1
|
Hoffman DB, Schifino AG, Cooley MA, Zhong RX, Heo J, Morris CM, Campbell MJ, Warren GL, Greising SM, Call JA. Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of volumetric muscle loss. J Orthop Res 2025; 43:622-631. [PMID: 39610268 PMCID: PMC11806655 DOI: 10.1002/jor.26023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
This study's objective was to investigate the extent to which two different levels of low-intensity vibration training (0.6 g or 1.0 g) affected musculoskeletal structure and function after a volumetric muscle loss (VML) injury in male C57BL/6J mice. All mice received a unilateral VML injury to the posterior plantar flexors. Mice were randomized into a control group (no vibration; VML-noTX), or one of two experimental groups. The two experimental groups received vibration training for 15-min/day, 5-days/week for 8 weeks at either 0.6 g (VML-0.6 g) or 1.0 g (VML-1.0 g) beginning 3-days after induction of VML. Muscles were analyzed for contractile and metabolic adaptations. Tibial bone mechanical properties and geometric structure were assessed by a three-point bending test and microcomputed tomography (µCT). Body mass-normalized peak isometric-torque was 18% less in VML-0.6 g mice compared with VML-noTx mice (p = 0.030). There were no statistically significant differences of vibration intervention on contractile power or muscle oxygen consumption (p ≥ 0.191). Bone ultimate load, but not stiffness, was ~16% greater in tibias of VML-1.0 g mice compared with those from VML-noTx mice (p = 0.048). Cortical bone volume was ~12% greater in tibias of both vibration groups compared with VML-noTx mice (p = 0.003). Importantly, cross-section moment of inertia, the primary determinant of bone ultimate load, was 44% larger in tibias of VML-0.6 g mice compared with VML-noTx mice (p = 0.006). These changes indicate that following VML, bones are more responsive to the selected vibration training parameters than muscle. Vibration training represents a possible adjuvant intervention to address bone deficits following VML.
Collapse
Affiliation(s)
| | | | - Marion A. Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of GeorgiaAugust UniversityAugustaGeorgiaUSA
| | - Roger X. Zhong
- Department of Neuroscience and Regenerative MedicineAugusta UniversityAugustaGeorgiaUSA
| | - Junwon Heo
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Courtney M. Morris
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Matthew J. Campbell
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Gordon L. Warren
- Department of Physical TherapyGeorgia State UniversityAtlantaGeorgiaUSA
| | | | - Jarrod A. Call
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
Shah F, Stål P. Myopathy of the upper airway in snoring and obstructive sleep apnea. Laryngoscope Investig Otolaryngol 2022; 7:636-645. [PMID: 35434344 PMCID: PMC9008167 DOI: 10.1002/lio2.782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Previous reports of muscle changes in the upper airways of obstructive sleep apnea (OSA) patients have primarily been attributed to acquired nerve lesions due to snoring vibrations. The aim of this study was to investigate whether alterations reflecting muscle fiber injuries also occur in the upper respiratory tract of snoring and OSA patients and if these changes relate to upper airway dysfunction. Methods Muscle changes in biopsies from the soft palate of 20 patients suffering from snoring and OSA were investigated with enzyme, immunohistochemical, and morphometric techniques. Biopsies from eight healthy non‐snoring subjects were used as controls. Swallowing dysfunction was assessed with videoradiography. Results Fourteen patients had various degrees of swallowing dysfunction. The muscle samples from all the patients showed changes typical for both motor‐nerve lesions and muscle fiber injuries. The most common alterations reflecting myopathy were fibers having aggregates and disorganization of cytoskeletal proteins (15.5 ± 10.7%). Other changes were fibers with vacuole‐like structures (5.0 ± 4.4%), centrally positioned myonuclei (7.9 ± 4.8%), subsarcolemmal accumulations of nuclei, and various forms and sizes of ring fibers, that is, fibers where the myofilaments were disorganized peripherally (2.8 ± 2.8%). Conclusion The results show that muscle changes mirroring both myopathy and neuropathy co‐exist in the upper airway of snoring OSA patients. These findings suggest muscle weakness as a contributing factor to the upper airway dysfunction in OSA patients.
Collapse
Affiliation(s)
- Farhan Shah
- Laboratory of Muscle Biology, Department of Integrative Medical Biology Umeå University Umeå Sweden
| | - Per Stål
- Laboratory of Muscle Biology, Department of Integrative Medical Biology Umeå University Umeå Sweden
| |
Collapse
|
3
|
Masud AA, Shen CL, Luk HY, Chyu MC. Impact of Local Vibration Training on Neuromuscular Activity, Muscle Cell, and Muscle Strength: A Review. Crit Rev Biomed Eng 2022; 50:1-17. [PMID: 35997107 DOI: 10.1615/critrevbiomedeng.2022041625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper presents a review of studies on the effects of local vibration training (LVT) on muscle strength along with the associated changes in neuromuscular and cell dynamic responses. Application of local/direct vibration can significantly change the structural properties of muscle cell and can improve muscle strength. The improvement is largely dependent on vibration parameters such as amplitude and frequency. The results of 20 clinical studies reveal that electromyography (EMG) and maximal voluntary contraction (MVC) vary depending on vibration frequency, and studies using frequencies of 28-30 Hz reported greater increases in muscle activity in terms of EMG (rms) value and MVC data than the studies using higher frequencies. A greater muscle activity can be related to the recruitment of large motor units due to the application of local vibration. A greater increase in EMG (rms) values for biceps and triceps during extension than flexion under LVT suggests that types of muscles and their functions play an important role. Although a number of clinical trials and animal studies have demonstrated positive effects of vibration on muscle, an optimum training protocol has not been established. An attempt is made in this study to investigate the optimal LVT conditions on different muscles through review and analysis of published results in the literature pertaining to the changes in the neuromuscular activity. Directions for future research are discussed with regard to identifying optimal conditions for LVT and better understanding of the mechanisms associated with effects of vibration on muscles.
Collapse
Affiliation(s)
- Abdullah Al Masud
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Chwan-Li Shen
- Department of Pathology, School of Medicine, Texas Tech University, Lubbock, TX, USA
| | - Hui-Ying Luk
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Ming-Chien Chyu
- Department of Pathology, School of Medicine, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
4
|
van der Ende M, Plas RLC, van Dijk M, Dwarkasing JT, van Gemerden F, Sarokhani A, Swarts HJM, van Schothorst EM, Grefte S, Witkamp RF, van Norren K. Effects of whole-body vibration training in a cachectic C26 mouse model. Sci Rep 2021; 11:21563. [PMID: 34732809 PMCID: PMC8566567 DOI: 10.1038/s41598-021-98665-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/20/2021] [Indexed: 12/02/2022] Open
Abstract
Targeted exercise combined with nutritional and pharmacological strategies is commonly considered to be the most optimal strategy to reduce the development and progression of cachexia. For COPD patients, this multi-targeted treatment has shown beneficial effects. However, in many, physical activity is seriously hampered by frailty and fatigue. In the present study, effects of whole-body-vibration-training (WBV) were investigated, as potential alternative to active exercise, on body mass, muscle mass and function in tumour bearing mice. Twenty-four male CD2F1-mice (6–8 weeks, 21.5 ± 0.2 g) were stratified into four groups: control, control + WBV, C26 tumour-bearing, and C26 tumour-bearing + WBV. From day 1, whole-body-vibration was daily performed for 19 days (15 min, 45 Hz, 1.0 g acceleration). General outcome measures included body mass and composition, daily activity, blood analysis, assessments of muscle histology, function, and whole genome gene expression in m. soleus (SOL), m. extensor digitorum longus (EDL), and heart. Body mass, lean and fat mass and EDL mass were all lower in tumour bearing mice compared to controls. Except from improved contractility in SOL, no effects of vibration training were found on cachexia related general outcomes in control or tumour groups, as PCA analysis did not result in a distinction between corresponding groups. However, analysis of transcriptome data clearly revealed a distinction between tumour and trained tumour groups. WBV reduced the tumour-related effects on muscle gene expression in EDL, SOL and heart. Gene Set Enrichment Analysis showed that these effects were associated with attenuation of the upregulation of the proteasome pathway in SOL. These data suggest that WBV had minor effects on cachexia related general outcomes in the present experimental set-up, while muscle transcriptome showed changes associated with positive effects. This calls for follow-up studies applying longer treatment periods of WBV as component of a multiple-target intervention.
Collapse
Affiliation(s)
- Miranda van der Ende
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands.,Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Rogier L C Plas
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Miriam van Dijk
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Jvalini T Dwarkasing
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Frans van Gemerden
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Attusa Sarokhani
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Hans J M Swarts
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Evert M van Schothorst
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Renger F Witkamp
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaske van Norren
- Division Human Nutrition and Health, Nutritional Biology and Health, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Li C, Zhang Y, Chen Y, Su T, Zhao Y, Shi S. Cell-Autonomous Autophagy Protects Against Chronic Intermittent Hypoxia Induced Sensory Nerves and Endothelial Dysfunction of the Soft Palate. Med Sci Monit 2020; 26:e920878. [PMID: 32616707 PMCID: PMC7353292 DOI: 10.12659/msm.920878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chronic intermittent hypoxia (CIH) is a key feature of obstructive sleep apnea (OSA) syndrome. The pathogenesis of CIH-induced soft palate lesion is not well understood. Understanding the mechanisms of CIH-induced soft palate damage could provide new strategies for clinical treatment. MATERIAL AND METHODS Twenty male Sprague‑Dawley rats were randomized into a control group (n=10) and experimental group (n=10). The experimental group were exposed to CIH for 28 days. The control experiments were run in parallel. Morphological changes of CIH-induced soft palate were examined by hematoxylin and eosin. Peripheral nerves and vascular associated markers were analyzed by western blot and immunohistochemical staining. LC3B expression and transmission electron microscopy analysis was detected to investigate the destiny of cells in CIH-induced soft palate. RESULTS Histological studies demonstrated the thicken mucosal layer, muscular changes consistent with glands hyperplasia, and loose connective tissues of the soft palate in CIH induced rat models. CIH exposure significantly decreased the expression of annexin V but did not change argin level, suggesting that sensory nerves not motor nerves were damaged when exposed to intermittent hypoxia. Moreover, in response to CIH, the vascular vessel around the nerves and muscles became enlarged and caveolin-1 was overexpressed. Autophagy occurs in response to CIH-induced neuromuscular and vascular endothelial injury. CONCLUSIONS Sensory nerves and endothelial dysfunction contributed to the morphological damage of soft palate under intermittent hypoxia. Autophagy as a compensatory mechanism protects against CIH-induced injury. These findings have important implications for understanding mechanisms contributing to the increased soft palate lesion in patients with OSA.
Collapse
Affiliation(s)
- Cong Li
- Ear, Nose, and Throat (ENT) Department, Tongren Hospital, Shanghai, China (mainland)
| | - Yu Zhang
- Ear, Nose, and Throat (ENT) Department, Tongren Hospital, Shanghai, China (mainland)
| | - Yuqin Chen
- Ear, Nose, and Throat (ENT) Department, Tongren Hospital, Shanghai, China (mainland)
| | - Tiantian Su
- Ear, Nose, and Throat (ENT) Department, Tongren Hospital, Shanghai, China (mainland)
| | - Yaming Zhao
- Ear, Nose, and Throat (ENT) Department, Tongren Hospital, Shanghai, China (mainland)
| | - Song Shi
- Ear, Nose, and Throat (ENT) Department, Tongren Hospital, Shanghai, China (mainland)
| |
Collapse
|
6
|
Terashvili MN, Kozak KN, Gebremedhin D, Allen LA, Gifford AL, Allen KP, Thulin JD, Lombard JH. Effect of Nearby Construction Activity on Endothelial Function, Sensitivity to Nitric Oxide, and Potassium Channel Activity in the Middle Cerebral Arteries of Rats. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2020; 59:411-422. [PMID: 32404236 PMCID: PMC7338871 DOI: 10.30802/aalas-jaalas-19-000116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/03/2019] [Accepted: 10/07/2019] [Indexed: 11/05/2022]
Abstract
The present study assessed the effect of nearby construction activity on the responses of rat middle cerebral arteries (MCA) to the endothelium-dependent vasodilator acetylcholine and the NO donor sodium nitroprusside (SNP) and the activity of MaxiK potassium channels in MCA smooth muscle cells from male Sprague-Dawley rats. Two monitoring systems were used to assess vibrations in the animal rooms during and immediately after construction activities near the research building where the animal facility is located. One was a commercially available system; the other was a Raspberry-Pi (RPi)-based vibration monitoring system designed in our laboratory that included a small computing unit attached to a rolling sensor (low sensitivity) and a piezoelectric film sensor (high sensitivity). Both systems recorded increased levels of vibration during construction activity outside the building. During the construction period, vasodilator responses to acetylcholine and SNP were abolished, and MaxiK single-channel current opening frequency and open-state probability in cell-attached patches of isolated MCA myocytes were dramatically decreased. Recovery of acetylcholine- and SNP-induced dilation was minimal in MCA from rats studied after completion of construction but housed in the animal facility during construction, whereas responses to acetylcholine and SNP were intact in rats purchased, housed, and studied after construction. Baseline levels of vibration returned after the completion of construction, concomitant with the recovery of normal endothelium-dependent vasodilation to acetylcholine and of NO sensitivity assessed by using SNP in MCA from animals obtained after construction. The results of this study indicate that the vibration associated with nearby construction can have highly disruptive effects on crucial physiologic phenotypes.
Collapse
Affiliation(s)
- Maia N Terashvili
- Department of Physiology and Biomedical Resource Center, Milwaukee, Wisconsin
| | - Kaleigh N Kozak
- Department of Physiology and Biomedical Resource Center, Milwaukee, Wisconsin
| | - Debebe Gebremedhin
- Department of Physiology and Biomedical Resource Center, Milwaukee, Wisconsin
| | | | - Alison L Gifford
- Department of Physiology and Biomedical Resource Center, Milwaukee, Wisconsin
| | | | | | - Julian H Lombard
- Department of Physiology and Biomedical Resource Center, Milwaukee, Wisconsin;,
| |
Collapse
|
7
|
Reynolds R, Garner A, Norton J. Sound and Vibration as Research Variables in Terrestrial Vertebrate Models. ILAR J 2020; 60:159-174. [PMID: 32602530 DOI: 10.1093/ilar/ilaa004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Sound and vibration have been shown to alter animal behavior and induce physiological changes as well as to cause effects at the cellular and molecular level. For these reasons, both environmental factors have a considerable potential to alter research outcomes when the outcome of the study is dependent on the animal existing in a normal or predictable biological state. Determining the specific levels of sound or vibration that will alter research is complex, as species will respond to different frequencies and have varying frequencies where they are most sensitive. In consideration of the potential of these factors to alter research, a thorough review of the literature and the conditions that likely exist in the research facility should occur specific to each research study. This review will summarize the fundamental physical properties of sound and vibration in relation to deriving maximal level standards, consider the sources of exposure, review the effects on animals, and discuss means by which the adverse effects of these factors can be mitigated.
Collapse
Affiliation(s)
- Randall Reynolds
- Duke University School of Medicine, Department of Pathology and Division of Laboratory Animal Resources, Durham, NC
| | - Angela Garner
- Duke University School of Medicine, Division of Laboratory Animal Resources, Durham, NC
| | - John Norton
- Duke University School of Medicine, Pathology and Division of Laboratory Animal Resources
| |
Collapse
|
8
|
Lorusso D, Nikolov HN, Holdsworth DW, Dixon SJ. Vibration of osteoblastic cells using a novel motion-control platform does not acutely alter cytosolic calcium, but desensitizes subsequent responses to extracellular ATP. J Cell Physiol 2019; 235:5096-5110. [PMID: 31696507 DOI: 10.1002/jcp.29378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 09/30/2019] [Indexed: 11/08/2022]
Abstract
Low-magnitude high-frequency mechanical vibration induces biological responses in many tissues. Like many cell types, osteoblasts respond rapidly to certain forms of mechanostimulation, such as fluid shear, with transient elevation in the concentration of cytosolic free calcium ([Ca2+ ]i ). However, it is not known whether vibration of osteoblastic cells also induces acute elevation in [Ca2+ ]i . To address this question, we built a platform for vibrating live cells that is compatible with microscopy and microspectrofluorometry, enabling us to observe immediate responses of cells to low-magnitude high-frequency vibrations. The horizontal vibration system was mounted on an inverted microscope, and its mechanical performance was evaluated using optical tracking and accelerometry. The platform was driven by a sinusoidal signal at 20-500 Hz, producing peak accelerations from 0.1 to 1 g. Accelerometer-derived displacements matched those observed optically within 10%. We then used this system to investigate the effect of acceleration on [Ca2+ ]i in rodent osteoblastic cells. Cells were loaded with fura-2, and [Ca2+ ]i was monitored using microspectrofluorometry and fluorescence ratio imaging. No acute changes in [Ca2+ ]i or cell morphology were detected in response to vibration over the range of frequencies and accelerations studied. However, vibration did attenuate Ca2+ transients generated subsequently by extracellular ATP, which activates P2 purinoceptors and has been implicated in mechanical signaling in bone. In summary, we developed and validated a motion-control system capable of precisely delivering vibrations to live cells during real-time microscopy. Vibration did not elicit acute elevation of [Ca2+ ]i , but did desensitize responses to later stimulation with ATP.
Collapse
Affiliation(s)
- Daniel Lorusso
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, ON, Canada.,Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - Hristo N Nikolov
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - David W Holdsworth
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, ON, Canada.,Bone and Joint Institute, The University of Western Ontario, London, ON, Canada.,Department of Surgery, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
9
|
Pagnotti GM, Styner M, Uzer G, Patel VS, Wright LE, Ness KK, Guise TA, Rubin J, Rubin CT. Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity. Nat Rev Endocrinol 2019; 15:339-355. [PMID: 30814687 PMCID: PMC6520125 DOI: 10.1038/s41574-019-0170-1] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis, a condition of skeletal decline that undermines quality of life, is treated with pharmacological interventions that are associated with poor adherence and adverse effects. Complicating efforts to improve clinical outcomes, the incidence of obesity is increasing, predisposing the population to a range of musculoskeletal complications and metabolic disorders. Pharmacological management of obesity has yet to deliver notable reductions in weight and debilitating complications are rarely avoided. By contrast, exercise shows promise as a non-invasive and non-pharmacological method of regulating both osteoporosis and obesity. The principal components of exercise - mechanical signals - promote bone and muscle anabolism while limiting formation and expansion of fat mass. Mechanical regulation of bone and marrow fat might be achieved by regulating functions of differentiated cells in the skeletal tissue while biasing lineage selection of their common progenitors - mesenchymal stem cells. An inverse relationship between adipocyte versus osteoblast fate selection from stem cells is implicated in clinical conditions such as childhood obesity and increased marrow adiposity in type 2 diabetes mellitus, as well as contributing to skeletal frailty. Understanding how exercise-induced mechanical signals can be used to improve bone quality while decreasing fat mass and metabolic dysfunction should lead to new strategies to treat chronic diseases such as osteoporosis and obesity.
Collapse
Affiliation(s)
- Gabriel M Pagnotti
- School of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Maya Styner
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Gunes Uzer
- College of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Vihitaben S Patel
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Laura E Wright
- School of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Theresa A Guise
- School of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Janet Rubin
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
10
|
Shah F, Franklin KA, Holmlund T, Levring Jäghagen E, Berggren D, Forsgren S, Stål P. Desmin and dystrophin abnormalities in upper airway muscles of snorers and patients with sleep apnea. Respir Res 2019; 20:31. [PMID: 30764835 PMCID: PMC6376723 DOI: 10.1186/s12931-019-0999-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The pathophysiology of obstruction and swallowing dysfunction in snores and sleep apnea patients remains unclear. Neuropathy and to some extent myopathy have been suggested as contributing causes. Recently we reported an absence and an abnormal isoform of two cytoskeletal proteins, desmin, and dystrophin, in upper airway muscles of healthy humans. These cytoskeletal proteins are considered vital for muscle function. We aimed to investigate for muscle cytoskeletal abnormalities in upper airways and its association with swallowing dysfunction and severity of sleep apnea. METHODS Cytoskeletal proteins desmin and dystrophin were morphologically evaluated in the uvula muscle of 22 patients undergoing soft palate surgery due to snoring and sleep apnea and in 10 healthy controls. The muscles were analysed with immunohistochemical methods, and swallowing function was assessed using videoradiography. RESULTS Desmin displayed a disorganized pattern in 21 ± 13% of the muscle fibres in patients, while these fibers were not present in controls. Muscle fibres lacking desmin were present in both patients and controls, but the proportion was higher in patients (25 ± 12% vs. 14 ± 7%, p = 0.009). The overall desmin abnormalities were significantly more frequent in patients than in controls (46 ± 18% vs. 14 ± 7%, p < 0.001). In patients, the C-terminus of the dystrophin molecule was absent in 19 ± 18% of the desmin-abnormal muscle fibres. Patients with swallowing dysfunction had 55 ± 10% desmin-abnormal muscle fibres vs. 22 ± 6% in patients without swallowing dysfunction, p = 0.002. CONCLUSION Cytoskeletal abnormalities in soft palate muscles most likely contribute to pharyngeal dysfunction in snorers and sleep apnea patients. Plausible causes for the presence of these abnormalities is traumatic snoring vibrations, tissue stretch or muscle overload.
Collapse
Affiliation(s)
- Farhan Shah
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Karl A. Franklin
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Thorbjörn Holmlund
- Department of Clinical Sciences, Otolaryngology, Umeå University, Umeå, Sweden
| | - Eva Levring Jäghagen
- Department of Odontology, Oral and Maxillofacial Radiology, Umeå University, Umeå, Sweden
| | - Diana Berggren
- Department of Clinical Sciences, Otolaryngology, Umeå University, Umeå, Sweden
| | - Sture Forsgren
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Per Stål
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
11
|
Whole-body vibration on leg muscles thermography and femoral resistive index of in adult healthy dogs. Res Vet Sci 2018; 122:118-123. [PMID: 30500616 DOI: 10.1016/j.rvsc.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/09/2018] [Accepted: 11/11/2018] [Indexed: 11/20/2022]
Abstract
This study aimed to assess the influence of WBV exercise on muscles by means of infrared thermography and on resistive index (RI) of the femoral artery. The hypothesis was that WBV exercise protocol will induce increase of the muscle activity detected through skin surface temperature change and decreased of RI with WBV exercise. Ten adult healthy medium dogs, were submitted to WBV session. Thermographic images were taken from regions of biceps femoris and vastus lateralis muscles. Triplex Doppler was used to assess RI of the femoral artery. Exams were performed before and immediately after WBV exercise sessions for five days, and RI of the femoral artery was evaluated 24 h after the last WBV session. There were no statistically significant differences between thermographic temperatures of regions of biceps femoris muscle and vastus lateralis muscle before and immediately after the WBV sessions. Significant differences were observed between the mean RI values before WBV sessions between day 1 and day 3, day 3 and day 5, and before and immediately after session on day 3; between before and immediately after session on day 2, day 3, day 4 and day 5; between before session between day 2 and day 6, day 3 and day 6, day 5 and day 6; and before and immediately after session on day 5. The WBV exercises during five uninterrupted days in adult healthy dogs do not alter significantly the skin temperatures over regions of biceps femoris and vastus lateralis muscles, and increase the femoral RI.
Collapse
|
12
|
Shah F, Holmlund T, Levring Jäghagen E, Berggren D, Franklin K, Forsgren S, Stål P. Axon and Schwann Cell Degeneration in Nerves of Upper Airway Relates to Pharyngeal Dysfunction in Snorers and Patients With Sleep Apnea. Chest 2018; 154:1091-1098. [DOI: 10.1016/j.chest.2018.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022] Open
|
13
|
Reynolds RP, Li Y, Garner A, Norton JN. Vibration in mice: A review of comparative effects and use in translational research. Animal Model Exp Med 2018; 1:116-124. [PMID: 30891556 PMCID: PMC6388090 DOI: 10.1002/ame2.12024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/11/2018] [Indexed: 11/10/2022] Open
Abstract
Sound pressure waves surround individuals in everyday life and are perceived by animals and humans primarily through sound or vibration. When sound pressure waves traverse through a solid medium, vibration will result. Vibration has long been considered an unwanted variable in animal research and may confound scientific endeavors using animals. Understanding the characteristics of vibration is required to determine whether effects in animals are likely to be therapeutic or result in adverse biological effects. The eighth edition of the "Guide for the Care and Use of Laboratory Animals" highlights the importance of considering vibration and its effects on animals in the research setting, but knowledge of the level of vibration for eliciting these effects was unknown. The literature provides information regarding therapeutic use of vibration in humans, but the range of conditions to be of therapeutic benefit is varied and without clarity. Understanding the characteristics of vibration (eg, frequency and magnitude) necessary to cause various effects will ultimately assist in the evaluation of this environmental factor and its role on a number of potential therapeutic regimens for use in humans. This paper will review the principles of vibration, sources within a research setting, comparative physiological effects in various species, and the relative potential use of vibration in the mouse as a translational research model.
Collapse
Affiliation(s)
- Randall P. Reynolds
- Division of Laboratory Animal ResourcesDuke University Medical CenterDurhamNCUSA
| | - Yao Li
- Department of Laboratory Animal ScienceSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Angela Garner
- Division of Laboratory Animal ResourcesDuke University Medical CenterDurhamNCUSA
| | - John N. Norton
- Division of Laboratory Animal ResourcesDuke University Medical CenterDurhamNCUSA
- Department of PathologyDuke University Medical CenterDurhamNCUSA
| |
Collapse
|
14
|
Zeller-Plumhoff B, Daly KR, Clough GF, Schneider P, Roose T. Investigation of microvascular morphological measures for skeletal muscle tissue oxygenation by image-based modelling in three dimensions. J R Soc Interface 2018; 14:rsif.2017.0635. [PMID: 29021164 DOI: 10.1098/rsif.2017.0635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022] Open
Abstract
The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, especially for skeletal muscle during exercise. Traditionally, microvascular oxygen supply capability is assessed by the analysis of morphological measures on transverse cross-sections of muscle, e.g. capillary density or capillary-to-fibre ratio. In this work, we investigate the relationship between microvascular structure and muscle tissue oxygenation in mice. Phase contrast imaging was performed using synchrotron radiation computed tomography (SR CT) to visualize red blood cells (RBCs) within the microvasculature in mouse soleus muscle. Image-based mathematical modelling of the oxygen diffusion from the RBCs into the muscle tissue was subsequently performed, as well as a morphometric analysis of the microvasculature. The mean tissue oxygenation was then compared with the morphological measures of the microvasculature. RBC volume fraction and spacing (mean distance of any point in tissue to the closest RBC) emerged as the best predictors for muscle tissue oxygenation, followed by length density (summed RBC length over muscle volume). The two-dimensional measures of capillary density and capillary-to-fibre ratio ranked last. We, therefore, conclude that, in order to assess the states of health of muscle tissue, it is advisable to rely on three-dimensional morphological measures rather than on the traditional two-dimensional measures.
Collapse
Affiliation(s)
- B Zeller-Plumhoff
- Helmholtz-Zentrum für Material- und Küstenforschung, Geesthacht, Germany .,Bioengineering Research Group, Faculty of Engineering and the Environment, , University of Southampton, Southampton, UK
| | - K R Daly
- Bioengineering Research Group, Faculty of Engineering and the Environment, , University of Southampton, Southampton, UK
| | - G F Clough
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - P Schneider
- Bioengineering Research Group, Faculty of Engineering and the Environment, , University of Southampton, Southampton, UK
| | - T Roose
- Bioengineering Research Group, Faculty of Engineering and the Environment, , University of Southampton, Southampton, UK
| |
Collapse
|
15
|
Huang Y, Fan Y, Salanova M, Yang X, Sun L, Blottner D. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse. Front Physiol 2018; 9:616. [PMID: 29875702 PMCID: PMC5974101 DOI: 10.3389/fphys.2018.00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups (n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.
Collapse
Affiliation(s)
- Yunfei Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Michele Salanova
- Institute of Vegetative Anatomy, Charité - University Medicine Berlin, Berlin, Germany
| | - Xiao Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Lianwen Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Dieter Blottner
- Institute of Vegetative Anatomy, Charité - University Medicine Berlin, Berlin, Germany.,Center of Space Medicine Berlin, Neuromuscular Group, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
16
|
Matsumoto T, Goto D. Effect of low-intensity whole-body vibration on bone defect repair and associated vascularization in mice. Med Biol Eng Comput 2017; 55:2257-2266. [PMID: 28660538 DOI: 10.1007/s11517-017-1664-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/10/2017] [Indexed: 01/29/2023]
Abstract
Low-intensity whole-body vibration (LIWBV) may stimulate bone healing, but the involvement of vascular ingrowth, which is essential for bone regeneration, has not been well examined. We thus investigated the LIWBV effect on vascularization during early-stage bone healing. Mice aged 13 weeks were subjected to cortical drilling on tibial bone. Two days after surgery (day 0), mice were exposed daily to sine-wave LIWBV at 30 Hz and 0.1 g peak-to-peak acceleration for 20 min/day (Vib) or were sham-treated (sham). Following vascular casting with a zirconium-based contrast agent on days 6, 9, or 12 and sacrifice, vascular and bone images were obtained by K-edge subtraction micro-CT using synchrotron lights. Bone regeneration advanced more in the Vib group from days 9 to 12. The vascular volume fraction decreased from days 6 to 9 in both groups; however, from days 9 to 12, it was increased in shams, while it stabilized in the Vib group. The vascular volume fraction tended to be or was smaller in the Vib group on days 6 and 12. The vessel number density was higher on day 9 but lower on day 12 in the Vib group. These results suggest that the LIWBV-promoted bone repair is associated with the modulation of vascularization, but additional studies are needed to determine the causality of this association.
Collapse
Affiliation(s)
- Takeshi Matsumoto
- Department of Mechanical Science, Tokushima University Graduate School of Science and Technology, 2-1 Minamijosanjima, Tokushima, 770-8506, Japan. .,Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan.
| | - Daichi Goto
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
| |
Collapse
|
17
|
Petryk A, Polgreen LE, Grames M, Lowe DA, Hodges JS, Karachunski P. Feasibility and tolerability of whole-body, low-intensity vibration and its effects on muscle function and bone in patients with dystrophinopathies: a pilot study. Muscle Nerve 2017; 55:875-883. [PMID: 27718512 PMCID: PMC5385164 DOI: 10.1002/mus.25431] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022]
Abstract
Introduction Dystrophinopathies are X‐linked muscle degenerative disorders that result in progressive muscle weakness complicated by bone loss. This study's goal was to evaluate feasibility and tolerability of whole‐body, low‐intensity vibration (WBLIV) and its potential effects on muscle and bone in patients with Duchenne or Becker muscular dystrophy. Methods This 12‐month pilot study included 5 patients (age 5.9–21.7 years) who used a low‐intensity Marodyne LivMD plate vibrating at 30–90 Hz for 10 min/day for the first 6 months. Timed motor function tests, myometry, and peripheral quantitative computed tomography were performed at baseline and at 6 and 12 months. Results Motor function and lower extremity muscle strength remained either unchanged or improved during the intervention phase, followed by deterioration after WBLIV discontinuation. Indices of bone density and geometry remained stable in the tibia. Conclusions WBLIV was well tolerated and appeared to have a stabilizing effect on lower extremity muscle function and bone measures. Muscle Nerve55: 875–883, 2017
Collapse
Affiliation(s)
- Anna Petryk
- Division of Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, 2450 Riverside Avenue, Minneapolis, Minnesota, 55454, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lynda E Polgreen
- Division of Pediatric Endocrinology and Metabolism, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Molly Grames
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dawn A Lowe
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota, USA
| | - James S Hodges
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter Karachunski
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
18
|
Komrakova M, Hoffmann DB, Nuehnen V, Stueber H, Wassmann M, Wicke M, Tezval M, Stuermer KM, Sehmisch S. The Effect of Vibration Treatments Combined with Teriparatide or Strontium Ranelate on Bone Healing and Muscle in Ovariectomized Rats. Calcif Tissue Int 2016; 99:408-22. [PMID: 27272029 DOI: 10.1007/s00223-016-0156-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/23/2016] [Indexed: 01/14/2023]
Abstract
The aim of the present study was to study the effect of combined therapy of teriparatide (PTH) or strontium ranelate (SR) with whole-body vibration (WBV) on bone healing and muscle properties in an osteopenic rat model. Seventy-two rats (3 months old) were bilaterally ovariectomized (Ovx), and 12 rats were left intact (Non-Ovx). After 8 weeks, bilateral transverse osteotomy was performed at the tibia metaphysis in all rats. Thereafter, Ovx rats were divided into six groups (n = 12): (1) Ovx-no treatment, (2) Ovx + vibration (Vib), (3) SR, (4) SR + Vib, (5) PTH, and (6) PTH + Vib. PTH (40 μg/kg BW sc. 5×/week) and SR (613 mg/kg BW in food daily) were applied on the day of ovariectomy, vibration treatments 5 days later (vertical, 70 Hz, 0.5 mm, 2×/day for 15 min) for up to 6 weeks. In the WBV + SR group, the callus density, trabecular number, and Alp and Oc gene expression were decreased compared to SR alone. In the WBV + PTH group, the cortical and callus widths, biomechanical properties, Opg gene expression, and Opg/Rankl ratio were increased; the cortical and callus densities were decreased compared to PTH alone. A case of non-bridging was found in both vibrated groups. Vibration alone did not change the bone parameters; PTH possessed a stronger effect than SR therapy. In muscles, combined therapies improved the fiber size of Ovx rats. WBV could be applied alone or in combination with anti-osteoporosis drug therapy to improve muscle tissue. However, in patients with fractures, anti-osteoporosis treatments and the application of vibration could have an adverse effect on bone healing.
Collapse
Affiliation(s)
- M Komrakova
- Department of Trauma Surgery and Reconstructive Surgery, University Medicine of Goettingen, Robert-Koch Str. 40, 37075, Göttingen, Germany.
| | - D B Hoffmann
- Department of Trauma Surgery and Reconstructive Surgery, University Medicine of Goettingen, Robert-Koch Str. 40, 37075, Göttingen, Germany
| | - V Nuehnen
- Department of Trauma Surgery and Reconstructive Surgery, University Medicine of Goettingen, Robert-Koch Str. 40, 37075, Göttingen, Germany
| | - H Stueber
- Department of Trauma Surgery and Reconstructive Surgery, University Medicine of Goettingen, Robert-Koch Str. 40, 37075, Göttingen, Germany
| | - M Wassmann
- Department of Medical Microbiology, Subdivision of General Hygiene and Environmental Health, University of Goettingen, Humboldallee 34a, 37073, Göttingen, Germany
| | - M Wicke
- Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - M Tezval
- Department of Trauma Surgery and Reconstructive Surgery, University Medicine of Goettingen, Robert-Koch Str. 40, 37075, Göttingen, Germany
| | - K M Stuermer
- Department of Trauma Surgery and Reconstructive Surgery, University Medicine of Goettingen, Robert-Koch Str. 40, 37075, Göttingen, Germany
| | - S Sehmisch
- Department of Trauma Surgery and Reconstructive Surgery, University Medicine of Goettingen, Robert-Koch Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
19
|
Pagnotti GM, Styner M. Exercise Regulation of Marrow Adipose Tissue. Front Endocrinol (Lausanne) 2016; 7:94. [PMID: 27471493 PMCID: PMC4943947 DOI: 10.3389/fendo.2016.00094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT) remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell (MSC) pool that also gives rise to osteoblasts, chondrocytes, and myocytes, among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here, we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions, and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally supportive tissues, inhibits bone resorption, and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high-fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone - a PPARγ-agonist known to increase MAT and fracture risk - mice demonstrate a fivefold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise significantly suppresses MAT volume and induces bone formation. That exercise can both suppress MAT volume and increase bone quantity, notwithstanding the skeletal harm induced by rosiglitazone, underscores exercise as a powerful regulator of bone remodeling, encouraging marrow stem cells toward the osteogenic lineage to fulfill an adaptive need for bone formation. Thus, exercise represents an effective strategy to mitigate the deleterious effects of overeating and iatrogenic etiologies on bone and fat.
Collapse
Affiliation(s)
- Gabriel M. Pagnotti
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Maya Styner
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- *Correspondence: Maya Styner,
| |
Collapse
|
20
|
Titze IR, Hunter EJ. Comparison of Vocal Vibration-Dose Measures for Potential-Damage Risk Criteria. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2015; 58:1425-39. [PMID: 26172434 PMCID: PMC4686305 DOI: 10.1044/2015_jslhr-s-13-0128] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 01/24/2014] [Accepted: 06/23/2015] [Indexed: 05/10/2023]
Abstract
PURPOSE Schoolteachers have become a benchmark population for the study of occupational voice use. A decade of vibration-dose studies on the teacher population allows a comparison to be made between specific dose measures for eventual assessment of damage risk. METHOD Vibration dosimetry is reformulated with the inclusion of collision stress. Two methods of estimating amplitude of vocal-fold vibration are compared to capture variations in vocal intensity. Energy loss from collision is added to the energy-dissipation dose. An equal-energy-dissipation criterion is defined and used on the teacher corpus as a potential-damage risk criterion. RESULTS Comparison of time-, cycle-, distance-, and energy-dose calculations for 57 teachers reveals a progression in information content in the ability to capture variations in duration, speaking pitch, and vocal intensity. The energy-dissipation dose carries the greatest promise in capturing excessive tissue stress and collision but also the greatest liability, due to uncertainty in parameters. Cycle dose is least correlated with the other doses. CONCLUSION As a first guide to damage risk in excessive voice use, the equal-energy-dissipation dose criterion can be used to structure trade-off relations between loudness, adduction, and duration of speech.
Collapse
Affiliation(s)
- Ingo R. Titze
- National Center for Voice and Speech, The University of Utah, Salt Lake City
- The University of Iowa, Iowa City
| | - Eric J. Hunter
- National Center for Voice and Speech, The University of Utah, Salt Lake City
- Michigan State University, East Lansing, MI
| |
Collapse
|
21
|
Effects of Vibration Therapy on Immobilization-Induced Hypersensitivity in Rats. Phys Ther 2015; 95:1015-26. [PMID: 25655883 DOI: 10.2522/ptj.20140137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 01/28/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cast immobilization induces mechanical hypersensitivity, which disturbs rehabilitation. Although vibration therapy can reduce various types of pain, whether vibration reduces immobilization-induced hypersensitivity remains unclear. OBJECTIVE The purpose of this study was to investigate the preventive and therapeutic effects of vibration therapy on immobilization-induced hypersensitivity. DESIGN The experimental design of the study involved conducting behavioral, histological, and immunohistochemical studies in model rats. METHODS Thirty-five Wistar rats (8 weeks old, all male) were used. The right ankle joints of 30 rats were immobilized by plaster cast for 8 weeks, and 5 rats were used as controls. The immobilized rats were divided randomly into the following 3 groups: (1) immobilization-only group (Im, n=10); (2) vibration therapy group 1, for which vibration therapy was initiated immediately after the onset of immobilization (Im+Vib1, n=10); and (3) vibration therapy group 2, for which vibration therapy was initiated 4 weeks after the onset of immobilization (Im+Vib2, n=10). Vibration was applied to the hind paw. The mechanical hypersensitivity and epidermal thickness of the hind paw skin were measured. To investigate central sensitization, calcitonin gene-related peptide (CGRP) expression in the spinal cord and dorsal root ganglion (DRG) was analyzed. RESULTS Immobilization-induced hypersensitivity was inhibited in the Im+Vib1 group but not in the Im+Vib2 group. Central sensitization, which was indicated by increases in CGRP expression in the spinal cord and the size of the area of CGRP-positive neurons in the DRG, was inhibited in only the Im+Vib1 group. Epidermal thickness was not affected by vibration stimulation. LIMITATIONS A limitation of this study is that the results were limited to an animal model and cannot be generalized to humans. CONCLUSIONS The data suggest that initiation of vibration therapy in the early phase of immobilization may inhibit the development of immobilization-induced hypersensitivity.
Collapse
|
22
|
Edwards JH, Reilly GC. Vibration stimuli and the differentiation of musculoskeletal progenitor cells: Review of results in vitro and in vivo. World J Stem Cells 2015; 7:568-582. [PMID: 25914764 PMCID: PMC4404392 DOI: 10.4252/wjsc.v7.i3.568] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Due to the increasing burden on healthcare budgets of musculoskeletal system disease and injury, there is a growing need for safe, effective and simple therapies. Conditions such as osteoporosis severely impact on quality of life and result in hundreds of hours of hospital time and resources. There is growing interest in the use of low magnitude, high frequency vibration (LMHFV) to improve bone structure and muscle performance in a variety of different patient groups. The technique has shown promise in a number of different diseases, but is poorly understood in terms of the mechanism of action. Scientific papers concerning both the in vivo and in vitro use of LMHFV are growing fast, but they cover a wide range of study types, outcomes measured and regimens tested. This paper aims to provide an overview of some effects of LMHFV found during in vivo studies. Furthermore we will review research concerning the effects of vibration on the cellular responses, in particular for cells within the musculoskeletal system. This includes both osteogenesis and adipogenesis, as well as the interaction between MSCs and other cell types within bone tissue.
Collapse
|
23
|
Kaneguchi A, Ozawa J, Kawamata S, Kurose T, Yamaoka K. Intermittent whole-body vibration attenuates a reduction in the number of the capillaries in unloaded rat skeletal muscle. BMC Musculoskelet Disord 2014; 15:315. [PMID: 25260531 PMCID: PMC4189584 DOI: 10.1186/1471-2474-15-315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/22/2014] [Indexed: 11/26/2022] Open
Abstract
Background Whole-body vibration has been suggested for the prevention of muscle mass loss and muscle wasting as an attractive measure for disuse atrophy. This study examined the effects of daily intermittent whole-body vibration and weight bearing during hindlimb suspension on capillary number and muscle atrophy in rat skeletal muscles. Methods Sixty male Wistar rats were randomly divided into four groups: control (CONT), hindlimb suspension (HS), HS + weight bearing (WB), and HS + whole-body vibration (VIB) (n = 15 each). Hindlimb suspension was applied for 2 weeks in HS, HS + WB, and HS + VIB groups. During suspension, rats in HS + VIB group were placed daily on a vibrating whole-body vibration platform for 20 min. In HS + WB group, suspension was interrupted for 20 min/day, allowing weight bearing. Untreated rats were used as controls. Results Soleus muscle wet weights and muscle fiber cross-sectional areas (CSA) significantly decreased in HS, HS + WB, and HS + VIB groups compared with CONT group. Both muscle weights and CSA were significantly greater in HS + WB and HS + VIB groups compared with HS group. Capillary numbers (represented by capillary-to-muscle fiber ratio) were significantly smaller in all hindlimb suspension-treated groups compared with CONT group. However, a reduction in capillary number by unloading hindlimbs was partially prevented by whole-body vibration. These findings were supported by examining mRNA for angiogenic-related factors. Expression levels of a pro-angiogenic factor, vascular endothelial growth factor-A mRNA, were significantly lower in all hindlimb suspension-treated groups compared with CONT group. There were no differences among hindlimb suspension-treated groups. Expression levels of an anti-angiogenic factor, CD36 (receptor for thrombospondin-1) mRNA, were significantly higher in all hindlimb suspension-treated groups compared with CONT group. Among the hindlimb suspension-treated groups, expression of CD36 mRNA in HS + VIB group tended to be suppressed (less than half the HS group). Conclusions Our results suggest that weight bearing with or without vibration is effective for disuse-derived disturbance by preventing muscle atrophy, and whole-body vibration exercise has an additional benefit of maintaining microcirculation of skeletal muscle. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-315) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, 555-36, Gakuendai, Kurose, Higashi-Hiroshima, Hiroshima, Japan.
| | | | | | | |
Collapse
|
24
|
Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of Duchenne muscular dystrophy. PLoS One 2014; 9:e104339. [PMID: 25121503 PMCID: PMC4133244 DOI: 10.1371/journal.pone.0104339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 07/11/2014] [Indexed: 01/29/2023] Open
Abstract
The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26) and mdx mice (n = 22) were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk) groups. Invivo and exvivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P≥0.34). Vibration did not alter any measure of muscle contractile function (P≥0.12); however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03) and higher intramuscular triglyceride concentrations (P = 0.03). These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice.
Collapse
|
25
|
The Role of Mechanical Stimulation in Recovery of Bone Loss-High versus Low Magnitude and Frequency of Force. Life (Basel) 2014; 4:117-30. [PMID: 25370188 PMCID: PMC4187165 DOI: 10.3390/life4020117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 01/20/2023] Open
Abstract
Musculoskeletal pathologies associated with decreased bone mass, including osteoporosis and disuse-induced bone loss, affect millions of Americans annually. Microgravity-induced bone loss presents a similar concern for astronauts during space missions. Many pharmaceutical treatments have slowed osteoporosis, and recent data shows promise for countermeasures for bone loss observed in astronauts. Additionally, high magnitude and low frequency impact such as running has been recognized to increase bone and muscle mass under normal but not microgravity conditions. However, a low magnitude and high frequency (LMHF) mechanical load experienced in activities such as postural control, has also been shown to be anabolic to bone. While several clinical trials have demonstrated that LMHF mechanical loading normalizes bone loss in vivo, the target tissues and cells of the mechanical load and underlying mechanisms mediating the responses are unknown. In this review, we provide an overview of bone adaptation under a variety of loading profiles and the potential for a low magnitude loading as a way to counteract bone loss as experienced by astronauts.
Collapse
|
26
|
McKeehen JN, Novotny SA, Baltgalvis KA, Call JA, Nuckley DJ, Lowe DA. Adaptations of mouse skeletal muscle to low-intensity vibration training. Med Sci Sports Exerc 2014; 45:1051-9. [PMID: 23274599 DOI: 10.1249/mss.0b013e3182811947] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE We tested the hypothesis that low-intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. METHODS We subjected C57BL/6J mice to 6 wk, 5 d·wk, 15 min·d of sham or low-intensity vibration (45 Hz, 1.0g) while housed in traditional cages (Sham-Active, n = 8; Vibrated-Active, n = 10) or in small cages to restrict physical activity (Sham-Restricted, n = 8; Vibrated-Restricted, n = 8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine the effects of vibration and physical inactivity. RESULTS Vibration training resulted in a 10% increase in maximal isometric torque (P = 0.038) and 16% faster maximal rate of relaxation (P = 0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, except greater rates of contraction in Vibrated-Restricted mice compared with Vibrated-Active and Sham-Restricted mice (P = 0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P = 0.057), and maximal relaxation was 20% faster (P = 0.005) in vibrated compared with sham mice. The restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not affect muscle fatigability or any indicator of cellular adaptation investigated (P ≥ 0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. CONCLUSION Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations.
Collapse
Affiliation(s)
- James N McKeehen
- Rehabilitation Science and Program in Physical Therapy, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
27
|
Mettlach G, Polo-Parada L, Peca L, Rubin CT, Plattner F, Bibb JA. Enhancement of neuromuscular dynamics and strength behavior using extremely low magnitude mechanical signals in mice. J Biomech 2013; 47:162-7. [PMID: 24157062 DOI: 10.1016/j.jbiomech.2013.09.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022]
Abstract
Exercise in general, and mechanical signals in particular, help ameliorate the neuromuscular symptoms of aging and possibly other neurodegenerative disorders by enhancing muscle function. To better understand the salutary mechanisms of such physical stimuli, we evaluated the potential for low intensity mechanical signals to promote enhanced muscle dynamics. The effects of daily brief periods of low intensity vibration (LIV) on neuromuscular functions and behavioral correlates were assessed in mice. Physiological analysis revealed that LIV increased isometric force production in semitendinosus skeletal muscle. This effect was evident in both young and old mice. Isometric force recordings also showed that LIV reduced the fatiguing effects of intensive synaptic muscle stimulation. Furthermore, LIV increased evoked neurotransmitter release at neuromuscular synapses but had no effect on spontaneous end plate potential amplitude or frequency. In behavioral studies, LIV increased mouse grip strength and potentiated initial motor activity in a novel environment. These results provide evidence for the efficacy of LIV in producing changes in the neuromuscular system that translate into performance gains at a behavioral scale.
Collapse
Affiliation(s)
- Gabriel Mettlach
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, University of Missouri, Dalton Cardiovascular Research Center, Columbia, Missouri, USA
| | - Lauren Peca
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Florian Plattner
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James A Bibb
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
28
|
Krajnak K, Riley DA, Wu J, McDowell T, Welcome DE, Xu XS, Dong RG. Frequency-dependent effects of vibration on physiological systems: experiments with animals and other human surrogates. INDUSTRIAL HEALTH 2012; 50:343-53. [PMID: 23060248 PMCID: PMC4694567 DOI: 10.2486/indhealth.ms1378] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Occupational exposure to vibration through the use of power- and pneumatic hand-tools results in cold-induced vasospasms, finger blanching, and alterations in sensorineural function. Collectively, these symptoms are referred to as hand-arm vibration syndrome (HAVS). Currently the International Standards Organization (ISO) standard ISO 5349-1 contains a frequency-weighting curve to help workers and employers predict the risk of developing HAVS with exposure to vibration of different frequencies. However, recent epidemiological and experimental evidence suggests that this curve under-represents the risk of injuries to the hands and fingers induced by exposure to vibration at higher frequencies (>100 Hz). To improve the curve, better exposure-response data need to be collected. The goal of this review is to summarize the results of animal and computational modeling studies that have examined the frequency-dependent effects of vibration, and discuss where additional research would be beneficial to fill these research gaps.
Collapse
Affiliation(s)
- Kristine Krajnak
- Engineering and Controls Technology Branch, National Institute for Occupational Safety and Health, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Stål PS, Johansson B. Abnormal Mitochondria Organization and Oxidative Activity in the Palate Muscles of Long-Term Snorers with Obstructive Sleep Apnea. Respiration 2012; 83:407-17. [DOI: 10.1159/000336040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 11/17/2011] [Indexed: 11/19/2022] Open
|
30
|
Stuermer EK, Komrakova M, Werner C, Wicke M, Kolios L, Sehmisch S, Tezval M, Utesch C, Mangal O, Zimmer S, Dullin C, Stuermer KM. Musculoskeletal response to whole-body vibration during fracture healing in intact and ovariectomized rats. Calcif Tissue Int 2010; 87:168-80. [PMID: 20532877 PMCID: PMC2903688 DOI: 10.1007/s00223-010-9381-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 05/13/2010] [Indexed: 11/30/2022]
Abstract
This study investigated the effect of vibration on bone healing and muscle in intact and ovariectomized rats. Thirty ovariectomized (at 3 months of age) and 30 intact 5-month old female Sprague-Dawley rats underwent bilateral metaphyseal osteotomy of tibia. Five days later, half of the ovariectomized and of the intact rats were exposed to whole-body vertical vibration (90 Hz, 0.5 mm, 4 x g acceleration) for 15 min twice a day during 30 days. The other animals did not undergo vibration. After decapitation of rats, one tibia was used for computed tomographic, biomechanical, and histological analyses; the other was used for gene expression analyses of alkaline phosphatase (Alp), osteocalcin (Oc), tartrate-resistant acid phosphatase 1, and insulinlike growth factor 1. Serum Alp and Oc were measured. Mitochondrial activity, fiber area and distribution, and capillary densities were analyzed in M. gastrocnemius and M. longissimus. We found that vibration had no effect on body weight and food intake, but it improved cortical and callus densities (97 vs. 99%, 72 vs. 81%), trabecular structure (9 vs. 14 trabecular nodes), blood supply (1.7 vs. 2.1 capillaries/fiber), and oxidative metabolism (17 vs. 23 pmol O(2)/s/mg) in ovariectomized rats. Vibration generally increased muscle fiber size. Tibia biomechanical properties were diminished after vibration. Oc gene expression was higher in vibrated rats. Serum Alp was increased in ovariectomized rats. In ovariectomized rats, vibration resulted in an earlier bridging; in intact rats, callus bridging occurred later after vibration. The chosen vibration regimen (90 Hz, 0.5 mm, 4 x g acceleration, 15 min twice a day) was effective in improving musculoskeletal tissues in ovariectomized rats but was not optimal for fracture healing.
Collapse
Affiliation(s)
- Ewa K. Stuermer
- Department of Trauma Surgery and Reconstructive Surgery, University of Goettingen, Robert-Koch St. 40, 37075 Goettingen, Germany
| | - Marina Komrakova
- Department of Trauma Surgery and Reconstructive Surgery, University of Goettingen, Robert-Koch St. 40, 37075 Goettingen, Germany
| | - Carsten Werner
- Institute of Food Quality and Safety, University of Animal Medicine, Hannover, Germany
| | - Michael Wicke
- Department of Animal Sciences, University of Goettingen, Goettingen, Germany
| | - Leila Kolios
- Department of Trauma Surgery and Reconstructive Surgery, University of Goettingen, Robert-Koch St. 40, 37075 Goettingen, Germany
| | - Stephan Sehmisch
- Department of Trauma Surgery and Reconstructive Surgery, University of Goettingen, Robert-Koch St. 40, 37075 Goettingen, Germany
| | - Mohammad Tezval
- Department of Trauma Surgery and Reconstructive Surgery, University of Goettingen, Robert-Koch St. 40, 37075 Goettingen, Germany
| | - Clara Utesch
- Department of Trauma Surgery and Reconstructive Surgery, University of Goettingen, Robert-Koch St. 40, 37075 Goettingen, Germany
| | - Orzala Mangal
- Department of Trauma Surgery and Reconstructive Surgery, University of Goettingen, Robert-Koch St. 40, 37075 Goettingen, Germany
| | - Sebastian Zimmer
- Department of Trauma Surgery and Reconstructive Surgery, University of Goettingen, Robert-Koch St. 40, 37075 Goettingen, Germany
| | - Christian Dullin
- Department of Radiology, University of Goettingen, Goettingen, Germany
| | - Klaus M. Stuermer
- Department of Trauma Surgery and Reconstructive Surgery, University of Goettingen, Robert-Koch St. 40, 37075 Goettingen, Germany
| |
Collapse
|
31
|
Shi HF, Cheung WH, Qin L, Leung AHC, Leung KS. Low-magnitude high-frequency vibration treatment augments fracture healing in ovariectomy-induced osteoporotic bone. Bone 2010; 46:1299-305. [PMID: 19961960 DOI: 10.1016/j.bone.2009.11.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 10/17/2009] [Accepted: 11/24/2009] [Indexed: 12/26/2022]
Abstract
Fracture healing is impaired in osteoporotic bone. Low-magnitude high-frequency vibration (LMHFV) has recently been proven to be osteogenic in osteoporotic intact bone. Our previous study found that LMHFV significantly enhanced fracture healing in adult rats. This study was designed to explore whether LMHFV was able to promote fracture healing in osteoporotic bone by enhancing callus formation, remodeling, and mineralization and to compare with age-matched nonosteoporotic ones. Nine-month-old ovariectomy (OVX)-induced osteoporotic rats were randomized into control (OVX-C) or vibration group (OVX-V); age-matched sham-operated rats were assigned into control (Sham-C) or vibration group (Sham-V). LMHFV (35 Hz, 0.3 g) was given 20 min/day and 5days/week to the treatment groups, while sham treatment was given to the control groups. Weekly radiographs and endpoint micro-CT, histomorphometry, and mechanical properties were evaluated at 2, 4, and 8 weeks post-treatment. Results confirmed that the fracture healing in OVX-C was significantly inferior to that in Sham-C. LMHFV was shown to be effective in promoting the fracture healing in OVX group in all measured parameters, particularly in the early phases of healing, with the outcomes comparable to that of age-matched normal fracture healing. Callus formation, mineralization and remodeling were enhanced by 25-30%, with a 70% increase in energy to failure than OVX-C. However, Sham-V was found to have lesser fracture healing enhancement, with significant increase in callus area only on week 2 and 3 than Sham-C, suggesting non-OVX aged bones were less sensitive to mechanical loading. The findings of this study provide a good basis to suggest that proceeding to clinical trials is the next step to evaluate the efficacy of LMHFV on osteoporotic fracture healing.
Collapse
Affiliation(s)
- Hong-Fei Shi
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
32
|
Vibration as an exercise modality: how it may work, and what its potential might be. Eur J Appl Physiol 2009; 108:877-904. [PMID: 20012646 DOI: 10.1007/s00421-009-1303-3] [Citation(s) in RCA: 455] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2009] [Indexed: 12/23/2022]
Abstract
Whilst exposure to vibration is traditionally regarded as perilous, recent research has focussed on potential benefits. Here, the physical principles of forced oscillations are discussed in relation to vibration as an exercise modality. Acute physiological responses to isolated tendon and muscle vibration and to whole body vibration exercise are reviewed, as well as the training effects upon the musculature, bone mineral density and posture. Possible applications in sports and medicine are discussed. Evidence suggests that acute vibration exercise seems to elicit a specific warm-up effect, and that vibration training seems to improve muscle power, although the potential benefits over traditional forms of resistive exercise are still unclear. Vibration training also seems to improve balance in sub-populations prone to fall, such as frail elderly people. Moreover, literature suggests that vibration is beneficial to reduce chronic lower back pain and other types of pain. Other future indications are perceivable.
Collapse
|
33
|
Patel MJ, Chang KH, Sykes MC, Talish R, Rubin C, Jo H. Low magnitude and high frequency mechanical loading prevents decreased bone formation responses of 2T3 preosteoblasts. J Cell Biochem 2009; 106:306-16. [PMID: 19125415 PMCID: PMC2737721 DOI: 10.1002/jcb.22007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bone loss due to osteoporosis or disuse such as in paraplegia or microgravity is a significant health problem. As a treatment for osteoporosis, brief exposure of intact animals or humans to low magnitude and high frequency (LMHF) mechanical loading has been shown to normalize and prevent bone loss. However, the underlying molecular changes and the target cells by which LMHF mechanical loading alleviate bone loss are not known. Here, we hypothesized that direct application of LMHF mechanical loading to osteoblasts alters their cell responses, preventing decreased bone formation induced by disuse or microgravity conditions. To test our hypothesis, preosteoblast 2T3 cells were exposed to a disuse condition using the random positioning machine (RPM) and intervened with an LMHF mechanical load (0.1-0.4 g at 30 Hz for 10-60 min/day). Exposure of 2T3 cells to the RPM decreased bone formation responses as determined by alkaline phosphatase (ALP) activity and mineralization even in the presence of a submaximal dose of BMP4 (20 ng/ml). However, LMHF mechanical loading prevented the RPM-induced decrease in ALP activity and mineralization. Mineralization induced by LMHF mechanical loading was enhanced by treatment with bone morphogenic protein 4 (BMP4) and blocked by the BMP antagonist noggin, suggesting a role for BMPs in this response. In addition, LMHF mechanical loading rescued the RPM-induced decrease in gene expression of ALP, runx2, osteomodulin, parathyroid hormone receptor 1, and osteoglycin. These findings suggest that preosteoblasts may directly respond to LMHF mechanical loading to induce differentiation responses. The mechanosensitive genes identified here provide potential targets for pharmaceutical treatments that may be used in combination with low level mechanical loading to better treat osteoporosis or disuse-induced bone loss.
Collapse
Affiliation(s)
- Mamta J. Patel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322
| | - Kyungh Hwa Chang
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322
| | - Michelle C. Sykes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322
| | | | - Clinton Rubin
- Department of Biomedical Engineering, State University of New York, Stony Brook, NY 11794
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
34
|
Prisby RD, Lafage-Proust MH, Malaval L, Belli A, Vico L. Effects of whole body vibration on the skeleton and other organ systems in man and animal models: what we know and what we need to know. Ageing Res Rev 2008; 7:319-29. [PMID: 18762281 DOI: 10.1016/j.arr.2008.07.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 11/17/2022]
Abstract
Previous investigations reported enhanced osseous parameters subsequent to administration of whole body vibration (WBV). While the efficacy of WBV continues to be explored, scientific inquiries should consider several key factors. Bone remodeling patterns differ according to age and hormonal status. Therefore, WBV protocols should be designed specifically for the subject population investigated. Further, administration of WBV to individuals at greatest risk for osteoporosis may elicit secondary physiological benefits (e.g., improved balance and mobility). Secondly, there is a paucity of data in the literature regarding the physiological modulation of WBV on other organ systems and tissues. Vibration-induced modulation of systemic hormones may provide a mechanism by which skeletal tissue is enhanced. Lastly, the most appropriate frequencies, durations, and amplitudes of vibration necessary for a beneficial response are unknown, and the type of vibratory signal (e.g., sinusoidal) is often not reported. This review summarizes the physiological responses of several organ systems in an attempt to link the global influence of WBV. Further, we report findings focused on subject populations that may benefit most from such a therapy (i.e., the elderly, postmenopausal women, etc.) in hopes of eliciting multidisciplinary scientific inquiries into this potentially therapeutic aid which presumably has global ramifications.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Université Jean-Monnet, INSERM U890, Saint-Etienne F42023, France.
| | | | | | | | | |
Collapse
|
35
|
Garman R, Gaudette G, Donahue LR, Rubin C, Judex S. Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation. J Orthop Res 2007; 25:732-40. [PMID: 17318899 DOI: 10.1002/jor.20354] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
High-frequency whole body vibrations can be osteogenic, but their efficacy appears limited to skeletal segments that are weight bearing and thus subject to the induced load. To determine the anabolic component of this signal, we investigated whether low-level oscillatory displacements, in the absence of weight bearing, are anabolic to skeletal tissue. A loading apparatus, developed to shake specific segments of the murine skeleton without the direct application of deformations to the tissue, was used to subject the left tibia of eight anesthesized adult female C57BL/6J mice to small (0.3 g or 0.6 g) 45 Hz sinusoidal accelerations for 10 min/day, while the right tibia served as an internal control. Video and strain analysis revealed that motions of the apparatus and tibia were well coupled, inducing dynamic cortical deformations of less than three microstrain. After 3 weeks, trabecular metaphyseal bone formation rates and the percentage of mineralizing surfaces (MS/BS) were 88% and 64% greater (p < 0.05) in tibiae accelerated at 0.3 g than in their contralateral controls. At 0.6 g, bone formation rates and mineral apposition rates were 66% and 22% greater (p < 0.05) in accelerated tibiae. Changes in bone morphology were evident only in the epiphysis, where stimulated tibiae displayed significantly greater cortical area (+8%) and thickness (+8%). These results suggest that tiny acceleratory motions--independent of direct loading of the matrix--can influence bone formation and bone morphology. If confirmed by clinical studies, the unique nature of the signal may ultimately facilitate the stimulation of skeletal regions that are prone to osteoporosis even in patients that are suffering from confinement to wheelchairs, bed rest, or space travel.
Collapse
Affiliation(s)
- Russell Garman
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2580, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
We discuss herein the theory as well as some design considerations of magnetic tweezers. This method of generating force on magnetic particles bound to biological entities is shown to have a number of advantages over other techniques: forces are exerted in noncontact mode, they can be large in magnitude (order of 10 nanonewtons), and adjustable in direction, static or oscillatory. One apparatus built in our laboratory is described in detail, along with examples of experimental applications and results.
Collapse
Affiliation(s)
- Monica Tanase
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
37
|
Xie L, Jacobson JM, Choi ES, Busa B, Donahue LR, Miller LM, Rubin CT, Judex S. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 2006; 39:1059-1066. [PMID: 16824816 DOI: 10.1016/j.bone.2006.05.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 05/09/2006] [Accepted: 05/15/2006] [Indexed: 11/24/2022]
Abstract
Short durations of extremely small magnitude, high-frequency, mechanical stimuli can promote anabolic activity in the adult skeleton. Here, it is determined if such signals can influence trabecular and cortical formative and resorptive activity in the growing skeleton, if the newly formed bone is of high quality, and if the insertion of rest periods during the loading phase would enhance the efficacy of the mechanical regimen. Eight-week-old female BALB/cByJ mice were divided into four groups, baseline control (n = 8), age-matched control (n = 10), whole-body vibration (WBV) at 45 Hz (0.3 g) for 15 min day(-1) (n = 10), and WBV that were interrupted every second by 10 of rest (WBV-R, n = 10). In vivo strain gaging of two additional mice indicated that the mechanical signal induced strain oscillations of approximately 10 microstrain on the periosteal surface of the proximal tibia. After 3 weeks of WBV, applied for 15 min each day, osteoclastic activity in the trabecular metaphysis and epiphysis of the tibia was 33% and 31% lower (P <0.05) than in age-matched controls. Bone formation rates (BFR.BS(-1)) on the endocortical surface of the metaphysis were 30% greater (P <0.05) in WBV than in age-matched control mice but trabecular and middiaphyseal BFR were not significantly altered. The insertion of rest periods (WBV-R) failed to potentiate the cellular effects. Three weeks of either WBV or WBV-R did not negatively influence body mass, bone length, or chemical bone matrix properties of the tibia. These data indicate that in the growing skeleton, short daily periods of extremely small, high-frequency mechanical signals can inhibit trabecular bone resorption, site specifically attenuate the declining levels of bone formation, and maintain a high level of matrix quality. If WBV prove to be efficacious in the growing human skeleton, they may be able to provide the basis for a non-pharmacological and safe means to increase peak bone mass and, ultimately, reduce the incidence of osteoporosis or stress fractures later in life.
Collapse
Affiliation(s)
- Liqin Xie
- Department of Biomedical Engineering, Psychology A, 3rd Floor, State University of New York at Stony Brook, Stony Brook, NY 11794-2580, USA
| | - Jeffrey M Jacobson
- Department of Biomedical Engineering, Psychology A, 3rd Floor, State University of New York at Stony Brook, Stony Brook, NY 11794-2580, USA
| | - Edna S Choi
- Department of Biomedical Engineering, Psychology A, 3rd Floor, State University of New York at Stony Brook, Stony Brook, NY 11794-2580, USA
| | - Bhavin Busa
- Department of Biomedical Engineering, Psychology A, 3rd Floor, State University of New York at Stony Brook, Stony Brook, NY 11794-2580, USA
| | | | - Lisa M Miller
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, Psychology A, 3rd Floor, State University of New York at Stony Brook, Stony Brook, NY 11794-2580, USA
| | - Stefan Judex
- Department of Biomedical Engineering, Psychology A, 3rd Floor, State University of New York at Stony Brook, Stony Brook, NY 11794-2580, USA.
| |
Collapse
|