article addresses the current challenges and dilemmas in developing clinical applications for MSC-EVs, aiming to offer valuable insights for future research.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Lanwei Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiaohui Zhu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tianqi Chu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Changcheng Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Bohao Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiangwei Sun
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tianya Gao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Mengqi Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ping Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Haiyan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
- East China Institute of Digital Medical Engineering, Shangrao, 334000, People's Republic of China.
| |
Collapse
|
9
|
Hu C, Wang L. Advances in the treatment of liver injury based on mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 2024; 15:474. [PMID: 39696473 DOI: 10.1186/s13287-024-04087-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown a great potential role in treating liver injury. MSCs can promote liver regeneration by differentiating into hepatocytes, and can also secrete exosomes to participate in the repair of liver injury. Increasing evidence has shown that mesenchymal stem cell-derived exosomes (MSC-EXOs) play an important role in treating liver injury. In this review, the biogenesis and function of exosomes and the characteristics of MSC-EXOs were analyzed based on recent research results. MSC-EXOs are significant in liver injuries such as liver fibrosis, liver failure, hepatocellular carcinoma, oxidative stress, and lipid steatosis, and participate in the process of liver regeneration.
Collapse
Affiliation(s)
- Changlong Hu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China.
| |
Collapse
|
10
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
11
|
Li M, Yuan W, Kong X, Wu H, Cai Z, Zhu W, Lu X. Proton pump inhibitors reduce chemotherapeutic hepatotoxicity and enhance hepatic uptake and accumulation of drug-loaded extracellular vesicles. Sci Rep 2024; 14:28163. [PMID: 39548145 PMCID: PMC11568174 DOI: 10.1038/s41598-024-75775-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
Extracellular vesicles (EVs) are involved in the progression of various diseases. Tumor cell-derived EVs (TEVs) are a particular concern, as they can induce fatty liver by promoting liver macrophages to secrete tumor necrosis factor (TNF), thus enhancing the toxicity of chemotherapy. Therefore, reducing pathogenic EV production is a potential strategy for treating EV-related diseases. However, there are currently no effective clinical reagents to obtain this purpose. In addition, EVs are also natural and ideal drug-delivery vehicles. Improving the delivery efficiency of EVs remains a challenge. Proton pump inhibitors (PPIs) have been demonstrated to promote cell uptake of EVs by inducing micropinocytosis. Here, we show that PPIs can accelerate TEV clearance, reduce TEV uptake by liver macrophages and decrease the mRNA expression of TNF in liver macrophages of tumor-bearing mice. Correspondingly, the fatty liver phenotypes are alleviated, and the tolerance to chemotherapy is improved in these mice. Furthermore, our findings indicate that PPIs facilitate the uptake of red blood cell-derived EVs (RBC-EVs) loaded with antisense oligonucleotides of Trim21 (Trim21-ASOs) by the liver macrophages of obesity. Consequently, the inhibition of macrophage inflammatory responses in obese mice mediated by RBC-EVs/Trim21-ASOs was further enhanced by PPIs, resulting in a more profound improvement in obesity and related metabolic disorders. In conclusion, our findings demonstrated that PPIs can effectively clear pathogenic EVs and enhance the delivery efficacy of EV vehicles, making them a highly promising clinical prospect.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Internal Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310058, P.R. China
| | - Weiyi Yuan
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Xianghui Kong
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Hao Wu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, P.R. China
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Weiguo Zhu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China.
| | - Xinliang Lu
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China.
| |
Collapse
|
12
|
Al Saihati HA, Badr OA, Dessouky AA, Mostafa O, Samir Farid A, Aborayah NH, Abdullah Aljasir M, Baioumy B, Mahmoud Taha N, El-Sherbiny M, Hamed Al-Serwi R, Ramadan MM, Salim RF, Shaheen D, E M Ali F, Ebrahim N. Exploring the cytoprotective role of mesenchymal stem Cell-Derived exosomes in chronic liver Fibrosis: Insights into the Nrf2/Keap1/p62 signaling pathway. Int Immunopharmacol 2024; 141:112934. [PMID: 39178516 DOI: 10.1016/j.intimp.2024.112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Hepatic fibrosis is a common pathology present in most chronic liver diseases. Autophagy is a lysosome-mediated intracellular catabolic and recycling process that plays an essential role in maintaining normal hepatic functions. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor responsible for the regulation of cellular anti-oxidative stress response. This study was designed to assess the cytoprotective effect of mesenchymal stem cell-derived exosomes (MSC-exos) on endothelial-mesenchymal transition (EMT) in Carbon Tetrachloride (CCL4) induced liver fibrosis. Rats were treated with 0.1 ml of CCL4 twice weekly for 8 weeks, followed by administration of a single dose of MSC-exos. Rats were then sacrificed after 4 weeks, and liver samples were collected for gene expression analyses, Western blot, histological studies, immunohistochemistry, and transmission electron microscopy. Our results showed that MSC-exos administration decreased collagen deposition, apoptosis, and inflammation. Exosomes modulate the Nrf2/Keap1/p62 pathway, restoring autophagy and Nrf2 levels through modulation of the non-canonical pathway of Nrf2/Keap1/p62. Additionally, MSC-exos regulated miR-153-3p, miR-27a, miR-144 and miRNA-34a expression. In conclusion, the present study shed light on MSC-exos as a cytoprotective agent against EMT and tumorigenesis in chronic liver inflammation.
Collapse
Affiliation(s)
- Hajir A Al Saihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Albatin, Saudi Arabia.
| | - Omnia A Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Egypt.
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt.
| | - Ola Mostafa
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Egypt.
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalyubia, Egypt.
| | - Nashwa H Aborayah
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Egypt, Department of Pharmacology, Mutah University, Mutah 61710, Jordan.
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Bodour Baioumy
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Egypt.
| | | | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Egypt.
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Mahmoud M Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah City, United Arab Emirates; Department of Cardiology, Faculty of Medicine, Mansoura University, Mansoura City, Egypt.
| | - Rabab F Salim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha Universit, Egypt.
| | - Dalia Shaheen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Nesrine Ebrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Stem Cell Unit, Egypt.
| |
Collapse
|
13
|
Wang CC, Hu XM, Long YF, Huang HR, He Y, Xu ZR, Qi ZQ. Treatment of Parkinson's disease model with human umbilical cord mesenchymal stem cell-derived exosomes loaded with BDNF. Life Sci 2024; 356:123014. [PMID: 39182566 DOI: 10.1016/j.lfs.2024.123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
AIMS Parkinson's disease (PD) is a common neurodegenerative disease that has received widespread attention; however, current clinical treatments can only relieve its symptoms, and do not effectively protect dopaminergic neurons. The purpose of the present study was to investigate the therapeutic effects of human umbilical cord mesenchymal stem cell-derived exosomes loaded with brain-derived neurotrophic factor (BDNF-EXO) on PD models and to explore the underlying mechanisms of these effects. MAIN METHODS 6-Hydroxydopamine was used to establish in vivo and in vitro PD models. Western blotting, flow cytometry, and immunofluorescence were used to detect the effects of BDNF-EXO on apoptosis and ferroptosis in SH-SY5Y cells. The in vivo biological distribution of BDNF-EXO was detected using a small animal imaging system, and dopaminergic neuron improvements in brain tissue were detected using western blotting, immunofluorescence, immunohistochemistry, and Nissl and Prussian blue staining. KEY FINDINGS BDNF-EXO effectively suppressed 6-hydroxydopamine-induced apoptosis and ferroptosis in SH-SY5Y cells. Following intravenous administration, BDNF-EXO crossed the blood-brain barrier to reach afflicted brain regions in mice, leading to a notable enhancement in neuronal survival. Furthermore, BDNF-EXO modulated microtubule-associated protein 2 and phosphorylated tau expression, thereby promoting neuronal cytoskeletal stability. Additionally, BDNF-EXO bolstered cellular antioxidant defense mechanisms through the activation of the nuclear factor erythroid 2-related factor 2 signaling pathway, thereby conferring neuroprotection against damage. SIGNIFICANCE The novel drug delivery system, BDNF-EXO, had substantial therapeutic effects in both in vivo and in vitro PD models, and may represent a new treatment strategy for PD.
Collapse
Affiliation(s)
- Can-Can Wang
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Xin-Mei Hu
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Yu-Fei Long
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Hong-Ri Huang
- GuangXi TaiMeiRenSheng Biotechnology Co., LTD., Nanning, Guangxi 530000, China
| | - Ying He
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Ran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
14
|
Wang Y, Wang C, Yang F, Chen Y, Shi Y, Xu R, Zhang Z, Yan Y. USP9X-enriched MSC-sEV inhibits LSEC angiogenesis in MASH mice by downregulating the IκBα/NF-κB/Ang-2 pathway. Pharmacol Res 2024; 209:107471. [PMID: 39427871 DOI: 10.1016/j.phrs.2024.107471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Pathological angiogenesis of liver sinusoidal endothelial cells (LSEC) plays a crucial role in the progression of metabolic dysfunction-associated steatohepatitis (MASH)-induced liver fibrosis. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) have shown promising therapeutic potential against MASH. This study aimed to investigate the impact of MSC-sEV on LSEC angiogenesis and elucidate the underlying molecular mechanisms. The effects of MSC-sEV on LSEC angiogenesis were evaluated in Tumor Necrosis Factor- alpha (TNF-α)-treated LSECs in vitro and in Methionine and Choline Deficient Diet (MCD)-induced MASH mice in vivo. Herein, we found that MSC-sEV effectively suppressed LSEC angiogenesis by targeting the angiogenesis marker Angiogenin 2 (Ang-2) in both TNF-α-treated LSECs and MASH mice. Gene manipulation experiments revealed that the primary mechanism by which MSC-sEV inhibited LSEC angiogenesis was through the modulation of nuclear factor kappa B inhibitor alpha (IκBα) / nuclear factor kappa B (NF-κB) / Ang-2 pathway. Additionally, mass spectrometry and co-immunoprecipitation (Co-IP) data suggested that MSC-sEV delivered the ubiquitin specific peptidase 9 X-linked (USP9X) protein to LSECs, leading to enhanced IκBα deubiquitination and NF-κB in activation, ultimately resulting in the inhibition of Ang-2-mediated LSEC angiogenesis. Knockdown of USP9X attenuated the regulatory effects of MSC-sEV on Ang-2 expression, LSEC angiogenesis, and the progression of MASH. In conclusion, our findings indicate that USP9X delivered via MSC-sEV can suppress LSEC angiogenesis and alleviate MASH-induced liver fibrosis through the IκBα/NF-κB/Ang-2 signaling pathway.
Collapse
Affiliation(s)
- Yanjin Wang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Chen Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yifei Chen
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yujie Shi
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ruizi Xu
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhuan Zhang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou 213017, China; Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou 213017, China.
| |
Collapse
|
15
|
Dong J, Luo Y, Gao Y. Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles in Liver Injury. Biomedicines 2024; 12:2489. [PMID: 39595055 PMCID: PMC11591663 DOI: 10.3390/biomedicines12112489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Liver injury caused by various factors significantly impacts human health. Stem cell transplantation has potential for enhancing liver functionality, but safety concerns such as immune rejection, tumorigenesis, and the formation of emboli in the lungs remain. Recent studies have shown that stem cells primarily exert their effects through the secretion of extracellular vesicles (EVs). EVs have been shown to play crucial roles in reducing inflammation, preventing cell death, and promoting liver cell proliferation. Additionally, they can function as carriers to deliver targeted drugs to the liver, thereby exerting specific physiological effects. EVs possess several advantages, including structural stability, low immunogenicity, minimal tumorigenicity targeting capabilities, and convenient collection. Consequently, EVs have garnered significant attention from researchers and are expected to become alternative therapeutic agents to stem cell therapy. This article provides a comprehensive review of the current research progress in the use of stem cell-derived EVs in the treatment of liver injury.
Collapse
Affiliation(s)
- Jingjing Dong
- School of Medicine, Nankai University, Tianjin 300071, China;
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China;
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China;
| |
Collapse
|
16
|
Abid AI, Conzatti G, Toti F, Anton N, Vandamme T. Mesenchymal stem cell-derived exosomes as cell free nanotherapeutics and nanocarriers. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 61:102769. [PMID: 38914247 DOI: 10.1016/j.nano.2024.102769] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Many strategies for regenerating the damaged tissues or degenerating cells are employed in regenerative medicine. Stem cell technology is a modern strategy of the recent approaches, particularly the use of mesenchymal stem cells (MCSs). The ability of MSCs to differentiate as well as their characteristic behaviour as paracrine effector has established them as key elements in tissue repair. Recently, extracellular vesicles (EVs) shed by MSCs have emerged as a promising cell free therapy. This comprehensive review encompasses MSCs-derived exosomes and their therapeutic potential as nanotherapeutics. We also discuss their potency as drug delivery nano-carriers in comparison with liposomes. A better knowledge of EVs behaviour in vivo and of their mechanism of action are key to determine parameters of an optimal formulation in pilot studies and to establish industrial processes.
Collapse
Affiliation(s)
- Ali Imran Abid
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France
| | - Guillaume Conzatti
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France.
| | - Florence Toti
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Nicolas Anton
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Thierry Vandamme
- UMR 1260, Regenerative Nanomedicine (RNM), INSERM (French National Institute of Health and Medical Research), University of Strasbourg, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France.
| |
Collapse
|
17
|
Puspita R, Jusuf AA, Antarianto RD, Sianipar IR. A systematic review of the anti-inflammatory and anti-fibrotic potential of human umbilical cord mesenchymal stem cells-derived exosomes in experimental models of liver regeneration. Mol Biol Rep 2024; 51:999. [PMID: 39302506 DOI: 10.1007/s11033-024-09929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Chronic liver injuries and their complications are leading causes of death, especially in developing countries (Sharma and Nagalli in Sex/Gender-Specific Medicine in the Gastrointestinal Diseases, StatPearls Publishing, 2023). The available and effective treatment plans are limited, implicating the need for innovative treatment approaches (Tsuchiya et al. in Inflamm Regener, 2019;Sharma and Nagalli in Sex/Gender-Specific Medicine in the Gastrointestinal Diseases, StatPearls Publishing, 2023;Younossi et al. in Clin Gastroenterol Hepatol 21:1978-1991, 2023;). This paper aims to summarize the effects and mechanisms of hUC-MSC-exo on liver injuries and its complications; it also suggests future directions for future research. The outcomes of interest are the morphology and histology of the liver, pathology score, liver function enzyme, glucose and lipid metabolism, and the effect hUC-MSC-exo had on gene regulation regarding liver diseases. A comprehensive review of nineteen studies was conducted to assess the effectiveness of the implementation of the hUC-MSC-Exo, instilling confidence in the validity of the findings. Regarding the morphology and histology of the liver and pathology score, hUC-MSC-exo treatment resulted in improved liver morphology post-treatment, as indicated by the reduction in pathology scores. However, these observed improvements in the liver surface are not directly attributed to the hUC-MSC-Exo itself but to the overall healing processes stimulated by the treatment. In physiological outcomes, hUC-MSC-exo also improves glucose and lipid metabolism, especially in diet-induced liver injury and its complications. In gene regulation, one interesting gene in this intervention is the fat mass and obesity-associated (FTO), in which hUC-MSC-exo combined with miRNAs can suppress FTO. HUC-MSC-Exo can improve by utilizing several possible pathways, targeting pinpoints in the pathogenesis of liver disease or glucose and lipid metabolism. This study presents hUC-MSC-exo better in all outcomes of interest compared to the control or sham group. Further specification of indications of the hUC-MSC-exo method may be beneficial and essential to be analyzed in future reviews to better understand the effectiveness of each hUC-MSC-exo dose, duration, and medium.
Collapse
Affiliation(s)
- Ratna Puspita
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Biochemistry, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Ahmad Aulia Jusuf
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | | | | |
Collapse
|
18
|
Torabi S, Zarrabi M, Shekari F, Poorkazem H, Lotfinia M, Bencina S, Gramignoli R, Hassan M, Najimi M, Vosough M. Wharton's Jelly mesenchymal stem cell-derived extracellular vesicles induce liver fibrosis-resolving phenotype in alternatively activated macrophages. J Cell Mol Med 2024; 28:e18507. [PMID: 39288445 PMCID: PMC11407755 DOI: 10.1111/jcmm.18507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 09/19/2024] Open
Abstract
The potential of extracellular vesicles (EVs) isolated from mesenchymal stromal cells in guiding macrophages toward anti-inflammatory immunophenotypes, has been reported in several studies. In our study, we provided experimental evidence of a distinctive effect played by Wharton Jelly mesenchymal stromal cell-derived EVs (WJ-EVs) on human macrophages. We particularly analyzed their anti-inflammatory effects on macrophages by evaluating their interactions with stellate cells, and their protective role in liver fibrosis. A three-step gradient method was used to isolate monocytes from umbilical cord blood (UCB). Two subpopulations of WJ-EVs were isolated by high-speed (20,000 g) and differential ultracentrifugation (110,000 g). Further to their characterization, they were designated as EV20K and EV110K and incubated at different concentrations with UCB-derived monocytes for 7 days. Their anti-fibrotic effect was assessed by studying the differentiation and functional levels of generated macrophages and their potential to modulate the survival and activity of LX2 stellate cells. The EV20K triggers the polarization of UCB-derived monocytes towards a peculiar M2-like functional phenotype more effectively than the M-CSF positive control. The EV20K treated macrophages were characterized by a higher expression of scavenger receptors, increased phagocytic capacity and production level of interleukin-10 and transforming growth factor-β. Conditioned medium from those polarized macrophages attenuated the proliferation, contractility and activation of LX2 stellate cells. Our data show that EV20K derived from WJ-MSCs induces activated macrophages to suppress immune responses and potentially play a protective role in the pathogenesis of liver fibrosis by directly inhibiting HSC's activation.
Collapse
Affiliation(s)
- Shukoofeh Torabi
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in MedicineMazandaran University of Medical SciencesSariIran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Hedie Poorkazem
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Majid Lotfinia
- Physiology Research CenterKashan University of Medical SciencesKashanIran
| | - Stefan Bencina
- Department of Laboratory Medicine, Division of PathologyKarolinska InstitutetStockholmSweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of PathologyKarolinska InstitutetStockholmSweden
- UOSD Cell FactoryIRCCS Istituto Giannina GasliniGenoaItaly
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine and Karolinska University HospitalKarolinska InstituteStockholmSweden
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell TherapyInstitute of Experimental and Clinical Research (IREC), UCLouvainBrusselsBelgium
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Experimental Cancer Medicine, Institution for Laboratory Medicine and Karolinska University HospitalKarolinska InstituteStockholmSweden
| |
Collapse
|
19
|
Chiabotto G, Semnani A, Ceccotti E, Guenza M, Camussi G, Bruno S. Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Reversing Hepatic Fibrosis in 3D Liver Spheroids. Biomedicines 2024; 12:1849. [PMID: 39200313 PMCID: PMC11351945 DOI: 10.3390/biomedicines12081849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Hepatic fibrosis, arising from prolonged liver injury, entails the activation of hepatic stellate cells (HSCs) into myofibroblast-like cells expressing alpha-smooth muscle actin (α-SMA), thereby driving extracellular matrix deposition and fibrosis progression. Strategies targeting activated HSC reversal and hepatocyte regeneration show promise for fibrosis management. Previous studies suggest that extracellular vesicles (EVs) from mesenchymal stromal cells (MSCs) can suppress HSC activation, but ensuring EV purity is essential for clinical use. This study investigated the effects of MSC-derived EVs cultured in chemically defined conditions on liver spheroids and activated HSCs. Umbilical cord- and bone marrow-derived MSCs were expanded in chemically defined media, and EVs were isolated using filtration and differential ultracentrifugation. The impact of MSC-EVs was evaluated on liver spheroids generated in Sphericalplate 5D™ and on human HSCs, both activated by transforming growth factor beta 1 (TGF-β1). MSC-EVs effectively reduced the expression of profibrotic markers in liver spheroids and activated HSCs induced by TGF-β1 stimulation. These results highlight the potential of MSC-EVs collected under chemically defined conditions to mitigate the activated phenotype of HSCs and liver spheroids, suggesting MSC-EVs as a promising treatment for hepatic fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefania Bruno
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (G.C.); (A.S.); (E.C.); (G.C.)
| |
Collapse
|
20
|
Din MAU, Wan A, Chu Y, Zhou J, Yan Y, Xu Z. Therapeutic role of extracellular vesicles from human umbilical cord mesenchymal stem cells and their wide therapeutic implications in inflammatory bowel disease and other inflammatory disorder. Front Med (Lausanne) 2024; 11:1406547. [PMID: 39139783 PMCID: PMC11319305 DOI: 10.3389/fmed.2024.1406547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
The chronic immune-mediated inflammatory condition known as inflammatory bowel disease (IBD) significantly affects the gastrointestinal system. While the precise etiology of IBD remains elusive, extensive research suggests that a range of pathophysiological pathways and immunopathological mechanisms may significantly contribute as potential factors. Mesenchymal stem cells (MSCs) have shown significant potential in the development of novel therapeutic approaches for various medical conditions. However, some MSCs have been found to exhibit tumorigenic characteristics, which limit their potential for medical treatments. The extracellular vesicles (EVs), paracrine factors play a crucial role in the therapeutic benefits conferred by MSCs. The EVs consist of proteins, microRNAs, and lipids, and are instrumental in facilitating intercellular communication. Due to the ease of maintenance, and decreased immunogenicity, tumorigenicity the EVs have become a new and exciting option for whole cell treatment. This review comprehensively assesses recent preclinical research on human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs as a potential IBD therapy. It comprehensively addresses key aspects of various conditions, including diabetes, cancer, dermal injuries, neurological disorders, cardiovascular issues, liver and kidney diseases, and bone-related afflictions.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, China
| | | | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Zhiliang Xu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| |
Collapse
|
21
|
Huang T, Zhang C, Shang Z, Shuai Q, Nie L, Ren J, Hou S, Xie J. Bone mesenchymal stem cells improve cholestatic liver fibrosis by targeting ULK1 to regulate autophagy through PI3K/AKT/mTOR pathway. Stem Cells Transl Med 2024; 13:648-660. [PMID: 38736295 PMCID: PMC11227972 DOI: 10.1093/stcltm/szae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/10/2024] [Indexed: 05/14/2024] Open
Abstract
Cholestatic liver disease (CLD) is a severe disease, which can progress to liver cirrhosis, even liver cancer. Hepatic stellate cells (HSCs) activation plays a crucial role in CLD development. Bone mesenchymal stem cells (BMSCs) treatment was demonstrated to be beneficial in liver diseases. However, the therapeutic effect and mechanism of BMSCs on CLD are poorly known. In the present study, we investigated the therapeutic effects and underlying mechanisms of BMSCs transplantation in mouse models of bile duct ligation-induced cholestatic liver fibrosis (CLF). The results revealed that BMSCs significantly improved liver function and reduced the formation of fibrosis after portal vein transplantation. Mechanistically, after coculturing BMSCs and HSCs, we identified that BMSCs alleviated starvation-induced HSCs activation. Further, BMSCs inhibited HSCs activation by decreasing autophagy, and PI3K/AKT/mTOR pathway was involved in the regulation. More importantly, ULK1 is identified as the main autophagy-related gene regulated by BMSCs in HSCs autophagy. Overexpression of ULK1 reversed the suppression of HSCs autophagy by BMSCs. Collectively, our results provide a theoretical basis for BMSCs targeting ULK1 to attenuate HSCs autophagy and activation and suggest that BMSCs or ULK1 may be an alternative therapeutic approach/target for the treatment of CLF.
Collapse
Affiliation(s)
- Tingjuan Huang
- Key Laboratory of Birth Defect and Cell Regeneration, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001 Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| | - Chunhong Zhang
- Key Laboratory of Birth Defect and Cell Regeneration, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| | - Ziyi Shang
- Key Laboratory of Birth Defect and Cell Regeneration, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| | - Qizhi Shuai
- Key Laboratory of Birth Defect and Cell Regeneration, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001 Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| | - Lina Nie
- Key Laboratory of Birth Defect and Cell Regeneration, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| | - Junjie Ren
- Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| | - Shulin Hou
- Key Laboratory of Birth Defect and Cell Regeneration, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001 Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| | - Jun Xie
- Key Laboratory of Birth Defect and Cell Regeneration, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001 Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001 Shanxi, China
| |
Collapse
|
22
|
Mahmoudi A, Meidany P, Almahmeed W, Jamialahmadi T, Sahebkar A. Stem Cell Therapy as a Potential Treatment of Non-Alcoholic Steatohepatitis-Related End-Stage Liver Disease: A Narrative Review. CURRENT STEM CELL REPORTS 2024; 10:85-107. [DOI: 10.1007/s40778-024-00241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 01/04/2025]
|
23
|
Che Shaffi S, Hairuddin ON, Mansor SF, Syafiq TMF, Yahaya BH. Unlocking the Potential of Extracellular Vesicles as the Next Generation Therapy: Challenges and Opportunities. Tissue Eng Regen Med 2024; 21:513-527. [PMID: 38598059 PMCID: PMC11087396 DOI: 10.1007/s13770-024-00634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have undergone extensive investigation for their potential therapeutic applications, primarily attributed to their paracrine activity. Recently, researchers have been exploring the therapeutic potential of extracellular vesicles (EVs) released by MSCs. METHODS MEDLINE/PubMed and Google scholar databases were used for the selection of literature. The keywords used were mesenchymal stem cells, extracellular vesicles, clinical application of EVs and challenges EVs production. RESULTS These EVs have demonstrated robust capabilities in transporting intracellular cargo, playing a critical role in facilitating cell-to-cell communication by carrying functional molecules, including proteins, RNA species, DNAs, and lipids. Utilizing EVs as an alternative to stem cells offers several benefits, such as improved safety, reduced immunogenicity, and the ability to traverse biological barriers. Consequently, EVs have emerged as an increasingly attractive option for clinical use. CONCLUSION From this perspective, this review delves into the advantages and challenges associated with employing MSC-EVs in clinical settings, with a specific focus on their potential in treating conditions like lung diseases, cancer, and autoimmune disorders.
Collapse
Affiliation(s)
- Syahidatulamali Che Shaffi
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia
| | - Omar Nafiis Hairuddin
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia
| | - Siti Farizan Mansor
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia
- Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Tengku Muhamad Faris Syafiq
- IIUM Molecular and Cellular Biology Research, Department of Basic Medical Sciences, Kulliyyah of Nursing, International Islamic University Malaysia, 25100, Kuantan, Pahang, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
24
|
Hu XM, Wang CC, Xiao Y, Liu Y, Huang HR, Jiang P, Wang YK, Lin YJ, Li LC, Qi ZQ. Non-Clinical Safety Evaluation of Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells in Cynomolgus Monkeys. Int J Nanomedicine 2024; 19:4923-4939. [PMID: 38828201 PMCID: PMC11143447 DOI: 10.2147/ijn.s454438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose In recent years, exosomes have been proved to be used to treat many diseases. However, due to the lack of uniform quality control standards for exosomes, the safety of exosomes is still a problem to be solved, especially now more and more exosomes are used in clinical trials, and its non-clinical safety evaluation is particularly important. However, there is no safety evaluation standard for exosomes at present. Therefore, this study will refer to the evaluation criteria of therapeutic biological products, adopt non-human primates to evaluate the non-clinical safety of human umbilical cord mesenchymal stem cell exosomes from the general pharmacology and immunotoxicity, aiming at establishing a safety evaluation system of exosomes and providing reference for the clinical application of exosomes in the future. Methods 3.85 × 1012 exosomes derived from human umbilical cord mesenchymal stem cells were injected into cynomolgus monkeys intravenously. The changes of general clinical conditions, hematology, immunoglobulin, Th1/Th2 cytokines, T lymphocytes and B lymphocytes, and immune organs were observed before and within 14 days after injection. Results The results showed that exosomes did not have obvious pathological effects on the general clinical conditions, blood, coagulation function, organ coefficient, immunoglobulin, Th1/Th2 cytokines, lymphocytes, major organs, and major immune organs (spleen, thymus, bone marrow) of cynomolgus monkeys. However, the number of granulocyte-macrophage colonies in exosomes group was significantly higher than that in control group. Conclusion To sum up, the general pharmacological results and immunotoxicity results showed that the injection of 3.85 × 1012 exosomes may have no obvious adverse reactions to cynomolgus monkeys. This dose of exosomes is relatively safe for treatment, which provides basis research for non-clinical safety evaluation of exosomes and provides reliable research basis for future clinical application of exosomes.
Collapse
Affiliation(s)
- Xin-Mei Hu
- Medical College, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Can-Can Wang
- Medical College, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yu Xiao
- Medical College, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Hong-Ri Huang
- Department of Research and Development, Guangxi Taimei Rensheng Biotechnology Co., Ltd, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Peng Jiang
- Medical College, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ying-Kai Wang
- Medical College, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yun-Jin Lin
- Medical College, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Liang-Cheng Li
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian Province, People’s Republic of China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
25
|
Wang Y, Chen Y, Yang F, Yu X, Chu Y, Zhou J, Yan Y, Xi J. MiR-4465-modified mesenchymal stem cell-derived small extracellular vesicles inhibit liver fibrosis development via targeting LOXL2 expression. J Zhejiang Univ Sci B 2024; 25:594-604. [PMID: 39011679 PMCID: PMC11254680 DOI: 10.1631/jzus.b2300305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/29/2023] [Indexed: 05/23/2024]
Abstract
Liver fibrosis is a significant health burden, marked by the consistent deposition of collagen. Unfortunately, the currently available treatment approaches for this condition are far from optimal. Lysyl oxidase-like protein 2 (LOXL2) secreted by hepatic stellate cells (HSCs) is a crucial player in the cross-linking of matrix collagen and is a significant target for treating liver fibrosis. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) have been proposed as a potential treatment option for chronic liver disorders. Previous studies have found that MSC-sEV can be used for microRNA delivery into target cells or tissues. It is currently unclear whether microRNA-4465 (miR-4465) can target LOXL2 and inhibit HSC activation. Additionally, it is uncertain whether MSC-sEV can be utilized as a gene therapy vector to carry miR-4465 and effectively inhibit the progression of liver fibrosis. This study explored the effect of miR-4465-modified MSC-sEV (MSC-sEVmiR-4465) on LOXL2 expression and liver fibrosis development. The results showed that miR-4465 can bind specifically to the promoter of the LOXL2 gene in HSC. Moreover, MSC-sEVmiR-4465 inhibited HSC activation and collagen expression by downregulating LOXL2 expression in vitro. MSC-sEVmiR-4465 injection could reduce HSC activation and collagen deposition in the CCl4-induced mouse model. MSC-sEVmiR-4465 mediating via LOXL2 also hindered the migration and invasion of HepG2 cells. In conclusion, we found that MSC-sEV can deliver miR-4465 into HSC to alleviate liver fibrosis via altering LOXL2, which might provide a promising therapeutic strategy for liver diseases.
Collapse
Affiliation(s)
- Yanjin Wang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yifei Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolong Yu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China. ,
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China. ,
| | - Jianbo Xi
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China.
| |
Collapse
|
26
|
Wang R, Shi Y, Lv Y, Xie C, Hu Y. The novel insights of epithelial-derived exosomes in various fibrotic diseases. Biomed Pharmacother 2024; 174:116591. [PMID: 38631144 DOI: 10.1016/j.biopha.2024.116591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
The characteristics of fibrosis include the abnormal accumulation of extracellular matrix proteins and abnormal tissue repair caused by injury, infection, and inflammation, leading to a significant increase in organ failure and mortality. Effective and precise treatments are urgently needed to halt and reverse the progression of fibrotic diseases. Exosomes are tiny vesicles derived from endosomes, spanning from 40 to 160 nanometers in diameter, which are expelled into the extracellular matrix environment by various cell types. They play a crucial role in facilitating cell-to-cell communication by transporting a variety of cargoes, including proteins, RNA, and DNA. Epithelial cells serve as the primary barrier against diverse external stimuli that precipitate fibrotic diseases. Numerous research suggests that exosomes from epithelial cells have a significant impact on several fibrotic diseases. An in-depth comprehension of the cellular and molecular mechanisms of epithelial cell-derived exosomes in fibrosis holds promise for advancing the exploration of novel diagnostic biomarkers and clinical drug targets. In this review, we expand upon the pathogenic mechanisms of epithelium-derived exosomes and highlight their role in the fibrotic process by inducing inflammation and activating fibroblasts. In addition, we are particularly interested in the bioactive molecules carried by epithelial-derived exosomes and their potential value in the diagnosis and treatment of fibrosis and delineate the clinical utility of exosomes as an emerging therapeutic modality, highlighting their potential application in addressing various medical conditions.
Collapse
Affiliation(s)
- Rifu Wang
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yuxin Shi
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yonglin Lv
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Changqing Xie
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China.
| | - Yanjia Hu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
27
|
Wu J, Li Z, Wu Y, Cui N. The crosstalk between exosomes and ferroptosis: a review. Cell Death Discov 2024; 10:170. [PMID: 38594265 PMCID: PMC11004161 DOI: 10.1038/s41420-024-01938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Exosomes are a subtype of extracellular vesicles composed of bioactive molecules, including nucleic acids, proteins, and lipids. Exosomes are generated by the fusion of intracellular multivesicular bodies (MVBs) with the cell membrane and subsequently released into the extracellular space to participate in intercellular communication and diverse biological processes within target cells. As a crucial mediator, exosomes have been implicated in regulating ferroptosis-an iron-dependent programmed cell death characterized by lipid peroxide accumulation induced by reactive oxygen species. The involvement of exosomes in iron, lipid, and amino acid metabolism contributes to their regulatory role in specific mechanisms underlying how exosomes modulate ferroptosis, which remains incompletely understood, and some related studies are still preliminary. Therefore, targeting the regulation of ferroptosis by exosomes holds promise for future clinical treatment strategies across various diseases. This review aims to provide insights into the pathophysiology and mechanisms governing the interaction between exosomes and ferroptosis and their implications in disease development and treatment to serve as a reference for further research.
Collapse
Affiliation(s)
- Jiao Wu
- Oncology Department of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyu Li
- Department of Internal Medicine, Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yu Wu
- Oncology Department of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ning Cui
- Oncology Department of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Raghav A, Jeong GB. Nanoquercetin and Extracellular Vesicles as Potential Anticancer Therapeutics in Hepatocellular Carcinoma. Cells 2024; 13:638. [PMID: 38607076 PMCID: PMC11011524 DOI: 10.3390/cells13070638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Despite world-class sophisticated technologies, robotics, artificial intelligence, and machine learning approaches, cancer-associated mortalities and morbidities have shown continuous increments posing a healthcare burden. Drug-based interventions were associated with systemic toxicities and several limitations. Natural bioactive compounds derived nanoformulations, especially nanoquercetin (nQ), are alternative options to overcome drug-associated limitations. Moreover, the EVs-based cargo targeted delivery of nQ can have enormous potential in treating hepatocellular carcinoma (HCC). EVs-based nQ delivery synergistically regulates and dysregulates several pathways, including NF-κB, p53, JAK/STAT, MAPK, Wnt/β-catenin, and PI3K/AKT, along with PBX3/ERK1/2/CDK2, and miRNAs intonation. Furthermore, discoveries on possible checkpoints of anticancer signaling pathways were studied, which might lead to the development of modified EVs infused with nQ for the development of innovative treatments for HCC. In this work, we abridged the control of such signaling systems using a synergetic strategy with EVs and nQ. The governing roles of extracellular vesicles controlling the expression of miRNAs were investigated, particularly in relation to HCC.
Collapse
Affiliation(s)
| | - Goo Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
29
|
Liu Y, Jiang P, Qu Y, Liu C, Zhang D, Xu B, Zhang Q. Exosomes and exosomal miRNAs: A new avenue for the future treatment of rheumatoid arthritis. Heliyon 2024; 10:e28127. [PMID: 38533025 PMCID: PMC10963384 DOI: 10.1016/j.heliyon.2024.e28127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Rheumatoid arthritis is a chronic systemic autoimmune disease that involves mainly synovitis and joint injury and is one of the main causes of disability. The pathogenesis of rheumatoid arthritis is complicated, and the treatment cycle is long. The traditional methods of inhibiting inflammation and immunosuppression are no longer sufficient for treatment of the disease, so there is an urgent need to seek new treatments. The exocrine microenvironment is a kind of microvesicle with a lipid bilayer membrane structure that can be secreted by most cells in the body. This structure contains cell-specific proteins, lipids and nucleic acids that can transmit this information from one cell to another. To achieve cell-to-cell communication. Exocrine microRNAs can be contained in exocrine cells and can be selectively transferred to target receptor cells via exocrine signaling, thus regulating the physiological function of target cells. This article focuses on the pathological changes that occur during the development of rheumatoid arthritis and the biological regulation of exocrine and exocrine microRNAs in rheumatoid joints. Research on the roles of exocrine and exocrine microRNAs in regulating the inflammatory response, cell proliferation/apoptosis, autophagy, effects on fibroblast-like synoviocytes and immune regulation in rheumatoid arthritis was reviewed. In addition, the challenges faced by this new treatment are discussed.
Collapse
Affiliation(s)
- Yuan Liu
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Ping Jiang
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
30
|
Lou K, Luo H, Jiang X, Feng S. Applications of emerging extracellular vesicles technologies in the treatment of inflammatory diseases. Front Immunol 2024; 15:1364401. [PMID: 38545101 PMCID: PMC10965547 DOI: 10.3389/fimmu.2024.1364401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024] Open
Abstract
The emerging extracellular vesicles technologies is an advanced therapeutic approach showing promising potential for addressing inflammatory diseases. These techniques have been proven to have positive effects on immune modulation and anti-inflammatory responses. With these advancements, a comprehensive review and update on the role of extracellular vesicles in inflammatory diseases have become timely. This review aims to summarize the research progress of extracellular vesicle technologies such as plant-derived extracellular vesicles, milk-derived extracellular vesicles, mesenchymal stem cell-derived extracellular vesicles, macrophage-derived extracellular vesicles, etc., in the treatment of inflammatory diseases. It elucidates their potential significance in regulating inflammation, promoting tissue repair, and treating diseases. The goal is to provide insights for future research in this field, fostering the application and development of extracellular vesicle technology in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kecheng Lou
- Department of Urology, Lanxi People’s Hospital, Jinhua, Zhejiang, China
| | - Hui Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinghua Jiang
- Department of Urology, Jingdezhen Second People’s Hospital, Jingdezhen, Jiangxi, China
| | - Shangzhi Feng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
31
|
Pan X, Li Y, Huang P, Staecker H, He M. Extracellular vesicles for developing targeted hearing loss therapy. J Control Release 2024; 366:460-478. [PMID: 38182057 DOI: 10.1016/j.jconrel.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Substantial efforts have been made for local administration of small molecules or biologics in treating hearing loss diseases caused by either trauma, genetic mutations, or drug ototoxicity. Recently, extracellular vesicles (EVs) naturally secreted from cells have drawn increasing attention on attenuating hearing impairment from both preclinical studies and clinical studies. Highly emerging field utilizing diverse bioengineering technologies for developing EVs as the bioderived therapeutic materials, along with artificial intelligence (AI)-based targeting toolkits, shed the light on the unique properties of EVs specific to inner ear delivery. This review will illuminate such exciting research field from fundamentals of hearing protective functions of EVs to biotechnology advancement and potential clinical translation of functionalized EVs. Specifically, the advancements in assessing targeting ligands using AI algorithms are systematically discussed. The overall translational potential of EVs is reviewed in the context of auditory sensing system for developing next generation gene therapy.
Collapse
Affiliation(s)
- Xiaoshu Pan
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Peixin Huang
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States.
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.
| |
Collapse
|
32
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
33
|
Kao YH, Chang CY, Lin YC, Chen PH, Lee PH, Chang HR, Chang WY, Chang YC, Wun SF, Sun CK. Mesenchymal Stem Cell-Derived Exosomes Mitigate Acute Murine Liver Injury via Ets-1 and Heme Oxygenase-1 Up-regulation. Curr Stem Cell Res Ther 2024; 19:906-918. [PMID: 37723631 DOI: 10.2174/1574888x19666230918102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs)-derived exosomes have been previously demonstrated to promote tissue regeneration in various animal disease models. This study investigated the protective effect of exosome treatment in carbon tetrachloride (CCl4)-induced acute liver injury and delineated possible underlying mechanism. METHODS Exosomes collected from conditioned media of previously characterized human umbilical cord-derived MSCs were intravenously administered into male CD-1 mice with CCl4-induced acute liver injury. Biochemical, histological and molecular parameters were used to evaluate the severity of liver injury. A rat hepatocyte cell line, Clone-9, was used to validate the molecular changes by exosome treatment. RESULTS Exosome treatment significantly suppressed plasma levels of AST, ALT, and pro-inflammatory cytokines, including IL-6 and TNF-α, in the mice with CCl4-induced acute liver injury. Histological morphometry revealed a significant reduction in the necropoptic area in the injured livers following exosome therapy. Consistently, western blot analysis indicated marked elevations in hepatic expression of PCNA, c-Met, Ets-1, and HO-1 proteins after exosome treatment. Besides, the phosphorylation level of signaling mediator JNK was significantly increased, and that of p38 was restored by exosome therapy. Immunohistochemistry double staining confirmed nuclear Ets-1 expression and cytoplasmic localization of c-Met and HO-1 proteins. In vitro studies demonstrated that exosome treatment increased the proliferation of Clone-9 hepatocytes and protected them from CCl4-induced cytotoxicity. Kinase inhibition experiment indicated that the exosome-driven hepatoprotection might be mediated through the JNK pathway. CONCLUSION Exosome therapy activates the JNK signaling activation pathway as well as up-regulates Ets-1 and HO-1 expression, thereby protecting hepatocytes against hepatotoxin-induced cell death.
Collapse
Affiliation(s)
- Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Chih-Yang Chang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Yu-Chun Lin
- Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, 52445, Taiwan
| | - Po-Han Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Po-Huang Lee
- Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, 52445, Taiwan
- Committee for Integration and Promotion of Advanced Medicine and Biotechnology, E-Da Healthcare Group, Kaohsiung, 82445, Taiwan
| | - Huoy-Rou Chang
- Departments of Biomedical Engineering, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Wen-Yu Chang
- Department of Dermatology, EDa Cancer Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- The School of Medicine for International Students, College of Medicine, IShou University, Kaohsiung, 82445, Taiwan
| | - Yo-Chen Chang
- Department of Ophthalmology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shen-Fa Wun
- Departments of Biomedical Engineering, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Cheuk-Kwan Sun
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- The School of Medicine for International Students, College of Medicine, IShou University, Kaohsiung, 82445, Taiwan
| |
Collapse
|
34
|
Xie Q, Gu J. Therapeutic and Safety Promise of Mesenchymal Stem Cells for Liver Failure: From Preclinical Experiment to Clinical Application. Curr Stem Cell Res Ther 2024; 19:1351-1368. [PMID: 37807649 DOI: 10.2174/011574888x260690230921174343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 10/10/2023]
Abstract
Liver failure (LF) is serious liver damage caused by multiple factors, resulting in severe impairment or decompensation of liver synthesis, detoxification, metabolism, and biotransformation. The general prognosis of LF is poor with high mortality in non-transplant patients. The clinical treatments for LF are mainly internal medicine comprehensive care, artificial liver support system, and liver transplantation. However, none of the above treatment strategies can solve the problems of all liver failure patients and has its own limitations. Mesenchymal stem cells (MSCs) are a kind of stem cells with multidirectional differentiation potential and paracrine function, which play an important role in immune regulation and tissue regeneration. In recent years, MSCs have shown multiple advantages in the treatment of LF in pre-clinical experiments and clinical trials. In this work, we reviewed the biological characteristics of MSCs, the possible molecular mechanisms of MSCs in the treatment of liver failure, animal experiments, and clinical application, and also discussed the existing problems of MSCs in the treatment of liver failure.
Collapse
Affiliation(s)
- Qiong Xie
- National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| | - Jundong Gu
- National Engineering Research Center of Cell Products, AmCellGene Engineering Co., Ltd, Tianjin, 300457, China
| |
Collapse
|
35
|
Zheng L, Gong H, Zhang J, Guo L, Zhai Z, Xia S, Hu Z, Chang J, Jiang Y, Huang X, Ge J, Zhang B, Yan M. Strategies to improve the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicle (MSC-EV): a promising cell-free therapy for liver disease. Front Bioeng Biotechnol 2023; 11:1322514. [PMID: 38155924 PMCID: PMC10753838 DOI: 10.3389/fbioe.2023.1322514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Liver disease has emerged as a significant worldwide health challenge due to its diverse causative factors and therapeutic complexities. The majority of liver diseases ultimately progress to end-stage liver disease and liver transplantation remains the only effective therapy with the limitations of donor organ shortage, lifelong immunosuppressants and expensive treatment costs. Numerous pre-clinical studies have revealed that extracellular vesicles released by mesenchymal stem cells (MSC-EV) exhibited considerable potential in treating liver diseases. Although natural MSC-EV has many potential advantages, some characteristics of MSC-EV, such as heterogeneity, uneven therapeutic effect, and rapid clearance in vivo constrain its clinical translation. In recent years, researchers have explored plenty of ways to improve the therapeutic efficacy and rotation rate of MSC-EV in the treatment of liver disease. In this review, we summarized current strategies to enhance the therapeutic potency of MSC-EV, mainly including optimization culture conditions in MSC or modifications of MSC-EV, aiming to facilitate the development and clinical application of MSC-EV in treating liver disease.
Collapse
Affiliation(s)
- Lijuan Zheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Jing Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Linna Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Zhuofan Zhai
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Zhiyu Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Jing Chang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yizhu Jiang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinran Huang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jingyi Ge
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| |
Collapse
|
36
|
Gan L, Zheng L, Yao L, Lei L, Huang Y, Zeng Z, Fang N. Exosomes from adipose-derived mesenchymal stem cells improve liver fibrosis by regulating the miR-20a-5p/TGFBR2 axis to affect the p38 MAPK/NF-κB pathway. Cytokine 2023; 172:156386. [PMID: 37852157 DOI: 10.1016/j.cyto.2023.156386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE Human adipose-derived mesenchymal stem cell exosomes (ADSC-Exos) are active constituents for treating liver fibrosis. This paper attempted to preliminarily explain the functional mechanism of ADSC-Exos in liver fibrosis through the p38 MAPK/NF-κB pathway. METHODS The cell models of hepatic fibrosis were established by inducing LX-2 cells with TGF-β1. Mouse models of liver fibrosis were established by treating mice with CCl4. The in vivo and in vitro models of liver fibrosis were treated with ADSC-Exos. ADSCs were identified by flow cytometry/Alizarin red/oil red O/alcian blue staining. ADSC-Exos were identified by transmission electron microscopy, nanoparticle tracking analysis, and Western blot. LX-2 cell proliferation/viability were evaluated by MTT/BrdU assays. Exosomes were tracked in vivo and body weight changes in mice were monitored. Hepatic pathological changes were observed by HE/Masson staining. α-SMA/collagen I levels in liver tissues were assessed by immunohistochemistry. HA/PIIINP concentrations were measured using the magnetic particle chemiluminescence method. Liver function was assessed using an automatic analyzer. miR-20a-5p level was measured by RT-qPCR. The mRNA levels of fibrosis markers were determined by RT-qPCR, and their protein levels and levels of MAPK/NF-κB pathway-related proteins, as well as TGFBR2 protein level were measured by Western blot. The P65 nuclear expression in mouse liver tissues was quantified by immunofluorescence. RESULTS ADSC-Exos suppressed TGF-β1-induced LX-2 cell proliferation and fibrosis and reduced mRNA and protein levels of fibrosis markers in vitro. ADSC-Exos ameliorated liver fibrosis by inhibiting the p38 MAPK/NF-κB pathway activation. ADSC-Exos inhibited activation of the p38 MAPK/NF-κB pathway via regulating the miR-20a-5p/TGFBR2 axis. The in vivo experiment asserted that ADSC-Exos were mainly distributed in the liver, and ADSC-Exos relieved liver fibrosis in mice, which was evidenced by alleviating decreased body weight, reducing collagen and enhancing liver function, and repressed the activation of the p38 MAPK/NF-κB pathway via the miR-20a-5p/TGFBR2 axis. CONCLUSION ADSC-Exos attenuated liver fibrosis by suppressing the activation of the p38 MAPK/NF-κB pathway via the miR-20a-5p/TGFBR2 axis.
Collapse
Affiliation(s)
- Lihong Gan
- Third Clinical Medical College, Nanchang University, Nanchang, China; Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, China
| | - Li Zheng
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, China
| | - Ling Yao
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, China
| | - Ling Lei
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, China
| | - Yaqin Huang
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, China
| | - Zhiping Zeng
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, China
| | - Nian Fang
- Third Clinical Medical College, Nanchang University, Nanchang, China; Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, China.
| |
Collapse
|
37
|
Xiao J, Gong X, Fu Z, Song X, Ma Q, Miao J, Cai R, Yan Z, Wang S, Li Q, Chen Y, Yang L, Bian X, Chen Y. The influence of inflammation on the characteristics of adipose-derived mesenchymal stem cells (ADMSCs) and tissue repair capability in a hepatic injury mouse model. Stem Cell Res Ther 2023; 14:334. [PMID: 37981679 PMCID: PMC10659042 DOI: 10.1186/s13287-023-03532-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are adult stem cells with self-renewal and multi-directional differentiation potential and possess the functions of immunomodulation, regulation of cell growth, and repair of damage. Over recent years, MSCs have been found to regulate the secretion of inflammatory factors and to exert regulatory effects on various lymphocytes in inflammatory states, and on the subsequent repair of tissue damage caused by inflammation. In the present study, we analyzed the effects of tissue inflammation on the characteristics of MSCs. METHODS Human fat derived from the infrapatellar fat pad (IPFP) of knees with differing degrees of inflammation was extracted from specimens derived from total knee arthroplasties. HE and immunohistochemical staining was performed to directly observe the evidence and degree of inflammation in human infrapatellar fat pad tissue in order to classify MSCs cells, by their origin, into highly inflamed and lowly inflamed groups, and to study the effect of tissue inflammation on cell acquisition rates via cellular counting data. Flow cytometry assays were performed to investigate the effect of tissue inflammation on MSC surface marker expression. Trilineage differentiation, including osteogenesis, adipogenesis, and chondrogenesis, was performed to assess the effect of tissue inflammation on the ability of MSCs to undergo directed differentiation. The effect of tissue inflammation on the ability of MSCs to proliferate was investigated via clone formation studies. RNA-sequencing was performed to evaluate the transcriptomes of MSCs derived from different areas of inflammation. The effect of tissue inflammation on tissue repair capacity and safety of MSCs was investigated via a murine model of acute liver injury. RESULTS The results of cell count data indicate that a high degree of tissue inflammation significantly decreases the acquisition rate of MSCs, and the proportion of CD34+ and CD146+ cells. The results of our trilineage differentiation assay show that a higher degree of inflammation decreases osteogenic differentiation and enhances adipogenic and chondrogenic differentiation of MSCs. However, these differences were not statistically significant. Clone formation assays indicate that the degree of tissue inflammation at the MSC source does not significantly affect the proliferative capacity of MSCs. The transcriptomes of MSCs remain relatively stable in fat pad tissues derived from both highly and lowly inflamed samples. The results of acute liver injury investigations in mice indicate that MSCs of high and low inflammatory tissue origin have no significant difference in their tissue repair capability. CONCLUSIONS High tissue inflammation at the source of MSCs reduces the acquisition rate of MSCs and the percentage of CD34+ and CD146+ cells acquisition. However, source tissue inflammation may not significantly affect trilineage differentiation potential and proliferative capacity of MSCs. Also, MSCs obtained from differing source degrees of inflammation retain stable and similar transcriptomic profile and are both safe and efficacious for tissue repair/regeneration without detectable differences.
Collapse
Affiliation(s)
- Jingfang Xiao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zexuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qian Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yaokai Chen
- Biobank and Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, People's Republic of China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China.
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China.
| | - Yemiao Chen
- Biobank and Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, People's Republic of China.
| |
Collapse
|
38
|
Borrello MT, Mann D. Chronic liver diseases: From development to novel pharmacological therapies: IUPHAR Review 37. Br J Pharmacol 2023; 180:2880-2897. [PMID: 35393658 DOI: 10.1111/bph.15853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic liver diseases comprise a broad spectrum of burdensome diseases that still lack effective pharmacological therapies. Our research group focuses on fibrosis, which is a major precursor of liver cirrhosis. Fibrosis consists in a progressive disturbance of liver sinusoidal architecture characterised by connective tissue deposition as a reparative response to tissue injury. Multifactorial events and several types of cells participate in fibrosis initiation and progression, and the process still needs to be completely understood. The development of experimental models of liver fibrosis alongside the identification of critical factors progressing fibrosis to cirrhosis will facilitate the development of more effective therapeutic approaches for such condition. This review provides an overlook of the main process leading to hepatic fibrosis and therapeutic approaches that have emerged from a deep knowledge of the molecular regulation of fibrogenesis in the liver. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Maria Teresa Borrello
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
39
|
Leszczynska A, Stoess C, Sung H, Povero D, Eguchi A, Feldstein A. Extracellular Vesicles as Therapeutic and Diagnostic Tools for Chronic Liver Diseases. Biomedicines 2023; 11:2808. [PMID: 37893181 PMCID: PMC10604241 DOI: 10.3390/biomedicines11102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic liver diseases can lead to fibrotic changes that may progress to the development of cirrhosis, which poses a significant risk for morbidity and increased mortality rates. Metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), and viral hepatitis are prevalent liver diseases that may lead to cirrhosis. The advanced stages of cirrhosis can be further complicated by cancer development or end-stage liver disease and liver failure. Hence, early detection and diagnosis of liver fibrosis is crucial for preventing the progression to cirrhosis and improving patient outcomes. Traditionally, invasive liver biopsy has been considered the gold standard for diagnosing and staging liver fibrosis. In the last decade, research has focused on non-invasive methods, known as liquid biopsies, which involve the identification of disease-specific biomarkers in human fluids, such as blood. Among these alternative approaches, extracellular vesicles (EVs) have emerged as promising diagnostic and therapeutic tools for various diseases, including chronic liver diseases. EVs are released from stressed or damaged cells and can be isolated and quantified. Moreover, EVs facilitate cell-to-cell communication by transporting various cargo, and they have shown the potential to reduce the expression of profibrogenic markers, making them appealing tools for novel anti-fibrotic treatments. This review focuses on the impact of EVs in chronic liver diseases and exploring their potential applications in innovative therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
| | - Christian Stoess
- Department of Pediatrics, University of California, San Diego, CA 92037, USA; (A.L.)
- Department of Surgery, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Hana Sung
- Department of Pediatrics, University of California, San Diego, CA 92037, USA; (A.L.)
| | - Davide Povero
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Akiko Eguchi
- Biobank Center, Mie University Hospital, Tsu 514-8507, Japan;
| | - Ariel Feldstein
- Department of Pediatrics, University of California, San Diego, CA 92037, USA; (A.L.)
| |
Collapse
|
40
|
Kholodenko IV, Kholodenko RV, Yarygin KN. The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. Int J Mol Sci 2023; 24:15212. [PMID: 37894893 PMCID: PMC10607347 DOI: 10.3390/ijms242015212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
41
|
Wang Z, Yao L, Hu X, Yuan M, Chen P, Liu P, Zhang Q, Xiong Z, Dai K, Jiang Y. Advancements in mesenchymal stem cell therapy for liver cirrhosis: Unveiling origins, treatment mechanisms, and current research frontiers. Tissue Cell 2023; 84:102198. [PMID: 37604091 DOI: 10.1016/j.tice.2023.102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Chronic liver disease inevitably progresses to liver cirrhosis, significantly compromising patients' overall survival and quality of life. However, a glimmer of hope emerges with the emergence of mesenchymal stem cells, possessing remarkable abilities for self-renewal, differentiation, and immunomodulation. Leveraging their potential, MSCs have become a focal point in both basic and clinical trials, offering a promising therapeutic avenue to impede fibrosis progression and enhance the life expectancy of individuals battling hepatic cirrhosis. This comprehensive review serves to shed light on the origin of MSCs, the intricate mechanisms underlying cirrhosis treatment, and the cutting-edge advancements in basic and clinical research surrounding MSC-based therapies for liver cirrhosis patients.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Zhiyu Xiong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China.
| |
Collapse
|
42
|
Song Y, Lu Z, Shu W, Xiang Z, Wang Z, Wei X, Xu X. Arouse potential stemness: Intrinsic and acquired stem cell therapeutic strategies for advanced liver diseases. CELL INSIGHT 2023; 2:100115. [PMID: 37719773 PMCID: PMC10502372 DOI: 10.1016/j.cellin.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023]
Abstract
Liver diseases are a major health issue, and prolonged liver injury always progresses. Advanced liver disorders impair liver regeneration. Millions of patients die yearly worldwide, even with the available treatments of liver transplantation and artificial liver support system. With its abundant cell resources and significant differentiative potential, stem cell therapy is a viable treatment for various disorders and offers hope to patients waiting for orthotopic liver transplantation. Considering such plight, stem cell therapeutic strategies deliver hope to the patients. Moreover, we conclude intrinsic and acquired perspectives based on stem cell sources. The properties and therapeutic uses of these stem cells' specific types or sources were then reviewed. Owing to the recent investigations of the above cells, a safe and effective therapy will emerge for advanced liver diseases soon.
Collapse
Affiliation(s)
- Yisu Song
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zhengyang Lu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Wenzhi Shu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University Shanghai, 200040, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hangzhou First People’s Hospital Zhejiang University School of Medicine Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
43
|
Cen Y, Lou G, Qi J, Zheng M, Liu Y. A new perspective on mesenchymal stem cell-based therapy for liver diseases: restoring mitochondrial function. Cell Commun Signal 2023; 21:214. [PMID: 37596671 PMCID: PMC10436412 DOI: 10.1186/s12964-023-01230-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/16/2023] [Indexed: 08/20/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising alternative treatment for liver disease due to their roles in regeneration, fibrosis inhibition, and immunoregulation. Mitochondria are crucial in maintaining hepatocyte integrity and function. Mitochondrial dysfunction, such as impaired synthesis of adenosine triphosphate (ATP), decreased activity of respiratory chain complexes, and altered mitochondrial dynamics, is observed in most liver diseases. Accumulating evidence has substantiated that the therapeutic potential of MSCs is mediated not only through their cell replacement and paracrine effects but also through their regulation of mitochondrial dysfunction in liver disease. Here, we comprehensively review the involvement of mitochondrial dysfunction in the development of liver disease and how MSCs can target mitochondrial dysfunction. We also discuss recent advances in a novel method that modifies MSCs to enhance their functions in liver disease. A full understanding of MSC restoration of mitochondrial function and the underlying mechanisms will provide innovative strategies for clinical applications. Video Abstract.
Collapse
Affiliation(s)
- Yelei Cen
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Guohua Lou
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Jinjin Qi
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| | - Yanning Liu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-17, Hangzhou, 310003, China.
| |
Collapse
|
44
|
Zhang W, Wang T, Xue Y, Zhan B, Lai Z, Huang W, Peng X, Zhou Y. Research progress of extracellular vesicles and exosomes derived from mesenchymal stem cells in the treatment of oxidative stress-related diseases. Front Immunol 2023; 14:1238789. [PMID: 37646039 PMCID: PMC10461809 DOI: 10.3389/fimmu.2023.1238789] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
There is growing evidence that mesenchymal stem cell-derived extracellular vesicles and exosomes can significantly improve the curative effect of oxidative stress-related diseases. Mesenchymal stem cell extracellular vesicles and exosomes (MSC-EVs and MSC-Exos) are rich in bioactive molecules and have many biological regulatory functions. In this review, we describe how MSC-EVs and MSC-Exos reduce the related markers of oxidative stress and inflammation in various systemic diseases, and the molecular mechanism of MSC-EVs and MSC-Exos in treating apoptosis and vascular injury induced by oxidative stress. The results of a large number of experimental studies have shown that both local and systemic administration can effectively inhibit the oxidative stress response in diseases and promote the survival and regeneration of damaged parenchymal cells. The mRNA and miRNAs in MSC-EVs and MSC-Exos are the most important bioactive molecules in disease treatment, which can inhibit the apoptosis, necrosis and oxidative stress of lung, heart, kidney, liver, bone, skin and other cells, and promote their survive and regenerate.
Collapse
Affiliation(s)
- Wenwen Zhang
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Tingyu Wang
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yuanye Xue
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Bingbing Zhan
- School of Pharmaceutical Sciences, Guangdong Medical University, Dongguan, China
| | - Zengjie Lai
- The Second Clinical Medical College of Guangdong Medical University, Dongguan, China
| | - Wenjie Huang
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xinsheng Peng
- Biomedical Innovation Center, Guangdong Medical University, Dongguan, China
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| | - Yanfang Zhou
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
45
|
Nie W, Huang X, Zhao L, Wang T, Zhang D, Xu T, Du L, Li Y, Zhang W, Xiao F, Wang L. Exosomal miR-17-92 derived from human mesenchymal stem cells promotes wound healing by enhancing angiogenesis and inhibiting endothelial cell ferroptosis. Tissue Cell 2023; 83:102124. [PMID: 37269748 DOI: 10.1016/j.tice.2023.102124] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Wound healing is a complex and dynamic process that involves a series of cellular and molecular events. Mesenchymal stem cells (MSCs) and their exosomes (MSC-Exos) have crucial functions in cutaneous wound healing. MiR-17-92 is a multifunctional microRNA (miRNA) cluster that plays vital roles in tissue development and tumor angiogenesis. This study aimed to explore the function of miR-17.92 in wound healing as a component of MSC-Exos. METHODS Human MSCs were cultured in serum-free medium, and exosomes were collected by ultracentrifugation. The levels of miR-17-92 in MSCs and MSC-Exos were determined by quantitative real-time polymerase chain reaction. MSC-Exos were topically applied to full-thickness excision wounds in the skin of miR-17-92 knockout (KO) and wild-type (WT) mice. The proangiogenic and antiferroptotic effects of MSC-Exos overexpressing miR-17-92 were assayed by evaluating the relative levels of angiogenic and ferroptotic markers. RESULTS MiRNA-17-92 was found to be highly expressed in MSCs and enriched in MSC-Exos. Moreover, MSC-Exos promoted the proliferation and migration of human umbilical vein endothelial cells in vitro. KO of miR-17-92 effectively attenuated the promotion of wound healing by MSC-Exos. Furthermore, exosomes derived from miR-17-92-overexpressing human umbilical cord-derived MSCs accelerated cell proliferation, migration, angiogenesis, and enhanced against erastin-induced ferroptosis in vitro. miR-17-92 plays a key role in the protective effects of MSC-Exos against erastin-induced ferroptosis in HUVECs CONCLUSION: These findings suggest that miR-17-92 participates in the repair ability of MSC-Exos and that miR-17-92-overexpressing exosomes may represent a new strategy for cutaneous wound repair.
Collapse
Affiliation(s)
- Wenbo Nie
- Laboratory Management Office, Jilin University, Changchun, Jilin 130021, PR China; Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Xuemiao Huang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Lijing Zhao
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Taiwei Wang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Dan Zhang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Tianxin Xu
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Lin Du
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Yuxiang Li
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China; Department of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliate Hospital of Qingdao University, Qingdao 266000, PR China
| | - Weiyuan Zhang
- Department of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliate Hospital of Qingdao University, Qingdao 266000, PR China
| | - Fengjun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Lisheng Wang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China; Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
46
|
Sitbon A, Delmotte PR, Goumard C, Turco C, Gautheron J, Conti F, Aoudjehane L, Scatton O, Monsel A. Therapeutic potentials of mesenchymal stromal cells-derived extracellular vesicles in liver failure and marginal liver graft rehabilitation: a scoping review. Minerva Anestesiol 2023; 89:690-706. [PMID: 37079286 DOI: 10.23736/s0375-9393.23.17265-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Liver failure includes distinct subgroups of diseases: Acute liver failure (ALF) without preexisting cirrhosis, acute-on-chronic liver failure (ACLF) (severe form of cirrhosis associated with organ failures and excess mortality), and liver fibrosis (LF). Inflammation plays a key role in ALF, LF, and more specifically in ACLF for which we have currently no treatment other than liver transplantation (LT). The increasing incidence of marginal liver grafts and the shortage of liver grafts require us to consider strategies to increase the quantity and quality of available liver grafts. Mesenchymal stromal cells (MSCs) have shown beneficial pleiotropic properties with limited translational potential due to the pitfalls associated with their cellular nature. MSC-derived extracellular vesicles (MSC-EVs) are innovative cell-free therapeutics for immunomodulation and regenerative purposes. MSC-EVs encompass further advantages: pleiotropic effects, low immunogenicity, storage stability, good safety profile, and possibility of bioengineering. Currently, no human studies explored the impact of MSC-EVs on liver disease, but several preclinical studies highlighted their beneficial effects. In ALF and ACLF, data showed that MSC-EVs attenuate hepatic stellate cells activation, exert antioxidant, anti-inflammatory, anti-apoptosis, anti-ferroptosis properties, and promote regeneration of the liver, autophagy, and improve metabolism through mitochondrial function recovery. In LF, MSC-EVs demonstrated anti-fibrotic properties associated with liver tissue regeneration. Normothermic-machine perfusion (NMP) combined with MSC-EVs represents an attractive therapy to improve liver regeneration before LT. Our review suggests a growing interest in MSC-EVs in liver failure and gives an appealing insight into their development to rehabilitate marginal liver grafts through NMP.
Collapse
Affiliation(s)
- Alexandre Sitbon
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France -
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France -
| | - Pierre-Romain Delmotte
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Claire Goumard
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Célia Turco
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Liver Transplantation Unit, Department of Digestive and Oncologic Surgery, University Hospital of Besançon, Besançon, France
| | - Jérémie Gautheron
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
| | - Filomena Conti
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
- IHU-Innovation of Cardiometabolism and Nutrition (ICAN), INSERM, Sorbonne University, Paris, France
| | - Lynda Aoudjehane
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- IHU-Innovation of Cardiometabolism and Nutrition (ICAN), INSERM, Sorbonne University, Paris, France
| | - Olivier Scatton
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
- INSERM UMRS-959 Immunology-Immunopathology-Immunotherapy (I3), Sorbonne University, Paris, France
| |
Collapse
|
47
|
Parthasarathy G, Hirsova P, Kostallari E, Sidhu GS, Ibrahim SH, Malhi H. Extracellular Vesicles in Hepatobiliary Health and Disease. Compr Physiol 2023; 13:4631-4658. [PMID: 37358519 PMCID: PMC10798368 DOI: 10.1002/cphy.c210046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanoparticles released by cells and are an important means of intercellular communication in physiological and pathological states. We provide an overview of recent advances in the understanding of EV biogenesis, cargo selection, recipient cell effects, and key considerations in isolation and characterization techniques. Studies on the physiological role of EVs have relied on cell-based model systems due to technical limitations of studying endogenous nanoparticles in vivo . Several recent studies have elucidated the mechanistic role of EVs in liver diseases, including nonalcoholic fatty liver disease, viral hepatitis, cholestatic liver disease, alcohol-associated liver disease, acute liver injury, and liver cancers. Employing disease models and human samples, the biogenesis of lipotoxic EVs downstream of endoplasmic reticulum stress and microvesicles via intracellular activation stress signaling are discussed in detail. The diverse cargoes of EVs including proteins, lipids, and nucleic acids can be enriched in a disease-specific manner. By carrying diverse cargo, EVs can directly confer pathogenic potential, for example, recruitment and activation of monocyte-derived macrophages in NASH and tumorigenicity and chemoresistance in hepatocellular carcinoma. We discuss the pathogenic role of EVs cargoes and the signaling pathways activated by EVs in recipient cells. We review the literature that EVs can serve as biomarkers in hepatobiliary diseases. Further, we describe novel approaches to engineer EVs to deliver regulatory signals to specific cell types, and thus use them as therapeutic shuttles in liver diseases. Lastly, we identify key lacunae and future directions in this promising field of discovery and development. © 2023 American Physiological Society. Compr Physiol 13:4631-4658, 2023.
Collapse
Affiliation(s)
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Guneet S. Sidhu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samar H. Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
48
|
Cheng F, Yang F, Wang Y, Zhou J, Qian H, Yan Y. Mesenchymal stem cell-derived exosomal miR-27b-3p alleviates liver fibrosis via downregulating YAP/LOXL2 pathway. J Nanobiotechnology 2023; 21:195. [PMID: 37328872 DOI: 10.1186/s12951-023-01942-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) is an extracellular copper-dependent enzyme that plays a central role in fibrosis by catalyzing the crosslinking and deposition of collagen. Therapeutic LOXL2 inhibition has been shown to suppress liver fibrosis progression and promote its reversal. This study investigates the efficacy and underlying mechanisms of human umbilical cord-derived exosomes (MSC-ex) in LOXL2 inhibition of liver fibrosis. MSC-ex, nonselective LOX inhibitor β-aminopropionitrile (BAPN), or PBS were administered into carbon tetrachloride (CCl4)-induced fibrotic livers. Serum LOXL2 and collagen crosslinking were assessed histologically and biochemically. MSC-ex's mechanisms on LOXL2 regulation were investigated in human hepatic stellate cell line LX-2. We found that systemic administration of MSC-ex significantly reduced LOXL2 expression and collagen crosslinking, delaying the progression of CCl4-induced liver fibrosis. Mechanically, RNA-sequencing and fluorescence in situ hybridization (FISH) indicated that miR-27b-3p was enriched in MSC-ex and exosomal miR-27b-3p repressed Yes-associated protein (YAP) expression by targeting its 3' untranslated region in LX-2. LOXL2 was identified as a novel downstream target gene of YAP, and YAP bound to the LOXL2 promoter to positively regulate transcription. Additionally, the miR-27b-3p inhibitor abrogated the anti-LOXL2 abilities of MSC-ex and diminished the antifibrotic efficacy. miR-27b-3p overexpression promoted MSC-ex mediated YAP/LOXL2 inhibition. Thus, MSC-ex may suppress LOXL2 expression through exosomal miR-27b-3p mediated YAP down-regulation. The findings here may improve our understanding of MSC-ex in liver fibrosis alleviation and provide new opportunities for clinical treatment.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, 213017, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212001, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, 213017, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212001, China
| | - Yanjin Wang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, 213017, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212001, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212001, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, 213017, China.
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, China.
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, China.
| |
Collapse
|
49
|
Shen J, Cao J, Chen M, Zhang Y. Recent advances in the role of exosomes in liver fibrosis. J Gastroenterol Hepatol 2023. [PMID: 37114594 DOI: 10.1111/jgh.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND AND AIM We aim to summarize the current status of research on the role of exosomes in liver fibrosis. METHODS A review of the relevant literature was performed and the key findings were presented. RESULTS Most studies focused on the role of exosomes derived from mesenchymal stem cells, other types of stem cells, and liver resident cells including hepatocytes, cholangiocytes, and hepatic stellate cells in liver fibrosis. Exosomes have been reported to play an essential role in the inactivation or activation of hepatic stellate cells through the delivery of non-coding RNAs and proteins. In recent years, this exosome cargo has become a research hotspot. CONCLUSIONS Recent studies have indicated the potential therapeutic benefit of exosomes in liver fibrosis.
Collapse
Affiliation(s)
- Jiliang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Zhang
- Department of Anesthesiology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Abstract
Oxidative stress is the result of an imbalance between the formation of reactive oxygen species (ROS) and the levels of enzymatic and non-enzymatic antioxidants. The assessment of biological redox status is performed by the use of oxidative stress biomarkers. An oxidative stress biomarker is defined as any physical structure or process or chemical compound that can be assessed in a living being (in vivo) or in solid or fluid parts thereof (in vitro), the determination of which is a reproducible and reliable indicator of oxidative stress. The use of oxidative stress biomarkers allows early identification of the risk of developing diseases associated with this process and also opens up possibilities for new treatments. At the end of the last century, interest in oxidative stress biomarkers began to grow, due to evidence of the association between the generation of free radicals and various pathologies. Up to now, a significant number of studies have been carried out to identify and apply different oxidative stress biomarkers in clinical practice. Among the most important oxidative stress biomarkers, it can be mentioned the products of oxidative modifications of lipids, proteins, nucleic acids, and uric acid as well as the measurement of the total antioxidant capacity of fluids in the human body. In this review, we aim to present recent advances and current knowledge on the main biomarkers of oxidative stress, including the discovery of new biomarkers, with emphasis on the various reproductive complications associated with variations in oxidative stress levels.
Collapse
|