1
|
Miceli V, Zito G, Bulati M, Gallo A, Busà R, Iannolo G, Conaldi PG. Different priming strategies improve distinct therapeutic capabilities of mesenchymal stromal/stem cells: Potential implications for their clinical use. World J Stem Cells 2023; 15:400-420. [PMID: 37342218 PMCID: PMC10277962 DOI: 10.4252/wjsc.v15.i5.400] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have shown significant therapeutic potential, and have therefore been extensively investigated in preclinical studies of regenerative medicine. However, while MSCs have been shown to be safe as a cellular treatment, they have usually been therapeutically ineffective in human diseases. In fact, in many clinical trials it has been shown that MSCs have moderate or poor efficacy. This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs. Recently, specific priming strategies have been used to improve the therapeutic properties of MSCs. In this review, we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs. We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes. Particularly, while hypoxic priming can be used primarily for the treatment of acute diseases, inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders. The shift in approach from regeneration to inflammation implies, in MSCs, a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways. The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their therapeutic potential.
Collapse
Affiliation(s)
- Vitale Miceli
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy.
| | - Giovanni Zito
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Matteo Bulati
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Alessia Gallo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Rosalia Busà
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Gioacchin Iannolo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo 90127, Italy
| |
Collapse
|
2
|
Mabotuwana NS, Rech L, Lim J, Hardy SA, Murtha LA, Rainer PP, Boyle AJ. Paracrine Factors Released by Stem Cells of Mesenchymal Origin and their Effects in Cardiovascular Disease: A Systematic Review of Pre-clinical Studies. Stem Cell Rev Rep 2022; 18:2606-2628. [PMID: 35896860 PMCID: PMC9622561 DOI: 10.1007/s12015-022-10429-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem cell (MSC) therapy has gained significant traction in the context of cardiovascular repair, and have been proposed to exert their regenerative effects via the secretion of paracrine factors. In this systematic review, we examined the literature and consolidated available evidence for the "paracrine hypothesis". Two Ovid SP databases were searched using a strategy encompassing paracrine mediated MSC therapy in the context of ischemic heart disease. This yielded 86 articles which met the selection criteria for inclusion in this study. We found that the MSCs utilized in these articles were primarily derived from bone marrow, cardiac tissue, and adipose tissue. We identified 234 individual protective factors across these studies, including VEGF, HGF, and FGF2; which are proposed to exert their effects in a paracrine manner. The data collated in this systematic review identifies secreted paracrine factors that could decrease apoptosis, and increase angiogenesis, cell proliferation, and cell viability. These included studies have also demonstrated that the administration of MSCs and indirectly, their secreted factors can reduce infarct size, and improve left ventricular ejection fraction, contractility, compliance, and vessel density. Furthering our understanding of the way these factors mediate repair could lead to the identification of therapeutic targets for cardiac regeneration.
Collapse
Affiliation(s)
- Nishani S Mabotuwana
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Lavinia Rech
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
- Department of Cardiac Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joyce Lim
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Sean A Hardy
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Lucy A Murtha
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
| | - Peter P Rainer
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Andrew J Boyle
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia.
- Department of Cardiovascular Medicine, John Hunter Hospital, Newcastle, NSW, Australia.
| |
Collapse
|
3
|
Huang J, U KP, Yang F, Ji Z, Lin J, Weng Z, Tsang LL, Merson TD, Ruan YC, Wan C, Li G, Jiang X. Human pluripotent stem cell-derived ectomesenchymal stromal cells promote more robust functional recovery than umbilical cord-derived mesenchymal stromal cells after hypoxic-ischaemic brain damage. Am J Cancer Res 2022; 12:143-166. [PMID: 34987639 PMCID: PMC8690936 DOI: 10.7150/thno.57234] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Aims: Hypoxic-ischaemic encephalopathy (HIE) is one of the most serious complications in neonates and infants. Mesenchymal stromal cell (MSC)-based therapy is emerging as a promising treatment avenue for HIE. However, despite its enormous potential, the clinical application of MSCs is limited by cell heterogeneity, low isolation efficiency and unpredictable effectiveness. In this study, we examined the therapeutic effects and underlying mechanisms of human pluripotent stem cell-derived ectomesenchymal stromal cells (hPSC-EMSCs) in a rat model of HIE. Methods: hPSC-EMSCs were induced from either human embryonic stem cells or induced pluripotent stem cells. Stem cells or the conditioned medium (CM) derived from stem cells were delivered intracranially or intranasally to neonatal rats with HIE. Human umbilical cord-derived MSCs (hUC-MSCs) were used as the therapeutic comparison control and phosphate-buffered saline (PBS) was used as a negative control. Lesion size, apoptosis, neurogenesis, astrogliosis and microgliosis were evaluated. The rotarod test and Morris water maze were used to determine brain functional recovery. The PC-12 cell line, rat primary cortical neurons and neural progenitor cells were used to evaluate neurite outgrowth and the neuroprotective and neurogenesis effects of hPSC-EMSCs/hUC-MSCs. RNA-seq and enzyme-linked immunosorbent assays were used to determine the secretory factors that were differentially expressed between hPSC-EMSCs and hUC-MSCs. The activation and suppression of extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) were characterised using western blotting and immunofluorescent staining. Results: hPSC-EMSCs showed a higher neuroprotective potential than hUC-MSCs, as demonstrated by a more significant reduction in lesion size and apoptosis in the rat brain following hypoxia-ischaemia (HI). Compared with PBS treatment, hPSC-EMSCs promoted endogenous neurogenesis and alleviated astrogliosis and microgliosis. hPSC-EMSCs were more effective than hUC-MSCs. hPSC-EMSCs achieved a greater recovery of brain function than hUC-MSCs and PBS in rats with HIE. CM derived from hPSC-EMSCs had neuroprotective and neurorestorative effects in vitro through anti-apoptotic and neurite outgrowth- and neurogenesis-promoting effects. Direct comparisons between hPSC-EMSCs and hUC-MSCs revealed the significant enrichment of a group of secretory factors in hPSC-EMSCs, including nerve growth factor (NGF), platelet-derived growth factor-AA and transforming growth factor-β2, which are involved in neurogenesis, synaptic transmission and neurotransmitter transport, respectively. Mechanistically, the CM derived from hPSC-EMSCs was found to potentiate NGF-induced neurite outgrowth and the neuronal differentiation of NPCs via the ERK/CREB pathway. Suppression of ERK or CREB abolished CM-potentiated neuritogenesis and neuronal differentiation. Finally, intranasal delivery of the CM derived from hPSC-EMSCs significantly reduced brain lesion size, promoted endogenous neurogenesis, mitigated inflammatory responses and improved functional recovery in rats with HIE. Conclusion: hPSC-EMSCs promote functional recovery after HI through multifaceted neuromodulatory activities via paracrine/trophic mechanisms. We propose the use of hPSC-EMSCs for the treatment of HIE, as they offer an excellent unlimited cellular source of MSCs.
Collapse
|
4
|
Hendrawan S, Kusnadi Y, Lagonda CA, Fauza D, Lheman J, Budi E, Manurung BS, Baer HU, Tansil Tan S. Wound healing potential of human umbilical cord mesenchymal stem cell conditioned medium: An in vitro and in vivo study in diabetes-induced rats. Vet World 2021; 14:2109-2117. [PMID: 34566328 PMCID: PMC8448625 DOI: 10.14202/vetworld.2021.2109-2117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Aim: Human umbilical cord mesenchymal stem cells (hUC-MSCs) and its conditioned medium (CM) promote wound healing. This study investigated the wound healing potential of hUC-MSC CM in vitro and in vivo using diabetic animal models. Materials and Methods: The CM from hUC-MSC CM prepared under hypoxic conditions (hypoxic hUC-MSC) was evaluated for stimulating rat fibroblast growth, collagen production (in vitro), and wound healing in animal models (in vivo). An excision wound on the dorsal side of the diabetes-induced rats was established, and the rats were randomly divided into non-treatment, antibiotic, and hypoxic hUC-MSC CM groups. The cell number of fibroblasts and collagen secretion was evaluated and compared among the groups in an in vitro study. By contrast, wound size reduction, width of re-epithelialization, and the collagen formation area were assessed and compared among the groups in an in vivo study. Results: CM under hypoxic conditions contained a higher concentration of wound healing-related growth factors. Hypoxic hUC-MSC CM could facilitate fibroblast cell growth and collagen synthesis, although not significant compared with the control group. Re-epithelialization and collagen production were higher in the hUC-MSC CM group than in the antibiotic and non-treatment groups. Conclusion: Hypoxic hUC-MSC CM possessed more positive effects on the wound healing process based on re-epithelialization and collagen formation than antibiotic treatment did.
Collapse
Affiliation(s)
- Siufui Hendrawan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, 11440, Jakarta, Indonesia.,Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Yuyus Kusnadi
- Stem Cell Division, Stem Cell and Cancer Institute, PT. Kalbe Farma, Tbk., 10510, Jakarta, Indonesia
| | - Christine Ayu Lagonda
- Stem Cell Division, Stem Cell and Cancer Institute, PT. Kalbe Farma, Tbk., 10510, Jakarta, Indonesia
| | - Dilafitria Fauza
- Stem Cell Division, Stem Cell and Cancer Institute, PT. Kalbe Farma, Tbk., 10510, Jakarta, Indonesia
| | - Jennifer Lheman
- Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Erwin Budi
- Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Brian Saputra Manurung
- Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Hans Ulrich Baer
- Baermed, Centre of Abdominal Surgery, Hirslanden Clinic, 2501, Zürich, Switzerland.,Department of Visceral and Transplantation Surgery, University of Bern, 3012, Bern, Switzerland
| | - Sukmawati Tansil Tan
- Department of Dermatovenereology, Faculty of Medicine, Tarumanagara University, 11440, Jakarta, Indonesia
| |
Collapse
|
5
|
Hernández-Morales J, Hernández-Coronado CG, Guzmán A, Zamora-Gutiérrez D, Fierro F, Gutiérrez CG, Rosales-Torres AM. Hypoxia up-regulates VEGF ligand and downregulates VEGF soluble receptor mRNA expression in bovine granulosa cells in vitro. Theriogenology 2021; 165:76-83. [PMID: 33640589 DOI: 10.1016/j.theriogenology.2021.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 11/29/2022]
Abstract
Oxygen concentration (02) in antral ovarian follicles is below that found in most tissues, which is important for adequate granulosa cell function. The VEGF system is linked to angiogenesis and responds to changing 02 by stimulating neovascularization when levels are low. However, in the avascular granulosa cell layer of the follicle, VEGF action is directed to stimulating cell viability and steroidogenesis. The aim of this study was to examine the effect of 02 concentration on granulosa cell expression of the VEGF-system components. Bovine granulosa cells were isolated from medium-sized follicles (4-7 mm in diameter), placed in McCoy 5a medium supplemented with 10 ng/mL of insulin, 1 ng/mL of IGF-I, and 1 ng/mL of FSH, and cultured in four well plates (500 thousand cells per well), on three separate occasions. Culture plates were placed in gas-impermeable jars with a gas mixture containing either 2%, or 5% of O2, or under atmospheric air condition inside an incubator (20% of 02). Media was replaced at 48 h of culture and cells from the plate in each oxygen concentration were pooled for RNA extraction after 96 h. The number of mRNA copies for the VEGF-system components - including ligands (VEGF120, VEGF120b, VEGF165 and VEGF165b), enzymes (cyclin-dependent like kinases-1, CLK1 and serine-arginine protein kinase 1, SRPK1), splicing factors (serine-arginine-rich splicing factors, SRSF1 and SRSF6), and the membrane-bound (VEGFR1, VEGFR2) and soluble forms of the receptors (sVEGFR1 and sVEGFR2) were quantified by qPCR. Granulosa cells cultured with low 02 (2%) had a higher expression of VEGF ligands (P < 0.05) when compared to cells cultured at 20% 02. VEGF164b mRNA was absent in granulosa cells from all culture conditions. The 2 and 5% 02 levels, which coincide with physiological concentrations, in the ovarian follicle, induced higher SRSF6 expression than atmospheric 02 concentrations (20%, P < 0.05). In contrast, mRNA copies for SRPK1, CLK1, SRSF1, VEGFR1 or VEGFR2 did not differ between 02 culture conditions. (P > 0.05). Nonetheless, mRNA copies for the soluble receptors, sVEGFR1 and sVEGFR2, linearly increased (P < 0.05) with 02 concentration. These results suggest that when cultured under hypoxic conditions, granulosa cells may develop an autocrine milieu that favors VEGF's biological effects on their survival and function.
Collapse
Affiliation(s)
- Jahdai Hernández-Morales
- División de Ciencias Biológicas y de la Salud, Estudiante de Maestría en Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| | - Cyndi G Hernández-Coronado
- Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia, Ciudad de México, Mexico
| | - Adrian Guzmán
- Departamento Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico
| | - Diana Zamora-Gutiérrez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico
| | - Francisco Fierro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico
| | - Carlos G Gutiérrez
- Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia, Ciudad de México, Mexico
| | - Ana Ma Rosales-Torres
- Departamento Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Costa MHG, Serra J, McDevitt TC, Cabral JMS, da Silva CL, Ferreira FC. Dimethyloxalylglycine, a small molecule, synergistically increases the homing and angiogenic properties of human mesenchymal stromal cells when cultured as 3D spheroids. Biotechnol J 2021; 16:e2000389. [PMID: 33471965 DOI: 10.1002/biot.202000389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Strategies aiming at increasing the survival and paracrine activity of human mesenchymal stromal cells (MSCs) are of utmost importance to achieve the full therapeutic potential of these cells. Herein, we propose both physical and biochemical strategies to enhance the survival, homing, angiogenic, and immunomodulatory properties of MSCs in vitro. To that purpose, we compared the effect of exposing either 2D monolayer or 3D spheroids of MSCs to (i) hypoxia (2% O2 ) or to (ii) a hypoxic-mimetic small molecule, dimethyloxalylglycine (DMOG), with cells cultured at 21% O2 . 3D-cultured MSC spheroids evidenced higher survival upon exposure to oxidative stress and expressed higher levels of factors involved in tissue repair processes, namely tumor necrosis factor-stimulated gene-6, matrix metalloproteinase-2, and vascular endothelial growth factor. MSCs cultured as 3D spheroids and further exposed to hypoxia or hypoxic-mimetic conditions provided by DMOG synergistically favored the expression of the cell surface marker C-X-C chemokine receptor type-4, involved in homing processes to injured tissues, and adhesion to extracellular matrix components as fibronectin. These results highlight the role of ex vivo preconditioning approaches, presenting a novel strategy that combine biochemical stimuli with 3D spheroid organization of MSCs to maximize their tissue regeneration potential.
Collapse
Affiliation(s)
- Marta H G Costa
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Serra
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Todd C McDevitt
- Gladstone Institutes, San Francisco, California, USA.,Department of Bioengineering & Therapeutic Sciences, University of California - San Francisco, San Francisco, California, USA
| | - Joaquim M S Cabral
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Naskou MC, Sumner S, Berezny A, Copland IB, Peroni JF. Fibrinogen-Depleted Equine Platelet Lysate Affects the Characteristics and Functionality of Mesenchymal Stem Cells. Stem Cells Dev 2020; 28:1572-1580. [PMID: 31637965 DOI: 10.1089/scd.2019.0070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fetal bovine serum (FBS) is widely used to culture mesenchymal stem cells (MSCs) in the laboratory; however, FBS has been linked to adverse immune-mediated reactions prompting the search for alternative cell culture medium. Platelet lysate (PL) as an FBS substitute has been shown to promote MSCs growth without compromising their functionality. Fibrinogen contained in PL has been shown to negatively impact the immune modulating properties of MSCs; therefore, we sought to deplete fibrinogen from PL and compare proliferation, viability, and immunomodulatory capacities of MSCs in FBS or PL without fibrinogen. We depleted fibrinogen from equine platelet lysate (ePL) and measured platelet-derived growth factor-beta (PDGF-β), transforming growth factor-beta (TGF-β) and tumor necrosis factor-alpha (TNF-α) through ELISA. First, we determined the ability of 10% ePL or fibrinogen-depleted lysate (fdePL) compared with 10% FBS to suppress monocyte activation by measuring TNF-α from culture supernatants. We then evaluated proliferation, viability, and immunomodulatory characteristics of bone marrow-derived MSCs (BM-MSCs) cultured in FBS or ePL with or without fibrinogen. Growth factor concentrations decreased in ePL after fibrinogen depletion. Lipopolysaccharide (LPS)-stimulated monocytes exposed to ePL and fdePL produced less TNF-α than LPS-stimulated monocytes in 10% FBS. BM-MSCs cultured in fdePL exhibited lower proliferation rates, but similar viability compared with BM-MSCs in ePL. BM-MSCs in fdePL did not effectively suppress TNF-α expression from LPS-stimulated monocytes compared with BM-MSCs in FBS. Depleting fibrinogen results in a lysate that suppresses TNF-α expression from LPS-stimulated monocytes, but that does not support proliferation and immune-modulatory capacity of BM-MSCs as effectively as nondepleted lysate.
Collapse
Affiliation(s)
- Maria C Naskou
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Scarlett Sumner
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Alysha Berezny
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Ian B Copland
- Emory Personalized Immunotherapy Center [EPIC], Emory University School of Medicine, Atlanta, Georgia
| | - John F Peroni
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
8
|
Fu X, Xu B, Jiang J, Du X, Yu X, Yan Y, Li S, Inglis BM, Ma H, Wang H, Pei X, Si W. Effects of cryopreservation and long-term culture on biological characteristics and proteomic profiles of human umbilical cord-derived mesenchymal stem cells. Clin Proteomics 2020; 17:15. [PMID: 32489333 PMCID: PMC7247169 DOI: 10.1186/s12014-020-09279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human umbilical cord-derived MSCs (hUC-MSCs) have been identified as promising seeding cells in tissue engineering and clinical applications of regenerative medicine due to their advantages of simple acquisition procedure and the capability to come from a young tissue donor over the other MSCs sources. In clinical applications, large scale production is required and optimal cryopreservation and culture conditions are essential to autologous and allogeneic transplantation in the future. However, the influence of cryopreserved post-thaw and long-term culture on hUC-MSCs remains unknown, especially in terms of specific protein expression. Therefore, biological characteristics and proteomic profiles of hUC-MSCs after cryopreserving and long-term culturing were investigated. METHODS Firstly, hUC-MSCs were isolated from human umbilical cord tissues and identified through morphology, surface markers and tri-lineage differentiation potential at passage 3, and then the biological characteristics and proteomic profiles were detected and compared after cryopreserving and long-term culturing at passage 4 and continuously cultured to passage 10 with detection occurring here as well. The proteomic profiles were tested by using the isobaric tags for relative and absolute quantification (iTRAQ) labeling technique and differential protein were confirmed by mass spectrometry. RESULTS The results showed no significant differences in phenotypes including morphology, surface marker and tri-lineage differentiation potential but have obvious changes in translation level, which is involved in metabolism, cell cycle and other pathways. CONCLUSION This suggests that protein expression may be used as an indicator of hUC-MSCs security testing before applying in clinical settings, and it is also expected to provide the foundation or standardization guide of hUC-MSCs applications in regenerative medicine.
Collapse
Affiliation(s)
- Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Jiang Jiang
- Department of Obstetrics, The First People’s Hospital of Yunnan Province, Kunming, 650032 China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Xiaoli Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Yaping Yan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Shanshan Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Briauna Marie Inglis
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Hongyan Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| |
Collapse
|
9
|
Wang J, Zhang A, Li Y, Xu J, Huang F, Zhao M, Wu B, He S. Effect of intermittent hypoxia or hyperoxia on lung development in preterm rat neonates during constant oxygen therapy. J Cell Biochem 2019; 120:17545-17554. [PMID: 31245867 DOI: 10.1002/jcb.29019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Impaired lung development is a major negative factor in the survival of preterm neonates. The present study was aimed to investigate the impact of constant oxygen, intermittent hyperoxia, and hypoxia on the lung development in preterm rat neonates. Neonatal rats were exposed to 40% O2 with or without brief hyperoxia episodes (95% O2 ) or brief hypoxia episodes (10% O2 ) from day 0 to day 14, or to room air. The body weight, radical alveolar count (RAC), and total antioxidant capacity (TAOC) were significantly lower whereas the lung coefficient and malondialdehyde (MDA) were significantly higher in the hyperoxia and hypoxia groups than the air control and constant oxygen group at day 7, day 14, and day 21 after birth. The lung function indexes were reduced by intermittent hyperoxia and hypoxia. In contrast, the constant oxygen therapy increased the lung function. HIF-1α and VEGF expression were significantly increased by hypoxia and decreased by hyperoxia. The constant oxygen therapy only decreased the HIF-1α expression at day 14 and 21. In summary, the constant oxygen treatment promoted lung function without affecting the antioxidative capacity in preterm rat neonates. While intermittent hyperoxia and hypoxia inhibited lung development, decreased antioxidative capacity, and dysregulated HIF-1α/VEGF signaling in preterm rat neonates.
Collapse
Affiliation(s)
- Juanmei Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neonatology, Guangdong General Hospital, Guangzhou, Guangdong, China.,Department of Pediatrics, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Aimin Zhang
- Department of Pediatrics, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Yun Li
- Department of Pediatrics, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Jun Xu
- Department of Pediatrics, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Furong Huang
- Department of Pediatrics, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Menghua Zhao
- Department of Pediatrics, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Bufei Wu
- Department of Pediatrics, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Shaoru He
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neonatology, Guangdong General Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Environmental Benzopyrene Attenuates Stemness of Placenta-Derived Mesenchymal Stem Cells via Aryl Hydrocarbon Receptor. Stem Cells Int 2019; 2019:7414015. [PMID: 30766605 PMCID: PMC6350590 DOI: 10.1155/2019/7414015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/15/2018] [Accepted: 11/01/2018] [Indexed: 01/10/2023] Open
Abstract
The toxic effects of particulate matter have been linked to polycyclic aromatic hydrocarbons (PAHs) such as benzopyrene. PAHs are potent inducers of the aryl hydrocarbon receptor (AhR), which is an expressed nuclear receptor that senses environmental stimuli and modulates gene expression. Even though several studies have shown that the benzopyrene (BP) of chemical pollutants significantly impaired stem cell activity, the exact molecular mechanisms were not clearly elucidated. In the present study, we aimed to investigate the effects of BP on placenta-derived mesenchymal stem cells (PD-MSCs) in vitro. We found that the AhR in PD-MSCs was expressed under the treatment of BP, and its activation markedly disrupted osteogenic differentiation through the alteration of stemness activity of PD-MSCs. Moreover, BP treatment significantly reduced the proliferation activity of PD-MSCs and expression of pluripotent markers through the induction of AhR. Treatment with StemRegenin 1 (SR1), a purine derivative that antagonizes the AhR, effectively prevented BP-induced reduction of the proliferation and differentiation activity of PD-MSCs. In this study, we found that BP treatment in PD-MSCs markedly obstructs PD-MSC stemness through AhR signaling. Noteworthy, SR1-mediated MSC application will contribute to new perspectives on MSC-based therapies for air pollution-related bone diseases.
Collapse
|
11
|
Bahsoun S, Coopman K, Forsyth NR, Akam EC. The Role of Dissolved Oxygen Levels on Human Mesenchymal Stem Cell Culture Success, Regulatory Compliance, and Therapeutic Potential. Stem Cells Dev 2018; 27:1303-1321. [DOI: 10.1089/scd.2017.0291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Soukaina Bahsoun
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Karen Coopman
- Centre for Biological Engineering, Loughborough University, Loughborough, United Kingdom
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
| | - Elizabeth C. Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
12
|
De Berdt P, Bottemanne P, Bianco J, Alhouayek M, Diogenes A, Lloyd A, Llyod A, Gerardo-Nava J, Brook GA, Miron V, Muccioli GG, Rieux AD. Stem cells from human apical papilla decrease neuro-inflammation and stimulate oligodendrocyte progenitor differentiation via activin-A secretion. Cell Mol Life Sci 2018; 75:2843-2856. [PMID: 29417177 PMCID: PMC11105403 DOI: 10.1007/s00018-018-2764-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/08/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
Secondary damage following spinal cord injury leads to non-reversible lesions and hampering of the reparative process. The local production of pro-inflammatory cytokines such as TNF-α can exacerbate these events. Oligodendrocyte death also occurs, followed by progressive demyelination leading to significant tissue degeneration. Dental stem cells from human apical papilla (SCAP) can be easily obtained at the removal of an adult immature tooth. This offers a minimally invasive approach to re-use this tissue as a source of stem cells, as compared to biopsying neural tissue from a patient with a spinal cord injury. We assessed the potential of SCAP to exert neuroprotective effects by investigating two possible modes of action: modulation of neuro-inflammation and oligodendrocyte progenitor cell (OPC) differentiation. SCAP were co-cultured with LPS-activated microglia, LPS-activated rat spinal cord organotypic sections (SCOS), and LPS-activated co-cultures of SCOS and spinal cord adult OPC. We showed for the first time that SCAP can induce a reduction of TNF-α expression and secretion in inflamed spinal cord tissues and can stimulate OPC differentiation via activin-A secretion. This work underlines the potential therapeutic benefits of SCAP for spinal cord injury repair.
Collapse
Affiliation(s)
- Pauline De Berdt
- Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials (ADDB), Université Catholique de Louvain, Avenue E. Mounier 73, B1 73.12, 1200, Brussels, Belgium
| | - Pauline Bottemanne
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Université Catholique de Louvain, Avenue E. Mounier 73, B1 72.01, 1200, Brussels, Belgium
| | - John Bianco
- Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials (ADDB), Université Catholique de Louvain, Avenue E. Mounier 73, B1 73.12, 1200, Brussels, Belgium
| | - Mireille Alhouayek
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Université Catholique de Louvain, Avenue E. Mounier 73, B1 72.01, 1200, Brussels, Belgium
| | - Anibal Diogenes
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | - Amy Llyod
- MRC Center for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jose Gerardo-Nava
- Institute of Neuropathology, Uniklinik RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Gary A Brook
- Institute of Neuropathology, Uniklinik RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Véronique Miron
- MRC Center for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Giulio G Muccioli
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Université Catholique de Louvain, Avenue E. Mounier 73, B1 72.01, 1200, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials (ADDB), Université Catholique de Louvain, Avenue E. Mounier 73, B1 73.12, 1200, Brussels, Belgium.
| |
Collapse
|
13
|
van Rhijn-Brouwer FCC, Gremmels H, Fledderus JO, Verhaar MC. Mesenchymal Stromal Cell Characteristics and Regenerative Potential in Cardiovascular Disease: Implications for Cellular Therapy. Cell Transplant 2018; 27:765-785. [PMID: 29895169 PMCID: PMC6047272 DOI: 10.1177/0963689717738257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Administration of mesenchymal stromal cells (MSCs) is a promising strategy to treat cardiovascular disease (CVD). As progenitor cells may be negatively affected by both age and comorbidity, characterization of MSC function is important to guide decisions regarding use of allogeneic or autologous cells. Definitive answers on which factors affect MSC function can also aid in selecting which MSC donors would yield the most therapeutically efficacious MSCs. Here we provide a narrative review of MSC function in CVD based on a systematic search. A total of 41 studies examining CVD-related MSC (dys)function were identified. These data show that MSC characteristics and regenerative potential are often affected by CVD. However, studies presented conflicting results, and directed assessment of MSC parameters relevant to regenerative medicine applications was lacking in many studies. The predictive ability of in vitro assays for in vivo efficacy was rarely assessed. There was no correlation between quality of study reporting and study findings. Age mismatch was also not associated with study findings or effect size. Future research should focus on assays that assess regenerative potential in MSCs and parameters that relate to clinical success.
Collapse
Affiliation(s)
- F C C van Rhijn-Brouwer
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Gremmels
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J O Fledderus
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M C Verhaar
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
Liu X, Yu T, Sun Y, Wang H. Characterization of novel alternative splicing variants of Oct4 gene expressed in mouse pluripotent stem cells. J Cell Physiol 2018; 233:5468-5477. [PMID: 29266259 DOI: 10.1002/jcp.26411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/18/2017] [Indexed: 01/18/2023]
Abstract
Oct4 is an important transcription factor for maintaining self-renewal and pluripotency of pluripotent stem cells (PSCs). Human OCT4 can be alternatively spliced and generate OCT4a, OCT4b, and OCT4b1. In this study, we discovered the novel Oct4 variants of Oct4b' and Oct4b1-3 in mouse PSCs for the first time. The expression of Oct4b variants, especially for Oct4b', was down regulated along with the downregulation of Oct4a when stem cells were differentiated. We also found four Oct4 translational products that were differentially expressed in mouse PSCs under the different culture conditions. The constructs of Oct4b2 and Oct4b3 could be alternatively spliced into Oct4b and Oct4b' when constructs were transiently transfected in NIH3T3 cells. Oct4b' encoded a 189 aa protein, and Oct4b could generate three distinct proteins including Oct4b-246aa, Oct4b-221aa, and Oct4b-189aa. The Oct4b variants could be alternatively translated in different type cells under the control of internal ribosome entry site (IRES) element that is within 5' upstream sequence of Oct4b. These findings provide new insights into reconsidering Oct4 variants expression and its additional role in maintaining the pluripotency of stem cells.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Yu
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxin Sun
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Hypoxia and hypoxia-inducible factor (HIF) downregulate antigen-presenting MHC class I molecules limiting tumor cell recognition by T cells. PLoS One 2017; 12:e0187314. [PMID: 29155844 PMCID: PMC5695785 DOI: 10.1371/journal.pone.0187314] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/17/2017] [Indexed: 11/19/2022] Open
Abstract
Human cancers are known to downregulate Major Histocompatibility Complex (MHC) class I expression thereby escaping recognition and rejection by anti-tumor T cells. Here we report that oxygen tension in the tumor microenvironment (TME) serves as an extrinsic cue that regulates antigen presentation by MHC class I molecules. In support of this view, hypoxia is shown to negatively regulate MHC expression in a HIF-dependent manner as evidenced by (i) lower MHC expression in the hypoxic TME in vivo and in hypoxic 3-dimensional (3D) but not 2-dimensional (2D) tumor cell cultures in vitro; (ii) decreased MHC in human renal cell carcinomas with constitutive expression of HIF due to genetic loss of von Hippel-Lindau (VHL) function as compared with isogenically paired cells with restored VHL function, and iii) increased MHC in tumor cells with siRNA-mediated knockdown of HIF. In addition, hypoxia downregulated antigen presenting proteins like TAP 1/2 and LMP7 that are known to have a dominant role in surface display of peptide-MHC complexes. Corroborating oxygen-dependent regulation of MHC antigen presentation, hyperoxia (60% oxygen) transcriptionally upregulated MHC expression and increased levels of TAP2, LMP2 and 7. In conclusion, this study reveals a novel mechanism by which intra-tumoral hypoxia and HIF can potentiate immune escape. It also suggests the use of hyperoxia to improve tumor cell-based cancer vaccines and for mining novel immune epitopes. Furthermore, this study highlights the advantage of 3D cell cultures in reproducing hypoxia-dependent changes observed in the TME.
Collapse
|
16
|
Spath P, Tisato V, Gianesini S, Tessari M, Menegatti E, Manfredini R, Occhionorelli S, Secchiero P, Zamboni P. The calendar of cytokines: Seasonal variation of circulating cytokines in chronic venous insufficiency. JRSM Cardiovasc Dis 2017; 6:2048004017729279. [PMID: 28959442 PMCID: PMC5593209 DOI: 10.1177/2048004017729279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 06/12/2017] [Accepted: 07/20/2017] [Indexed: 01/30/2023] Open
Abstract
Objectives To assess if in chronic venous insufficiency, there is a seasonal variation of cytokines levels which could explain the typical worsening of symptoms during Spring and Summer. Participants From 193 chronic venous insufficiency patients, we selected 32 patients in clinical stage C2–C3 of the Clinical–Etiology–Anatomy–Pathophysiology classification. Design A prospective, comparative and blinded cytokines assessment in two different seasons. Setting We sorted patients by two homogenous groups, 17 Autumn Group and 15 Spring Group. A complete clinical and haemodynamic assessment and laboratory analysis of 22 circulating cytokines were performed on each patient. Main outcome measures Circulating cytokines levels assessment. Results The two groups resulted homogenous for age, gender, clinical class, and haemodynamic parameters. Comparing cytokines expressions in Autumn Group vs. Spring Group, we found a significant difference of 11 out of 22 circulating cytokines (p < 0.05). Particularly Eotaxin, Interleukin-8, Monocyte Chemoattractant Protein-1, Tumour Necrosis Factor-α and Vascular Endothelial Growth Factor were increased in Autumn compared to the Control Group (p < 0.001); while significantly reduced in Spring, within the normal range (p, not significant). Conclusions Symptoms of chronic venous insufficiency are self-reported by patients more intense during warm seasons. Surprisingly, in our study, cytokines levels were significantly higher during Autumn and downregulated in Spring. These variations show for the first time the presence of a ‘Calendar of Cytokines’ in chronic venous insufficiency, which needs to be further investigated.
Collapse
|
17
|
Li X, Soler M, Özdemir CI, Belushkin A, Yesilköy F, Altug H. Plasmonic nanohole array biosensor for label-free and real-time analysis of live cell secretion. LAB ON A CHIP 2017; 17:2208-2217. [PMID: 28585972 DOI: 10.1039/c7lc00277g] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cell secretion dynamics plays a central role in physiological and disease processes. Due to its various temporal profiles, it is essential to implement a precise detection scheme for continuous monitoring of secretion in real time. The current fluorescent and colorimetric approaches hinder such applications due to their multiple time-consuming steps, molecular labeling, and especially the 'snapshot' endpoint readouts. Here, we develop a nanoplasmonic biosensor for real-time monitoring of live cell cytokine secretion in a label-free configuration. Our nanoplasmonic biosensor is composed of gold nanohole arrays supporting extraordinary optical transmission (EOT), which enables sensitive and high-throughput analysis of biomolecules. The nanobiosensor is integrated with an adjustable microfluidic cell module for the analysis of live cells under well-controlled culture conditions. We achieved an outstanding sensitivity for the detection of vascular endothelial growth factor (VEGF) directly in complex cell media. Significantly, the secretion dynamics from live cancer cells were monitored and quantified for 10 hours while preserving good cell viability. This novel approach of probing cytokine secretion activity is compatible with conventional inverted microscopes found in a common biology laboratory. With its simple optical set-up and label-free detection configuration, we anticipate our nanoplasmonic biosensor to be a powerful tool as a lab-on-chip device to analyze cellular activities for fundamental cell research and biotechnologies.
Collapse
Affiliation(s)
- Xiaokang Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| | | | | | | | | | | |
Collapse
|
18
|
Sisakhtnezhad S, Alimoradi E, Akrami H. External factors influencing mesenchymal stem cell fate in vitro. Eur J Cell Biol 2016; 96:13-33. [PMID: 27988106 DOI: 10.1016/j.ejcb.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have extensive potentials, which make them attractive candidates for the developmental biology, drug discovery and regenerative medicine. However, the use of MSCs is limited by their scarceness in tissues and in culture conditions. They also exhibit various degrees of potency which subsequently influencing their applications. Nowadays, questions remain about how self-renewal and differentiation of MSCs can be controlled in vitro and in vivo, how they will behave and migrate to the right place and how they modulate the immune system. Therefore, identification of factors and culture conditions to affect the fate and function of MSCs may be effective to enhance their applications in clinical situations. Studies have indicated that the fate of MSCs in culture is influenced by various external factors, including the specific cell source, donor age, plating density, passage number and plastic surface quality. Some other factors such as cell culture media and their supplementary factors, O2 concentration, mechano-/electro-stimuli and three-dimensional scaffolds are also shown to be influential. This review addresses the current state of MSC research for describing and discussing the findings about external factors that influence the fate and function of MSCs. Additionally, the new discoveries and suggestions regarding their molecular mechanisms will be explained.
Collapse
Affiliation(s)
| | - Elham Alimoradi
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hassan Akrami
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
19
|
Ribot J, Caliaperoumal G, Paquet J, Boisson-Vidal C, Petite H, Anagnostou F. Type 2 diabetes alters mesenchymal stem cell secretome composition and angiogenic properties. J Cell Mol Med 2016; 21:349-363. [PMID: 27641937 PMCID: PMC5264143 DOI: 10.1111/jcmm.12969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/06/2016] [Indexed: 01/09/2023] Open
Abstract
This study aimed at characterizing the impact of type 2 diabetes mellitus (T2DM) on the bone marrow mesenchymal stem cell (BMMSC) secretome and angiogenic properties. BMMSCs from Zucker diabetic fatty rats (ZDF) (a T2DM model) and Zucker LEAN littermates (control) were cultured. The supernatant conditioned media (CM) from BMMSCs of diabetic and control rats were collected and analysed. Compared to results obtained using CM from LEAN‐BMMSCs, the bioactive content of ZDF‐BMMSC CM (i) differently affects endothelial cell (HUVEC) functions in vitro by inducing increased (3.5‐fold; P < 0.01) formation of tubule‐like structures and migration of these cells (3‐fold; P < 0.001), as well as promotes improved vascular formation in vivo, and (ii) contains different levels of angiogenic factors (e.g. IGF1) and mediators, such as OSTP, CATD, FMOD LTBP1 and LTBP2, which are involved in angiogenesis and/or extracellular matrix composition. Addition of neutralizing antibodies against IGF‐1, LTBP1 or LTBP2 in the CM of BMMSCs from diabetic rats decreased its stimulatory effect on HUVEC migration by approximately 60%, 40% or 40%, respectively. These results demonstrate that BMMSCs from T2DM rats have a unique secretome with distinct angiogenic properties and provide new insights into the role of BMMSCs in aberrant angiogenesis in the diabetic milieu.
Collapse
Affiliation(s)
- Jonathan Ribot
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | - Guavri Caliaperoumal
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | - Joseph Paquet
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | | | - Herve Petite
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | - Fani Anagnostou
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France.,Department of Periodontology, Service of Odontology, Pitié Salpêtrière Hospital et Hôtel-Dieu Hospital AP-HP, U.F.R. of Odontology Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| |
Collapse
|
20
|
Le Blon D, Hoornaert C, Detrez JR, Bevers S, Daans J, Goossens H, De Vos WH, Berneman Z, Ponsaerts P. Immune remodelling of stromal cell grafts in the central nervous system: therapeutic inflammation or (harmless) side-effect? J Tissue Eng Regen Med 2016; 11:2846-2852. [PMID: 27320821 DOI: 10.1002/term.2188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/03/2016] [Accepted: 03/14/2016] [Indexed: 12/13/2022]
Abstract
Over the past two decades, several cell types with fibroblast-like morphology, including mesenchymal stem/stromal cells, but also other adult, embryonic and extra-embryonic fibroblast-like cells, have been brought forward in the search for cellular therapies to treat severe brain injuries and/or diseases. Although current views in regenerative medicine are highly focused on the immune modulating and regenerative properties of stromal cell transplantation in vivo, many open questions remain regarding their true mode of action. In this perspective, this study integrates insights gathered over the past 10 years to formulate a unifying model of the cellular events that accompany fibroblast-like cell grafting in the rodent brain. Cellular interactions are discussed step-by-step, starting from the day of implantation up to 10 days after transplantation. During the short period that precedes stable settlement of autologous/syngeneic stromal cell grafts, there is a complex interplay between hypoxia-mediated cell death of grafted cells, neutrophil invasion, microglia and macrophage recruitment, astrocyte activation and neo-angiogenesis within the stromal cell graft site. Consequently, it is speculated that regenerative processes following cell therapeutic intervention in the CNS are not only modulated by soluble factors secreted by grafted stromal cells (bystander hypothesis), but also by in vivo inflammatory processes following stromal cell grafting. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Debbie Le Blon
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Chloé Hoornaert
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Jan R Detrez
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Cell Systems and Cellular Imaging, Ghent University, Ghent, Belgium
| | - Sanne Bevers
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Jasmijn Daans
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Cell Systems and Cellular Imaging, Ghent University, Ghent, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
21
|
Synergism of MSC-secreted HGF and VEGF in stabilising endothelial barrier function upon lipopolysaccharide stimulation via the Rac1 pathway. Stem Cell Res Ther 2015; 6:250. [PMID: 26674641 PMCID: PMC4682264 DOI: 10.1186/s13287-015-0257-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 11/09/2015] [Accepted: 12/03/2015] [Indexed: 11/24/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) stabilise endothelial barrier function in acute lung injury via paracrine hepatocyte growth factor (HGF). Vascular endothelial growth factor (VEGF), which is secreted by MSCs, is another key regulator of endothelial permeability; however, its role in adjusting permeability remains controversial. In addition, whether an interaction occurs between HGF and VEGF, which are secreted by MSCs, is not completely understood. Methods We introduced a co-cultured model of human pulmonary microvascular endothelial cells (HPMECs) and MSC conditioned medium (CM) collected from MSCs after 24 h of hypoxic culture. The presence of VEGF and HGF in the MSC-CM was neutralised by anti-VEGF and anti-HGF antibodies, respectively. To determine the roles and mechanisms of MSC-secreted HGF and VEGF, we employed recombinant humanised HGF and recombinant humanised VEGF to co-culture with HPMECs. Additionally, we employed the RhoA inhibitor C3 transferase and the Rac1 inhibitor NSC23766 to inhibit the activities of RhoA and Rac1 in HPMECs treated with MSC-CM or VEGF/HGF with the same dosage as in the MSC-CM. Then, endothelial paracellular and transcellular permeability was detected. VE-cadherin, occludin and caveolin-1 protein expression in HPMECs was measured by western blot. Adherens junction proteins, including F-actin and VE-cadherin, were detected by immunofluorescence. Results MSC-CM treatment significantly decreased lipopolysaccharide-induced endothelial paracellular and transcellular permeability, which was significantly inhibited by pretreatment with HGF antibody or with both VEGF and HGF antibodies. Furthermore, MSC-CM treatment increased the expression of the endothelial intercellular adherence junction proteins VE-cadherin and occludin and decreased the expression of caveolin-1 protein. MSC-CM treatment also decreased endothelial apoptosis and induced endothelial cell proliferation; however, the effects of MSC-CM treatment were inhibited by pretreatment with HGF antibody or with both HGF and VEGF antibodies. Additionally, the effects of MSC-CM and VEGF/HGF on reducing endothelial paracellular and transcellular permeability were weakened when HPMECs were pretreated with the Rac1 inhibitor NSC23766. Conclusion HGF secreted by MSCs protects the endothelial barrier function; however, VEGF secreted by MSCs may synergize with HGF to stabilise endothelial cell barrier function. Rac1 is the pathway by which MSC-secreted VEGF and HGF regulate endothelial permeability.
Collapse
|
22
|
Andreeva E, Andrianova I, Rylova J, Gornostaeva A, Bobyleva P, Buravkova L. Proinflammatory interleukins' production by adipose tissue-derived mesenchymal stromal cells: the impact of cell culture conditions and cell-to-cell interaction. Cell Biochem Funct 2015; 33:386-93. [PMID: 26179154 DOI: 10.1002/cbf.3125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/22/2015] [Accepted: 06/08/2015] [Indexed: 11/11/2022]
Abstract
The impact of culture conditions and interaction with activated peripheral blood mononuclear cells on the interleukin (IL) gene expression profile and proinflammatory IL-6 and IL-8 production by adipose-derived stromal cells (ASCs) was investigated. A microarray analysis revealed a wide range of IL genes either under standard (20%) or hypoxic (5%) O2 concentrations, some highly up-regulated at hypoxia. IL-6 and IL-8 production was inversely dependent on cell culture density. In early (first-third) passages, IL-6 and IL-8 concentration was higher at 20% O2 and in late (8th-12th) passages under 5% O2. Interaction between ASCs and mononuclear cells in indirect setting was accompanied with a significant decrease of IL-6 and did not result in the elevation of IL-8 concentration. Thereby, the production of proinflammatory interleukins (IL-6 and IL-8) may be affected by the ASC intrinsic features (density in culture, and duration of expansion), as well as by microenvironmental factors, such as hypoxia and the presence of blood-borne cells. These data are important for elucidating ASC paracrine activity regulation in vitro. They would also be on demand for optimisation of the cell therapy protocols, based on the application of ASC biologically active substances. SIGNIFICANCE PARAGRAPH: Ex vivo expansion is widely used for increasing the number of adipose-derived stromal cells (ASCs) and improving of their quality. The present study was designed to elucidate the particular factors influencing the interleukin production in ASCs. The presented data specified the parameters (i.e. cell density, duration of cultivation, hypoxia, etc.) that should be taken in mind when ASCs are intended to be used in protocols implying their paracrine activity. These data would be of considerable interest for researchers and clinicians working in the biomedical science.
Collapse
Affiliation(s)
- Elena Andreeva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Irina Andrianova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.,Institute of Experimental Cardiology, Russian Cardiology Research Center, Moscow, Russia
| | - Julia Rylova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Polina Bobyleva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|