1
|
Giugni FR, Giugni MDOV, Pinesi HT, Habrum FC, Laranjeira LN, Sady ERR, Suzumura EA, Gowdak LHW, Krieger JE. Safety and Efficacy of Adipose-Derived Mesenchymal Stem Cell Therapy for Ischemic Heart Disease: A Systematic Review. Arq Bras Cardiol 2024; 121:e20230830. [PMID: 39292063 PMCID: PMC11495568 DOI: 10.36660/abc.20230830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 06/12/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Cell therapy using adipose-derived mesenchymal stem cells (ADSCs) shows great potential as a treatment for cardiovascular diseases. OBJECTIVE We conducted a systematic review to describe the safety and efficacy of ADSCs in ischemic heart disease. METHODS We searched PubMed/MEDLINE, EMBASE, Web of Science, CENTRAL, and LILACS (from inception to March 2024) for clinical studies involving ADSCs in patients with ischemic heart disease. We excluded studies involving patients with other types of heart disease, studies using mesenchymal stem cells derived from other tissues, as well as ongoing studies. Two independent reviewers screened the retrieved citations, extracted relevant data, and assessed the risk of bias in the included trials, using the Cochrane Collaboration criteria modified by McMaster University and Methodological Index for Non-Randomized Studies (MINORS). We used a narrative synthesis to present the results. RESULTS Ten studies (comprising 29 publications) met our inclusion criteria, including 8 randomized controlled trials and 2 uncontrolled trials. No severe adverse events associated with ADSC therapy were reported. While most efficacy endpoints did not reach statistical significance, there were reports of improved ischemic area, functional capacity, symptoms, and contractility in patients treated with ADSCs. CONCLUSIONS The findings from our review suggest that ADSC therapy is generally safe for patients with ischemic heart disease. However, further investigation is warranted to confirm its efficacy, particularly with larger clinical trials and in specific conditions where improvements in microcirculation may have a notable impact on clinical outcomes.
Collapse
Affiliation(s)
- Fernando Rabioglio Giugni
- The University of Texas Southwestern Medical CenterDallasTexasEUAThe University of Texas Southwestern Medical Center, Dallas, Texas – EUA
- Hospital das ClinicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração InCor, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP – Brasil
| | - Melina de Oliveira Valdo Giugni
- Hospital das ClinicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração InCor, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP – Brasil
- Baylor University Medical Center at DallasDallasTexasEUABaylor University Medical Center at Dallas, Dallas, Texas – EUA
| | - Henrique Trombini Pinesi
- Hospital das ClinicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração InCor, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP – Brasil
| | - Fabio Cetinic Habrum
- Hospital das ClinicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração InCor, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP – Brasil
| | - Lígia Nasi Laranjeira
- Hospital do CoraçãoSão PauloSPBrasilHospital do Coração (HCor), São Paulo, SP – Brasil
| | | | - Erica Aranha Suzumura
- Departmento de Medicina PreventivaFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilDepartmento de Medicina Preventiva, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP – Brasil
| | - Luis Henrique Wolff Gowdak
- Hospital das ClinicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração InCor, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP – Brasil
| | - José Eduardo Krieger
- Hospital das ClinicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração InCor, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP – Brasil
- Hospital do CoraçãoSão PauloSPBrasilHospital do Coração (HCor), São Paulo, SP – Brasil
| |
Collapse
|
2
|
Haider KH. Priming mesenchymal stem cells to develop "super stem cells". World J Stem Cells 2024; 16:623-640. [PMID: 38948094 PMCID: PMC11212549 DOI: 10.4252/wjsc.v16.i6.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment, genetic manipulation, and chemical and pharmacological treatment, each strategy having advantages and limitations. Most of these pre-treatment protocols are non-combinative. This editorial is a continuum of Li et al's published article and Wan et al's editorial focusing on the significance of pre-treatment strategies to enhance their stemness, immunoregulatory, and immunosuppressive properties. They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia. Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells (MSCs), pre-treatment based on the mechanistic understanding is expected to develop "Super MSCs", which will create a transformative shift in MSC-based therapies in clinical settings, potentially revolutionizing the field. Once optimized, the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop "super stem cells" with augmented stemness, functionality, and reparability for diverse clinical applications with better outcomes.
Collapse
Affiliation(s)
- Khawaja Husnain Haider
- Department of Basic Sciences, Sulaiman AlRajhi University, AlQaseem 52736, Saudi Arabia.
| |
Collapse
|
3
|
Rolsma JL, Darch W, Higgins NC, Morgan JT. The tardigrade-derived mitochondrial abundant heat soluble protein improves adipose-derived stem cell survival against representative stressors. Sci Rep 2024; 14:11834. [PMID: 38783150 PMCID: PMC11116449 DOI: 10.1038/s41598-024-62693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Human adipose-derived stem cell (ASC) grafts have emerged as a powerful tool in regenerative medicine. However, ASC therapeutic potential is hindered by stressors throughout their use. Here we demonstrate the transgenic expression of the tardigrade-derived mitochondrial abundant heat soluble (MAHS) protein for improved ASC resistance to metabolic, mitochondrial, and injection shear stress. In vitro, MAHS-expressing ASCs demonstrate up to 61% increased cell survival following 72 h of incubation in phosphate buffered saline containing 20% media. Following up to 3.5% DMSO exposure for up to 72 h, a 14-49% increase in MAHS-expressing ASC survival was observed. Further, MAHS expression in ASCs is associated with up to 39% improved cell viability following injection through clinically relevant 27-, 32-, and 34-gauge needles. Our results reveal that MAHS expression in ASCs supports survival in response to a variety of common stressors associated with regenerative therapies, thereby motivating further investigation into MAHS as an agent for stem cell stress resistance. However, differentiation capacity in MAHS-expressing ASCs appears to be skewed in favor of osteogenesis over adipogenesis. Specifically, activity of the early bone formation marker alkaline phosphatase is increased by 74% in MAHS-expressing ASCs following 14 days in osteogenic media. Conversely, positive area of the neutral lipid droplet marker BODIPY is decreased by up to 10% in MAHS-transgenic ASCs following 14 days in adipogenic media. Interestingly, media supplementation with up to 40 mM glucose is sufficient to restore adipogenic differentiation within 14 days, prompting further analysis of mechanisms underlying interference between MAHS and differentiation processes.
Collapse
Affiliation(s)
- Jordan L Rolsma
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - William Darch
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - Nicholas C Higgins
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - Joshua T Morgan
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
4
|
Abouzid MR, Umer AM, Jha SK, Akbar UA, Khraisat O, Saleh A, Mohamed K, Esteghamati S, Kamel I. Stem Cell Therapy for Myocardial Infarction and Heart Failure: A Comprehensive Systematic Review and Critical Analysis. Cureus 2024; 16:e59474. [PMID: 38832190 PMCID: PMC11145929 DOI: 10.7759/cureus.59474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 06/05/2024] Open
Abstract
In exploring therapeutic options for ischemic heart disease (IHD) and heart failure, cell-based cardiac repair has gained prominence. This systematic review delves into the current state of knowledge surrounding cell-based therapies for cardiac repair. Employing a comprehensive search across relevant databases, the study identifies 35 included studies with diverse cell types and methodologies. Encouragingly, these findings reveal the promise of cell-based therapies in cardiac repair, demonstrating significant enhancements in left ventricular ejection fraction (LVEF) across the studies. Mechanisms of action involve growth factors that stimulate angiogenesis, differentiation, and the survival of transplanted cells. Despite these positive outcomes, challenges persist, including low engraftment rates, limitations in cell differentiation, and variations in clinical reproducibility. The optimal dosage and frequency of cell administration remain subjects of debate, with potential benefits from repeated dosing. Additionally, the choice between autologous and allogeneic stem cell transplantation poses a critical decision. This systematic review underscores the potential of cell-based therapies for cardiac repair, bearing implications for innovative treatments in heart diseases. However, further research is imperative to optimize cell type selection, delivery techniques, and long-term efficacy, fostering a more comprehensive understanding of cell-based cardiac repair.
Collapse
Affiliation(s)
- Mohamed R Abouzid
- Internal Medicine, Baptist Hospitals of Southeast Texas, Beaumont, USA
| | - Ahmed Muaaz Umer
- Internal Medicine Residency, Camden Clark Medical Center, Parkersburg, USA
| | - Suman Kumar Jha
- Internal Medicine, Sheer Memorial Adventist Hospital, Banepa, NPL
| | - Usman A Akbar
- Internal Medicine, Camden Clark Medical Center, Parkersburg, USA
| | - Own Khraisat
- Internal Medicine, King Hussein Medical City, Amman, JOR
| | - Amr Saleh
- Cardiovascular Medicine, Yale School of Medicine, New Haven, USA
| | - Kareem Mohamed
- Internal Medicine, University of Missouri Kansas City, Kansas City, USA
| | | | - Ibrahim Kamel
- Internal Medicine, Steward Carney Hospital, Boston, USA
| |
Collapse
|
5
|
CASTIGLIONI B, LEIGHEB M, BOSETTI M. Adipose derived stem cells versus micro-fragmented adipose tissue in cartilage tissue regeneration and repair. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2024; 182. [DOI: 10.23736/s0393-3660.23.05381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
|
6
|
Holvoet P. Aging and Metabolic Reprogramming of Adipose-Derived Stem Cells Affect Molecular Mechanisms Related to Cardiovascular Diseases. Cells 2023; 12:2785. [PMID: 38132104 PMCID: PMC10741778 DOI: 10.3390/cells12242785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
We performed a systematic search of the PubMed database for English-language articles related to the function of adipose-derived stem cells in the pathogenesis of cardiovascular diseases. In preclinical models, adipose-derived stem cells protected arteries and the heart from oxidative stress and inflammation and preserved angiogenesis. However, clinical trials did not reiterate successful treatments with these cells in preclinical models. The low success in patients may be due to aging and metabolic reprogramming associated with the loss of proliferation capacity and increased senescence of stem cells, loss of mitochondrial function, increased oxidative stress and inflammation, and adipogenesis with increased lipid deposition associated with the low potential to induce endothelial cell function and angiogenesis, cardiomyocyte survival, and restore heart function. Then, we identify noncoding RNAs that may be mechanistically related to these dysfunctions of human adipose-derived stem cells. In particular, a decrease in let-7, miR-17-92, miR-21, miR-145, and miR-221 led to the loss of their function with obesity, type 2 diabetes, oxidative stress, and inflammation. An increase in miR-34a, miR-486-5p, and mir-24-3p contributed to the loss of function, with a noteworthy increase in miR-34a with age. In contrast, miR-146a and miR-210 may protect stem cells. However, a systematic analysis of other noncoding RNAs in human adipose-derived stem cells is warranted. Overall, this review gives insight into modes to improve the functionality of human adipose-derived stem cells.
Collapse
Affiliation(s)
- Paul Holvoet
- Division of Experimental Cardiology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Amini H, Namjoo AR, Narmi MT, Mardi N, Narimani S, Naturi O, Khosrowshahi ND, Rahbarghazi R, Saghebasl S, Hashemzadeh S, Nouri M. Exosome-bearing hydrogels and cardiac tissue regeneration. Biomater Res 2023; 27:99. [PMID: 37803483 PMCID: PMC10559618 DOI: 10.1186/s40824-023-00433-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND In recent years, cardiovascular disease in particular myocardial infarction (MI) has become the predominant cause of human disability and mortality in the clinical setting. The restricted capacity of adult cardiomyocytes to proliferate and restore the function of infarcted sites is a challenging issue after the occurrence of MI. The application of stem cells and byproducts such as exosomes (Exos) has paved the way for the alleviation of cardiac tissue injury along with conventional medications in clinics. However, the short lifespan and activation of alloreactive immune cells in response to Exos and stem cells are the main issues in patients with MI. Therefore, there is an urgent demand to develop therapeutic approaches with minimum invasion for the restoration of cardiac function. MAIN BODY Here, we focused on recent data associated with the application of Exo-loaded hydrogels in ischemic cardiac tissue. Whether and how the advances in tissue engineering modalities have increased the efficiency of whole-based and byproducts (Exos) therapies under ischemic conditions. The integration of nanotechnology and nanobiology for designing novel smart biomaterials with therapeutic outcomes was highlighted. CONCLUSION Hydrogels can provide suitable platforms for the transfer of Exos, small molecules, drugs, and other bioactive factors for direct injection into the damaged myocardium. Future studies should focus on the improvement of physicochemical properties of Exo-bearing hydrogel to translate for the standard treatment options.
Collapse
Affiliation(s)
- Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran
| | - Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Narimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ozra Naturi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Nafiseh Didar Khosrowshahi
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Shahriar Hashemzadeh
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Semenzato M, Zambello L, Fumarola S, Motta E, Piroli L, Scorrano L, Bean C. A Novel Benchtop Device for Efficient and Simple Purification of Cytokines, Growth Factors and Stem Cells from Adipose Tissue. Biomedicines 2023; 11:biomedicines11041006. [PMID: 37189624 DOI: 10.3390/biomedicines11041006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
Lipoaspirates represent a source of adult stem cells, cytokines, and growth factors of adipocyte origin with immunomodulation and regenerative medicine potential. However, rapid and simple protocols for their purification using self-contained devices that can be deployed at the points of care are lacking. Here, we characterize and benchmark a straightforward mechanical dissociation procedure to collect mesenchymal stem cells (MSCs) and soluble fractions from lipoaspirates. IStemRewind, a benchtop self-contained cell purification device, allowed a one-procedure purification of cells and soluble material from lipoaspirates with minimal manipulation. The recovered cellular fraction contained CD73+, CD90+, CD105+, CD10+ and CD13+ MSCs. These markers were comparably expressed on MSCs isolated using IstemRewind or classic enzymatic dissociation procedures, apart from CD73+ MSCs, which were even more abundant in IStemRewind isolates. IstemRewind-purified MSCs retained viability and differentiation into adipocytes and osteocytes, even after a freezing-thawing cycle. Levels of IL4, IL10, bFGF and VEGF were higher compared to the pro-inflammatory cytokines TNFα, IL1β and IL6 in the IStemRewind-isolated liquid fraction. In sum, IStemRewind can be useful for straightforward, rapid, and efficient isolation of MSCs and immunomodulatory soluble factors from lipoaspirates, opening the possibility to directly isolate and employ them at the point-of-care.
Collapse
Affiliation(s)
- Martina Semenzato
- Department of Biology, University of Padova, Via U.Bassi 58/B, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Ludovica Zambello
- Department of Biology, University of Padova, Via U.Bassi 58/B, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Stefania Fumarola
- InScientiaFides Foundation, Strada di Paderna, 2, 47895 San Marino, San Marino
| | | | - Luana Piroli
- InScientiaFides Foundation, Strada di Paderna, 2, 47895 San Marino, San Marino
| | - Luca Scorrano
- Department of Biology, University of Padova, Via U.Bassi 58/B, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Camilla Bean
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Medicine, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| |
Collapse
|
9
|
Qayyum AA, Mouridsen M, Nilsson B, Gustafsson I, Schou M, Nielsen OW, Hove JD, Mathiasen AB, Jørgensen E, Helqvist S, Joshi FR, Johansen EM, Follin B, Juhl M, Højgaard LD, Haack-Sørensen M, Ekblond A, Kastrup J. Danish phase II trial using adipose tissue derived mesenchymal stromal cells for patients with ischaemic heart failure. ESC Heart Fail 2023; 10:1170-1183. [PMID: 36638837 PMCID: PMC10053281 DOI: 10.1002/ehf2.14281] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
AIMS Patients suffering from chronic ischaemic heart failure with reduced left ventricular ejection fraction (HFrEF) have reduced quality-of-life, repetitive hospital admissions, and reduced life expectancy. Allogeneic cell therapy is currently investigated as a potential treatment option after initially encouraging results from clinical autologous and allogeneic trials in patients with HFrEF. We aimed to investigate the allogeneic Cardiology Stem Cell Centre Adipose tissue derived mesenchymal Stromal Cell product (CSCC_ASC) as an add-on therapy in patients with chronic HFrEF. METHODS AND RESULTS This is a Danish multi-centre double-blinded placebo-controlled phase II study with direct intra-myocardial injections of allogeneic CSCC_ASC. A total of 81 HFrEF patients were included and randomized 2:1 to CSCC_ASC or placebo injections. The inclusion criteria were reduced left ventricular ejection fraction (LVEF ≤ 45%), New York Heart Association (NYHA) class II-III despite optimal anti-congestive heart failure medication and no further revascularization options. Injections of 0.3 mL CSCC_ASC (total cell dose 100 × 106 ASCs) (n = 54) or isotonic saline (n = 27) were performed into the viable myocardium in the border zone of infarcted tissue using the NOGA Myostar® catheter (Biological Delivery System, Cordis, Johnson & Johnson, USA). The primary endpoint, left ventricular end systolic volume (LVESV), was evaluated at 6-month follow-up. The safety was measured during a 3-years follow-up period. RESULTS Mean age was 67.0 ± 9.0 years and 66.6 ± 8.1 years in the ASC and placebo groups, respectively. LVESV was unchanged from baseline to 6-month follow-up in the ASC (125.7 ± 68.8 mL and 126.3 ± 72.5 mL, P = 0.827) and placebo (134.6 ± 45.8 mL and 135.3 ± 49.6 mL, P = 0.855) group without any differences between the groups (0.0 mL (95% CI -9.1 to 9.0 mL, P = 0.992). Neither were there significant changes in left ventricular end diastolic volume or LVEF within the two groups or between groups -5.7 mL (95% CI -16.7 to 5.3 mL, P = 0.306) and -1.7% (95% CI -4.4. to 1.0, P = 0.212), respectively). NYHA classification and 6-min walk test did not alter significantly in the two groups (P > 0.05). The quality-of-life, total symptom, and overall summary score improved significantly only in the ASC group but not between groups. There were 24 serious adverse events (SAEs) in the ASC group and 11 SAEs in the placebo group without any significant differences between the two groups at 1-year follow-up. Kaplan-Meier plot using log-rank test of combined cardiac events showed an overall mean time to event of 30 ± 2 months in the ASC group and 29 ± 2 months in the placebo group without any differences between the groups during the 3 years follow-up period (P = 0.994). CONCLUSIONS Intramyocardial CSCC_ASC injections in patients with chronic HFrEF were safe but did not improve myocardial function or structure, nor clinical symptoms.
Collapse
Affiliation(s)
- Abbas Ali Qayyum
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mette Mouridsen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Brian Nilsson
- Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ida Gustafsson
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Morten Schou
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Olav Wendelboe Nielsen
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Dahlgaard Hove
- Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bruun Mathiasen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Francis Richard Joshi
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ellen Mønsted Johansen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bjarke Follin
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Juhl
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Drozd Højgaard
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annette Ekblond
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7:272. [PMID: 35933430 PMCID: PMC9357075 DOI: 10.1038/s41392-022-01134-4] [Citation(s) in RCA: 451] [Impact Index Per Article: 150.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023] Open
Abstract
Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment.
Collapse
Affiliation(s)
- Duc M Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam.
| | - Phuong T Pham
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trung Q Bach
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh T L Ngo
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Quyen T Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trang T K Phan
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Giang H Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Phuong T T Le
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Van T Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Nicholas R Forsyth
- Institute for Science & Technology in Medicine, Keele University, Keele, UK
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Liem Thanh Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
11
|
Martinez-Garcia FD, van Dongen JA, Burgess JK, Harmsen MC. Matrix Metalloproteases from Adipose Tissue-Derived Stromal Cells Are Spatiotemporally Regulated by Hydrogel Mechanics in a 3D Microenvironment. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9080340. [PMID: 35892753 PMCID: PMC9332414 DOI: 10.3390/bioengineering9080340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 01/16/2023]
Abstract
Adipose tissue-derived stromal cells (ASCs) are of interest in tissue engineering and regenerative medicine (TERM) due to their easy acquisition, multipotency, and secretion of a host of factors that promote regeneration. Retention of ASCs in or around lesions is poor following direct administration. Therefore, for TERM applications, ASCs can be ‘immobilized’ via their incorporation into hydrogels such as gelatine methacryloyl (GelMA). Tweaking GelMA concentration is a common approach to approximate the mechanical properties found in organs or tissues that need repair. Distinct hydrogel mechanics influence the ability of a cell to spread, migrate, proliferate, and secrete trophic factors. Mesenchymal cells such as ASCs are potent remodellers of the extracellular matrix (ECM). Not only do ASCs deposit components, they also secrete matrix metalloproteases (MMPs) which degrade ECM. In this work, we investigated if GelMA polymer concentration influenced the expression of active MMPs by ASCs. In addition, MMPs’ presence was interrogated with regard to ASCs morphology and changes in hydrogel ultrastructure. For this, immortalised ASCs were embedded in 5%, 10%, and 15% (w/v) GelMA hydrogels, photopolymerised and cultured for 14 d. Zymography in situ indicated that MMPs had a variable, hydrogel concentration-dependent influence on ASCs-secreted MMPs. In 5% GelMA, ASCs showed a high and sustained expression of MMPs, while, in 10% and 15% GelMA, such expression was almost null. ASCs morphology based on F-actin staining showed that increasing GelMA concentrations inhibit their spreading. Scanning electron microscopy (SEM) showed that hydrogel ultrastructure in terms of pore density, pore size, and percentage porosity were not consistently influenced by cells. Interestingly, changes in ultrastructural parameters were detected also in cell-free materials, albeit without a clear trend. We conclude that hydrogel concentration and its underlying mechanics influenced MMP expression by ASCs. The exact MMPs that respond to these mechanical cues should be defined in follow-up experiments.
Collapse
Affiliation(s)
- Francisco Drusso Martinez-Garcia
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (J.K.B.)
- W.J. Kolff Research Institute, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Joris Anton van Dongen
- Department of Plastic Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Janette Kay Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (J.K.B.)
- W.J. Kolff Research Institute, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (J.K.B.)
- W.J. Kolff Research Institute, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
12
|
GMP Compliant Production of a Cryopreserved Adipose-Derived Stromal Cell Product for Feasible and Allogeneic Clinical Use. Stem Cells Int 2022; 2022:4664917. [PMID: 35769340 PMCID: PMC9236818 DOI: 10.1155/2022/4664917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
The emerging field of advanced therapy medicinal products (ATMP) holds promise of treating a variety of diseases. Adipose-derived stromal cells (ASCs) are currently being marketed or tested as cell-based therapies in numerous clinical trials. To ensure safety and efficacy of treatments, high-quality products must be manufactured. A good manufacturing practice (GMP) compliant and consistent manufacturing process including validated quality control methods is critical. Product design and formulation are equally important to ensure clinical feasibility. Here, we present a GMP-compliant, xeno-free, and semiautomated manufacturing process and quality controls, used for large-scale production of a cryopreserved off-the-shelf ASC product and tested in several phase I and II allogeneic clinical applications.
Collapse
|
13
|
Fan C, Liao M, Xie L, Huang L, Lv S, Cai S, Su X, Wang Y, Wang H, Wang M, Liu Y, Wang Y, Guo H, Yang H, Liu Y, Wang T, Ma L. Single-Cell Transcriptome Integration Analysis Reveals the Correlation Between Mesenchymal Stromal Cells and Fibroblasts. Front Genet 2022; 13:798331. [PMID: 35360851 PMCID: PMC8961367 DOI: 10.3389/fgene.2022.798331] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Mesenchymal stromal cells (MSCs) and fibroblasts show similar morphology, surface marker expression, and proliferation, differentiation, and immunomodulatory capacities. These similarities not only blur their cell identities but also limit their application. Methods: We performed single-cell transcriptome sequencing of the human umbilical cord and foreskin MSCs (HuMSCs and FSMSCs) and extracted the single-cell transcriptome data of the bone marrow and adipose MSCs (BMSCs and ADMSCs) from the Gene Expression Omnibus (GEO) database. Then, we performed quality control, batch effect correction, integration, and clustering analysis of the integrated single-cell transcriptome data from the HuMSCs, FMSCs, BMSCs, and ADMSCs. The cell subsets were annotated based on the surface marker phenotypes for the MSCs (CD105 + , CD90 +, CD73 +, CD45 -, CD34 -, CD19 -, HLA-DRA -, and CD11b -), fibroblasts (VIM +, PECAM1 -, CD34 -, CD45 -, EPCAM -, and MYH11 -), and pericytes (CD146 +, PDGFRB +, PECAM1 -, CD34 -, and CD45 -). The expression levels of common fibroblast markers (ACTA2, FAP, PDGFRA, PDGFRB, S100A4, FN1, COL1A1, POSTN, DCN, COL1A2, FBLN2, COL1A2, DES, and CDH11) were also analyzed in all cell subsets. Finally, the gene expression profiles, differentiation status, and the enrichment status of various gene sets and regulons were compared between the cell subsets. Results: We demonstrated 15 distinct cell subsets in the integrated single-cell transcriptome sequencing data. Surface marker annotation demonstrated the MSC phenotype in 12 of the 15 cell subsets. C10 and C14 subsets demonstrated both the MSC and pericyte phenotypes. All 15 cell subsets demonstrated the fibroblast phenotype. C8, C12, and C13 subsets exclusively demonstrated the fibroblast phenotype. We identified 3,275 differentially expressed genes, 305 enriched gene sets, and 34 enriched regulons between the 15 cell subsets. The cell subsets that exclusively demonstrated the fibroblast phenotype represented less primitive and more differentiated cell types. Conclusion: Cell subsets with the MSC phenotype also demonstrated the fibroblast phenotype, but cell subsets with the fibroblast phenotype did not necessarily demonstrate the MSC phenotype, suggesting that MSCs represented a subclass of fibroblasts. We also demonstrated that the MSCs and fibroblasts represented highly heterogeneous populations with distinct cell subsets, which could be identified based on the differentially enriched gene sets and regulons that specify proliferating, differentiating, metabolic, and/or immunomodulatory functions.
Collapse
Affiliation(s)
- Chuiqin Fan
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Maochuan Liao
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lichun Xie
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University (The Women and Children’s Medical Center of Guangzhou Medical University), Guangzhou, China
| | - Liangping Huang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Siyu Lv
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| | - Siyu Cai
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xing Su
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yue Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| | - Hongwu Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| | - Manna Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| | - Yulin Liu
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yu Wang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| | - Huijie Guo
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| | - Hanhua Yang
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University (The Women and Children’s Medical Center of Guangzhou Medical University), Guangzhou, China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianyou Wang
- Department of Hematology and Oncology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Lian Ma
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University (The Women and Children’s Medical Center of Guangzhou Medical University), Guangzhou, China
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
| |
Collapse
|
14
|
Krawczenko A, Klimczak A. Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells and Their Contribution to Angiogenic Processes in Tissue Regeneration. Int J Mol Sci 2022; 23:ijms23052425. [PMID: 35269568 PMCID: PMC8910401 DOI: 10.3390/ijms23052425] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are widely described in the context of their regenerative and immunomodulatory activity. MSCs are isolated from various tissues and organs. The most frequently described sources are bone marrow and adipose tissue. As stem cells, MSCs are able to differentiate into other cell lineages, but they are usually reported with respect to their paracrine potential. In this review, we focus on MSCs derived from adipose tissue (AT-MSCs) and their secretome in regeneration processes. Special attention is given to the contribution of AT-MSCs and their derivatives to angiogenic processes described mainly in the context of angiogenic dysfunction. Finally, we present clinical trials registered to date that concern the application of AT-MSCs and their secretome in various medical conditions.
Collapse
|
15
|
Mazine A, Rushani D, Yau TM. Clinical mesenchymal stem cell therapy in ischemic cardiomyopathy. JTCVS OPEN 2021; 8:135-141. [PMID: 36004185 PMCID: PMC9390513 DOI: 10.1016/j.xjon.2021.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/08/2021] [Indexed: 11/19/2022]
Affiliation(s)
| | | | - Terrence M. Yau
- Address for reprints: Terrence M. Yau, MD, MSc, Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, 200 Elizabeth St, 4N-470, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
16
|
El-Kadiry AEH, Rafei M, Shammaa R. Cell Therapy: Types, Regulation, and Clinical Benefits. Front Med (Lausanne) 2021; 8:756029. [PMID: 34881261 PMCID: PMC8645794 DOI: 10.3389/fmed.2021.756029] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Cell therapy practices date back to the 19th century and continue to expand on investigational and investment grounds. Cell therapy includes stem cell- and non-stem cell-based, unicellular and multicellular therapies, with different immunophenotypic profiles, isolation techniques, mechanisms of action, and regulatory levels. Following the steps of their predecessor cell therapies that have become established or commercialized, investigational and premarket approval-exempt cell therapies continue to provide patients with promising therapeutic benefits in different disease areas. In this review article, we delineate the vast types of cell therapy, including stem cell-based and non-stem cell-based cell therapies, and create the first-in-literature compilation of the different "multicellular" therapies used in clinical settings. Besides providing the nuts and bolts of FDA policies regulating their use, we discuss the benefits of cell therapies reported in 3 therapeutic areas-regenerative medicine, immune diseases, and cancer. Finally, we contemplate the recent attention shift toward combined therapy approaches, highlighting the factors that render multicellular therapies a more attractive option than their unicellular counterparts.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Center, Montreal, QC, Canada
- Department of Biomedical Sciences, Université de Montréal, Montreal, QC, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
- Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Riam Shammaa
- Canadian Centre for Regenerative Therapy, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Vilahur G, Nguyen PH, Badimon L. Impact of Diabetes Mellitus on the Potential of Autologous Stem Cells and Stem Cell-Derived Microvesicles to Repair the Ischemic Heart. Cardiovasc Drugs Ther 2021; 36:933-949. [PMID: 34251593 DOI: 10.1007/s10557-021-07208-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
Ischemic heart disease remains the leading cause of morbidity and mortality worldwide. Despite the advances in medical management and catheter-based therapy, mortality remains high, as does the risk of developing heart failure. Regenerative therapies have been widely used as an alternative option to repair the damaged heart mainly because of their paracrine-related beneficial effects. Although cell-based therapy has been demonstrated as feasible and safe, randomized controlled trials and meta-analyses show little consistent benefit from treatments with adult-derived stem cells. Mounting evidence from our group and others supports that cardiovascular risk factors and comorbidities impair stem cell potential thus hampering their autologous use. This review aims to better understand the influence of diabetes on stem cell potential. For this purpose, we will first discuss the most recent advances in the mechanistic understanding of the effects of diabetes on stem cell phenotype, function, and molecular fingerprint to further elaborate on diabetes-induced alterations in stem cell extracellular vesicle profile. Although we acknowledge that multiple sources of stem or progenitor cells are used for regenerative purposes, we will focus on bone marrow hematopoietic stem/progenitor cells, mesenchymal stem cells residing in the bone marrow, and adipose tissue and briefly discuss endothelial colony-forming cells.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain.,Ciber CV - ISCIII, Madrid, Spain
| | - Phuong Hue Nguyen
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain. .,Ciber CV - ISCIII, Madrid, Spain. .,Cardiovascular Research Chair UAB, Barcelona, Spain.
| |
Collapse
|
18
|
Razeghian-Jahromi I, Matta AG, Canitrot R, Zibaeenezhad MJ, Razmkhah M, Safari A, Nader V, Roncalli J. Surfing the clinical trials of mesenchymal stem cell therapy in ischemic cardiomyopathy. Stem Cell Res Ther 2021; 12:361. [PMID: 34162424 PMCID: PMC8220796 DOI: 10.1186/s13287-021-02443-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
While existing remedies failed to fully address the consequences of heart failure, stem cell therapy has been introduced as a promising approach. The present review is a comprehensive appraisal of the impacts of using mesenchymal stem cells (MSCs) in clinical trials mainly conducted on ischemic cardiomyopathy. The benefits of MSC therapy for dysfunctional myocardium are likely attributed to numerous secreted paracrine factors and immunomodulatory effects. The positive outcomes associated with MSC therapy are scar size reduction, reverse remodeling, and angiogenesis. Also, a decreasing in the level of chronic inflammatory markers of heart failure progression like TNF-α is observed. The intense inflammatory reaction in the injured myocardial micro-environment predicts a poor response of scar tissue to MSC therapy. Subsequently, the interval delay between myocardial injury and MSC therapy is not yet determined. The optimal requested dose of cells ranges between 100 to 150 million cells. Allogenic MSCs have different advantages compared to autogenic cells and intra-myocardial injection is the preferred delivery route. The safety and efficacy of MSCs-based therapy have been confirmed in numerous studies, however several undefined parameters like route of administration, optimal timing, source of stem cells, and necessary dose are limiting the routine use of MSCs therapeutic approach in clinical practice. Lastly, pre-conditioning of MSCs and using of exosomes mediated MSCs or genetically modified MSCs may improve the overall therapeutic effect. Future prospective studies establishing a constant procedure for MSCs transplantation are required in order to apply MSC therapy in our daily clinical practice and subsequently improving the overall prognosis of ischemic heart failure patients.
Collapse
Affiliation(s)
| | - Anthony G Matta
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse, France.,Faculty of medicine, Holy Spirit University of Kaslik, Kaslik, Lebanon
| | - Ronan Canitrot
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse, France
| | | | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vanessa Nader
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse, France.,Faculty of Pharmacy, Lebanese University, Beirut, Lebanon
| | - Jerome Roncalli
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse, France. .,Service de Cardiologie A, CHU de Toulouse, Hôpital de Rangueil, 1 avenue Jean Poulhès, TSA 50032, 31059, Toulouse Cedex 9, France.
| |
Collapse
|
19
|
Ghodrat S, Hoseini SJ, Asadpour S, Nazarnezhad S, Alizadeh Eghtedar F, Kargozar S. Stem cell-based therapies for cardiac diseases: The critical role of angiogenic exosomes. Biofactors 2021; 47:270-291. [PMID: 33606893 DOI: 10.1002/biof.1717] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022]
Abstract
Finding effective treatments for cardiac diseases is among the hottest subjects in medicine; cell-based therapies have brought great promises for managing a broad range of life-threatening heart complications such as myocardial infarction. After clarifying the critical role of angiogenesis in tissue repair and regeneration, various stem/progenitor cell were utilized to accelerate the healing of injured cardiac tissue. Embryonic, fetal, adult, and induced pluripotent stem cells have shown the appropriate proangiogenic potential for tissue repair strategies. The capability of stem cells for differentiating into endothelial lineages was initially introduced as the primary mechanism involved in improving angiogenesis and accelerated heart tissue repair. However, recent studies have demonstrated the leading role of paracrine factors secreted by stem cells in advancing neo-vessel formation. Genetically modified stem cells are also being applied for promoting angiogenesis regarding their ability to considerably overexpress and secrete angiogenic bioactive molecules. Yet, conducting further research seems necessary to precisely identify molecular mechanisms behind the proangiogenic potential of stem cells, including the signaling pathways and regulatory molecules such as microRNAs. In conclusion, stem cells' pivotal roles in promoting angiogenesis and consequent improved cardiac healing and remodeling processes should not be ignored, especially in the case of stem cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Sara Ghodrat
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Alizadeh Eghtedar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Sid-Otmane C, Perrault LP, Ly HQ. Mesenchymal stem cell mediates cardiac repair through autocrine, paracrine and endocrine axes. J Transl Med 2020; 18:336. [PMID: 32873307 PMCID: PMC7466793 DOI: 10.1186/s12967-020-02504-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
In the past decade, despite key advances in therapeutic strategies following myocardial infarction, none can directly address the loss of cardiomyocytes following ischemic injury. Cardiac cell-based therapy is at the cornerstone of regenerative medicine that has shown potential for tissue repair. Mesenchymal stem cells (MSC) represent a strong candidate to heal the infarcted myocardium. While differentiation potential has been described as a possible avenue for MSC-based repair, their secreted mediators are responsible for the majority of the ascribed prohealing effects. MSC can either promote their own survival and proliferation through autocrine effect or secrete trophic factors that will act on adjacent cells through a paracrine effect. Prior studies have also documented beneficial effects even when MSCs were remotely delivered, much akin to an endocrine mechanism. This review aims to distinguish the paracrine activity of MSCs from an endocrine-like effect, where remotely transplanted cells can promote healing of the injured myocardium.
Collapse
Affiliation(s)
- Celia Sid-Otmane
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.,Research Centre, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada
| | - Louis P Perrault
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.,Research Centre, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada.,Department of Cardiovascular Surgery, Montreal Heart Institute and Université de Montréal, Montreal, QC, Canada
| | - Hung Q Ly
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada. .,Department of Medicine, Université de Montréal, Montreal, QC, Canada. .,Research Centre, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada.
| |
Collapse
|
21
|
Ntege EH, Sunami H, Shimizu Y. Advances in regenerative therapy: A review of the literature and future directions. Regen Ther 2020; 14:136-153. [PMID: 32110683 PMCID: PMC7033303 DOI: 10.1016/j.reth.2020.01.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022] Open
Abstract
There is enormous global anticipation for stem cell-based therapies that are safe and effective. Numerous pre-clinical studies present encouraging results on the therapeutic potential of different cell types including tissue derived stem cells. Emerging evidences in different fields of research suggest several cell types are safe, whereas their therapeutic application and effectiveness remain challenged. Multiple factors that influence treatment outcomes are proposed including immunocompatibility and potency, owing to variations in tissue origin, ex-vivo methodologies for preparation and handling of the cells. This communication gives an overview of literature data on the different types of cells that are potentially promising for regenerative therapy. As a case in point, the recent trends in research and development of the mesenchymal stem cells (MSCs) for cell therapy are considered in detail. MSCs can be isolated from a variety of tissues and organs in the human body including bone marrow, adipose, synovium, and perinatal tissues. However, MSC products from the different tissue sources exhibit unique or varied levels of regenerative abilities. The review finally focuses on adipose tissue-derived MSCs (ASCs), with the unique properties such as easier accessibility and abundance, excellent proliferation and differentiation capacities, low immunogenicity, immunomodulatory and many other trophic properties. The suitability and application of the ASCs, and strategies to improve the innate regenerative capacities of stem cells in general are highlighted among others.
Collapse
Affiliation(s)
- Edward H. Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Hiroshi Sunami
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
| |
Collapse
|
22
|
Hutchings G, Janowicz K, Moncrieff L, Dompe C, Strauss E, Kocherova I, Nawrocki MJ, Kruszyna Ł, Wąsiatycz G, Antosik P, Shibli JA, Mozdziak P, Perek B, Krasiński Z, Kempisty B, Nowicki M. The Proliferation and Differentiation of Adipose-Derived Stem Cells in Neovascularization and Angiogenesis. Int J Mol Sci 2020; 21:ijms21113790. [PMID: 32471255 PMCID: PMC7312564 DOI: 10.3390/ijms21113790] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Neovascularization and angiogenesis are vital processes in the repair of damaged tissue, creating new blood vessel networks and increasing oxygen and nutrient supply for regeneration. The importance of Adipose-derived Mesenchymal Stem Cells (ASCs) contained in the adipose tissue surrounding blood vessel networks to these processes remains unknown and the exact mechanisms responsible for directing adipogenic cell fate remain to be discovered. As adipose tissue contains a heterogenous population of partially differentiated cells of adipocyte lineage; tissue repair, angiogenesis and neovascularization may be closely linked to the function of ASCs in a complex relationship. This review aims to investigate the link between ASCs and angiogenesis/neovascularization, with references to current studies. The molecular mechanisms of these processes, as well as ASC differentiation and proliferation are described in detail. ASCs may differentiate into endothelial cells during neovascularization; however, recent clinical trials have suggested that ASCs may also stimulate angiogenesis and neovascularization indirectly through the release of paracrine factors.
Collapse
Affiliation(s)
- Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Krzysztof Janowicz
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Lisa Moncrieff
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Claudia Dompe
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (G.H.); (K.J.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Correspondence:
| | - Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology Poznan University of Medical Sciences, 61-701 Poznan, Poland; (L.K.); (Z.K.)
| | - Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
| | - Łukasz Kruszyna
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology Poznan University of Medical Sciences, 61-701 Poznan, Poland; (L.K.); (Z.K.)
| | - Grzegorz Wąsiatycz
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, São Paulo 07023-070, Brazil;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznań, Poland;
| | - Zbigniew Krasiński
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology Poznan University of Medical Sciences, 61-701 Poznan, Poland; (L.K.); (Z.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (I.K.); (M.J.N.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.W.); (P.A.)
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| |
Collapse
|
23
|
Hotham WE, Henson FMD. The use of large animals to facilitate the process of MSC going from laboratory to patient-'bench to bedside'. Cell Biol Toxicol 2020; 36:103-114. [PMID: 32206986 PMCID: PMC7196082 DOI: 10.1007/s10565-020-09521-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/03/2020] [Indexed: 12/20/2022]
Abstract
Large animal models have been widely used to facilitate the translation of mesenchymal stem cells (MSC) from the laboratory to patient. MSC, with their multi-potent capacity, have been proposed to have therapeutic benefits in a number of pathological conditions. Laboratory studies allow the investigation of cellular and molecular interactions, while small animal models allow initial 'proof of concept' experiments. Large animals (dogs, pigs, sheep, goats and horses) are more similar physiologically and structurally to man. These models have allowed clinically relevant assessments of safety, efficacy and dosing of different MSC sources prior to clinical trials. In this review, we recapitulate the use of large animal models to facilitate the use of MSC to treat myocardial infarction-an example of one large animal model being considered the 'gold standard' for research and osteoarthritis-an example of the complexities of using different large animal models in a multifactorial disease. These examples show how large animals can provide a research platform that can be used to evaluate the value of cell-based therapies and facilitate the process of 'bench to bedside'.
Collapse
Affiliation(s)
- W E Hotham
- Division of Trauma and Orthopaedic Surgery, Cambridge University, Cambridge, UK.
| | - F M D Henson
- Division of Trauma and Orthopaedic Surgery, Cambridge University, Cambridge, UK
- Animal Health Trust, Newmarket, UK
| |
Collapse
|
24
|
Mathiasen AB, Qayyum AA, Jørgensen E, Helqvist S, Kofoed KF, Haack-Sørensen M, Ekblond A, Kastrup J. Bone marrow-derived mesenchymal stromal cell treatment in patients with ischaemic heart failure: final 4-year follow-up of the MSC-HF trial. Eur J Heart Fail 2019; 22:884-892. [PMID: 31863561 DOI: 10.1002/ejhf.1700] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
AIMS The study assessed 4-year outcomes of intramyocardial injections of autologous bone marrow-derived mesenchymal stromal cells (MSCs) in patients with ischaemic heart failure. METHODS AND RESULTS The MSC-HF trial was a randomized, double-blind, placebo-controlled trial. Patients were randomized 2:1 to intramyocardial injections of MSCs or placebo. The primary endpoint was change in left ventricular end-systolic volume (LVESV), measured by magnetic resonance imaging or computed tomography. Sixty patients aged 30-80 years with ischaemic heart failure, New York Heart Association class II-III, left ventricular ejection fraction (LVEF) <45% and no further treatment options were randomized. Patients were followed clinically for 12 months and in addition 4-year data of hospitalizations and survival were retrieved. After 12 months, LVESV was significantly reduced in the MSC group and not in the placebo group, with difference between groups of 17.0 ± 16.2 mL (95% confidence interval 8.3-25.7, P = 0.0002). There were also significant improvements in LVEF of 6.2% (P < 0.0001), stroke volume of 16.1 mL (P < 0.0001) and myocardial mass (P = 0.009) between groups. A significant dose-response effect was also observed. Moreover, a significant reduction in the amount of scar tissue and quality of life score in the MSC group but not in the placebo group was observed. After 4 years, there were significantly fewer hospitalizations for angina in the MSC group and otherwise no differences in hospitalizations or survival. No side effects were identified. CONCLUSIONS Intramyocardial injections of autologous bone marrow-derived MSCs improved myocardial function and myocardial mass in patients with ischaemic heart failure.
Collapse
Affiliation(s)
- Anders B Mathiasen
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Abbas A Qayyum
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Klaus F Kofoed
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiac Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annette Ekblond
- Cardiac Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Rockel JS, Rabani R, Viswanathan S. Anti-fibrotic mechanisms of exogenously-expanded mesenchymal stromal cells for fibrotic diseases. Semin Cell Dev Biol 2019; 101:87-103. [PMID: 31757583 DOI: 10.1016/j.semcdb.2019.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
Most chronic diseases involving inflammation have a fibrotic component that involves remodeling and excess accumulation of extracellular matrix components. Left unchecked, fibrosis leads to organ failure and death. Mesenchymal stromal cells (MSCs) are emerging as a potent cell-based therapy for a wide spectrum of fibrotic conditions due to their immunomodulatory, anti-inflammatory and anti-fibrotic properties. This review provides an overview of known mechanisms by which MSCs mediate their anti-fibrotic actions and in relation to animal models of pulmonary, liver, renal and cardiac fibrosis. Recent MSC clinical trials results in liver, lung, skin, kidney and hearts are discussed and next steps for future MSC-based therapies including pre-activated or genetically-modified cells, or extracellular vesicles are also considered.
Collapse
Affiliation(s)
- Jason S Rockel
- Arthritis Program, University Health Network, Toronto, ON, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| | - Razieh Rabani
- Arthritis Program, University Health Network, Toronto, ON, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sowmya Viswanathan
- Arthritis Program, University Health Network, Toronto, ON, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada; Division of Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Qayyum AA, Mathiasen AB, Helqvist S, Jørgensen E, Haack-Sørensen M, Ekblond A, Kastrup J. Autologous adipose-derived stromal cell treatment for patients with refractory angina (MyStromalCell Trial): 3-years follow-up results. J Transl Med 2019; 17:360. [PMID: 31711513 PMCID: PMC6849216 DOI: 10.1186/s12967-019-2110-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/26/2019] [Indexed: 12/15/2022] Open
Abstract
Background Stem cell therapy is investigated as a treatment option for patients with ischemic heart disease. In this study, long-term safety and efficacy of autologous intra-myocardial injections of adipose-derived stromal cells (ASCs) was studied in patients with refractory angina. Methods Sixty patients with coronary artery stenosis and preserved left ventricular ejection fraction were 2:1 randomised to intramyocardial injections of ASCs or saline and followed for 3 years. Results For patients in the ASC group, the bicycle exercise time and the exercise performance in watt were un-changed (383 ± 30 s to 370 ± 44 s, P = 0.052 and 81 ± 6 to 78 ± 10, P = 0.123, respectively), but the performance in METs was reduced significantly (4.2 ± 0.3 to 4.0 ± 0.4, P = 0.027) during the follow-up period. However, in the same period, there was in the placebo group a significant decline in bicycle exercise time (437 ± 53 s to 383 ± 58 s, P = 0.001), the exercise performance measured in watt (87 ± 12 W to 80 ± 12 W, P = 0.019) and in METs (4.5 ± 0.4 to 4.1 ± 0.4, P = 0.002). Moreover, angina measured as CCS class was significantly reduced in the ASC group but not in the placebo group (2.5 ± 0.9 to 1.8 ± 1.2, P = 0.002 and 2.5 ± 0.8 to 2.1 ± 1.3, P = 0.186, respectively). However, no significant change was observed between the two groups. Conclusions Patients receiving ASCs had improved cardiac symptoms and unchanged exercise capacity, in opposition to deterioration in the placebo group. Trial registration ClinicalTrials.gov Identifier: NCT01449032. Registered 7 October 2011—Retrospectively registered, https://www.clinicaltrials.gov/ct2/show/NCT01449032?term=jens+kastrup&rank=7
Collapse
Affiliation(s)
- Abbas Ali Qayyum
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, Rigshospitalet University of Copenhagen, Inge Lehmanns Vej 7, 2100, Copenhagen, Denmark.
| | - Anders Bruun Mathiasen
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, Rigshospitalet University of Copenhagen, Inge Lehmanns Vej 7, 2100, Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, Rigshospitalet University of Copenhagen, Inge Lehmanns Vej 7, 2100, Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology, Gentofte University of Copenhagen, Kildegårdsvej 28, 2900, Hellerup, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre 9302, Rigshospitalet University of Copenhagen, Henrik Harpestrengsvej 4C, 2100, Copenhagen, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre 9302, Rigshospitalet University of Copenhagen, Henrik Harpestrengsvej 4C, 2100, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, Rigshospitalet University of Copenhagen, Inge Lehmanns Vej 7, 2100, Copenhagen, Denmark.,Cardiology Stem Cell Centre 9302, Rigshospitalet University of Copenhagen, Henrik Harpestrengsvej 4C, 2100, Copenhagen, Denmark
| |
Collapse
|
27
|
Qayyum AA, Mathiasen AB, Mygind ND, Vejlstrup NG, Kastrup J. Cardiac Magnetic Resonance Imaging used for Evaluation of Adipose-Derived Stromal Cell Therapy in Patients with Chronic Ischemic Heart Disease. Cell Transplant 2019; 28:1700-1708. [PMID: 31698917 PMCID: PMC6923551 DOI: 10.1177/0963689719883592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adipose-derived stromal cell (ASC) therapy is currently investigated as a new treatment
option for patients with ischemic heart disease (IHD). The aim of this study was to
evaluate the effect of ASC therapy in patients with chronic IHD measuring myocardial
perfusion and cardiac function using cardiac magnetic resonance imaging (CMRI). Patients
were included in MyStromalCell trial, a phase II, randomized, double-blinded,
placebo-controlled study investigated the effect of ASCs in patients with chronic IHD with
preserved left ventricular ejection fraction (LVEF). In total, 41 of 60 patients underwent
cine, late enhancement, rest and stress imaging with CMRI. There was a non-significant
difference between stress and rest values in maximal signal intensity, a measure of
myocardial perfusion, from baseline to follow-up comparing placebo with ASC group (–52.52
± 88.61 and 3.05 ± 63.17, p = 0.061, respectively). LVEF, myocardial
mass, stroke volume, left ventricle end-diastolic volume and end-systolic volume changed
non-significantly (–0.5 ± 4.7%, –3.5 ± 13.1 g, –0.7 ± 8.6 mL, 1.9 ± 25.1 mL and 2.6 ± 16.5
mL, respectively) in the placebo group and in the ASC group (0.7 ± 8.6%, 0.9 ± 10.8 g,
–0.3 ± 26.1 mL, –3.0 ± 31.5 mL and –2.7 ± 20.4 mL, respectively) from baseline to 6 months
follow-up. The amount of scar tissue was unchanged in the placebo group by 0.0 ± 1.6 g,
p = 1.0 and in the ASC group with –0.3 ± 2.3 g, p =
0.540. There was no difference between the groups. There was a non-significant trend
toward increased myocardial perfusion but no significant changes in functional parameters
or amount of scar tissue in patients treated with ASCs compared with patients allocated
into the placebo group.
Collapse
Affiliation(s)
- Abbas Ali Qayyum
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | - Anders Bruun Mathiasen
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | - Naja Dam Mygind
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | - Niels Groove Vejlstrup
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, Rigshospitalet University of Copenhagen, Copenhagen, Denmark.,Cardiology Stem Cell Centre 9302, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Getova VE, van Dongen JA, Brouwer LA, Harmsen MC. Adipose tissue-derived ECM hydrogels and their use as 3D culture scaffold. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1693-1701. [PMID: 31062610 DOI: 10.1080/21691401.2019.1608215] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adipose tissue has the therapeutic capacity in the form of a fat graft, for example, for treatment of irradiation-induced scars and difficult to heal dermal wounds. For large-scale clinical application, an off-the-shelf product is warranted. In recent years, ECM-derived hydrogels are postulated to harbour therapeutic capacity and might even replicate the beneficial effects of adipose tissue. In normal homeostasis, the natural ECM acts as a deposit of growth factors, that releases them over time. In the healing of lesions, this might promote cell accumulation and proliferation which in turn stimulates angiogenesis and repair. The decellularization of tissue and the generation of hydrogels may leave cytotoxic traces. Therefore, our research assessed the cytotoxic effect of human adipose tissue-derived ECM hydrogels on connective tissue cells i.e. fibroblasts. The results showed no cytotoxicity, meaning the hydrogels caused no cell death. Cell migration and survival were observed when cultured in ECM hydrogels and followed for 7 days. Cell survival in the hydrogel was confirmed with CFDA staining and also cells showed the ability to penetrate and migrate throughout the gel. We conclude that ECM hydrogels are promising to use as innovative therapy for wound healing.
Collapse
Affiliation(s)
- Vasilena E Getova
- a Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Joris A van Dongen
- a Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , the Netherlands.,b Department of Plastic Surgery, University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Linda A Brouwer
- a Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Martin C Harmsen
- a Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| |
Collapse
|
29
|
Li X, Ma T, Sun J, Shen M, Xue X, Chen Y, Zhang Z. Harnessing the secretome of adipose-derived stem cells in the treatment of ischemic heart diseases. Stem Cell Res Ther 2019; 10:196. [PMID: 31248452 PMCID: PMC6598280 DOI: 10.1186/s13287-019-1289-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are promising therapeutic cells for ischemic heart diseases, due to the ease and efficiency of acquisition, the potential of myocardial lineage differentiation, and the paracrine effects. Recently, many researchers have claimed that the ASC-based myocardial repair is mainly attributed to its paracrine effects, including the anti-apoptosis, pro-angiogenesis, anti-inflammation effects, and the inhibition of fibrosis, rather than the direct differentiation into cardiovascular lineage cells. However, the usage of ASCs comes with the problems of low cardiac retention and survival after transplantation, like other stem cells, which compromises the effectiveness of the therapy. To overcome these drawbacks, researchers have proposed various strategies for improving survival rate and ensuring sustained paracrine secretion. They also investigated the safety and efficacy of phase I and II clinical trials of ASC-based therapy for cardiovascular diseases. In this review, we will discuss the characterization and paracrine effects of ASCs on myocardial repair, followed by the strategies for stimulating the paracrine secretion of ASCs, and finally their clinical usage.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Teng Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Jiacheng Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Mingjing Shen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Xiang Xue
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China.
| | - Zhiwei Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China.
| |
Collapse
|
30
|
Chu DT, Nguyen Thi Phuong T, Tien NLB, Tran DK, Minh LB, Thanh VV, Gia Anh P, Pham VH, Thi Nga V. Adipose Tissue Stem Cells for Therapy: An Update on the Progress of Isolation, Culture, Storage, and Clinical Application. J Clin Med 2019; 8:E917. [PMID: 31247996 PMCID: PMC6678927 DOI: 10.3390/jcm8070917] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue stem cells (ASCs), known as multipotent stem cells, are most commonly used in the clinical applications in recent years. Adipose tissues (AT) have the advantage in the harvesting, isolation, and expansion of ASCs, especially an abundant amount of stem cells compared to bone marrow. ASCs can be found in stromal vascular fractions (SVF) which are easily obtained from the dissociation of adipose tissue. Both SVFs and culture-expanded ASCs exhibit the stem cell characteristics such as differentiation into multiple cell types, regeneration, and immune regulators. Therefore, SVFs and ASCs have been researched to evaluate the safety and benefits for human use. In fact, the number of clinical trials on ASCs is going to increase by years; however, most trials are in phase I and II, and lack phase III and IV. This systemic review highlights and updates the process of the harvesting, characteristics, isolation, culture, storage, and application of ASCs, as well as provides further directions on the therapeutic use of ASCs.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Dang Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam
| | - Le Bui Minh
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Pham Gia Anh
- Oncology Department, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Vu Thi Nga
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam.
| |
Collapse
|
31
|
Stromal Vascular Fraction Cell Therapy for a Stroke Patient-Cure without Side Effects. Brain Sci 2019; 9:brainsci9030055. [PMID: 30845656 PMCID: PMC6468905 DOI: 10.3390/brainsci9030055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/23/2022] Open
Abstract
A 48-year-old male, who suffered from a stroke resulting in cerebellum damage and occlusion of the left vertebral artery, underwent stromal vascular fraction therapy. The clinical status of the patient was monitored by a modified Stroke Specific Quality of Life Scale before therapy and at 3, 9, 12, 18, 24, and 32 months after therapy. Three months after therapy, the patient felt a reduction in pain, vertigo, and fatigue. After 9 months, he was able to walk safely on his own. After 24 months, he was able to ride a bicycle. After 32 months, he felt completely healthy without any limitations or handicaps. Therefore, intravenous application of stromal vascular fraction cells represents a promising strategy for the treatment of patients after a stroke.
Collapse
|
32
|
Paitazoglou C, Bergmann MW, Vrtovec B, Chamuleau SAJ, van Klarenbosch B, Wojakowski W, Michalewska-Włudarczyk A, Gyöngyösi M, Ekblond A, Haack-Sørensen M, Jaquet K, Vrangbaek K, Kastrup J. Rationale and design of the European multicentre study on Stem Cell therapy in IschEmic Non-treatable Cardiac diseasE (SCIENCE). Eur J Heart Fail 2019; 21:1032-1041. [PMID: 30790396 PMCID: PMC6774320 DOI: 10.1002/ejhf.1412] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/11/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022] Open
Abstract
AIMS Ischaemic heart failure (IHF) patients have a poor prognosis even with current guideline-derived therapy. Intramyocardial injections of autologous or allogeneic mesenchymal stromal cells might improve cardiac function leading to better clinical outcome. METHODS The SCIENCE (Stem Cell therapy in IschEmic Non-treatable Cardiac diseasE) consortium has initiated a Horizon 2020 funded multicentre phase II study in six European countries. It is a double-blind, placebo-controlled trial testing the safety and efficacy of allogeneic Cardiology Stem Cell Centre Adipose-derived Stromal Cells (CSCC_ASC) from healthy donors or placebo in 138 symptomatic IHF patients. Main inclusion criteria are New York Heart Association class II-III, left ventricular ejection fraction < 45% and N-terminal pro-B-type natriuretic peptide levels > 300 pg/mL. Patients are randomized in a 2:1 pattern to receive intramyocardial injections of either CSCC_ASC or placebo. CSCC_ASC and placebo treatments are prepared centralized at Rigshospitalet in 5 mL vials as an off-the-shelf product. Vials are distributed to all clinical partners and stored in nitrogen vapour tanks ready to be used directly after thawing. A total of 100 × 106 CSCC_ASC or placebo are injected directly into viable myocardium in the infarct border zone using the NOGA XP system (BDS, Cordis, Johnson & Johnson, USA). Primary endpoint is a centralized core-laboratory assessed change in left ventricular end-systolic volume at 6-month follow-up measured by echocardiography. The trial started in January 2017, 58 patients were included and treated until July 2018. CONCLUSION The SCIENCE trial will provide clinical data on efficacy and safety of intramyocardial cell therapy of allogeneic adipose-derived stromal cells from healthy donors in patients with IHF.
Collapse
Affiliation(s)
| | | | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Steven A J Chamuleau
- Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bas van Klarenbosch
- Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wojtek Wojakowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | | | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Annette Ekblond
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | - Kai Jaquet
- Department of Cardiology, Asklepios Klinik St. Georg, Hamburg, Germany
| | - Karsten Vrangbaek
- Faculty of Social Sciences and the Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology and Cardiology Stem Cell Centre, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
33
|
Michalek J, Vrablikova A, Darinskas A, Lukac L, Prucha J, Skopalik J, Travnik J, Cibulka M, Dudasova Z. Stromal vascular fraction cell therapy for osteoarthritis in elderly: Multicenter case-control study. J Clin Orthop Trauma 2019; 10:76-80. [PMID: 30705536 PMCID: PMC6349628 DOI: 10.1016/j.jcot.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jaroslav Michalek
- Internal Consortium for Cell Therapy and Immunotherapy, Brno, Czech Republic
- Cellthera Clinic, Brno, Czech Republic
- Department of Pediatrics, University Hospital Brno, Brno, Czech Republic
| | | | - Adas Darinskas
- Internal Consortium for Cell Therapy and Immunotherapy, Brno, Czech Republic
- Department of Pharmacology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Jaroslav Prucha
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Josef Skopalik
- Cellthera Clinic, Brno, Czech Republic
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jan Travnik
- Cellthera Clinic, Brno, Czech Republic
- Department of Orthopedics, Traumatology Hospital, Brno, Czech Republic
| | | | - Zuzana Dudasova
- Internal Consortium for Cell Therapy and Immunotherapy, Brno, Czech Republic
- Cellthera Clinic, Brno, Czech Republic
| |
Collapse
|
34
|
Cell-Based Therapies for Cardiac Regeneration: A Comprehensive Review of Past and Ongoing Strategies. Int J Mol Sci 2018; 19:ijms19103194. [PMID: 30332812 PMCID: PMC6214096 DOI: 10.3390/ijms19103194] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/20/2022] Open
Abstract
Despite considerable improvements in the treatment of cardiovascular diseases, heart failure (HF) still represents one of the leading causes of death worldwide. Poor prognosis is mostly due to the limited regenerative capacity of the adult human heart, which ultimately leads to left ventricular dysfunction. As a consequence, heart transplantation is virtually the only alternative for many patients. Therefore, novel regenerative approaches are extremely needed, and several attempts have been performed to improve HF patients’ clinical conditions by promoting the replacement of the lost cardiomyocytes and by activating cardiac repair. In particular, cell-based therapies have been shown to possess a great potential for cardiac regeneration. Different cell types have been extensively tested in clinical trials, demonstrating consistent safety results. However, heterogeneous efficacy data have been reported, probably because precise end-points still need to be clearly defined. Moreover, the principal mechanism responsible for these beneficial effects seems to be the paracrine release of antiapoptotic and immunomodulatory molecules from the injected cells. This review covers past and state-of-the-art strategies in cell-based heart regeneration, highlighting the advantages, challenges, and limitations of each approach.
Collapse
|
35
|
The use of stem cells in ischemic heart disease treatment. POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2018; 15:196-199. [PMID: 30310400 PMCID: PMC6180025 DOI: 10.5114/kitp.2018.78446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 11/22/2022]
Abstract
Ischemic heart disease is a major cause of death and disabilities worldwide. Unfortunately, not all patients are suitable for direct revascularization. Cell-based therapies may be alternative options because of their potential to promote neovascularisation and endothelial repair, improving myocardial perfusion. The success of cell-based therapies depends on the type of implanted stem cells, delivery method and underlying disease. Several different cell populations including bone marrow-derived mononuclear cells (MNCs), mesenchymal stromal cells (MSCs), CD34+, CD133+, endothelial progenitor cells, adipose-derived mesenchymal stromal cells (ASCs) and stem cells from placenta and umbilical cord have been investigated. Presently, no consensus exists about the best cell type for clinical regenerative therapy. Because the system of coronary arteries in the ischemic area is poor and most of the coronary artery is significantly narrowed or closed, direct implantation of stem cells in the ischemic area of the heart muscle appears an attractive method.
Collapse
|
36
|
Kobayashi K, Suzuki K. Mesenchymal Stem/Stromal Cell-Based Therapy for Heart Failure ― What Is the Best Source? ―. Circ J 2018; 82:2222-2232. [DOI: 10.1253/circj.cj-18-0786] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuya Kobayashi
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London
| | - Ken Suzuki
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London
| |
Collapse
|
37
|
Bagno L, Hatzistergos KE, Balkan W, Hare JM. Mesenchymal Stem Cell-Based Therapy for Cardiovascular Disease: Progress and Challenges. Mol Ther 2018; 26:1610-1623. [PMID: 29807782 DOI: 10.1016/j.ymthe.2018.05.009] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Administration of mesenchymal stem cells (MSCs) to diseased hearts improves cardiac function and reduces scar size. These effects occur via the stimulation of endogenous repair mechanisms, including regulation of immune responses, tissue perfusion, inhibition of fibrosis, and proliferation of resident cardiac cells, although rare events of transdifferentiation into cardiomyocytes and vascular components are also described in animal models. While these improvements demonstrate the potential of stem cell therapy, the goal of full cardiac recovery has yet to be realized in either preclinical or clinical studies. To reach this goal, novel cell-based therapeutic approaches are needed. Ongoing studies include cell combinations, incorporation of MSCs into biomaterials, or pre-conditioning or genetic manipulation of MSCs to boost their release of paracrine factors, such as exosomes, growth factors, microRNAs, etc. All of these approaches can augment therapeutic efficacy. Further study of the optimal route of administration, the correct dose, the best cell population(s), and timing for treatment are parameters that still need to be addressed in order to achieve the goal of complete cardiac regeneration. Despite significant progress, many challenges remain.
Collapse
Affiliation(s)
- Luiza Bagno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|