1
|
Workman VL, Giblin AV, Green NH, MacNeil S, Hearnden V. Adipose tissue and adipose-derived stromal cells can reduce skin contraction in an in vitro tissue engineered full thickness skin model. Adipocyte 2025; 14:2473367. [PMID: 40104883 DOI: 10.1080/21623945.2025.2473367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Skin contracts during wound healing to facilitate wound closure. In some patients, skin contraction can lead to the formation of skin contractures that limit movement, impair function, and significantly impact well-being. Current treatment options for skin contractures are burdensome for patients, and there is a high risk of recurrence. Autologous fat grafting can improve the structure and function of scarred skin; however, relatively little is known about the effect of fat on skin contraction. In this study, an in vitro tissue-engineered model of human skin was used to test the effects of adipose tissue and adipose-derived stromal cells on skin contraction. Untreated tissue-engineered skin contracted to approximately 60% of the original area over 14 days in culture. The addition of adipose tissue reduced this contraction by 50%. Adipose tissue, which was emulsified or concentrated and high doses of adipose-derived stromal cells (ADSC) were able to inhibit contraction to a similar degree; however, lower doses of ADSC did not show the same effect. In conclusion, the subcutaneous application of adipose tissue has the potential to inhibit skin contraction. This study provides in vitro evidence to support the use of autologous fat grafting to prevent skin contraction in patients most at risk.
Collapse
Affiliation(s)
- Victoria L Workman
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - Anna-Victoria Giblin
- Department of Plastic Surgery, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
- INSIGNEO Institute, University of Sheffield, Sheffield, UK
| | - Sheila MacNeil
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
- INSIGNEO Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Xiao Y, Xiang Q, Wang Y, Huang Z, Yang J, Zhang X, Zhu X, Xue Y, Wan W, Zou H, Yang X. Exosomes carrying adipose mesenchymal stem cells function alleviate scleroderma skin fibrosis by inhibiting the TGF-β1/Smad3 axis. Sci Rep 2025; 15:7162. [PMID: 40021656 PMCID: PMC11871021 DOI: 10.1038/s41598-024-72630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/09/2024] [Indexed: 03/03/2025] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by progressive fibrosis of the skin and visceral organs, to date, skin fibrosis remains a clinical therapeutic challenge. Adipose-derived mesenchymal stem cells (AMSCs) have been considered extremely promising for the treatment of SSc, and the biological effects of MSCs are partly attributed to the secretion of exosomes (exos). Our aim was to determine whether exosomes derived from AMSCs have parental biological effects to AMSCs in the therapy of SSc skin fibrosis. In vitro cellular experiments, AMSCs and SSc skin fibroblasts were cocultured in direct contact and transwell indirect contact at a ratio of 1:5 and 1:10, respectively, then exosomes were extracted from the cell culture supernatant of AMSCs and identified, and the exosomes were cocultured with fibroblasts to investigate the effects of AMSCs and exosomes on fibroblast collagen synthesis. Repeated subcutaneous injections of bleomycin (BLM) to construct a model of SSc skin fibrosis in vivo experiments, then AMSCs and exosomes were injected subcutaneously to investigate their effects on skin fibrosis in the BLM mice. The results revealed that exosomes had similar biological functions to AMSCs, by inhibiting the TGF-β1/Smad3 axis, which alleviated collagen synthesis in skin fibroblasts from SSc patients and skin fibrosis in BLM models. In conclusion, AMSCs-derived exosomes may be "rising star candidates" for the treatment of SSc skin fibrosis.
Collapse
Affiliation(s)
- Yu Xiao
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- HuaShan Rare Disease Center, Fudan University, Shanghai, China
- Division of Rheumatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technologygy, Wuhan, Hubei, China
| | - Qingyong Xiang
- Department of Rheumatology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yingyu Wang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- HuaShan Rare Disease Center, Fudan University, Shanghai, China
| | - Zhongzhou Huang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- HuaShan Rare Disease Center, Fudan University, Shanghai, China
- Division of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ji Yang
- Division of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyun Zhang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- HuaShan Rare Disease Center, Fudan University, Shanghai, China
| | - Xiaoxia Zhu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- HuaShan Rare Disease Center, Fudan University, Shanghai, China
| | - Yu Xue
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- HuaShan Rare Disease Center, Fudan University, Shanghai, China
| | - Weiguo Wan
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- HuaShan Rare Disease Center, Fudan University, Shanghai, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
- HuaShan Rare Disease Center, Fudan University, Shanghai, China.
| | - Xue Yang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
- HuaShan Rare Disease Center, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Tahoori M, Tafreshi AP, Naghshnejad F, Zeynali B. Transforming Growth Factor-β Signaling Inhibits the Osteogenic Differentiation of Mesenchymal Stem Cells via Activation of Wnt/β-Catenin Pathway. J Bone Metab 2025; 32:11-20. [PMID: 40098425 PMCID: PMC11960301 DOI: 10.11005/jbm.24.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Due to the contradictory and temporally variable effects of transforming growth factor-β (TGF-β) and the Wnt/β-catenin pathways on osteogenic differentiation in different stem cell types, we sought to examine the activity of these pathways as well as their interaction during the osteogenic differentiation of the osteo-induced adiposederived mesenchymal stem cells (AD-MSCs). METHODS The osteo-induced AD-MSCs were treated with TGF-β1 (1 ng/mL) either alone or together with its antagonist SB- 431542 (10 μM) or that of the Wnt antagonist, inhibitor of Wnt production 2 (IWP2) (3 μM), every 3 days for 21 days. Cells were then analyzed for calcium deposit, bone matrix production, and the osteogenic markers gene expression. RESULTS Our results showed firstly that, either of the pathways is active since the mRNA expressions of their respective target genes, PAI-1 and Cyclin D1 were detectable although the latter was at a very low level. Secondly that, treatment with TGF-β1 decreased levels of calcium deposit, bone matrix production and the osteogenic markers gene expression. Accordingly, osteogenesis was induced in those treated with SB either alone or together with the TGF-β1, pointing to inhibitory effect of TGF-β pathway on osteogenic differentiation. Thirdly that following treatment with IWP2 and TGF-β1, the inhibitory effect of TGF-β1 on bone matrix production was reversed. Fourthly, there was constantly low expression of Wnt3amRNA but progressively increasing that of its endogenous antagonist Dkk-1mRNA throughout. CONCLUSIONS Together these results suggest that TGF-β1 requires the active Wnt/β-catenin signaling pathway to exert its inhibitory effects on osteogenic differentiation of AD-MSCs.
Collapse
Affiliation(s)
- Mahsa Tahoori
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran,
Iran
| | - Azita Parvaneh Tafreshi
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran,
Iran
- Department of Molecular Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran,
Iran
| | - Fatemeh Naghshnejad
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran,
Iran
| | - Bahman Zeynali
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran,
Iran
| |
Collapse
|
4
|
Wright C, Zotter SF, Tung WS, Reikersdorfer K, Homer A, Kheir N, Paschos N. Current Concepts and Clinical Applications in Cartilage Tissue Engineering. Tissue Eng Part A 2025; 31:87-99. [PMID: 39812645 DOI: 10.1089/ten.tea.2024.0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Cartilage injuries are extremely common in the general population, and conventional interventions have failed to produce optimal results. Tissue engineering (TE) technology has been developed to produce neocartilage for use in a variety of cartilage-related conditions. However, progress in the field of cartilage TE has historically been difficult due to the high functional demand and avascular nature of the tissue. Recent advancements in cell sourcing, biostimulation, and scaffold technology have revolutionized the field and made the clinical application of this technology a reality. Cartilage engineering technology will continue to expand its horizons to fully integrate three-dimensional printing, gene editing, and optimal cell sourcing in the future. This review focuses on the recent advancements in the field of cartilage TE and the landscape of clinical treatments for a variety of cartilage-related conditions.
Collapse
Affiliation(s)
- Connor Wright
- University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Orthopaedics, Massachusetts General Brigham, Boston, MA, USA
| | | | - Wei Shao Tung
- Department of Orthopaedics, Massachusetts General Brigham, Boston, MA, USA
| | - Kristen Reikersdorfer
- Department of Orthopaedics, Massachusetts General Brigham, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Andrew Homer
- Department of Orthopaedics, Massachusetts General Brigham, Boston, MA, USA
| | - Nadim Kheir
- Department of Orthopaedics, Massachusetts General Brigham, Boston, MA, USA
| | - Nikolaos Paschos
- Department of Orthopaedics, Massachusetts General Brigham, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Li X, Cui J, Ning LJ, Hu RN, Zhao LL, Luo JJ, Xie XY, Zhang YJ, Luo JC, Li ZY, Qin TW. Response of a tenomodulin-positive subpopulation of human adipose-derived stem cells to decellularized tendon slices. Biomed Mater 2025; 20:025004. [PMID: 39746323 DOI: 10.1088/1748-605x/ada509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
The selection of appropriate cell sources is vital for the regeneration and repair of tendons using stem cell-based approaches. Human adipose-derived stem cells (hADSCs) have emerged as a promising therapeutic strategy for tendon injuries. However, the heterogeneity of hADSCs can lead to inconsistent or suboptimal therapeutic outcomes. In this study, we isolated and identified a tenomodulin (TNMD)-positive subpopulation from hADSCs (TNMD+hADSCs) using flow cytometry and then assessed the cellular response of this subpopulation to decellularized tendon slices (DTSs), including cell proliferation, migration, and tenogenic differentiation, using the CCK-8 assay, transwell migration assay, and quantitative real-time polymerase chain reaction. Our findings revealed that TNMD+hADSCs maintained the general characteristics of stem cells and exhibited significantly higher expressions of tendon-related markers compared to hADSCs. Importantly, DTSs significantly enhanced the proliferation, migration, and tenogenic differentiation of TNMD+hADSCs. This study provides preliminary experimental evidence for the translational application of ADSCs for tendon regeneration and repair.
Collapse
Affiliation(s)
- Xuan Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jing Cui
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Liang-Ju Ning
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ruo-Nan Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lei-Lei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jia-Jiao Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xin-Yue Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yan-Jing Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jing-Cong Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zheng-Yong Li
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting-Wu Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Yan R, Dong P, Yang Z, Cao R, Xiao R, Liu X. Long Non-coding RNA DANCR Regulates the Proliferation and Migration of Human Adipose-derived Mesenchymal Stromal Cells in Inflammation Conditions. Curr Stem Cell Res Ther 2025; 20:565-576. [PMID: 40525426 DOI: 10.2174/011574888x290779240521130244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/19/2025]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) and Dexamethasone (Dex) are both effective methods to treat inflammatory diseases. However, the interaction between inflammatory factors, Dex, and MSCs in repair is not fully understood. The purpose of this study is to clarify the effects and mechanisms of glucocorticoids on the tissue repair characteristics of MSCs in an inflammatory environment. METHODS This is an experimental study. Human adipose-derived mesenchymal stromal cells (hASCs) were cultured, and Long non-coding RNA (lncRNA) differentiation antagonizing nonprotein coding RNA (DANCR) expression was detected after treatment with Dex and inflammation factors. Additionally, DANCR was knockdown or overexpressed before Dex or tumor necrosis factor-alpha (TNF-α) treatments, respectively. hASC proliferation, cell cycle, and migration ability were analyzed to evaluate the effects of DANCR in hASCs treated with Dex or TNF-α. Nuclear factor-kB (NF-κB) pathway inhibitors were used to clarify the signal pathway that DANCR involved. All data are presented as the mean ± standard deviation. The two-tailed Student's t-test or one-way analysis of variance (ANOVA) was used to determine the statistical differences between groups. RESULTS Dex decreased the proliferation and migration of hASCs and upregulated DANCR expression in a dosage-dependent relationship. The knockdown of DANCR reversed Dex's repression of hASC proliferation. Moreover, DANCR was decreased by inflammatory cytokines, and overexpressing DANCR alleviated the promotion effects of TNF-α on hASC proliferation and migration. Furthermore, mechanistic investigation validated that DANCR was involved in the NF- κB signaling pathway. CONCLUSIONS We identified a lncRNA, DANCR, that was involved in Dex and inflammation-affected hASC proliferation and migration. Dex reduced the proliferation and migration of hASCs through DANCR while exerting its anti-inflammatory effects. Thus, it is suggested to avoid the simultaneous application of hASCs and steroids in clinical practice. These results enrich our understanding of the versatile function of lncRNAs in the crosstalk of inflammation conditions and MSCs.
Collapse
Affiliation(s)
- Ran Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Ping Dong
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Rui Cao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
- Key Laboratory of Reconstruction for Superficial Tissues and Organs, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
- Key Laboratory of Reconstruction for Superficial Tissues and Organs, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
7
|
Setiawan AM, Kamarudin TA. Differentiation of Human Mesenchymal Stem Cells into Corneal Epithelial Cells: Current Progress. Curr Issues Mol Biol 2024; 46:13281-13295. [PMID: 39727920 DOI: 10.3390/cimb46120792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 12/28/2024] Open
Abstract
The limited availability of corneal tissue grafts poses significant challenges in the treatment of corneal blindness. Novel treatment utilizes stem cell grafts transplanted from the healthy side of the cornea to the damaged side. However, this procedure is only possible for those who have one-sided corneal blindness. Human stem cells offer promising potential for corneal tissue engineering, providing an alternative solution. Among the different types of stem cells, mesenchymal stem cells (MSCs) stand out due to their abundance and ease of isolation. Human MSCs can be derived from bone marrow, adipose, and umbilical cord tissues. Differentiating MSC toward corneal tissue can be achieved through several methods including chemical induction and co-culture with adult corneal cells such as human limbal epithelial stem cells (LESCs) and human corneal epithelial cells (hTCEpi). Adipose-derived stem cells (ADSCs) are the most common type of MSC that has been studied for corneal differentiation. Corneal epithelial cells are the most common corneal cell type targeted by researchers for corneal differentiation. Chemical induction with small molecules, especially bone morphogenetic protein 4 (BMP4), all-trans retinoic acid (ATRA), and epidermal growth factor (EGF), has gained more popularity in corneal epithelial cell differentiation. This review highlights the current progress in utilizing MSCs for corneal differentiation studies, showcasing their potential to revolutionize treatments for corneal blindness.
Collapse
Affiliation(s)
- Abdul Malik Setiawan
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Anatomy, Maulana Malik Ibrahim State Islamic University, Malang 65144, Indonesia
| | - Taty Anna Kamarudin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
8
|
Ufondu W, Robinson CL, Hussain N, D'Souza RS, Karri J, Emerick T, Orhurhu VJ. Intradiscal Autologous Biologics for the Treatment of Chronic Discogenic Low Back Pain. Curr Pain Headache Rep 2024; 28:1079-1095. [PMID: 39017984 DOI: 10.1007/s11916-024-01294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE OF REVIEW: The purpose of this narrative review is to evaluate the efficacy of the most commonly studied intradiscal biologics used for the treatment and alleviation of chronic intractable discogenic low back pain. Additionally, it explores the therapeutic potential and durability of these novel treatment options. RECENT FINDINGS: Recently published literature highlights the therapeutic potential of intradiscal biologics, such as mesenchymal stem cells, platelet-rich plasma, and alpha-2-macroglobulin, in promoting chondrogenesis within the lumbar intervertebral discs to treat discogenic low back pain. Studies demonstrate significant improvements in pain relief, physical function, and quality of life post-treatment. A comprehensive review of the literature evaluating the efficacy of intradiscal biologics suggests some evidence supporting its efficacy in treating discogenic low back pain. However, more rigorous studies into mechanistic modulation and large-scale randomized trials as well as a more thorough understanding of adverse events will be instrumental for including these therapies into clinical practice paradigms.
Collapse
Affiliation(s)
- Wisdom Ufondu
- Department of Biology, Program in Liberal Medical Education (PLME), Brown University, Providence, RI, USA
| | - Christopher L Robinson
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Nasir Hussain
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jay Karri
- Department of Orthopedic Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Trent Emerick
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vwaire J Orhurhu
- University of Pittsburgh Medical Center, Susquehanna, Williamsport, PA, USA.
- MVM Health, East Stroudsburg, PA, USA.
| |
Collapse
|
9
|
Lawton A, Tripodi N, Feehan J. Running on empty: Exploring stem cell exhaustion in geriatric musculoskeletal disease. Maturitas 2024; 188:108066. [PMID: 39089047 DOI: 10.1016/j.maturitas.2024.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 08/03/2024]
Abstract
Ageing populations globally are associated with increased musculoskeletal disease, including osteoporosis and sarcopenia. These conditions place a significant burden of disease on the individual, society and the economy. To address this, we need to understand the underpinning biological changes, including stem cell exhaustion, which plays a key role in the ageing of the musculoskeletal system. This review of the recent evidence provides an overview of the associated biological processes. The review utilised the PubMed/Medline, Science Direct, and Google Scholar databases. Mechanisms of ageing identified involve a reaction to the chronic inflammation and oxidative stress associated with ageing, resulting in progenitor cell senescence and adipogenic differentiation, leading to decreased mass and quality of both bone and muscle tissue. Although the mechanisms underpinning stem cell exhaustion are unclear, it remains a promising avenue through which to identify new strategies for prevention, detection and management.
Collapse
Affiliation(s)
- Amy Lawton
- Institute for Health and Sport, Victoria University, Melbourne, Australia; College of Sport, Health and Engineering, Victoria University, Melbourne, Australia
| | - Nicholas Tripodi
- Institute for Health and Sport, Victoria University, Melbourne, Australia; First Year College, Victoria University, Melbourne, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Australia; School of Health and Biomedical Sciences, STEM College, RMIT, Melbourne, Australia.
| |
Collapse
|
10
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Zhang Y, Chen J, Sun Y, Wang M, Liu H, Zhang W. Endogenous Tissue Engineering for Chondral and Osteochondral Regeneration: Strategies and Mechanisms. ACS Biomater Sci Eng 2024; 10:4716-4739. [PMID: 39091217 DOI: 10.1021/acsbiomaterials.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Increasing attention has been paid to the development of effective strategies for articular cartilage (AC) and osteochondral (OC) regeneration due to their limited self-reparative capacities and the shortage of timely and appropriate clinical treatments. Traditional cell-dependent tissue engineering faces various challenges such as restricted cell sources, phenotypic alterations, and immune rejection. In contrast, endogenous tissue engineering represents a promising alternative, leveraging acellular biomaterials to guide endogenous cells to the injury site and stimulate their intrinsic regenerative potential. This review provides a comprehensive overview of recent advancements in endogenous tissue engineering strategies for AC and OC regeneration, with a focus on the tissue engineering triad comprising endogenous stem/progenitor cells (ESPCs), scaffolds, and biomolecules. Multiple types of ESPCs present within the AC and OC microenvironment, including bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AD-MSCs), synovial membrane-derived mesenchymal stem cells (SM-MSCs), and AC-derived stem/progenitor cells (CSPCs), exhibit the ability to migrate toward injury sites and demonstrate pro-regenerative properties. The fabrication and characteristics of scaffolds in various formats including hydrogels, porous sponges, electrospun fibers, particles, films, multilayer scaffolds, bioceramics, and bioglass, highlighting their suitability for AC and OC repair, are systemically summarized. Furthermore, the review emphasizes the pivotal role of biomolecules in facilitating ESPCs migration, adhesion, chondrogenesis, osteogenesis, as well as regulating inflammation, aging, and hypertrophy-critical processes for endogenous AC and OC regeneration. Insights into the applications of endogenous tissue engineering strategies for in vivo AC and OC regeneration are provided along with a discussion on future perspectives to enhance regenerative outcomes.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
12
|
Ruoss S, Nasamran CA, Ball ST, Chen JL, Halter KN, Bruno KA, Whisenant TC, Parekh JN, Dorn SN, Esparza MC, Bremner SN, Fisch KM, Engler AJ, Ward SR. Comparative single-cell transcriptional and proteomic atlas of clinical-grade injectable mesenchymal source tissues. SCIENCE ADVANCES 2024; 10:eadn2831. [PMID: 38996032 PMCID: PMC11244553 DOI: 10.1126/sciadv.adn2831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Bone marrow aspirate concentrate (BMAC) and adipose-derived stromal vascular fraction (ADSVF) are the most marketed stem cell therapies to treat a variety of conditions in the general population and elite athletes. Both tissues have been used interchangeably clinically even though their detailed composition, heterogeneity, and mechanisms of action have neither been rigorously inventoried nor compared. This lack of information has prevented investigations into ideal dosages and has facilitated anecdata and misinformation. Here, we analyzed single-cell transcriptomes, proteomes, and flow cytometry profiles from paired clinical-grade BMAC and ADSVF. This comparative transcriptional atlas challenges the prevalent notion that there is one therapeutic cell type present in both tissues. We also provide data of surface markers that may enable isolation and investigation of cell (sub)populations. Furthermore, the proteome atlas highlights intertissue and interpatient heterogeneity of injected proteins with potentially regenerative or immunomodulatory capacities. An interactive webtool is available online.
Collapse
Affiliation(s)
- Severin Ruoss
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Chanond A. Nasamran
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
| | - Scott T. Ball
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Jeffrey L. Chen
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Kenneth N. Halter
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Kelly A. Bruno
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Thomas C. Whisenant
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
| | - Jesal N. Parekh
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Shanelle N. Dorn
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Mary C. Esparza
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | | | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, UC San Diego, La Jolla, CA, USA
| | - Adam J. Engler
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Samuel R. Ward
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Department of Radiology, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Hammer FA, Hölmich P, Nehlin JO, Vomstein K, Blønd L, Hölmich LR, Barfod KW, Bagge J. Microfragmented abdominal adipose tissue-derived stem cells from knee osteoarthritis patients aged 29-65 years demonstrate in vitro stemness and low levels of cellular senescence. J Exp Orthop 2024; 11:e12056. [PMID: 38911188 PMCID: PMC11190460 DOI: 10.1002/jeo2.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose To investigate the level of cellular senescence in stem cells derived from microfragmented abdominal adipose tissue harvested from patients with knee osteoarthritis (OA). Methods Stem cells harvested from microfragmented abdominal adipose tissue from 20 patients with knee OA, aged 29-65 years (mean = 49.8, SD = 9.58), were analysed as a function of patient age and compared with control cells exhibiting signs of cellular senescence. Steady-state mRNA levels of a panel of genes associated with senescence were measured by qPCR. Intracellular senescence-associated proteins p16 and p21, and senescence-associated β-galactosidase activity were measured by flow cytometry. Cellular proliferation was assessed using a 5-ethynyl-2'-deoxyuridine proliferation assay. Stemness was assessed by stem cell surface markers using flow cytometry and the capacity to undergo adipogenic and osteogenic differentiation in vitro. Results No correlation was found between cellular senescence levels of the microfragmented adipose tissue-derived stem cells and patient age for any of the standard assays used to quantify senescence. The level of cellular senescence was generally low across all senescence-associated assays compared to the positive senescence control. Stemness was verified for all samples. An increased capacity to undergo adipogenic differentiation was shown with increasing patient age (p = 0.02). No effect of patient age was found for osteogenic differentiation. Conclusions Autologous microfragmented adipose tissue-derived stem cells may be used in clinical trials of knee OA of patients aged 29-65 years, at least until passage 4, as they show stemness potential and negligible senescence in vitro. Level of Evidence Not applicable.
Collapse
Affiliation(s)
- Freja Aabæk Hammer
- Sports Orthopedic Research Center—Copenhagen (SORC‐C), Department of Orthopedic SurgeryCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Per Hölmich
- Sports Orthopedic Research Center—Copenhagen (SORC‐C), Department of Orthopedic SurgeryCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Jan O. Nehlin
- Department of Clinical ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Kilian Vomstein
- Department of Obstetrics and Gynecology, The Fertility ClinicCopenhagen University Hospital—HvidovreHvidovreDenmark
| | - Lars Blønd
- Department of Orthopedic SurgeryZealand University Hospital—KøgeKøgeDenmark
| | | | - Kristoffer Weisskirchner Barfod
- Sports Orthopedic Research Center—Copenhagen (SORC‐C), Department of Orthopedic SurgeryCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Jasmin Bagge
- Sports Orthopedic Research Center—Copenhagen (SORC‐C), Department of Orthopedic SurgeryCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| |
Collapse
|
14
|
Yi N, Zeng Q, Zheng C, Li S, Lv B, Wang C, Li C, Jiang W, Liu Y, Yang Y, Yan T, Xue J, Xue Z. Functional variation among mesenchymal stem cells derived from different tissue sources. PeerJ 2024; 12:e17616. [PMID: 38952966 PMCID: PMC11216188 DOI: 10.7717/peerj.17616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) are increasingly recognized for their regenerative potential. However, their clinical application is hindered by their inherent variability, which is influenced by various factors, such as the tissue source, culture conditions, and passage number. Methods MSCs were sourced from clinically relevant tissues, including adipose tissue-derived MSCs (ADMSCs, n = 2), chorionic villi-derived MSCs (CMMSCs, n = 2), amniotic membrane-derived MSCs (AMMSCs, n = 3), and umbilical cord-derived MSCs (UCMSCs, n = 3). Passages included the umbilical cord at P0 (UCMSCP0, n = 2), P3 (UCMSCP3, n = 2), and P5 (UCMSCP5, n = 2) as well as the umbilical cord at P5 cultured under low-oxygen conditions (UCMSCP5L, n = 2). Results We observed that MSCs from different tissue origins clustered into six distinct functional subpopulations, each with varying proportions. Notably, ADMSCs exhibited a higher proportion of subpopulations associated with vascular regeneration, suggesting that they are beneficial for applications in vascular regeneration. Additionally, CMMSCs had a high proportion of subpopulations associated with reproductive processes. UCMSCP5 and UCMSCP5L had higher proportions of subpopulations related to female reproductive function than those for earlier passages. Furthermore, UCMSCP5L, cultured under low-oxygen (hypoxic) conditions, had a high proportion of subpopulations associated with pro-angiogenic characteristics, with implications for optimizing vascular regeneration. Conclusions This study revealed variation in the distribution of MSC subpopulations among different tissue sources, passages, and culture conditions, including differences in functions related to vascular and reproductive system regeneration. These findings hold promise for personalized regenerative medicine and may lead to more effective clinical treatments across a spectrum of medical conditions.
Collapse
Affiliation(s)
- Ning Yi
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Qiao Zeng
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Chunbing Zheng
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Shiping Li
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Bo Lv
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Cheng Wang
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Chanyi Li
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Wenjiao Jiang
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Yun Liu
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Yuan Yang
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Tenglong Yan
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Jinfeng Xue
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Zhigang Xue
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| |
Collapse
|
15
|
Liang W, Han M, Li G, Dang W, Wu H, Meng X, Zhen Y, Lin W, Ao R, Hu X, An Y. Perfusable adipose decellularized extracellular matrix biological scaffold co-recellularized with adipose-derived stem cells and L6 promotes functional skeletal muscle regeneration following volumetric muscle loss. Biomaterials 2024; 307:122529. [PMID: 38489911 DOI: 10.1016/j.biomaterials.2024.122529] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/02/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Muscle tissue engineering is a promising therapeutic strategy for volumetric muscle loss (VML). Among them, decellularized extracellular matrix (dECM) biological scaffolds have shown certain effects in restoring muscle function. However, researchers have inconsistent or even contradictory results on whether dECM biological scaffolds can efficiently regenerate muscle fibers and restore muscle function. This suggests that therapeutic strategies based on dECM biological scaffolds need to be further optimized and developed. In this study, we used a recellularization method of perfusing adipose-derived stem cells (ASCs) and L6 into adipose dECM (adECM) through vascular pedicles. On one hand, this strategy ensures sufficient quantity and uniform distribution of seeded cells inside scaffold. On the other hand, auxiliary L6 cells addresses the issue of low myogenic differentiation efficiency of ASCs. Subsequently, the treatment of VML animal experiments showed that the combined recellularization strategy can improve muscle regeneration and angiogenesis than the single ASCs recellularization strategy, and the TA of former had greater muscle contraction strength. Further single-nucleus RNA sequencing (snRNA-seq) analysis found that L6 cells induced ASCs transform into a new subpopulation of cells highly expressing Mki67, CD34 and CDK1 genes, which had stronger ability of oriented myogenic differentiation. This study demonstrates that co-seeding ASCs and L6 cells through vascular pedicles is a promising recellularization strategy for adECM biological scaffolds, and the engineered muscle tissue constructed based on this has significant therapeutic effects on VML. Overall, this study provides a new paradigm for optimizing and developing dECM-based therapeutic strategies.
Collapse
Affiliation(s)
- Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Meng Han
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Guan Li
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Wanwen Dang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Huiting Wu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoyu Meng
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Weibo Lin
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Rigele Ao
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, 100191, China.
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
16
|
Ho TJ, Tsai BCK, Debakshee G, Shibu MA, Kuo CH, Lin CH, Lin PY, Lin SZ, Kuo WW, Huang CY. Ohwia caudata aqueous extract attenuates senescence in aging adipose-derived mesenchymal stem cells. Heliyon 2024; 10:e29729. [PMID: 38698985 PMCID: PMC11064092 DOI: 10.1016/j.heliyon.2024.e29729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Stem cells exhibit pluripotency and self-renewal abilities. Adipose-derived mesenchymal stem cells can potentially be used to reconstruct various tissues. They possess significant versatility and alleviate various aging-related diseases. Unfortunately, aging leads to senescence, apoptosis, and a decline in regenerative capacity in adipose-derived mesenchymal stem cells. These changes necessitate a strategy to mitigate the effects of aging on stem cells. Ohwia caudata (O. caudata) has therapeutic effects against several illnesses. However, studies on whether O. caudata has therapeutic effects against aging are lacking. In this study, we aimed to identify potential therapeutic anti-aging effects in the crude aqueous extract of O. caudata on adipose-derived mesenchymal stem cells. Using 0.1 μM doxorubicin, we induced aging in human adipose-derived mesenchymal stem cells (hADMSCs) and evaluated whether various concentrations of O. caudata aqueous extract exhibit anti-aging effects on them. The O. caudata extract exhibited significant antioxidant effects on hADMSCs without any toxicity. Furthermore, after treatment with the O. caudata aqueous extract, the levels of mitochondrial superoxide, DNA double-strand breaks, and telomere shortening were reduced in the hADMSCs subjected to doxorubicin-induced aging. The extract also suppressed doxorubicin-induced aging by upregulating klotho and downregulating p21 in hADMSCs. These findings indicated that the O. caudata extract exhibited anti-aging properties that modulated hADMSC homeostasis. Therefore, it could be a potential candidate for restoring the self-renewal ability and multipotency of aging hADMSCs.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Goswami Debakshee
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
- Laboratory of Exercise Biochemistry, University of Taipei, Tianmu Campus, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Chih-Hsueh Lin
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
17
|
Pal P, Medina A, Chowdhury S, Cates CA, Bollavarapu R, Person JM, McIntyre B, Speed JS, Janorkar AV. Influence of the Tissue Collection Procedure on the Adipogenic Differentiation of Human Stem Cells: Ischemic versus Well-Vascularized Adipose Tissue. Biomedicines 2024; 12:997. [PMID: 38790959 PMCID: PMC11117639 DOI: 10.3390/biomedicines12050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Clinical and basic science applications using adipose-derived stem cells (ADSCs) are gaining popularity. The current adipose tissue harvesting procedures introduce nonphysiological conditions, which may affect the overall performance of the isolated ADSCs. In this study, we elucidate the differences between ADSCs isolated from adipose tissues harvested within the first 5 min of the initial surgical incision (well-vascularized, nonpremedicated condition) versus those isolated from adipose tissues subjected to medications and deprived of blood supply during elective free flap procedures (ischemic condition). ADSCs isolated from well-vascularized and ischemic tissues positively immunostained for several standard stem cell markers. Interestingly, the percent change in the CD36 expression for ADSCs isolated from ischemic versus well-vascularized tissue was significantly lower in males than females (p < 0.05). Upon differentiation and maturation to adipocytes, spheroids formed using ADSCs isolated from ischemic adipose tissue had lower triglyceride content compared to those formed using ADSCs isolated from the well-vascularized tissue (p < 0.05). These results indicate that ADSCs isolated from ischemic tissue either fail to uptake fatty acids or fail to efficiently convert those fatty acids into triglycerides. Therefore, more robust ADSCs suitable to establish in vitro adipose tissue models can be obtained by harvesting well-vascularized and nonpremedicated adipose tissues.
Collapse
Affiliation(s)
- Pallabi Pal
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| | - Abelardo Medina
- Division of Plastic Surgery, Department of Surgery, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| | - Sheetal Chowdhury
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| | - Courtney A. Cates
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| | - Ratna Bollavarapu
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| | - Jon M. Person
- Cancer Institute, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| | - Benjamin McIntyre
- Division of Plastic Surgery, Department of Surgery, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| | - Joshua S. Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| | - Amol V. Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS 39216, USA
| |
Collapse
|
18
|
Wufuer M, Choi TH, Najmiddinov B, Kim J, Choi J, Kim T, Park Y, Kim JH, Jeon H, Kim BJ. Improving Facial Fat Graft Survival Using Stromal Vascular Fraction-Enriched Lipotransfer: A Multicenter Randomized Controlled Study. Plast Reconstr Surg 2024; 153:690e-700e. [PMID: 37141448 DOI: 10.1097/prs.0000000000010625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Although previous clinical studies have reported that cell-assisted lipotransfer increases the fat survival rate in facial fat transplants, most were case studies without quantitative evaluation. A multicenter randomized controlled study was performed to evaluate the safety and efficacy of the stromal vascular fraction (SVF) in facial fat grafts. METHODS Twenty-three participants were enrolled for autologous fat transfer in the face, and assigned randomly to the experimental ( n = 11) or control ( n = 12) group. Fat survival was assessed using magnetic resonance imaging at 6 and 24 weeks postoperatively. Subjective evaluations were performed by the patients and surgeons. To address safety concerns, results of an SVF culture and the postoperative complications were recorded. RESULTS The overall fat survival rate was significantly higher in the experimental group than in the control group (6 weeks, 74.5% ± 9.99% versus 66.55% ± 13.77%, P < 0.025; 24 weeks, 71.27% ± 10.43% versus 61.98% ± 13.46%, P < 0.012). Specifically, graft survival in the forehead was 12.82% higher in the experimental group when compared with that in the control group at 6 weeks ( P < 0.023). Furthermore, graft survival in the forehead ( P < 0.021) and cheeks ( P < 0.035) was superior in the experimental group at 24 weeks. At 24 weeks, the aesthetic scores given by the surgeons were higher in the experimental group than in the control group ( P < 0.03); however, no significant intergroup differences were noted in the patient-evaluated scores. Neither bacterial growth from SVF cultures nor postoperative complications were noted. CONCLUSION SVF enrichment for autologous fat grafting can be a safe and effective technique for increasing the fat retention rate. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, II.
Collapse
Affiliation(s)
| | | | - Bakhtiyor Najmiddinov
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine
| | - Junhyung Kim
- Department of Plastic and Reconstructive Surgery, Keimyung University School of Medicine
| | - Jaehoon Choi
- Department of Plastic and Reconstructive Surgery, Keimyung University School of Medicine
| | | | | | - Ji-Hoon Kim
- Radiology, Seoul National University Hospital, Seoul National University College of Medicine
| | - Heejung Jeon
- From the Departments of Plastic and Reconstructive Surgery
| | - Byung Jun Kim
- From the Departments of Plastic and Reconstructive Surgery
| |
Collapse
|
19
|
Maličev E, Jazbec K. An Overview of Mesenchymal Stem Cell Heterogeneity and Concentration. Pharmaceuticals (Basel) 2024; 17:350. [PMID: 38543135 PMCID: PMC10975472 DOI: 10.3390/ph17030350] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest in cell therapies due to the immunomodulatory and other effects they have after autologous or allogeneic transplantation. In most clinical applications, a high number of MSCs is required; therefore, the isolated MSC population must be expanded in the cell culture until the desired number is reached. Analysing freshly isolated MSCs is challenging due to their rareness and heterogeneity, which is noticeable among donors, tissues, and cell subpopulations. Although the phenotype of MSCs in tissue can differ from those of cultured cells, phenotyping and counting are usually performed only after MSC proliferation. As MSC applicability is a developing and growing field, there is a need to implement phenotyping and counting methods for freshly isolated MSCs, especially in new one-step procedures where isolated cells are implanted immediately without cell culturing. Only by analysing harvested cells can we correctly evaluate such studies. This review describes multilevel heterogeneity and concentrations of MSCs and different strategies for phenotype determination and enumeration of freshly isolated MSCs.
Collapse
Affiliation(s)
- Elvira Maličev
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
| |
Collapse
|
20
|
Arceri A, Mazzotti A, Artioli E, Zielli SO, Barile F, Manzetti M, Viroli G, Ruffilli A, Faldini C. Adipose-derived stem cells applied to ankle pathologies: a systematic review. Musculoskelet Surg 2024; 108:1-9. [PMID: 37943411 PMCID: PMC10881601 DOI: 10.1007/s12306-023-00798-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
The purpose of this systematic review was to analyze the current use of adipose-derived mesenchymal stem cells (ADMSCs) and present the available evidence on their therapeutic potential in the treatment of ankle orthopedic issues, evaluating the applications and results. A literature search of PubMed, Google Scholar, EMBASE and Cochrane Library database was performed. The review was conducted following PRISMA guidelines. Risk of bias assessment was conducted through the Methodological Index for Non-Randomized Studies (MINORS) criteria. Initial search results yielded 4348 articles. A total of 8 articles were included in the review process. No clinical evidence has demonstrated the effectiveness of one isolation method over the other, but nonenzymatic mechanical method has more advantages. In all studies included significant clinical outcomes improvement were recorded in patients affected by osteochondral lesion and osteoarthritis of ankle. All studies performed a concomitant procedure. No serious complications were reported. ADMSC injection, especially through the nonenzymatic mechanical methods, looks to be simple and promising treatment for osteochondral lesions and osteoarthritis of the ankle, with no severe complications. The current scarcity of studies and their low-quality level preclude definitive conclusions presently. LEVEL OF EVIDENCE: III.
Collapse
Affiliation(s)
- A Arceri
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
| | - A Mazzotti
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40123, Bologna, Italy
| | - E Artioli
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
| | - S O Zielli
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy.
| | - F Barile
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40123, Bologna, Italy
| | - M Manzetti
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
| | - G Viroli
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
| | - A Ruffilli
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40123, Bologna, Italy
| | - C Faldini
- 1st Orthopaedics and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40123, Bologna, Italy
| |
Collapse
|
21
|
Zhu R, Feng Y, Li R, Wei K, Ma Y, Liu Q, Shi D, Huang J. Isolation methods, proliferation, and adipogenic differentiation of adipose-derived stem cells from different fat depots in bovines. Mol Cell Biochem 2024; 479:643-652. [PMID: 37148505 DOI: 10.1007/s11010-023-04753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
The adipose-derived stem cells (ASCs) are a valuable resource for regenerative medicine and essential materials for research in fat deposition. However, the isolation procedure of ASCs has not been standardized and needs to be harmonized; differences in proliferation and adipogenic differentiation of ASCs obtained from different fat depots have not been well characterized. In the present study, we compared the efficiency of ASCs isolation by enzymatic treatment and explant culture methods and the proliferation ability and adipogenic differentiation potential of ASCs isolated from subcutaneous and visceral fat depots. The explant culture method was simple and with no need for expensive enzymes while the enzymatic treatment method was complex, time consuming and costly. By the explant culture method, a larger number of ASCs were isolated from subcutaneous and visceral fat depots. By contrast, fewer ASCs were obtained by the enzymatic treatment method, especially from visceral adipose. ASCs isolated by the explant culture method performed well in cell proliferation and adipogenic differentiation, though they were slightly lower than those by the enzymatic treatment method. ASCs isolated from visceral depot demonstrated higher proliferation ability and adipogenic differentiation potential. In total, the explant culture method is simpler, more efficient, and lower cost than the enzymatic treatment method for ASCs isolation; compared with visceral adipose, subcutaneous adipose is easier to isolate ASCs; however, the visceral ASCs are superior to subcutaneous ASCs in proliferation and adipogenic differentiation.
Collapse
Affiliation(s)
- Ruirui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Ye Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Ruirui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Kelong Wei
- Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Ningxia, 750021, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
22
|
Ivanova Z, Petrova V, Grigorova N, Vachkova E. Identification of the Reference Genes for Relative qRT-PCR Assay in Two Experimental Models of Rabbit and Horse Subcutaneous ASCs. Int J Mol Sci 2024; 25:2292. [PMID: 38396967 PMCID: PMC10889259 DOI: 10.3390/ijms25042292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Obtaining accurate and reliable gene expression results in real-time RT-PCR (qRT-PCR) data analysis requires appropriate normalization by carefully selected reference genes, either a single or a combination of multiple housekeeping genes (HKGs). The optimal reference gene/s for normalization should demonstrate stable expression across varying conditions to diminish potential influences on the results. Despite the extensive database available, research data are lacking regarding the most appropriate HKGs for qRT-PCR data analysis in rabbit and horse adipose-derived stem cells (ASCs). Therefore, in our study, we comprehensively assessed and compared the suitability of some widely used HKGs, employing RefFinder and NormFinder, two extensively acknowledged algorithms for robust data interpretation. The rabbit and horse ASCs were obtained from subcutaneous stromal vascular fraction. ASCs were induced into tri-lineage differentiation, followed by the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) treatment of the adipose-differentiated rabbit ASCs, while horse experimental groups were formed based on adipogenic, osteogenic, and chondrogenic differentiation. At the end of the experiment, the total mRNA was obtained and used for the gene expression evaluation of the observed factors. According to our findings, glyceraldehyde 3-phosphate dehydrogenase was identified as the most appropriate endogenous control gene for rabbit ASCs, while hypoxanthine phosphoribosyltransferase was deemed most suitable for horse ASCs. The obtained results underscore that these housekeeping genes exhibit robust stability across diverse experimental conditions, remaining unaltered by the treatments. In conclusion, the current research can serve as a valuable baseline reference for experiments evaluating gene expression in rabbit and horse ASCs. It highlights the critical consideration of housekeeping gene abundance and stability in qPCR experiments, emphasizing the need for an individualized approach tailored to the specific requirements of the study.
Collapse
Affiliation(s)
- Zhenya Ivanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (V.P.); (N.G.); (E.V.)
| | | | | | | |
Collapse
|
23
|
Alavi-Dana SMM, Gholami Y, Meghdadi M, Fadaei MS, Askari VR. Mesenchymal stem cell therapy for COVID-19 infection. Inflammopharmacology 2024; 32:319-334. [PMID: 38117433 DOI: 10.1007/s10787-023-01394-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
COVID-19 emerged in December 2019 in Wuhan, China, spread worldwide rapidly, and caused millions of deaths in a short time. Many preclinical and clinical studies were performed to discover the most efficient therapy to reduce the mortality of COVID-19 patients. Among various approaches for preventing and treating COVID-19, mesenchymal stem cell (MSC) therapy can be regarded as a novel and efficient treatment for managing COVID-19 patients. In this review, we explain the pathogenesis of COVID-19 infection in humans and discuss the role of MSCs in suppressing the inflammation and cytokine storm produced by COVID-19. Then, we reviewed the clinical trial and systematic review studies that investigated the safety and efficacy of MSC therapy in the treatment of COVID-19 infection.
Collapse
Affiliation(s)
| | - Yazdan Gholami
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Meghdadi
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Goncharov EN, Koval OA, Igorevich EI, Encarnacion Ramirez MDJ, Nurmukhametov R, Valentinovich KK, Montemurro N. Analyzing the Clinical Potential of Stromal Vascular Fraction: A Comprehensive Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:221. [PMID: 38399509 PMCID: PMC10890435 DOI: 10.3390/medicina60020221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Background: Regenerative medicine is evolving with discoveries like the stromal vascular fraction (SVF), a diverse cell group from adipose tissue with therapeutic promise. Originating from fat cell metabolism studies in the 1960s, SVF's versatility was recognized after demonstrating multipotency. Comprising of cells like pericytes, smooth muscle cells, and, notably, adipose-derived stem cells (ADSCs), SVF offers tissue regeneration and repair through the differentiation and secretion of growth factors. Its therapeutic efficacy is due to these cells' synergistic action, prompting extensive research. Methods: This review analyzed the relevant literature on SVF, covering its composition, action mechanisms, clinical applications, and future directions. An extensive literature search from January 2018 to June 2023 was conducted across databases like PubMed, Embase, etc., using specific keywords. Results: The systematic literature search yielded a total of 473 articles. Sixteen articles met the inclusion criteria and were included in the review. This rigorous methodology provides a framework for a thorough and systematic analysis of the existing literature on SVF, offering robust insights into the potential of this important cell population in regenerative medicine. Conclusions: Our review reveals the potential of SVF, a heterogeneous cell mixture, as a powerful tool in regenerative medicine. SVF has demonstrated therapeutic efficacy and safety across disciplines, improving pain, tissue regeneration, graft survival, and wound healing while exhibiting immunomodulatory and anti-inflammatory properties.
Collapse
Affiliation(s)
| | | | | | | | - Renat Nurmukhametov
- Neurological Surgery, Peoples Friendship University of Russia, 103274 Moscow, Russia
| | | | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), 56100 Pisa, Italy
| |
Collapse
|
25
|
Natsir Kalla DS, Alkaabi S, Fauzi A, Tajrin A, Nurrahma R, Müller WEG, Schröder HC, Wang X, Forouzanfar T, Helder MN, Ruslin M. Microfragmented Fat and Biphasic Calcium Phosphates for Alveolar Cleft Repair: Protocol for a Prospective, Nonblinded, First-in-Human Clinical Study. JMIR Res Protoc 2024; 13:e42371. [PMID: 38224475 PMCID: PMC10825761 DOI: 10.2196/42371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Biphasic calcium phosphates (BCP) may serve as off-the-shelf alternatives for iliac crest-derived autologous bone in alveolar cleft reconstructions. To add osteoinductivity to the osteoconductive BCPs to achieve similar regenerative capacity as autologous bone, a locally harvested buccal fat pad will be mechanically fractionated to generate microfragmented fat (MFAT), which has been shown to have high regenerative capacity due to high pericyte and mesenchymal stem cell content and a preserved perivascular niche. OBJECTIVE Our primary objectives will be to assess the feasibility and safety of the BCP-MFAT combination. The secondary objective will be efficacy, which will be evaluated using radiographic imaging and histological and histomorphometric evaluation of biopsies taken 6 months postoperatively, concomitant with dental implant placement. METHODS Eight patients with alveolar cleft (≥15 years) will be included in this prospective, nonblinded, first-in-human clinical study. MFAT will be prepared intraoperatively from the patient's own buccal fat pad. Regular blood tests and physical examinations will be conducted, and any adverse events (AEs) or serious EAs (SAEs) will be meticulously recorded. Radiographic imaging will be performed prior to surgery and at regular intervals after reconstruction of the alveolar cleft with the BCP-MFAT combination. Biopsies obtained after 6 months with a trephine drill used to prepare the implantation site will be assessed with histological and histomorphometric analyses after methylmethacrylate embedding and sectioning. RESULTS The primary outcome parameter will be safety after 6 months' follow-up, as monitored closely using possible occurrences of SAEs based on radiographic imaging, blood tests, and physical examinations. For efficacy, radiographic imaging will be used for clinical grading of the bone construct using the Bergland scale. In addition, bone parameters such as bone volume, osteoid volume, graft volume, and number of osteoclasts will be histomorphometrically quantified. Recruitment started in November 2019, and the trial is currently in the follow-up stage. This protocol's current version is 1.0, dated September 15, 2019. CONCLUSIONS In this first-in-human study, not only safety but also the histologically and radiographically assessed regenerative potential of the BCP-MFAT combination will be evaluated in an alveolar cleft model. When an SAE occurs, it will be concluded that the BCP-MFAT combination is not yet safe in the current setting. Regarding AEs, if they do not occur at a higher frequency than that in patients treated with standard care (autologous bone) or can be resolved by noninvasive conventional methods (eg, with analgesics or antibiotics), the BCP-MFAT combination will be considered safe. In all other cases, the BCP-MFAT combination will not yet be considered safe. TRIAL REGISTRATION Indonesia Clinical Trial Registry INA-EW74C1N; https://tinyurl.com/28tnrr64. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/42371.
Collapse
Affiliation(s)
- Diandra Sabrina Natsir Kalla
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Salem Alkaabi
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Oral and Maxillofacial Surgery, Fujairah Hospital, Ministry of Health, Fujairah, United Arab Emirates
| | - Abul Fauzi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Andi Tajrin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Rifaat Nurrahma
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Prosthodontics, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre, Leiden, Netherlands
| | - Marco N Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Muhammad Ruslin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
26
|
Veronesi F, Andriolo L, Salerno M, Boffa A, Giavaresi G, Filardo G. Adipose Tissue-Derived Minimally Manipulated Products versus Platelet-Rich Plasma for the Treatment of Knee Osteoarthritis: A Systematic Review of Clinical Evidence and Meta-Analysis. J Clin Med 2023; 13:67. [PMID: 38202074 PMCID: PMC10780289 DOI: 10.3390/jcm13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
The use of minimally manipulated adipose tissue (MM-AT) products is gaining increasing interest for the treatment of knee osteoarthritis (OA). MM-AT represents an easy way to exploit adipose tissue properties, although clinical evidence is still limited, as well as their benefits with respect to more documented orthobiologics like platelet-rich plasma (PRP). A systematic review and meta-analysis were performed to evaluate the safety and efficacy of MM-AT products for knee OA management. The risk of bias of the included studies was evaluated using the Dawns and Black checklist for all the included studies and RoB-2.0 for randomized controlled trials (RCTs). Thirty-three clinical studies were included in the qualitative analysis: 13 prospective case series, 10 retrospective case series, 7 RCTs, 2 retrospective comparative studies, and 1 prospective comparative study. An overall clinical improvement and few minor adverse events were observed. Five RCTs comparing MM-AT and PRP injections were meta-analyzed, showing comparable results. The analysis also highlighted the limits of the literature, with only a few high-level trials and an overall low quality. Even though the current literature is still limited, the available evidence suggests the safety and overall positive results of the intra-articular injections of MM-AT products for knee OA treatment.
Collapse
Affiliation(s)
- Francesca Veronesi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.V.); (G.G.)
| | - Luca Andriolo
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Manuela Salerno
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.S.)
| | - Angelo Boffa
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.V.); (G.G.)
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.S.)
| |
Collapse
|
27
|
Da Silva D, Crous A, Abrahamse H. Enhancing osteogenic differentiation in adipose-derived mesenchymal stem cells with Near Infra-Red and Green Photobiomodulation. Regen Ther 2023; 24:602-616. [PMID: 38034860 PMCID: PMC10682681 DOI: 10.1016/j.reth.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/15/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Worldwide, osteoporosis is the utmost predominant degenerative bone condition. Stem cell regenerative therapy using adipose-derived mesenchymal stem cells (ADMSCs) is a promising therapeutic route for osteoporosis. Photobiomodulation (PBM) has sparked considerable international appeal due to its' ability to augment stem cell proliferation and differentiation properties. Furthermore, the differentiation of ADMSCs into osteoblast cells and cellular proliferation effects have been established using a combination of osteogenic differentiation inducers and PBM. This in vitro study applied dexamethasone, β-glycerophosphate disodium, and ascorbic acid as differentiation inducers for osteogenic induction differentiation media. In addition, PBM at a near-infrared (NIR) wavelength of 825 nm, a green (G) wavelength of 525 nm, and the novel combination of both these wavelengths using a single fluence of 5 J/cm2 had been applied to stimulate proliferation and differentiation effectivity of immortalised ADMSCs into early osteoblasts. Flow cytometry and ELISA were used to identify osteoblast antigens using early and late osteoblast protein markers. Alizarin red Stain was employed to identify calcium-rich deposits by cells within culture. The morphology of the cells was examined, and biochemical assays such as an EdU proliferation assay, MTT proliferation and viability assay, Mitochondrial Membrane Potential assay, and Reactive Oxygen Species assay were performed. The Central Scratch Test determined the cells' motility potential. The investigative outcomes revealed that a combination of PBM treatment and osteogenic differentiation inducers stimulated promising early osteogenic differentiation of immortalised ADMSCs. The NIR-Green PBM combination did appear to offer great potential for immortalised ADMSC differentiation into early osteoblasts amongst selected assays, however, further investigations will be required to establish the effectivity of this novel wavelength combination. This research contributes to the body of knowledge and assists in the establishment of a standard for osteogenic differentiation in vitro utilising PBM.
Collapse
Affiliation(s)
- Daniella Da Silva
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
28
|
Goncharov EN, Koval OA, Nikolaevich Bezuglov E, Encarnacion Ramirez MDJ, Engelgard M, Igorevich EI, Saporiti A, Valentinovich Kotenko K, Montemurro N. Stromal Vascular Fraction Therapy for Knee Osteoarthritis: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2090. [PMID: 38138193 PMCID: PMC10744886 DOI: 10.3390/medicina59122090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Knee osteoarthritis (OA) is a widespread joint disease, set to increase due to aging and rising obesity. Beyond cartilage degeneration, OA involves the entire joint, including the synovial fluid, bones, and surrounding muscles. Existing treatments, such as NSAIDs and corticosteroid injections, mainly alleviate symptoms but can have complications. Joint replacement surgeries are definitive but carry surgical risks and are not suitable for all. Stromal vascular fraction (SVF) therapy is a regenerative approach using cells from a patient's adipose tissue. SVF addresses as degenerative and inflammatory aspects, with potential for cartilage formation and tissue regeneration. Unlike traditional treatments, SVF may reverse OA changes. Being autologous, it reduces immunogenic risks. Materials and Methods: A systematic search was undertaken across PubMed, Medline, and Scopus for relevant studies published from 2017 to 2023. Keywords included "SVF", "Knee Osteoarthritis", and "Regenerative Medicine". Results: This systematic search yielded a total of 172 articles. After the removal of duplicates and an initial title and abstract screening, 94 full-text articles were assessed for eligibility. Of these, 22 studies met the inclusion criteria and were subsequently included in this review. Conclusions: This review of SVF therapy for knee OA suggests its potential therapeutic benefits. Most studies confirmed its safety and efficacy, and showed improved clinical outcomes and minimal adverse events. However, differences in study designs and sizes require a careful interpretation of the results. While evidence supports SVF's positive effects, understanding methodological limitations is key. Incorporating SVF is promising, but the approach should prioritize patient safety and rigorous research.
Collapse
Affiliation(s)
| | | | | | | | - Mikhail Engelgard
- Petrovsky Russian Scientific Center of Surgery, 121359 Moscow, Russia
| | | | - Alessandra Saporiti
- Department of Pharmaceuticals, Azienda Usl Toscana Nord Ovest, 56100 Pisa, Italy
| | | | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), 56100 Pisa, Italy
| |
Collapse
|
29
|
Cacciottola L, Vitale F, Donnez J, Dolmans MM. Use of mesenchymal stem cells to enhance or restore fertility potential: a systematic review of available experimental strategies. Hum Reprod Open 2023; 2023:hoad040. [PMID: 37954935 PMCID: PMC10637864 DOI: 10.1093/hropen/hoad040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
STUDY QUESTION To what extent does regenerative medicine with stem cell therapy help to address infertility issues for future clinical application? SUMMARY ANSWER Regenerative medicine using different stem cell sources is yielding promising results in terms of protecting the ovarian reserve from damage and senescence, and improving fertility potential in various preclinical settings. WHAT IS KNOWN ALREADY Regenerative medicine using stem cell therapy is emerging as a potential strategy to address a number of issues in the field of human reproduction. Indeed, different types of adult and fetal mesenchymal stem cells (MSCs) have been tested with promising results, owing to their ability to differentiate into different tissue lineages, move toward specific injured sites (homing), and generate a secretome with wound-healing, proangiogenic, and antioxidant capacities. STUDY DESIGN SIZE DURATION Guided by the checklist for preferred reporting items for systematic reviews and meta-analyses, we retrieved relevant studies from PubMed, Medline, and Embase databases until June 2023 using the following keywords: 'mesenchymal stem cells' AND 'ovarian follicles' OR 'ovarian tissue culture' OR 'ovarian follicle culture' OR 'cumulus oocyte complex'. Only peer-reviewed published articles written in English were included. PARTICIPANTS/MATERIALS SETTING METHODS The primary outcome for the experimental strategies was evaluation of the ovarian reserve, with a focus on follicle survival, number, and growth. Secondary outcomes involved analyses of other parameters associated with the follicle pool, such as hormones and growth factors, ovarian tissue viability markers including oxidative stress levels, oocyte growth and maturation rates, and of course pregnancy outcomes. MAIN RESULTS AND THE ROLE OF CHANCE Preclinical studies exploring MSCs from different animal origins and tissue sources in specific conditions were selected (n = 112), including: in vitro culture of granulosa cells, ovarian tissue and isolated ovarian follicles; ovarian tissue transplantation; and systemic or intraovarian injection after gonadotoxic or age-related follicle pool decline. Protecting the ovarian reserve from aging and gonadotoxic damage has been widely tested in vitro and in vivo using murine models and is now yielding initial data in the first ever case series of patients with premature ovarian insufficiency. Use of MSCs as feeder cells in ovarian tissue culture was found to improve follicle outcomes and oocyte competence, bringing us one step closer to future clinical application. MSCs also have proved effective at boosting revascularization in the transplantation site when grafting ovarian tissue in experimental animal models. LIMITATIONS REASONS FOR CAUTION While preclinical results look promising in terms of protecting the ovarian reserve in different experimental models (especially those in vitro using various mammal experimental models and in vivo using murine models), there is still a lot of work to do before this approach can be considered safe and successfully implemented in a clinical setting. WIDER IMPLICATIONS OF THE FINDINGS All gathered data on the one hand show that regenerative medicine techniques are quickly gaining ground among innovative techniques being developed for future clinical application in the field of reproductive medicine. After proving MSC effectiveness in preclinical settings, there is still a lot of work to do before MSCs can be safely and effectively used in different clinical applications. STUDY FUNDING/COMPETING INTERESTS This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS-PDR T.0077.14, FNRS-CDR J.0063.20, and grant 5/4/150/5 awarded to Marie-Madeleine Dolmans), Fonds Spéciaux de Recherche, and the Fondation St Luc. None of the authors have any competing interest to disclose. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- L Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - F Vitale
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - J Donnez
- Society for Research into Infertility, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
| | - M M Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
30
|
El-Qashty R, Elkashty OA, Hany E. Photobiostimulation conjugated with stem cells or their secretome for temporomandibular joint arthritis in a rat model. BMC Oral Health 2023; 23:720. [PMID: 37798702 PMCID: PMC10552280 DOI: 10.1186/s12903-023-03466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Temporomandibular joint (TMJ) arthritis is a debilitating, challenging condition and different methods have been implicated for its treatment. This study aimed to test the therapeutic potentials of low-level laser therapy (LLLT) associated with adipose derived stem cells (ADSC) or their derived secretome on a murine model induced arthritis. METHODS Forty eight rats were divided into four groups where group I was the sham control, the rest of animals were subjected to arthritis induction using complete Freund's adjuvant, then divided as follows: group II received phosphate buffered saline (PBS) intraarticular injection and irradiation of 0 j/cm2, group III received ADSCs derived secretome and irradiation of 38 j/cm2, and group IV received ADSCs and irradiation of 38 j/cm2 as well. One and three weeks after treatment, animals were euthanized, and paraffin blocks were processed for histological assessment by hematoxylin and eosin stain with histomorphometrical analysis. Histochemical evaluation of joint proteoglycan content was performed through toluidine blue stain, and immunohistochemical staining by the proinflammatory marker tumor necrosis factor-α (TNF-α) was performed followed by the relevant statistical tests. RESULTS The arthritis group showed histological signs of joint injury including cartilage atrophy, articular disc fibrosis, irregular osteochondral interface, and condylar bone resorption together with high inflammatory reaction and defective proteoglycan content. In contrast, the treated groups III and IV showed much restoration of the joint structure with normal cartilage and disc thickness. The inflammation process was significantly suppressed especially after three weeks as confirmed by the significant reduction in TNF-α positive immunostaining compared to the arthritic group, and the cartilage proteoglycan content also showed significant increase relative to the arthritic group. However, no significant difference between the results of the two treated groups was detected. CONCLUSION LLLT conjugated with ADSCs or ADSCs derived secretome can efficiently enhance the healing of arthritic TMJs. Stem cell secretome can be applied as a safe, potent therapy. However, further investigations are required to unravel its mechanism of action and pave its way as a safe, novel, cell free therapy.
Collapse
Affiliation(s)
- Rana El-Qashty
- Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Osama A Elkashty
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Eman Hany
- Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
31
|
Heyman E, Meeremans M, Van Poucke M, Peelman L, Devriendt B, De Schauwer C. Validation of multiparametric panels for bovine mesenchymal stromal cell phenotyping. Cytometry A 2023; 103:744-755. [PMID: 37173856 DOI: 10.1002/cyto.a.24737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Bovine mesenchymal stromal cells (MSCs) display important features that render them valuable for cell therapy and tissue engineering strategies, such as self-renewal, multi-lineage differentiation, as well as immunomodulatory properties. These cells are also promising candidates to produce cultured meat. For all these applications, it is imperative to unequivocally identify this cell population. The isolation and in vitro tri-lineage differentiation of bovine MSCs is already described, but data on their immunophenotypic characterization is not yet complete. The currently limited availability of monoclonal antibodies (mAbs) specific for bovine MSC markers strongly hampers this research. Following the minimal criteria defined for human MSCs, bovine MSCs should express CD73, CD90, and CD105 and lack expression of CD14 or CD11b, CD34, CD45, CD79α, or CD19, and MHC-II. Additional surface proteins which have been reported to be expressed include CD29, CD44, and CD106. In this study, we aimed to immunophenotype bovine adipose tissue (AT)-derived MSCs using multi-color flow cytometry. To this end, 13 commercial Abs were screened for recognizing bovine epitopes using the appropriate positive controls. Using flow cytometry and immunofluorescence microscopy, cross-reactivity was confirmed for CD34, CD73, CD79α, and CD90. Unfortunately, none of the evaluated CD105 and CD106 Abs cross-reacted with bovine cells. Subsequently, AT-derived bovine MSCs were characterized using multi-color flow cytometry based on their expression of nine markers. Bovine MSCs clearly expressed CD29 and CD44, and lacked expression of CD14, CD45, CD73, CD79α, and MHCII, while a variable expression was observed for CD34 and CD90. In addition, the mRNA transcription level of different markers was analyzed using reverse transcription quantitative polymerase chain reaction. Using these panels, bovine MSCs can be properly immunophenotyped which allows a better characterization of this heterogenous cell population.
Collapse
Affiliation(s)
- Emma Heyman
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Meeremans
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Van Poucke
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - L Peelman
- Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - B Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Catharina De Schauwer
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
32
|
Ramaut L, Moonen L, Laeremans T, Aerts JL, Geeroms M, Hamdi M. Push-Through Filtration of Emulsified Adipose Tissue Over a 500-µm Mesh Significantly Reduces the Amount of Stromal Vascular Fraction and Mesenchymal Stem Cells. Aesthet Surg J 2023; 43:NP696-NP703. [PMID: 37130047 DOI: 10.1093/asj/sjad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Mechanical isolation of the stromal vascular fraction (SVF) separates the stromal component from the parenchymal cells. Emulsification is currently the most commonly used disaggregation method and is effective in disrupting adipocytes and fragmenting the extracellular matrix (ECM). Subsequent push-through filtration of emulsified adipose tissue removes parts of the ECM that are not sufficiently micronized, thereby further liquifying the tissue. OBJECTIVES The aim of this study was to investigate whether filtration over a 500-µm mesh filter might affect the SVF and adipose-derived mesenchymal stem cell (MSC) quantity in emulsified lipoaspirate samples by removing ECM fragments. METHODS Eleven lipoaspirate samples from healthy nonobese women were harvested and emulsified in 30 passes. One-half of the sample was filtered through a 500-µm mesh filter and the other half was left unfiltered. Paired samples were processed and analyzed by flow cytometry to identify cellular viability, and SVF and MSC yield. RESULTS Push-through filtration reduced the number of SVF cells by a mean [standard deviation] of 39.65% [5.67%] (P < .01). It also significantly reduced MSC counts by 48.28% [6.72%] (P < .01). Filtration did not significantly affect viability (P = .118). CONCLUSIONS Retention of fibrous remnants by push-through filters removed ECM containing the SVF and MSCs from emulsified lipoaspirates. Processing methods should aim either to further micronize the lipoaspirate before filtering or not to filter the samples at all, to preserve both the cellular component carried within the ECM and the inductive properties of the ECM itself.
Collapse
|
33
|
Debuc B, Gendron N, Cras A, Rancic J, Philippe A, Cetrulo CL, Lellouch AG, Smadja DM. Improving Autologous Fat Grafting in Regenerative Surgery through Stem Cell-Assisted Lipotransfer. Stem Cell Rev Rep 2023; 19:1726-1754. [PMID: 37261667 DOI: 10.1007/s12015-023-10568-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Autologous fat transplantation -i.e., lipofilling- has become a promising and popular technique in aesthetic and reconstructive surgery with several application such as breast reconstruction, facial and hand rejuvenation. However, the use of this technology is still limited due to an unpredictable and low graft survival rate (which ranges from 25%-80%). A systematic literature review was performed by thoroughly searching 12 terms using the PubMed database. The objective of this study is to present the current evidence for the efficacy of adjuvant regenerative strategies and cellular factors, which have been tested to improve fat graft retention. We present the main results (fat retention rate, histological analysis for pre-clinical studies and satisfaction/ complication for clinical studies) obtained from the studies of the three main fat grafting enrichment techniques: platelet-rich plasma (PRP), the stromal vascular fraction (SVF) and adipose-derived stem cells (ADSCs) and discuss the promising role of recent angiogenic cell enrichment that could induce early vascularization of fat graft. All in all, adding stem or progenitor cells to autologous fat transplantation might become a new concept in lipofilling. New preclinical models should be used to find mechanisms able to increase fat retention, assure safety and transfer these technologies to a good manufacturing practice (GMP) compliant facility, to manufacture an advanced therapy medicinal product (ATMP).
Collapse
Affiliation(s)
- Benjamin Debuc
- Department of Plastic Surgery, European Georges Pompidou Hospital, AP-HP, Paris, France
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
| | - Nicolas Gendron
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
- Department of Hematology, European Georges Pompidou Hospital, AP-HP, 20 Rue Leblanc, F-75015, Paris, France
| | - Audrey Cras
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
- Department of Cell Therapy, Saint Louis Hospital, AP-HP, F-75010, Paris, France
| | - Jeanne Rancic
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
| | - Aurélien Philippe
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
- Department of Hematology, European Georges Pompidou Hospital, AP-HP, 20 Rue Leblanc, F-75015, Paris, France
| | - Curtis L Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children-Boston, Boston, MA, USA
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Alexandre G Lellouch
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children-Boston, Boston, MA, USA
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David M Smadja
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France.
- Department of Hematology, European Georges Pompidou Hospital, AP-HP, 20 Rue Leblanc, F-75015, Paris, France.
| |
Collapse
|
34
|
Lim YC, Jung JI, Hong IK. A Novel Method for Human Adipose-Derived Stem Cell Isolation and Cryopreservation. Cell Reprogram 2023; 25:171-179. [PMID: 37590008 DOI: 10.1089/cell.2023.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) are isolated from abundant adipose tissue and have the capacity to differentiate into multiple cell lineages. ADSCs have raised big interest in therapeutic applications in regenerative medicine and demonstrated to fulfill the criteria for a successful cell therapy. There are several methods for isolation of ADSCs from adipose tissue and cryopreservation of ADSCs. Here, novel methods for the isolation and cryopreservation of ADSCs are presented and focused. Microscopic pieces of adipose tissue were placed on transwell inserts, and the ADSCs were induced to migrate to the lower wells for 1 week. We compared the properties of our ADSCs with those isolated by enzymatic digestion and enzyme-free method of culture plate, and our ADSCs were found to be more stable and healthier. In addition, we proposed a novel cryoprotectant solution (FNCP) containing pectin and L-alanine, which was compared with standard cryoprotectant solution. Overall, our methods proved more useful for ADSCs isolation than other methods and did not require consideration of "minimal manipulation" by the U.S. Food and Drug Administration (FDA). Furthermore, our FNCP did not contain dimethyl sulfoxide and fetal bovine serum, therefore stable storage is possible in xeno-free and animal-free cryopreservation solutions.
Collapse
Affiliation(s)
- Young-Cheol Lim
- Bio Lab. Efficacy Research Team, Frombio. Co., Ltd, Yongin-si, Republic of Korea
| | - Jung-Il Jung
- Bio Lab. Efficacy Research Team, Frombio. Co., Ltd, Yongin-si, Republic of Korea
| | - In-Kee Hong
- Bio Lab. Efficacy Research Team, Frombio. Co., Ltd, Yongin-si, Republic of Korea
| |
Collapse
|
35
|
Aoyagi C, Tanaka T, Haga N, Yanase T, Kodama S. Differentiation of human adipose tissue-derived mesenchymal stromal cells into steroidogenic cells by adenovirus-mediated overexpression of NR5A1 and implantation into adrenal insufficient mice. Cytotherapy 2023; 25:866-876. [PMID: 37149799 DOI: 10.1016/j.jcyt.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AIMS Cell therapy for adrenal insufficiency is a potential method for physiological glucocorticoid and mineralocorticoid replacement. We have previously shown that mouse mesenchymal stromal cells (MSCs) differentiated into steroidogenic cells by the viral vector-mediated overexpression of nuclear receptor subfamily 5 group A member 1 (NR5A1), an essential regulator of steroidogenesis, and their implantation extended the survival of bilateral adrenalectomized (bADX) mice. METHODS In this study, we examined the capability of NR5A1-induced steroidogenic cells prepared from human adipose tissue-derived MSCs (MSC [AT]) and the therapeutic effect of the implantation of human NR5A1-induced steroidogenic cells into immunodeficient bADX mice. RESULTS Human NR5A1-induced steroidogenic cells secreted adrenal and gonadal steroids and exhibited responsiveness to adrenocorticotropic hormone and angiotensin II in vitro. In vivo, the survival time of bADX mice implanted with NR5A1-induced steroidogenic cells was significantly prolonged compared with that of bADX mice implanted with control MSC (AT). Serum cortisol levels, which indicate hormone secretion from the graft, were detected in bADX mice implanted with steroidogenic cells. CONCLUSIONS This is the first report to demonstrate steroid replacement by the implantation of steroid-producing cells derived from human MSC (AT). These results indicate the potential of human MSC (AT) to be a source of steroid hormone-producing cells.
Collapse
Affiliation(s)
- Chikao Aoyagi
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; Department of Urology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomoko Tanaka
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Nobuhiro Haga
- Department of Urology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
36
|
Petrova V, Vachkova E. Outlook of Adipose-Derived Stem Cells: Challenges to Their Clinical Application in Horses. Vet Sci 2023; 10:vetsci10050348. [PMID: 37235430 DOI: 10.3390/vetsci10050348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Adipose tissue is recognized as the major endocrine organ, potentially acting as a source of mesenchymal stem cells for various applications in regenerative medicine. Athletic horses are often exposed to traumatic injuries, resulting in severe financial losses. The development of adipose-derived stem cells' regenerative potential depends on many factors. The extraction of stem cells from subcutaneous adipose tissue is non-invasive, non-traumatic, cheaper, and safer than other sources. Since there is a lack of unique standards for identification, the isolated cells and applied differentiation protocols are often not species-specific; therefore, the cells cannot reveal their multipotent properties, so their stemness features remain questionable. The current review discusses some aspects of the specificity of equine adipose stem cells concerning their features, immunophenotyping, secretome profile, differentiation abilities, culturing conditions, and consequent possibilities for clinical application in concrete disorders. The presented new approaches elucidate the possibility of the transition from cell-based to cell-free therapy with regenerative purposes in horses as an alternative treatment to cellular therapy. In conclusion, their clinical benefits should not be underestimated due to the higher yield and the physiological properties of adipose-derived stem cells that facilitate the healing and tissue regeneration process and the ability to amplify the effects of traditional treatments. More profound studies are necessary to apply these innovative approaches when treating traumatic disorders in racing horses.
Collapse
Affiliation(s)
- Valeria Petrova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Ekaterina Vachkova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
37
|
Giannasi C, Niada S, Della Morte E, Casati SR, De Palma C, Brini AT. Serum starvation affects mitochondrial metabolism of adipose-derived stem/stromal cells. Cytotherapy 2023:S1465-3249(23)00067-1. [PMID: 37061899 DOI: 10.1016/j.jcyt.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND AIMS A large part of mesenchymal stromal cell (MSC) regenerative and immunomodulatory action is mediated by paracrine signaling. Hence, an increasing body of evidence acknowledges the potential of MSC secretome in a variety of preclinical and clinical scenarios. Mid-term serum deprivation is a common approach in the pipeline of MSC secretome production. Nevertheless, up to now, little is known about the impact of this procedure on the metabolic status of donor cells. METHODS Here, through untargeted differential metabolomics, we revealed an impairment of mitochondrial metabolism in adipose-derived MSCs exposed for 72 h to serum deprivation. RESULTS This evidence was further confirmed by the significant accumulation of reactive oxygen species and the reduction of succinate dehydrogenase activity. Probably as a repair mechanism, an upregulation of mitochondrial superoxide dismutase was also induced. CONCLUSIONS Of note, the analysis of mitochondrial functionality indicated that, despite a significant reduction of basal respiration and ATP production, serum-starved MSCs still responded to changes in energy demand. This metabolic phenotype correlates with the obtained evidence of mitochondrial elongation and branching upon starvation.
Collapse
Affiliation(s)
- Chiara Giannasi
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | | | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Anna Teresa Brini
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
38
|
Chechekhin V, Ivanova A, Kulebyakin K, Sysoeva V, Naida D, Arbatsky M, Basalova N, Karagyaur M, Skryabina M, Efimenko A, Grigorieva O, Kalinina N, Tkachuk V, Tyurin-Kuzmin P. Alpha1A- and Beta3-Adrenoceptors Interplay in Adipose Multipotent Mesenchymal Stromal Cells: A Novel Mechanism of Obesity-Driven Hypertension. Cells 2023; 12:cells12040585. [PMID: 36831252 PMCID: PMC9954306 DOI: 10.3390/cells12040585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Hypertension is a major risk factor for cardiovascular diseases, such as strokes and myocardial infarctions. Nearly 70% of hypertension onsets in adults can be attributed to obesity, primarily due to sympathetic overdrive and the dysregulated renin-angiotensin system. Sympathetic overdrive increases vasoconstriction via α1-adrenoceptor activation on vascular cells. Despite the fact that a sympathetic outflow increases in individuals with obesity, as a rule, there is a cohort of patients with obesity who do not develop hypertension. In this study, we investigated how adrenoceptors' expression and functioning in adipose tissue are affected by obesity-driven hypertension. Here, we demonstrated that α1A is a predominant isoform of α1-adrenoceptors expressed in the adipose tissue of patients with obesity, specifically by multipotent mesenchymal stromal cells (MSCs). These cells respond to prolonged exposure to noradrenaline in the model of sympathetic overdrive through the elevation of α1A-adrenoceptor expression and signaling. The extent of MSCs' response to noradrenaline correlates with a patient's arterial hypertension. scRNAseq analysis revealed that in the model of sympathetic overdrive, the subpopulation of MSCs with contractile phenotype expanded significantly. Elevated α1A-adrenoceptor expression is triggered specifically by beta3-adrenoceptors. These data define a novel pathophysiological mechanism of obesity-driven hypertension by which noradrenaline targets MSCs to increase microvessel constrictor responsivity.
Collapse
Affiliation(s)
- Vadim Chechekhin
- Department of Biochemistry and Regenerative Medicine, Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| | - Anastasia Ivanova
- Department of Biochemistry and Regenerative Medicine, Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Konstantin Kulebyakin
- Department of Biochemistry and Regenerative Medicine, Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Veronika Sysoeva
- Department of Biochemistry and Regenerative Medicine, Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Daria Naida
- Burdenko Main Military Clinical Hospital, 105094 Moscow, Russia
| | - Mikhail Arbatsky
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maxim Karagyaur
- Department of Biochemistry and Regenerative Medicine, Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mariya Skryabina
- Department of Biochemistry and Regenerative Medicine, Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia Efimenko
- Department of Biochemistry and Regenerative Medicine, Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Natalia Kalinina
- Department of Biochemistry and Regenerative Medicine, Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vsevolod Tkachuk
- Department of Biochemistry and Regenerative Medicine, Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Pyotr Tyurin-Kuzmin
- Department of Biochemistry and Regenerative Medicine, Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
39
|
Muthu S, Patil SC, Jeyaraman N, Jeyaraman M, Gangadaran P, Rajendran RL, Oh EJ, Khanna M, Chung HY, Ahn BC. Comparative effectiveness of adipose-derived mesenchymal stromal cells in the management of knee osteoarthritis: A meta-analysis. World J Orthop 2023; 14:23-41. [PMID: 36686284 PMCID: PMC9850793 DOI: 10.5312/wjo.v14.i1.23] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/20/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common joint disorder, is associated with an increasing socioeconomic impact owing to the ageing population. AIM To analyze and compare the efficacy and safety of bone-marrow-derived mesenchymal stromal cells (BM-MSCs) and adipose tissue-derived MSCs (AD-MSCs) in knee OA management from published randomized controlled trials (RCTs). METHODS Independent and duplicate electronic database searches were performed, including PubMed, EMBASE, Web of Science, and Cochrane Library, until August 2021 for RCTs that analyzed the efficacy and safety of AD-MSCs and BM-MSCs in the management of knee OA. The visual analog scale (VAS) score for pain, Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), Lysholm score, Tegner score, magnetic resonance observation of cartilage repair tissue score, knee osteoarthritis outcome score (KOOS), and adverse events were analyzed. Analysis was performed on the R-platform using OpenMeta (Analyst) software. Twenty-one studies, involving 936 patients, were included. Only one study compared the two MSC sources without patient randomization; hence, the results of all included studies from both sources were pooled, and a comparative critical analysis was performed. RESULTS At six months, both AD-MSCs and BM-MSCs showed significant VAS improvement (P = 0.015, P = 0.012); this was inconsistent at 1 year for BM-MSCs (P < 0.001, P = 0.539), and AD-MSCs outperformed BM-MSCs compared to controls in measures such as WOMAC (P < 0.001, P = 0.541), Lysholm scores (P = 0.006; P = 0.933), and KOOS (P = 0.002; P = 0.012). BM-MSC-related procedures caused significant adverse events (P = 0.003) compared to AD-MSCs (P = 0.673). CONCLUSION Adipose tissue is superior to bone marrow because of its safety and consistent efficacy in improving pain and functional outcomes. Future trials are urgently warranted to validate our findings and reach a consensus on the ideal source of MSCs for managing knee OA.
Collapse
Affiliation(s)
- Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624001, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Research Associate, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Indian Stem Cell Study Group Association, Lucknow 226001, Uttar Pradesh, India
| | - Sandesh C Patil
- Department of Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow 226012, Uttar Pradesh, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group Association, Lucknow 226001, Uttar Pradesh, India
- Department of Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow 226012, Uttar Pradesh, India
| | - Madhan Jeyaraman
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Research Associate, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Indian Stem Cell Study Group Association, Lucknow 226001, Uttar Pradesh, India
- Department of Orthopaedics, ACS Medical College & Hospital, Dr MGR Educational and Research Institute, Chennai 600056, Tamil Nadu, India
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Manish Khanna
- Indian Stem Cell Study Group Association, Lucknow 226001, Uttar Pradesh, India
| | - Ho Yun Chung
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- Department of Plastic and Reconstructive Surgery, CMRI, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, South Korea
| |
Collapse
|
40
|
Im GI. Regenerative medicine for osteonecrosis of the femoral head : present and future. Bone Joint Res 2023; 12:5-8. [PMID: 36587245 PMCID: PMC9872044 DOI: 10.1302/2046-3758.121.bjr-2022-0057.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cite this article: Bone Joint Res 2023;12(1):5-8.
Collapse
Affiliation(s)
- Gun-Il Im
- Research Institute for Convergence Life Science, Dongguk University, Goyang, South Korea, Gun-Il Im. E-mail:
| |
Collapse
|
41
|
Isaković J, Šerer K, Barišić B, Mitrečić D. Mesenchymal stem cell therapy for neurological disorders: The light or the dark side of the force? Front Bioeng Biotechnol 2023; 11:1139359. [PMID: 36926687 PMCID: PMC10011535 DOI: 10.3389/fbioe.2023.1139359] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Neurological disorders are recognized as major causes of death and disability worldwide. Because of this, they represent one of the largest public health challenges. With awareness of the massive burden associated with these disorders, came the recognition that treatment options were disproportionately scarce and, oftentimes, ineffective. To address these problems, modern research is increasingly looking into novel, more effective methods to treat neurological patients; one of which is cell-based therapies. In this review, we present a critical analysis of the features, challenges, and prospects of one of the stem cell types that can be employed to treat numerous neurological disorders-mesenchymal stem cells (MSCs). Despite the fact that several studies have already established the safety of MSC-based treatment approaches, there are still some reservations within the field regarding their immunocompatibility, heterogeneity, stemness stability, and a range of adverse effects-one of which is their tumor-promoting ability. We additionally examine MSCs' mechanisms of action with respect to in vitro and in vivo research as well as detail the findings of past and ongoing clinical trials for Parkinson's and Alzheimer's disease, ischemic stroke, glioblastoma multiforme, and multiple sclerosis. Finally, this review discusses prospects for MSC-based therapeutics in the form of biomaterials, as well as the use of electromagnetic fields to enhance MSCs' proliferation and differentiation into neuronal cells.
Collapse
Affiliation(s)
- Jasmina Isaković
- Omnion Research International, Zagreb, Croatia.,Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Klara Šerer
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Barbara Barišić
- University of Zagreb School of Dental Medicine, Zagreb, Croatia
| | - Dinko Mitrečić
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia.,Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
42
|
Yu Y, Li H. Comparative characterization of frozen-thawed CD146+ and CD146- subsets of CD73+CD90+CD105+CD34+ human ASCs. J Stem Cells Regen Med 2022; 18:36-42. [PMID: 36713792 PMCID: PMC9837695 DOI: 10.46582/jsrm.1802007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/15/2022] [Indexed: 01/01/2023]
Abstract
Background Mesenchymal stem cells are currently used to treat several diseases. Populations of putative stem cells found in the adipose tissue (ASCs) have been shown to possess particularly enhanced functionalities. Nonetheless, there is lack of evidence that evaluates the effects of cryopreservation techniques on well-defined functional ASC populations characterized by immunophenotypical repertoire. Objective We therefore embarked a study to compare the frozen-thawed ASC subsets: CD73+CD90+CD105+CD34+CD146-(CD34+CD146), CD73+CD90+CD105+CD34+CD146+(CD34+CD146+), and CD73+CD90+CD105+CD34+(CD34+). We assessed their characterization in different functional assays. Method The ASC immunophenotypical subsets-purified by a flow cytometry sorting technique-were frozen in liquid nitrogen. After a period, they were thawed to examine their differentiation ability, colony-forming units, viability, and growth rate. Results We confirmed that inside the primary cell culture system, the proportion of CD34+, CD34+CD146-, and CD34+CD146+ took up 80%, 62%, and 19% on average, respectively. All populations could be frozen and stored in liquid nitrogen with retention of more than 85% of cell viability and displayed comparable stemness characteristics. Most importantly, the CD34+CD146+ subpopulation displayed a higher proliferation rate than other groups. Conclusion Our data demonstrated that the frozen-thawed CD34+CD146+ cells might represent a promising source for autologous cellular-based therapy. These findings set the basis for ASC subpopulations-based application in future potential clinical settings.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Haisong Li
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
43
|
Najafi-Ghalehlou N, Feizkhah A, Mobayen M, Pourmohammadi-Bejarpasi Z, Shekarchi S, Roushandeh AM, Roudkenar MH. Plumping up a Cushion of Human Biowaste in Regenerative Medicine: Novel Insights into a State-of-the-Art Reserve Arsenal. Stem Cell Rev Rep 2022; 18:2709-2739. [PMID: 35505177 PMCID: PMC9064122 DOI: 10.1007/s12015-022-10383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
Major breakthroughs and disruptive methods in disease treatment today owe their thanks to our inch by inch developing conception of the infinitive aspects of medicine since the very beginning, among which, the role of the regenerative medicine can on no account be denied, a branch of medicine dedicated to either repairing or replacing the injured or diseased cells, organs, and tissues. A novel means to accomplish such a quest is what is being called "medical biowaste", a large assortment of biological samples produced during a surgery session or as a result of physiological conditions and biological activities. The current paper accentuating several of a number of promising sources of biowaste together with their plausible applications in routine clinical practices and the confronting challenges aims at inspiring research on the existing gap between clinical and basic science to further extend our knowledge and understanding concerning the potential applications of medical biowaste.
Collapse
Affiliation(s)
- Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Mobayen
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shima Shekarchi
- Anatomical Sciences Department, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
44
|
Tang Q, Zhao XS, Guo A, Cui RT, Song HL, Qi ZY, Pan Y, Yang Y, Zhang FF, Jin L. Therapeutic applications of adipose-derived stromal vascular fractions in osteoarthritis. World J Stem Cells 2022; 14:744-755. [PMID: 36337155 PMCID: PMC9630988 DOI: 10.4252/wjsc.v14.i10.744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is considered to be a highly heterogeneous disease with progressive cartilage loss, subchondral bone remodeling, and low-grade inflammation. It is one of the world's leading causes of disability. Most conventional clinical treatments for OA are palliative drugs, which cannot fundamentally cure this disease. The stromal vascular fraction (SVF) from adipose tissues is a heterogeneous cell population. According to previous studies, it contains a large number of mesenchymal stem cells, which have been used to treat OA with good therapeutic results. This safe, simple, and effective therapy is expected to be applied and promoted in the future. In this paper, the detailed pathogenesis, diagnosis, and current clinical treatments for OA are introduced. Then, clinical studies and the therapeutic mechanism of SVF for the treatment of OA are summarized.
Collapse
Affiliation(s)
- Qi Tang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Xian-Sheng Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ao Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Ruo-Tong Cui
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Huai-Le Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Zi-Yang Qi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Yi Pan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Yue Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Fang-Fang Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Liang Jin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| |
Collapse
|
45
|
Setiawan AM, Kamarudin TA, Abd Ghafar N. The role of BMP4 in adipose-derived stem cell differentiation: A minireview. Front Cell Dev Biol 2022; 10:1045103. [PMID: 36340030 PMCID: PMC9634734 DOI: 10.3389/fcell.2022.1045103] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
Bone morphogenetic protein 4 (BMP4) is a member of the transforming growth factor beta (TGF-β) superfamily of cytokines responsible for stem cells’ commitment to differentiation, proliferation, and maturation. To date, various studies have utilized BMP4 as a chemical inducer for in vitro differentiation of human mesenchymal stem cells (MSCs) based on its potential. BMP4 drives in vitro differentiation of ADSC via TGF-β signaling pathway by interactions with BMP receptors leading to the activation of smad-dependent and smad-independent pathways. The BMP4 signaling pathways are regulated by intracellular and extracellular BMP4 antagonists. Extracellular BMP4 antagonist prevents interaction between BMP4 ligand to its receptors, while intracellular BMP4 antagonist shutdowns the smad-dependent pathways through multiple mechanisms. BMP4 proved as one of the popular differentiation factors to induce ADSC differentiation into cell from mesodermal origin. However, addition of all-trans retinoic acid is also needed in trans-differentiation of ADSC into ectodermal lineage cells. Suggesting that both BMP4 and RA signaling pathways may be necessary to be activated for in vitro trans-differentiation of ADSC.
Collapse
Affiliation(s)
- Abdul Malik Setiawan
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Anatomy, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
| | - Taty Anna Kamarudin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Taty Anna Kamarudin,
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Chun JJ, Chang J, Soedono S, Oh J, Kim YJ, Wee SY, Cho KW, Choi CY. Mechanical Stress Improves Fat Graft Survival by Promoting Adipose-Derived Stem Cells Proliferation. Int J Mol Sci 2022; 23:ijms231911839. [PMID: 36233141 PMCID: PMC9569524 DOI: 10.3390/ijms231911839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cell-assisted lipotransfer (CAL), defined as co-transplantation of aspirated fat with enrichment of adipose-derived stem cells (ASCs), is a novel technique for cosmetic and reconstructive surgery to overcome the low survival rate of traditional fat grafting. However, clinically approved techniques for increasing the potency of ASCs in CAL have not been developed yet. As a more clinically applicable method, we used mechanical stress to reinforce the potency of ASCs. Mechanical stress was applied to the inguinal fat pad by needling. Morphological and cellular changes in adipose tissues were examined by flow cytometric analysis 1, 3, 5, and 7 days after the procedure. The proliferation and adipogenesis potencies of ASCs were evaluated. CAL with ASCs treated with mechanical stress or sham control were performed, and engraftment was determined at 4 weeks post-operation. Flow cytometry analysis revealed that mechanical stress significantly increased the number as well as the frequency of ASC proliferation in fat. Proliferation assays and adipocyte-specific marker gene analysis revealed that mechanical stress promoted proliferation potential but did not affect the differentiation capacity of ASCs. Moreover, CAL with cells derived from mechanical stress-treated fat increased the engraftment. Our results indicate that mechanical stress may be a simple method for improving the efficacy of CAL by enhancing the proliferation potency of ASCs.
Collapse
Affiliation(s)
- Jeong Jin Chun
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Hospital, Gumi 39371, Korea
| | - Jiyeon Chang
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea
| | - Shindy Soedono
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea
| | - Jieun Oh
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31583, Korea
| | - Yeong Jin Kim
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Hospital, Bucheon 14584, Korea
| | - Syeo Young Wee
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Hospital, Gumi 39371, Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: (K.W.C.); (C.Y.C.); Tel.: +82-41-413-5028 (K.W.C.); +82-32-621-5319 (C.Y.C.)
| | - Chang Yong Choi
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Hospital, Bucheon 14584, Korea
- Correspondence: (K.W.C.); (C.Y.C.); Tel.: +82-41-413-5028 (K.W.C.); +82-32-621-5319 (C.Y.C.)
| |
Collapse
|
47
|
López F. Safety and efficacy of intra-articular infiltration of purified autologous adipose tissue for osteoarthritis treatment: a pre-post study. J Exp Orthop 2022; 9:97. [PMID: 36163597 PMCID: PMC9512941 DOI: 10.1186/s40634-022-00534-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Félix López
- Maestranza Medical Center, Madrid, Spain. .,Bluehealthcare, Madrid, Spain.
| |
Collapse
|
48
|
Early Transcriptional Changes of Adipose-Derived Stem Cells (ADSCs) in Cell Culture. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091249. [PMID: 36143926 PMCID: PMC9501538 DOI: 10.3390/medicina58091249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022]
Abstract
Background and Objectives: While autologous fat grafting has been carried out in the clinical field for many years, the utilization of isolated and cultured adipose-derived stem cells (ADSCs) is highly restricted in many countries. However, ADSCs are under investigation currently and heavily researched in many cell-based therapy approaches in the field of regenerative medicine. Objective: For the utilization of future cell-based therapies with ADSCs, in vitro cell expansion might be necessary in many cases. Thus, the cellular characteristics of ADSCs may be altered though the process of being cultured. The aim of this study was to assess changes in the gene expression profile of ADSCs after cell expansion for 48 h. Materials and Methods: Isolated ADSCs from five different donors were used for in vitro expansion. For the evaluation of the gene expression profile, mRNA deep Next-Generation Sequencing was performed to evaluate the differences between cultured and freshly isolated cells. Results: Our study gives insight into transcriptional changes in ADSCs after a short cell cultivation period. This includes the most prominent upregulated genes such as PPL, PRR15, CCL11 and ABCA9, as well the most downregulated genes, which are FOSB, FOS, EGR1 and DUSP6. Furthermore, we showed different biological processes that changed during short-term cell expansion, which led to downregulation of fat-associated metabolism hormone processes and to an upregulation of extracellular matrix-associated genes. Conclusion: In conclusion, our study reveals a detailed insight into early changes in the gene expression profile of cultured ADSCs. Our results can be utilized in future experiments.
Collapse
|
49
|
Sharun K, Jambagi K, Kumar R, Gugjoo MB, Pawde AM, Tuli HS, Dhama K, Amarpal. Clinical applications of adipose-derived stromal vascular fraction in veterinary practice. Vet Q 2022; 42:151-166. [PMID: 35841195 PMCID: PMC9364732 DOI: 10.1080/01652176.2022.2102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Adipose tissue-derived stromal vascular fraction (AdSVF) comprises a heterogeneous cell population, including the multipotent mesenchymal stem cells, hematopoietic stem cells, immune cells, endothelial cells, fibroblasts, and pericytes. As such, multipotent adipose tissue-derived mesenchymal stem cells (AdMSCs), are one of the important components of AdSVF. Commonly used techniques to harvest AdSVF involve enzymatic or non-enzymatic methods. The enzymatic method is considered to be the gold standard technique due to its higher yield. The cellular components of AdSVF can be resuspended in normal saline, platelet-rich plasma, or phosphate-buffered saline to produce a ready-to-use solution. Freshly isolated AdSVF has exhibited promising osteogenic and vasculogenic capacity. AdSVF has already been proven to possess therapeutic potential for osteoarthritis management. It is also an attractive therapeutic option for enhancing wound healing. In addition, the combined use of AdSVF and platelet-rich plasma has an additive stimulatory effect in accelerating wound healing and can be considered an alternative to AdMSC treatment. It is also widely used for managing various orthopaedic conditions in clinical settings and has the potential for regenerating bone, cartilage, and tendons. Autologous AdSVF cells are used along with bone substitutes and other biological factors as an alternative to conventional bone grafting techniques owing to their promising osteogenic and vasculogenic capacity. It can also be used for treating osteonecrosis, meniscus tear, chondromalacia, and tendon injuries in veterinary practice. It has several advantages over in vitro expanded AdMSC, including precluding the need for culturing, reduced risk of cell contamination, and cost-effectiveness, making it ideal for clinical use.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Kaveri Jambagi
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar, Jammu and Kashmir-190006, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| |
Collapse
|
50
|
Zhao H, Chen W, Chen J, Qi C, Wang T, Zhang J, Qu D, Yu T, Zhang Y. ADSCs Promote Tenocyte Proliferation by Reducing the Methylation Level of lncRNA Morf4l1 in Tendon Injury. Front Chem 2022; 10:908312. [PMID: 35860629 PMCID: PMC9290323 DOI: 10.3389/fchem.2022.908312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Tendons are the special connective tissue that connects bones to muscles and governs joint movement in response to loads passed by muscles. The healing of tendon injuries is still a challenge. In recent years, adipose-derived mesenchymal stem cells (ADSCs) have been increasingly used for tissue regeneration, but the underlying mechanism of tendon injury still remains unclear. Methods: High-throughput sequencing was used to identify a novel lncRNA, whose expression was significantly decreased in injured tendon compared with normal tendon. Furthermore, pyrosequencing, nuclear-cytoplasmic separation, FISH assay and qRT-PCR analysis were used to verify the level of lncRNA methylation in the injured tenocytes. lncRNA was confirmed to promote the proliferation of tenocytes by flow cytometry, wound healing assay, qRT-PCR, and western blot, and the target gene of lncRNA was predicted and verified. To confirm that ADSCs could repair injured tendons, ADSCs and injured tenocytes were co-cultured in vitro, and ADSCs were injected into injured tendons in vitro, respectively. Results: The lncRNA Morf4l1 promoter methylation in injured tendons led to down-regulation of its expression and inhibition of tenocyte proliferation. LncRNA Morf4l1 promoted the expression of TGF-β2 by targeting 3′U of miR-145-5p. After co-cultured ADSCs and injured tenocytes, the expression of lncRNA Morf4l1 was up-regulated, and the proliferation of injured tenocytes in vitro was promoted. The ADSCs were injected into the injured tendon to repair the injured tendon in vivo. Conclusion: This study confirmed that ADSCs promoted tendon wound healing by reducing the methylation level of lncRNA Morf4l1.
Collapse
Affiliation(s)
- Haibo Zhao
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Chen
- Third Affiliated Hospital of Hebei Medical University, Shi Jiazhuang, China
| | - Jinli Chen
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Qi
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianrui Wang
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Zhang
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Di Qu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Tengbo Yu,
| | - Yingze Zhang
- Third Affiliated Hospital of Hebei Medical University, Shi Jiazhuang, China
| |
Collapse
|