1
|
Arias-Carrión O, Guerra-Crespo M, Padilla-Godínez FJ, Soto-Rojas LO, Manjarrez E. α-Synuclein Pathology in Synucleinopathies: Mechanisms, Biomarkers, and Therapeutic Challenges. Int J Mol Sci 2025; 26:5405. [PMID: 40508212 PMCID: PMC12155115 DOI: 10.3390/ijms26115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2025] [Revised: 05/29/2025] [Accepted: 06/03/2025] [Indexed: 06/16/2025] Open
Abstract
Parkinson's disease and related synucleinopathies, including dementia with Lewy bodies and multiple system atrophy, are characterised by the pathological aggregation of the α-synuclein (aSyn) protein in neuronal and glial cells, leading to cellular dysfunction and neurodegeneration. This review synthesizes knowledge of aSyn biology, including its structure, aggregation mechanisms, cellular interactions, and systemic influences. We highlight the structural diversity of aSyn aggregates, ranging from oligomers to fibrils, their strain-like properties, and their prion-like propagation. While the role of prion-like mechanisms in disease progression remains a topic of ongoing debate, these processes may contribute to the clinical heterogeneity of synucleinopathies. Dysregulation of protein clearance pathways, including chaperone-mediated autophagy and the ubiquitin-proteasome system, exacerbates aSyn accumulation, while post-translational modifications influence its toxicity and aggregation propensity. Emerging evidence suggests that immune responses and alterations in the gut microbiome are key modulators of aSyn pathology, linking peripheral processes-particularly those of intestinal origin-to central neurodegeneration. Advances in biomarker development, such as cerebrospinal fluid assays, post-translationally modified aSyn, and real-time quaking-induced conversion technology, hold promise for early diagnosis and disease monitoring. Furthermore, positron emission tomography imaging and conformation-specific antibodies offer innovative tools for visualising and targeting aSyn pathology in vivo. Despite significant progress, challenges remain in accurately modelling human synucleinopathies, as existing animal and cellular models capture only specific aspects of the disease. This review underscores the need for more reliable aSyn biomarkers to facilitate the development of effective treatments. Achieving this goal requires an interdisciplinary approach integrating genetic, epigenetic, and environmental insights.
Collapse
Affiliation(s)
- Oscar Arias-Carrión
- Experimental Neurology, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City 14380, Mexico
| | - Magdalena Guerra-Crespo
- Laboratory of Regenerative Medicine, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico; (M.G.-C.); (F.J.P.-G.)
| | - Francisco J. Padilla-Godínez
- Laboratory of Regenerative Medicine, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico; (M.G.-C.); (F.J.P.-G.)
- Department of Mathematics and Physics, Western Institute of Technology and Higher Education, San Pedro Tlaquepaque 45604, Mexico
| | - Luis O. Soto-Rojas
- Laboratory of Molecular Pathogenesis, Building A4, Medical Surgeon Career, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Mexico City 54090, Mexico;
| | - Elías Manjarrez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Col. San Manuel, Apartado Postal 406, Puebla 72570, Mexico;
| |
Collapse
|
2
|
Mingo YB, Escobar Galvis ML, Henderson MX. α-Synuclein pathology and mitochondrial dysfunction: Toxic partners in Parkinson's disease. Neurobiol Dis 2025; 209:106889. [PMID: 40157617 DOI: 10.1016/j.nbd.2025.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025] Open
Abstract
Two major neuropathological features of Parkinson's disease (PD) are α-synuclein Lewy pathology and mitochondrial dysfunction. Although both α-synuclein pathology and mitochondrial dysfunction may independently contribute to PD pathogenesis, the interaction between these two factors is not yet fully understood. In this review, we discuss the physiological functions of α-synuclein and mitochondrial homeostasis in neurons as well as the pathological defects that ensue when these functions are disturbed in PD. Recent studies have highlighted that dysfunctional mitochondria can become sequestered within Lewy bodies, and cell biology studies have suggested that α-synuclein can directly impair mitochondrial function. There are also PD cases caused by genetic or environmental perturbation of mitochondrial homeostasis. Together, these studies suggest that mitochondrial dysfunction may be a common pathway to neurodegeneration in PD, triggered by multiple insults. We review the literature surrounding the interaction between α-synuclein and mitochondria and highlight open questions in the field that may be explored to advance our understanding of PD and develop novel, disease-modifying therapies.
Collapse
Affiliation(s)
- Yakum B Mingo
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States of America
| | | | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States of America.
| |
Collapse
|
3
|
Abdelaziz AM. Alpha-Synuclein drives NURR1 and NLRP3 Inflammasome dysregulation in Parkinson's disease: From pathogenesis to potential therapeutic strategies. Int Immunopharmacol 2025; 156:114692. [PMID: 40267723 DOI: 10.1016/j.intimp.2025.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disorder, is characterized by the loss of dopaminergic neurons and pathological aggregation of α-synuclein (α-Syn). Emerging evidence highlights the interplay between genetic susceptibility, neuroinflammation, and transcriptional dysregulation in driving PD pathogenesis. This review brings together the latest information on three important players: α-Syn, the transcription factor Orphan nuclear receptor (NURR1), and the NOD-like receptor 3 (NLRP3) inflammasome. Pathogenic α-syn aggregates cause damage to neurons by disrupting mitochondria and lysosomes and spreading in a way similar to prion proteins. They also turn on the NLRP3 inflammasome, which is a key player in neuroinflammation. NLRP3-driven release of pro-inflammatory cytokines exacerbates neurodegeneration and creates a self-sustaining inflammatory milieu. Meanwhile, reduced NURR1 activity, a pivotal modulator of dopaminergic neuron survival and development, exposes neurons to oxidative stress, neuroinflammation, and α-Syn toxicity, hence exacerbating disease progression. So, targeting this trio exhibits transformative potential against PD pathogenesis.
Collapse
Affiliation(s)
- Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt.
| |
Collapse
|
4
|
Huang Z, Zheng J, Yuan F, Zhong H, Yu R, Luo Y, Zhang M, Chen S, Shen B, Xie Z, Yang W, Zhu S, Que R, Xie F, Liu H, Yang W, Zhang L, Zheng W, Jin K, Deng C, Xiao B, Foo JN, Chan LL, Lin CH, Zhou ZD, Tan EK, Wang Q. Fibrinogen exacerbates α-synuclein aggregation and mitochondrial dysfunction via alpha5beta3 integrin in Parkinson's disease. J Adv Res 2025:S2090-1232(25)00370-4. [PMID: 40425084 DOI: 10.1016/j.jare.2025.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 03/19/2025] [Accepted: 05/23/2025] [Indexed: 05/29/2025] Open
Abstract
INTRODUCTION Blood-brain barrier(BBB) disruption promotes the influx of the fibrinogen(FG); however, it remains unknown whether FG deposit contributes to neurodegeneration in Parkinson's disease(PD). OBJECTIVES We aimed to examine the pathophysiologic link among FG, mitochondrial dysfunction and α-synuclein(α-syn) abnormality in PD. METHODS First, plasma FG levels were measured in 60 healthy controls and 60 PD patients. Second, to determine whether FG contributes to PD pathogenesis, FG was injected into the substantia nigra pars compacta(SNpc) of healthy and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-treated PD mice. Meanwhile, intraperitoneal injections of batroxobin were used to deplete FG in the brain of PD mice. Mitochondrial ultrastructure in mouse models was observed by transmission electron microscopy(TEM), and mitochondrial functions in SH-SY5Y cells were examined by different assay kits and flow cytometry. The mechanisms underlying FG-induced α-syn abnormality and mitochondrial dysfunction were observed by RNA sequencing and validated in various experiments including western blot and immunostaining. Last, the endocytosis of FG in primary neurons were detected by confocal microscopy, and α-syn aggregation after FG co-incubation were evaluated by western blot, ThT-binding assay and TEM. RESULTS PD patients exhibited elevated levels of FG in peripheral blood compared to HCs, and there was a positive correlation between the plasma FG and PD clinical severity. Excessive FG in the SNpc of MPTP-treated mice promoted poly (ADP-ribose) (PAR) polymerase-1(PARP1) elevation, mediated by the αvβ3 integrin receptor. FG exacerbated α-syn abnormalities and mitochondrial dysfunctions via PARP1 activation. Moreover, FG entered neurons by αvβ3 integrin mediation, potentially enhancing α-syn fibrillation and toxicity. FG facilitated α-syn aggregation subsequently reduced ATP-dependent Clp protease(ClpP) level, impairing neuronal mitochondrial unfolded response and increasing mitochondrial ROS. Pharmacological depletion of FG by batroxobin ameliorated neurodegeneration in MPTP-treated mice. CONCLUSION Our study indicate that FG plays an essential pathological role in α-syn abnormality. FG-targeting therapy can be a promising strategy against neurodegeneration in PD.
Collapse
Affiliation(s)
- Zifeng Huang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Feilan Yuan
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Hui Zhong
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Ruoyang Yu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Muwei Zhang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Shuhan Chen
- Guangdong Experimental High School, Longxi Avenue Shengshi Road No.1, Liwan District, Guangzhou 510000, PR China
| | - Bibiao Shen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Rongfang Que
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Huanzhu Liu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Weili Yang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong- Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Wenhua Zheng
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, PR China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, Australia
| | - Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Duke-NUS Medical School, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Ling-Ling Chan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Duke-NUS Medical School, Singapore
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Zhi Dong Zhou
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Duke-NUS Medical School, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Duke-NUS Medical School, Singapore.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, PR China.
| |
Collapse
|
5
|
Schützmann MP, Hoyer W. Off-pathway oligomers of α-synuclein and Aβ inhibit secondary nucleation of α-synuclein amyloid fibrils. J Mol Biol 2025; 437:169048. [PMID: 40015369 DOI: 10.1016/j.jmb.2025.169048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
α-Synuclein (αSyn) is a key culprit in the pathogenesis of synucleinopathies such as Parkinson's Disease (PD), in which it forms not only insoluble aggregates called amyloid fibrils but also smaller, likely more detrimental species termed oligomers. This property is shared with other amyloidogenic proteins such as the Alzheimer's Disease-associated amyloid-β (Aβ). We previously found an intriguing interplay between off-pathway Aβ oligomers and Aβ fibrils, in which the oligomers interfere with fibril formation via inhibition of secondary nucleation by blocking secondary nucleation sites on the fibril surface. Here, using ThT aggregation kinetics and atomic force microscopy (AFM), we tested if the same interplay applies to αSyn fibrils. Both homotypic (i.e. αSyn) and heterotypic (i.e. Aβ) off-pathway oligomers inhibited αSyn aggregation in kinetic assays of secondary nucleation. Initially soluble, kinetically trapped Aβ oligomers co-precipitated with αSyn(1-108) fibrils. The resulting co-assemblies were imaged as clusters of curvilinear oligomers by AFM. The results indicate that off-pathway oligomers have a general tendency to bind amyloid fibril surfaces, also in the absence of sequence homology between fibril and oligomer. The interplay between off-pathway oligomers and amyloid fibrils adds another level of complexity to the homo- and hetero-assembly processes of amyloidogenic proteins.
Collapse
Affiliation(s)
- Marie P Schützmann
- Institut für Physikalische Biologie, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, 40204 Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, 40204 Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, 52428 Germany.
| |
Collapse
|
6
|
Wang B, Xue Y, Jia Y, Duan Y, Li D, Sui M, Feng Y, Wang L, Ding H, Wang X, Zhang T, Sun Y, Liu H, Qi J, Duan J, Zhao S, Zhu Q. IL-21 Loading CaMnCO 3 Vitality Backpacks Boost CAR-T Cell Synergistic Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501645. [PMID: 40345978 DOI: 10.1002/smll.202501645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/18/2025] [Indexed: 05/11/2025]
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy achieves considerable success in the treatment of malignant tumors, but clinical relapse due to the tumor microenvironment (TME) is very common. The TME of solid tumors is characterized by weak acidity, hypoxia, and elevated reactive oxygen species (ROS) levels, which collectively impair the function and persistence of infiltrating CAR-T cells. In this study, acid-sensitive responsive CaMnCO3 nanoparticles (CMC NPs), are developed that simultaneously mitigate TME acidosis and hypoxia. IL-21 is encapsulated within CMC NPs (denoted as CMC-21), which are then surface-conjugated to CAR-T cells as functional 'vitality backpacks' to enhance cellular activity. The CMC-21 backpack enables sustained release of IL-21, persistently enhancing CAR-T cell antitumor immunity across both low- and high-dose infusion regimens. Furthermore, CMC NPs exert dual modulatory effects on the TME by: 1) consuming protons to neutralize acidic conditions, and 2) catalytically converting endogenous H2O2 to O2 to relieve hypoxia. This multimodal remodeling of the immunosuppressive TME significantly enhances the infiltration and activity of adoptively transferred CAR-T cells while simultaneously boosting endogenous T cell and NK cell recruitment in vivo. These findings establish a novel CAR-T cell enhancement strategy through sustained IL-21 release from CMC-21 backpacks, offering new possibilities for solid tumor immunotherapy.
Collapse
Affiliation(s)
- Baihui Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
- Department of Gastroenterology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266001, P. R. China
| | - Yuchan Xue
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Yang Jia
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Yuyao Duan
- Reproductive Medical Center, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250012, P. R. China
| | - Dejun Li
- Department of ICU, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Minghao Sui
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Yuemin Feng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Le Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Han Ding
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Xinyu Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Tianru Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Yanning Sun
- Urology Department, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, P. R. China
| | - Huimin Liu
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Jianni Qi
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Jiazhi Duan
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, P. R. China
| | - Songbo Zhao
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| | - Qiang Zhu
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, P. R. China
| |
Collapse
|
7
|
Ren X, Jin C, Li Q, Fu C, Fang Y, Xu Z, Liang Z, Wang T. Fatty acid binding proteins-mediated mitochondrial dysfunction in the development of age-related diseases: A review. Int J Biol Macromol 2025; 309:142913. [PMID: 40203912 DOI: 10.1016/j.ijbiomac.2025.142913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Fatty acid-binding proteins (FABPs) act as lipid chaperones and play a role in the pathological processes of various lipid signaling pathways. Mitochondria are crucial for the regulation of lipid metabolism. As an aging marker, lipid-mediated mitochondrial dysfunction has been observed in the etiology of numerous diseases, including neurodegenerative diseases, metabolic syndromes, cardiovascular diseases, and tumorigenesis. Members of the FABP family have been identified to regulate mitochondrial function. Targeting FABPs specifically may provide a promising approach to improve mitochondrial function and treat age-related diseases. This review summarizes the connection between FABPs and mitochondrial function and highlights certain FABPs involved in age-related diseases that hold significant therapeutic promise.
Collapse
Affiliation(s)
- Xingxing Ren
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Chaoyuan Jin
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qilin Li
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Congyi Fu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Yu Fang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Zihang Xu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Zi Liang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Tianshi Wang
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201207, China.
| |
Collapse
|
8
|
Abraham JN, Rawat D, Srikanth P, Sunny LP, Abraham NM. Alpha-synuclein pathology and Parkinson's disease-related olfactory dysfunctions: an update on preclinical models and therapeutic approaches. Mamm Genome 2025:10.1007/s00335-025-10128-w. [PMID: 40293510 DOI: 10.1007/s00335-025-10128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Olfactory dysfunction (OD) is considered one of the early signs of Parkinson's disease (PD), affecting over 90% of PD patients. OD often appears several years before the onset of motor symptoms and is therefore considered an early biomarker of PD. Recent studies have shown that COVID-19 infection might lead to worsening of symptoms and acceleration of disease progression in neurodegenerative disorders, where OD is a common symptom to both. Hence, it is essential to accurately monitor olfactory fitness in clinical settings using any of the currently available olfactory function tests. Even after a quarter of a century of the discovery of α-synuclein (α-syn) pathogenesis in PD, many aspects related to the α-syn pathogenesis in OD remain unknown. Currently, there is no definitive cure for PD; the disease management options include dopaminergic medications, deep brain stimulations, stem cells, and immunotherapy. Generating reliable PD animal models is critical for understanding the molecular pathways and neural circuits affected by disease conditions. This might contribute to the development and validation of new therapeutic approaches. This review discusses the known mechanisms of α-syn aggregated forms causing neuronal death, the recent developments in the PD preclinical models with ODs, and the treatment strategies employed.
Collapse
Affiliation(s)
- Jancy Nixon Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India.
- Department of Life Sciences, Centre of Excellence in Epigenetics, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India.
| | - Devesh Rawat
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Priyadharshini Srikanth
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Lisni P Sunny
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Nixon M Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India.
| |
Collapse
|
9
|
Ramalingam M, Jang S, Hwang J, Cho HH, Kim BC, Jeong HS. Neural-induced human adipose tissue-derived stem cell secretome exerts neuroprotection against rotenone-induced Parkinson's disease in rats. Stem Cell Res Ther 2025; 16:193. [PMID: 40254594 PMCID: PMC12010609 DOI: 10.1186/s13287-025-04306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a multifactorial disease that involves genetic and environmental factors, which play an essential role in the pathogenesis of PD. Mesenchymal stem cells release a set of bioactive molecules called "secretome" that regulates intercellular communication and cargo transfer in signaling pathways for PD treatment. Thus, this study aimed to evaluate the neuroprotective effects of neural-induced human adipose tissue-derived stem cell (NI-hADSC)-conditioned medium (NI-hADSC-CM) and its exosomes (NI-hADSC-Exo) in a rotenone (ROT)-induced model of PD in rats. METHODS The NI-hADSC-CM was collected from NI-hADSC after 14 days of neural differentiation, and its NI-hADSC-Exo were isolated using a tangential flow filtration system. ROT (1 mg/kg) was subcutaneously administered for 28 days to establish a model of PD in rats. The treatment of NI-hADSC-CM or NI-hADSC-Exo was intravenously injected on days 15, 18, 21, 24, and 27. Animal behavioral effects were explored via a rotarod test. After 28 days, histological and western blot analyses were performed to investigate the tyrosine hydroxylase (TH), α-synuclein (α-syn) aggregation, and downstream signaling pathways for experimental validation. RESULTS NI-hADSC-Exo improved the motor balance and coordination skills against ROT toxicity. ROT reproduced the pathological features of PD, such as a decrease in TH-positive dopaminergic neurons and an increase in α-syn aggregation and glial fibrillary acidic protein (GFAP)-positive cells. NI-hADSC-CM and NI-hADSC-Exo improved the TH expression, decreased the Triton X-100 soluble and insoluble oligomeric p-S129 α-syn, and influenced the differential reactivity to astrocytes and microglia. Secretome treatment could reverse the ROT-induced damages in the neuronal structural and functional proteins, mitochondrial apoptosis, and caspase cascade. The treatment of NI-hADSC-CM and NI-hADSC-Exo ameliorated the ROT toxicity-induced serine-threonine protein kinase dysregulation and autophagy impairment to clear the aggregated α-syn. CONCLUSIONS NI-hADSC-CM and NI-hADSC-Exo significantly exerted neuroprotection by decreasing α-syn toxicity, inhibiting neuroinflammation and apoptosis, restoring autophagic flux properties, and promoting the neuronal function in ROT-injected rats; however, the influence of these treatments on signaling pathways differed slightly between the midbrain and striatum regions. Targeting α-syn degradation pathways provides a novel strategy to elucidate the beneficial effects of MSC secretome and future safe cell-free treatments for PD.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| |
Collapse
|
10
|
Zhang J, Liu T, Wu H, Wei J, Qu Q. Target oxidative stress-induced disulfidptosis: novel therapeutic avenues in Parkinson's disease. Mol Brain 2025; 18:29. [PMID: 40186271 PMCID: PMC11971801 DOI: 10.1186/s13041-025-01200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD), a globally prevalent neurodegenerative disorder, has been implicated with oxidative stress (OS) as a central pathomechanism. Excessive reactive oxygen species (ROS) trigger neuronal damage and may induce disulfidptosis-a novel cell death modality not yet characterized in PD pathogenesis. METHOD Integrated bioinformatics analyses were conducted using GEO datasets to identify PD-associated differentially expressed genes (DEGs). These datasets were subjected to: immune infiltration analysis, gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), intersection analysis of oxidative stress-related genes (ORGs) and disulfidptosis-related genes (DRGs) for functional enrichment annotation. Following hub gene identification, diagnostic performance was validated using independent cohorts. LASSO regression was applied for feature selection, with subsequent experimental validation in MPTP-induced PD mouse models. Single-cell transcriptomic profiling and molecular docking studies were performed to map target gene expression and assess drug-target interactions. RESULT A total of 1615 PD DEGs and 200 WGCNA DEGs were obtained, and the intersection with ORGs and DRGs resulted in 202 DEORGs, 11 DEDRGs, and 5 DED-ORGs (NDUFS2, LRPPRC, NDUFS1, GLUD1, and MYH6). These genes are mainly associated with oxidative stress, the respiratory electron transport chain, the ATP metabolic process, oxidative phosphorylation, mitochondrial respiration, and the TCA cycle. 10 hub genes have good diagnostic value, including in the validation dataset (AUC ≥ 0.507). LASSO analysis of hub genes yielded a total of 6 target genes, ACO2, CYCS, HSPA9, SNCA, SDHA, and VDAC1. In the MPTP-induced PD mice model, the expression of ACO2, HSPA9, and SDHA was decreased while the expression of CYCS, SNCA, and VDAC1 was increased, and the expression of the 5 DED-ORGs was decreased. Additionally, it was discovered that N-Acetylcysteine (NAC) could inhibit the occurrence of disulfidptosis in the MPTP-induced PD model. Subsequently, the distribution of target genes with AUC > 0.7 in different cell types of the brain was analyzed. Finally, molecular docking was performed between the anti-PD drugs entering clinical phase IV and the target genes. LRPPRC has low binding energy and strong affinity with duloxetine and donepezil, with binding energies of -7.6 kcal/mol and - 8.7 kcal/mol, respectively. CONCLUSION This study elucidates the pathogenic role of OS-induced disulfidptosis in PD progression. By identifying novel diagnostic biomarkers (e.g., DED-ORGs) and therapeutic targets (e.g., LRPPRC), our findings provide a mechanistic framework for PD management and lay the groundwork for future therapeutic development.
Collapse
Affiliation(s)
- Junshi Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Neurology, Huaihe Hospital of Henan Universtiy, Kaifeng, 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Haojie Wu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jianshe Wei
- Department of Neurology, Huaihe Hospital of Henan Universtiy, Kaifeng, 475004, China.
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
11
|
Samson JS, Rajagopal K, Parvathi VD. Outlook of SNCA (α-synuclein) transgenic fly models in delineating the sequel of mitochondrial dysfunction in Parkinson's disease. Brain Res 2025; 1852:149505. [PMID: 39954798 DOI: 10.1016/j.brainres.2025.149505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/21/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with mechanisms that results in loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the brain. Being a complex heterogeneous disorder, there is a requisite in discovering the underlying molecular signatures that could potentially help in resolving challenges associated with diagnosis as well as therapeutic management. SNCA gene that encodes for the protein α-synuclein is widely known for its indispensable role in aggravating the progression of sporadic and familial PD, upon mutations. Likewise, mitochondrial dysfunction is inferred to be playing a central role in both forms of PD. Observations from experimental models and human PD cases displayed strong evidence for disruption of mitochondrial dynamics, inhibition of mitochondrial complex I protein's function and elevation in reactive oxygen species (ROS) by the toxic aggregation of α-synuclein. Further, recent studies have raised the possibility of an underlying relationship, where the α-synuclein toxicity is exacerbated by the mutant mitochondrial complex proteins and vice-versa. In this review, we provide an overview of mechanisms influencing α-synuclein-related neurodegeneration, particularly, emphasizing the role of SNCA (α-synuclein) gene in leading to altered mitochondrial biogenesis during PD. We have described how transgenic Drosophila models were reliable at recapitulating some of the essential characteristics of PD. In addition, we highlight the capability of utilizing transgenic fly models in deciphering the altered α-synuclein toxicity and mitochondrial dysfunction, as induced by defects in the mitochondrial DNA.
Collapse
Affiliation(s)
- Jennifer Sally Samson
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| | | | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| |
Collapse
|
12
|
Liu J, Liu Y, Gao C, Pan H, Huang P, Tan Y, Chen S. The ultrastructural and proteomic analysis of mitochondria-associated endoplasmic reticulum membrane in the midbrain of a Parkinson's disease mouse model. Aging Cell 2025; 24:e14436. [PMID: 39614648 PMCID: PMC11984660 DOI: 10.1111/acel.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024] Open
Abstract
Recent studies indicated that the dysregulation of mitochondria-associated endoplasmic reticulum membrane (MAM) could be a significant hub in the pathogenesis of Parkinson's disease (PD). However, little has been known about how MAM altered in PD. This study was aimed to observe morphological changes and analyze proteomic profiles of MAM in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models. In MPTP-treated mice, transmission electron microscopy was applied for MAM ultrastructural visualization. Nano ultra-high performance liquid chromatography-tandem mass spectrum and bioinformatic analysis were adopted to obtain underlying molecular data of MAM fractions. The loosened, shortened and reduced MAM tethering was found in substantia nigral neurons from MPTP-treated mice. In midbrain MAM proteomics, 158 differentially expressed proteins (DEPs) were identified between two groups. Specific DEPs were validated by western blot and exhibited significantly statistical changes, aligning with proteomic results. Bioinformatic analysis indicated that membrane, cytoplasm and cell projection were three major localizations for DEPs. Biological processes including metabolism, lipid transport, and immunological and apoptotic signaling pathways were greatly affected. For consensus MAM proteins, the enriched pathway analysis revealed the potential relationship between neurodegenerative diseases and MAM. Several biological processes such as peroxisome function and clathrin-mediated endocytosis, were clustered, which provided additional insights into the fundamental molecular pathways associated with MAM. In our study, we demonstrated disrupted ER-mitochondria contacts in an MPTP-induced PD mouse model. The underlying signatures of MAM were revealed by proteomics and bioinformatic analysis, providing valuable insights into its potential role in PD pathogenesis.
Collapse
Affiliation(s)
- Jin Liu
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Yi Liu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
| | - Chao Gao
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Hong Pan
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS)Shanghai Tech UniversityShanghaiPeople's Republic of China
| |
Collapse
|
13
|
Ghirotto B, Gonçalves LE, Ruder V, James C, Gerasimova E, Rizo T, Wend H, Farrell M, Gerez JA, Prymaczok NC, Kuijs M, Shulman M, Hartebrodt A, Prots I, Gessner A, Zunke F, Winkler J, Blumenthal DB, Theis FJ, Riek R, Günther C, Neurath M, Gupta P, Winner B. TNF-α disrupts the malate-aspartate shuttle, driving metabolic rewiring in iPSC-derived enteric neural lineages from Parkinson's Disease patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.644826. [PMID: 40196623 PMCID: PMC11974853 DOI: 10.1101/2025.03.25.644826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Gastrointestinal (GI) dysfunction emerges years before motor symptoms in Parkinson's disease (PD), implicating the enteric nervous system (ENS) in early disease progression. However, the mechanisms linking the PD hallmark protein, α-synuclein (α-syn), to ENS dysfunction - and whether these mechanisms are influenced by inflammation - remains elusive. Using iPSC-derived enteric neural lineages from patients with α-syn triplications, we reveal that TNF-α increases mitochondrial-α-syn interactions, disrupts the malate-aspartate shuttle, and forces a metabolic shift toward glutamine oxidation. These alterations drive mitochondrial dysfunction, characterizing metabolic impairment under cytokine stress. Interestingly, targeting glutamate metabolism with Chicago Sky Blue 6B restores mitochondrial function, reversing TNF-α-driven metabolic disruption. Our findings position the ENS as a central player in PD pathogenesis, establishing a direct link between cytokines, α-syn accumulation, metabolic stress and mitochondrial dysfunction. By uncovering a previously unrecognized metabolic vulnerability in the ENS, we highlight its potential as a therapeutic target for early PD intervention.
Collapse
Affiliation(s)
- Bruno Ghirotto
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- International Max Planck Research School in Physics and Medicine, Erlangen, Germany
| | - Luís Eduardo Gonçalves
- Department of Medicine 1, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Vivien Ruder
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christina James
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Elizaveta Gerasimova
- Dental Clinic 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tania Rizo
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Present address: Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, USA
| | - Holger Wend
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michaela Farrell
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Juan Atilio Gerez
- Institute of Molecular Physical Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Merel Kuijs
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM, School of Computation, Information and Technology, Technical University of Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Germany
| | - Maiia Shulman
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM, School of Computation, Information and Technology, Technical University of Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Germany
| | - Anne Hartebrodt
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering , Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Dental Clinic 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering , Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM, School of Computation, Information and Technology, Technical University of Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Germany
| | - Roland Riek
- Institute of Molecular Physical Sciences, ETH Zürich, Zürich, Switzerland
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Neurath
- Department of Medicine 1, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Pooja Gupta
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Center of Rare Diseases Erlangen, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
14
|
Nadais A, Martins I, Henriques AG, Trigo D, da Cruz E Silva OAB. Comparing In vitro Protein Aggregation Modelling Using Strategies Relevant to Neuropathologies. Cell Mol Neurobiol 2025; 45:24. [PMID: 40080205 PMCID: PMC11906958 DOI: 10.1007/s10571-025-01539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Protein aggregation is remarkably associated with several neuropathologies, including Alzheimer´s (AD) and Parkinson´s disease (PD). The first is characterized by hyperphosphorylated tau protein and Aβ peptide deposition, thus forming intracellular neurofibrillary tangles and extracellular senile plaques, respectively; while, in PD, α-synuclein aggregates and deposits as Lewy bodies. Considerable research has focused on developing protein aggregation models to be explored as research tools. In the present work, four in vitro models for studying protein aggregation were studied and compared, namely treatment with: the toxic Aβ1-42 peptide, the isoflavone rotenone, the ATP synthase inhibitor oligomycin, and the proteosome inhibitor MG-132. All treatments result in aggregation-relevant events in the human neural SH-SY5Y cell line, but significant model-dependent differences were observed. In terms of promoting aggregate formation, Aβ and MG-132 provoked the greatest effect, but only MG-132 was associated with an increase in HSP-70 chaperone expression. In fact, the type of aggregates formed appear to be dependent on the treatment employed, and supports the hypothesis that Aβ exposure is a relevant AD model, and rotenone is a valid model for PD. Furthermore, the results revealed that protein phosphorylation is relevant to aggregate formation and as expected, tau co-localized to the deposits formed in the Aβ peptide aggregate induction cell model. In summary, different molecular processes, from overall and specific protein aggregation to proteostatic modulation, can be induced by using distinct aggregation modelling strategies, and these can be used to study different protein-aggregation-related processes associated with distinct neuropathologies.
Collapse
Affiliation(s)
- André Nadais
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Inês Martins
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo Trigo
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
15
|
Ishii A, Meredith JR, Corenblum MJ, Bernard K, Wene PV, Menakuru N, Santiago PV, Schnellmann RG, Madhavan L. The 5-HT1F Receptor Agonist Lasmiditan improves Cognition and Ameliorates Associated Cortico-Hippocampal Pathology in Aging Parkinsonian Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638147. [PMID: 40027635 PMCID: PMC11870412 DOI: 10.1101/2025.02.13.638147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
While the etiopathology of Parkinson's disease (PD) is complex, mitochondrial dysfunction is established to have a central role. Thus, mitochondria have emerged as targets of therapeutic interventions aiming to slow or modify PD progression. We have previously identified serotonergic 5-HT1F receptors as novel mediators of mitochondrial biogenesis (MB) - the process of producing new mitochondria. Given this, here, we assessed the therapeutic potential of the FDA-approved 5-HT1F receptor agonist, lasmiditan, in a chronic progressive PD model (Thy1-aSyn 'line 61' mice). It was observed that systemic lasmiditan exhibited robust brain penetration and reversed cognitive deficits in young (4-5.5 months old) Thy1-aSyn mice (1mg/kg, every other day). Anxiety-like behavior was also improved while motor function remained unaffected. These behavioral changes were associated with enhanced MB and mitochondrial function, paired with reduced alpha-synuclein aggregation particularly in cortico-hippocampal regions. Furthermore, in older (10-11.5 months old) mice, although the effects were milder, daily lasmiditan administration increased MB and bettered cognitive abilities. In essence, these findings indicate that repurposing lasmiditan could be a potent strategy to address PD-related cognitive decline.
Collapse
|
16
|
Pfanner N, den Brave F, Becker T. Mitochondrial protein import stress. Nat Cell Biol 2025; 27:188-201. [PMID: 39843636 DOI: 10.1038/s41556-024-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025]
Abstract
Mitochondria have to import a large number of precursor proteins from the cytosol. Chaperones keep these proteins in a largely unfolded state and guide them to the mitochondrial import sites. Premature folding, mitochondrial stress and import defects can cause clogging of import sites and accumulation of non-imported precursors, representing a critical burden for cellular proteostasis. Here we discuss how cells respond to mitochondrial protein import stress by regenerating clogged import sites and inducing stress responses. The mitochondrial protein import machinery has a dual role by serving as sensor for detecting mitochondrial dysfunction and inducing stress-response pathways. The production of chaperones that fold or sequester precursor proteins in deposits is induced and the proteasomal activity is increased to remove the excess precursor proteins. Together, these pathways reveal how mitochondria are tightly integrated into a cellular proteostasis and stress response network to maintain cell viability.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMB, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
17
|
Brown HJ, Fan RZ, Bell R, Salehe SS, Martínez CM, Lai Y, Tieu K. Imbalanced mitochondrial dynamics in human and mouse PD brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635175. [PMID: 39975346 PMCID: PMC11838350 DOI: 10.1101/2025.01.27.635175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mitochondrial dysfunction is a major pathogenic mechanism in Parkinson's disease (PD). Emerging studies have shown that dysregulation in mitochondrial dynamics (fission/fusion/movement) has a major negative impact on mitochondria - both morphologically and functionally. Partial genetic deletion and pharmacological inhibition of the mitochondrial fission dynamin-related protein 1 (Drp1) have been demonstrated to be beneficial in experimental models of PD. However, the expression of DRP1 (and other fission and fusion genes/proteins) has not been investigated in the brains of Parkinson's patients. Without these data, the question remains whether targeting DRP1 is a valid therapeutic target for PD. To address this gap of knowledge, first, we used post-mortem substantia nigra specimens of Parkinson's patients and controls. Significant increases in the levels of both DNM1L , which encodes DRP1, as well as the DRP1 protein were detected in Parkinson's patients. Immunostaining revealed increased DRP1 expression in dopamine (DA) neurons, astrocytes, and microglia. In addition to DRP1, the levels of other fission and fusion genes/proteins were also altered in Parkinson's patients. To complement these human studies and given the significant role of α-synuclein in PD pathogenesis, we performed time-course studies (3-, 6- and 12-month) using transgenic mice overexpressing human wild-type SNCA under the mouse Thy-1 promoter. As early as 6 months old, we detected an upregulation of Dnm1l and Drp1 in the nigral DA neurons of the SNCA mice as compared to their WT littermates. Furthermore, these mutant animals exhibited more Drp1 phosphorylation at serine 616, which promotes its translocation to mitochondria to induce fragmentation. Together, this study shows an upregulation of DRP1/Drp1 and alterations in other fission/fusion proteins in both human and mouse PD brains, leading to a pro-fission phenotype, providing additional evidence that blocking mitochondrial fission or promoting fusion is a potential therapeutic strategy for PD.
Collapse
|
18
|
Alecu JE, Sigutova V, Brazdis RM, Lörentz S, Bogiongko ME, Nursaitova A, Regensburger M, Roybon L, Galler KM, Wrasidlo W, Winner B, Prots I. NPT100-18A rescues mitochondrial oxidative stress and neuronal degeneration in human iPSC-based Parkinson's model. BMC Neurosci 2025; 26:8. [PMID: 39875842 PMCID: PMC11773751 DOI: 10.1186/s12868-025-00926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS). These factors have been shown to adversely impact αSyn aggregation. Reciprocally, αSyn aggregates, in particular oligomers, can impair mitochondrial functions and exacerbate OS. Recent drug-discovery studies have identified a series of small molecules, including NPT100-18A, which reduce αSyn oligomerization by preventing misfolding and dimerization. NPT100-18A and structurally similar compounds (such as NPT200-11/UCB0599, currently being assessed in clinical studies) point towards a promising new approach for disease-modification. METHODS Induced pluripotent stem cell (iPSC)-derived mDANs from PD patients with a monoallelic SNCA locus duplication and unaffected controls were treated with NPT100-18A. αSyn aggregation was evaluated biochemically and reactive oxygen species (ROS) levels were assessed in living mDANs using fluorescent dyes. Adenosine triphosphate (ATP) levels were measured using a luminescence-based assay, and neuronal cell death was evaluated by immunocytochemistry. RESULTS Compared to controls, patient-derived mDANs exhibited higher cytoplasmic and mitochondrial ROS probe levels, reduced ATP-related signals, and increased activation of caspase-3, reflecting early neuronal cell death. NPT100-18A-treatment rescued cleaved caspase-3 levels to control levels and, importantly, attenuated mitochondrial oxidative stress probe levels in a compartment-specific manner and, at higher concentrations, increased ATP signals. CONCLUSIONS Our findings demonstrate that NPT100-18A limits neuronal degeneration in a human in vitro model of PD. In addition, we provide first mechanistic insights into how a compartment-specific antioxidant effect in mitochondria might contribute to the neuroprotective effects of NPT100-18A.
Collapse
Affiliation(s)
- Julian E Alecu
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Veronika Sigutova
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Razvan-Marius Brazdis
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Lörentz
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marios Evangelos Bogiongko
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anara Nursaitova
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen- Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Laurent Roybon
- Department of Neurodegenerative Science, the MiND program, Van Andel Institute, Grand Rapids, MI, USA
| | - Kerstin M Galler
- Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Wrasidlo
- Neuropore Therapies, Inc, San Diego, CA, USA
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
19
|
Afzal M, Hameed H, Paiva-Santos AC, Saleem M, Hameed A, Ahmad SM. Bioengineered exosomes: Cellular membrane-camouflaged biomimetic nanocarriers for Parkinson's disease management. Eur J Pharmacol 2025; 987:177199. [PMID: 39662659 DOI: 10.1016/j.ejphar.2024.177199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Parkinson's disease is a prevalent neurological condition that affects around 1% of adults over 60 worldwide. Deep brain stimulation and dopamine replacement therapy are common therapies for Parkinson's disease, yet they are unable to reverse the disease it simply because of the blood brain barrier. The use of bioengineered exosomes to treat Parkinson's disease is being studied because they have the ability to cross the blood-brain barrier. Their natural ability to cross the blood-brain barrier (BBB) and their biocompatibility make them highly suitable for delivering therapeutic agents to manage PD, specifically the role of astrocytes, microglial cells, and alpha-synuclein. It also explores the biogenesis and preparation of these bioengineered exosomes. In comparison to conventional nanocarriers, the modified exosomal-membrane-camouflaged abiotic nanocarriers show improved resilience and compatibility. Improved cellular absorption and targeted delivery of therapeutic payloads, such as medications and enzymes, are being shown in laboratory trials. A viable strategy for treating PD involves combining abiotic nanocarriers with bioengineered exosomal membranes. Despite their promising potential, successful clinical application requires overcoming hurdles related to scalable production, regulatory approval, and long-term safety evaluation. Nevertheless, the innovative use of bioengineered exosomes holds significant promise for advancing PD management and improving patient outcomes through more targeted and effective therapeutic strategies.
Collapse
Affiliation(s)
- Maham Afzal
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Makkia Saleem
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore, 54000, Pakistan.
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore, 54000, Pakistan.
| | - Syed Muhammad Ahmad
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| |
Collapse
|
20
|
Eleuteri S, Wang B, Cutillo G, Zhang Fang TS, Tao K, Qu Y, Yang Q, Wei W, Simon DK. PGC-1α regulation by FBXW7 through a novel mechanism linking chaperone-mediated autophagy and the ubiquitin-proteasome system. FEBS J 2025; 292:332-354. [PMID: 39429232 DOI: 10.1111/febs.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a key regulator of mitochondrial biogenesis and antioxidative defenses, and it may play a critical role in Parkinson's disease (PD). F-box/WD repeat domain-containing protein (FBXW7), an E3 protein ligase, promotes the degradation of substrate proteins through the ubiquitin-proteasome system (UPS) and leads to the clearance of PGC-1α. Here, we elucidate a novel post-translational mechanism for regulating PGC-1α levels in neurons. We show that enhancing chaperone-mediated autophagy (CMA) activity promotes the CMA-mediated degradation of FBXW7 and consequently increases PGC-1α. We confirm the relevance of this pathway in vivo by showing decreased FBXW7 and increased PGC-1α as a result of boosting CMA selectively in dopaminergic (DA) neurons by overexpressing lysosomal-associated membrane protein 2A (LAMP2A) in TH-Cre-LAMP2-loxp conditional mice. We further demonstrate that these mice are protected against MPTP-induced oxidative stress and neurodegeneration. These results highlight a novel regulatory pathway for PGC-1α in DA neurons and suggest targeted increasing of CMA or decreasing FBXW7 in DA neurons as potential neuroprotective strategies in PD.
Collapse
Affiliation(s)
- Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bao Wang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Gianni Cutillo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tracy Shi Zhang Fang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kai Tao
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Qian Yang
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Allowitz K, Taylor J, Harames K, Yoo J, Baloch O, Ramana KV. Oxidative Stress-mediated Lipid Peroxidation-derived Lipid Aldehydes in the Pathophysiology of Neurodegenerative Diseases. Curr Neuropharmacol 2025; 23:671-685. [PMID: 39440770 PMCID: PMC12163476 DOI: 10.2174/011570159x342720241014164650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Neurodegenerative diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis cause damage and gradual loss of neurons affecting the central nervous system. Neurodegenerative diseases are most commonly seen in the ageing process. Ageing causes increased reactive oxygen species and decreased mitochondrial ATP generation, resulting in redox imbalance and oxidative stress. Oxidative stress-generated free radicals cause damage to membrane lipids containing polyunsaturated fatty acids, leading to the formation of toxic lipid aldehyde products such as 4- hydroxynonenal and malondialdehyde. Several studies have shown that lipid peroxidation-derived aldehyde products form adducts with cellular proteins, altering their structure and function. Thus, these lipid aldehydes could act as secondary signaling intermediates, modifying important metabolic pathways, and contributing to the pathophysiology of several human diseases, including neurodegenerative disorders. Additionally, they could serve as biomarkers for disease progression. This narrative review article discusses the biological and clinical significance of oxidative stress-mediated lipid peroxidation-derived lipid aldehydes in the pathophysiology of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Kieran Allowitz
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT-84606, USA
| | - Justin Taylor
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT-84606, USA
| | - Kyra Harames
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT-84606, USA
| | - John Yoo
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT-84606, USA
| | - Omar Baloch
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT-84606, USA
| | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT-84606, USA
| |
Collapse
|
22
|
Li S, Liu Y, Lu S, Xu J, Liu X, Yang D, Yang Y, Hou L, Li N. A crazy trio in Parkinson's disease: metabolism alteration, α-synuclein aggregation, and oxidative stress. Mol Cell Biochem 2025; 480:139-157. [PMID: 38625515 DOI: 10.1007/s11010-024-04985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024]
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disorder, characterized by the progressive loss of dopaminergic neurons in the pars compacta of the substantia nigra and the presence of Lewy bodies containing α-synuclein within these neurons. Oligomeric α-synuclein exerts neurotoxic effects through mitochondrial dysfunction, glial cell inflammatory response, lysosomal dysfunction and so on. α-synuclein aggregation, often accompanied by oxidative stress, is generally considered to be a key factor in PD pathology. At present, emerging evidences suggest that metabolism alteration is closely associated with α-synuclein aggregation and PD progression, and improvement of key molecules in metabolism might be potentially beneficial in PD treatment. In this review, we highlight the tripartite relationship among metabolic changes, α-synuclein aggregation, and oxidative stress in PD, and offer updated insights into the treatments of PD, aiming to deepen our understanding of PD pathogenesis and explore new therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sheng Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yanbing Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sen Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiayi Xu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaokun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Di Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
23
|
Shen L, Dettmer U. Alpha-Synuclein Effects on Mitochondrial Quality Control in Parkinson's Disease. Biomolecules 2024; 14:1649. [PMID: 39766356 PMCID: PMC11674454 DOI: 10.3390/biom14121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The maintenance of healthy mitochondria is essential for neuronal survival and relies upon mitochondrial quality control pathways involved in mitochondrial biogenesis, mitochondrial dynamics, and mitochondrial autophagy (mitophagy). Mitochondrial dysfunction is critically implicated in Parkinson's disease (PD), a brain disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Consequently, impaired mitochondrial quality control may play a key role in PD pathology. This is affirmed by work indicating that genes such as PRKN and PINK1, which participate in multiple mitochondrial processes, harbor PD-associated mutations. Furthermore, mitochondrial complex-I-inhibiting toxins like MPTP and rotenone are known to cause Parkinson-like symptoms. At the heart of PD is alpha-synuclein (αS), a small synaptic protein that misfolds and aggregates to form the disease's hallmark Lewy bodies. The specific mechanisms through which aggregated αS exerts its neurotoxicity are still unknown; however, given the vital role of both αS and mitochondria to PD, an understanding of how αS influences mitochondrial maintenance may be essential to elucidating PD pathogenesis and discovering future therapeutic targets. Here, the current knowledge of the relationship between αS and mitochondrial quality control pathways in PD is reviewed, highlighting recent findings regarding αS effects on mitochondrial biogenesis, dynamics, and autophagy.
Collapse
Affiliation(s)
- Lydia Shen
- College of Arts & Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
24
|
Jishi A, Hu D, Shang Y, Wang R, Gunzler SA, Qi X. BCKDK loss impairs mitochondrial Complex I activity and drives alpha-synuclein aggregation in models of Parkinson's disease. Acta Neuropathol Commun 2024; 12:198. [PMID: 39709505 DOI: 10.1186/s40478-024-01915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Mitochondrial dysfunction and α-synuclein (αSyn) aggregation are key contributors to Parkinson's Disease (PD). While genetic and environmental risk factors, including mutations in mitochondrial-associated genes, are implicated in PD, the precise mechanisms linking mitochondrial defects to αSyn pathology remain incompletely understood, hindering the development of effective therapeutic interventions. Here, we identify the loss of branched chain ketoacid dehydrogenase kinase (BCKDK) as a mitochondrial risk factor that exacerbates αSyn pathology by disrupting Complex I function. Our findings reveal a consistent downregulation of BCKDK in dopaminergic (DA) neurons from A53T-αSyn mouse models, PD patient-derived induced pluripotent stem (iPS) cells, and postmortem brain tissues. BCKDK deficiency leads to mitochondrial dysfunction, including reduced membrane potential and increased reactive oxygen species (ROS) production upon administration of a stressor, which in turn promotes αSyn oligomerization. Mechanistically, BCKDK interacts with the NDUFS1 subunit of Complex I to stabilize its function. Loss of BCKDK disrupts this interaction, leading to Complex I destabilization and enhanced αSyn aggregation. Notably, restoring BCKDK expression in neuron-like cells rescues mitochondrial integrity and restores Complex I activity. Similarly, in patient-derived iPS cells differentiated to form dopaminergic neurons, NDUFS1 and phosphorylated aSyn levels are partially restored upon BCKDK expression. These findings establish a mechanistic link between BCKDK deficiency, mitochondrial dysfunction, and αSyn pathology in PD, positioning BCKDK as a potential therapeutic target to mitigate mitochondrial impairment and neurodegeneration in PD.
Collapse
Affiliation(s)
- Aya Jishi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Di Hu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Yutong Shang
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rihua Wang
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Steven A Gunzler
- Neurological Institute, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
25
|
Vasquez V, Kodavati M, Mitra J, Vedula I, Hamilton DJ, Garruto RM, Rao KS, Hegde ML. Mitochondria-targeted oligomeric α-synuclein induces TOM40 degradation and mitochondrial dysfunction in Parkinson's disease and parkinsonism-dementia of Guam. Cell Death Dis 2024; 15:914. [PMID: 39695091 DOI: 10.1038/s41419-024-07258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024]
Abstract
Mitochondrial dysfunction is a central aspect of Parkinson's disease (PD) pathology, yet the underlying mechanisms are not fully understood. This study investigates the link between α-Synuclein (α-Syn) pathology and the loss of translocase of the outer mitochondrial membrane 40 (TOM40), unraveling its implications for mitochondrial dysfunctions in neurons. We discovered that TOM40 protein depletion occurs in the brains of patients with Guam Parkinsonism-Dementia (Guam PD) and cultured neurons expressing α-Syn proteinopathy, notably, without corresponding changes in TOM40 mRNA levels. Cultured neurons expressing α-Syn mutants, with or without a mitochondria-targeting signal (MTS) underscores the role of α-Syn's mitochondrial localization in inducing TOM40 degradation. PDe-related etiological factors, such as 6-hydroxydopamine or ROS/metal ions stress, which promotes α-Syn oligomerization, exacerbate TOM40 depletion in PD patient-derived cells with SNCA gene triplication. Although α-Syn interacts with both TOM40 and TOM20 in the outer mitochondrial membrane, degradation is selective for TOM40, which occurs via the ubiquitin-proteasome system (UPS) pathway. Our comprehensive analyses using Seahorse technology, mitochondrial DNA sequencing, and damage assessments, demonstrate that mutant α-Syn-induced TOM40 loss results in mitochondrial dysfunction, characterized by reduced membrane potential, accumulation of mtDNA damage, deletion/insertion mutations, and altered oxygen consumption rates. Notably, ectopic supplementation of TOM40 or reducing pathological forms of α-Syn using ADP-ribosylation inhibitors ameliorate these mitochondrial defects, suggesting potential therapeutic avenues. In conclusion, our findings provide crucial mechanistic insights into how α-Syn accumulation leads to TOM40 degradation and mitochondrial dysfunction, offering insights for targeted interventions to alleviate mitochondrial defects in PD.
Collapse
Affiliation(s)
- Velmarini Vasquez
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Neuroscience Center, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, (INDICASAT AIP), Panama City, Panama
| | - Manohar Kodavati
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Joy Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Indira Vedula
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine affiliate, Houston, TX, USA
| | - Ralph M Garruto
- Departments of Anthropology and Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - K S Rao
- Department of Biotechnology, KLEF Deemed to be University, Vaddeswaram, India
| | - Muralidhar L Hegde
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Neuroscience, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
26
|
McMinimy R, Manford AG, Gee CL, Chandrasekhar S, Mousa GA, Chuang J, Phu L, Shih KY, Rose CM, Kuriyan J, Bingol B, Rapé M. Reactive oxygen species control protein degradation at the mitochondrial import gate. Mol Cell 2024; 84:4612-4628.e13. [PMID: 39642856 DOI: 10.1016/j.molcel.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/02/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
While reactive oxygen species (ROS) have long been known to drive aging and neurodegeneration, their persistent depletion below basal levels also disrupts organismal function. Cells counteract loss of basal ROS via the reductive stress response, but the identity and biochemical activity of ROS sensed by this pathway remain unknown. Here, we show that the central enzyme of the reductive stress response, the E3 ligase Cullin 2-FEM1 homolog B (CUL2FEM1B), specifically acts at mitochondrial TOM complexes, where it senses ROS produced by complex III of the electron transport chain (ETC). ROS depletion during times of low ETC activity triggers the localized degradation of CUL2FEM1B substrates, which sustains mitochondrial import and ensures the biogenesis of the rate-limiting ETC complex IV. As complex III yields most ROS when the ETC outpaces metabolic demands or oxygen availability, basal ROS are sentinels of mitochondrial activity that help cells adjust their ETC to changing environments, as required for cell differentiation and survival.
Collapse
Affiliation(s)
- Rachael McMinimy
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andrew G Manford
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Srividya Chandrasekhar
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Gergey Alzaem Mousa
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Joelle Chuang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Lilian Phu
- Genentech Inc. South San Francisco, South San Francisco, CA 94080, USA
| | - Karen Y Shih
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | - John Kuriyan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Baris Bingol
- Genentech Inc. South San Francisco, South San Francisco, CA 94080, USA
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
27
|
Jiao J, Gao G, Zhu J, Wang C, Liu L, Yang H. Binding of α-synuclein to ACO2 promotes progressive mitochondrial dysfunction in Parkinson's disease models. Redox Biol 2024; 77:103399. [PMID: 39427443 PMCID: PMC11533713 DOI: 10.1016/j.redox.2024.103399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024] Open
Abstract
The accumulation of α-synuclein (α-syn), a key protein in Parkinson's disease (PD), contributes to progressive neuronal damage associated with mitochondrial dysfunction and interactions with various proteins. However, the precise mechanism by which α-syn affects energy metabolism remains unclear. In our study, we used human α-syn (hα-syn) transgenic mice, which exhibit progressive neuronal decline. Through an immunoprecipitation assay specific to hα-syn, we identified an enzyme in the mitochondrial tricarboxylic acid (TCA) cycle as a binding partner-mitochondrial aconitase 2 (ACO2), which converts citrate to isocitrate. Hα-syn increasingly interacted with ACO2 in mitochondria as mice aged, correlating with a progressive decrease in ACO2 activity. The overexpression of ACO2 and the addition of isocitrate, a downstream metabolite of ACO2, were observed to alleviate hα-syn-induced mitochondrial dysfunction and cytotoxicity. Furthermore, we designed an interfering peptide to block the interaction between ACO2 and hα-syn, which showed therapeutic effects in reducing hα-syn toxicity in vitro and in vivo. Our research establishes a direct link between α-syn and the TCA cycle and identifies ACO2 as a promising therapeutic target for improving mitochondrial function and reducing α-syn neurotoxicity in PD.
Collapse
Affiliation(s)
- Jie Jiao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing, China
| | - Ge Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing, China
| | - Junge Zhu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Chaodong Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Lei Liu
- Department of Biochemistry and Molecular Biology, Capital Medical University, School of Basic Medicine, Beijing, China.
| | - Hui Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing, China.
| |
Collapse
|
28
|
Vekrellis K, Emmanouilidou E, Xilouri M, Stefanis L. α-Synuclein in Parkinson's Disease: 12 Years Later. Cold Spring Harb Perspect Med 2024; 14:a041645. [PMID: 39349314 PMCID: PMC11529858 DOI: 10.1101/cshperspect.a041645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
α-Synuclein (AS) is a small presynaptic protein that is genetically, biochemically, and neuropathologically linked to Parkinson's disease (PD) and related synucleinopathies. We present here a review of the topic of this relationship, focusing on more recent knowledge. In particular, we review the genetic evidence linking AS to familial and sporadic PD, including a number of recently identified point mutations in the SNCA gene. We briefly go over the relevant neuropathological findings, stressing the evidence indicating a correlation between aberrant AS deposition and nervous system dysfunction. We analyze the structural characteristics of the protein, in relation to both its physiologic and pathological conformations, with particular emphasis on posttranslational modifications, aggregation properties, and secreted forms. We review the interrelationship of AS with various cellular compartments and functions, with particular focus on the synapse and protein degradation systems. We finally go over the recent exciting data indicating that AS can provide the basis for novel robust biomarkers in the field of synucleinopathies, while at the same time results from the first clinical trials specifically targeting AS are being reported.
Collapse
Affiliation(s)
- Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Maria Xilouri
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Leonidas Stefanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11528, Greece; and Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| |
Collapse
|
29
|
Stępkowski TM, Linke V, Stadnik D, Zakrzewski M, Zawada AE, Serwa RA, Chacinska A. Temporal alterations of the nascent proteome in response to mitochondrial stress. Cell Rep 2024; 43:114803. [PMID: 39361503 DOI: 10.1016/j.celrep.2024.114803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Under stress, protein synthesis is attenuated to preserve energy and mitigate challenges to protein homeostasis. Here, we describe, with high temporal resolution, the dynamic landscape of changes in the abundance of proteins synthesized upon stress from transient mitochondrial inner membrane depolarization. This nascent proteome was altered when global translation was attenuated by stress and began to normalize as translation was recovering. This transition was associated with a transient desynchronization of cytosolic and mitochondrial translation and recovery of cytosolic and mitochondrial ribosomal proteins. Further, the elongation factor EEF1A1 was downregulated upon mitochondrial stress, and its silencing mimicked the stress-induced nascent proteome remodeling, including alterations in the nascent respiratory chain proteins. Unexpectedly, the stress-induced alterations in the nascent proteome were independent of physiological protein abundance and turnover. In summary, we provide insights into the physiological and pathological consequences of mitochondrial function and dysfunction.
Collapse
Affiliation(s)
- Tomasz M Stępkowski
- Remedy International Research Agenda Unit, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland; IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Vanessa Linke
- Remedy International Research Agenda Unit, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland; IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Dorota Stadnik
- Remedy International Research Agenda Unit, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland; IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | | | - Anna E Zawada
- IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Remigiusz A Serwa
- Remedy International Research Agenda Unit, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland; IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Agnieszka Chacinska
- Remedy International Research Agenda Unit, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland; IMol Polish Academy of Sciences, 02-247 Warsaw, Poland.
| |
Collapse
|
30
|
Liu S, Yang N, Yan Y, Wang S, Chen J, Wang Y, Gan X, Zhou J, Xie G, Wang H, Huang T, Ji W, Wang Z, Si W. An accelerated Parkinson's disease monkey model using AAV-α-synuclein plus poly(ADP-ribose). CELL REPORTS METHODS 2024; 4:100876. [PMID: 39413778 PMCID: PMC11573744 DOI: 10.1016/j.crmeth.2024.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
The etiology of Parkinson's disease (PD) remains elusive, and the limited availability of suitable animal models hampers research on pathogenesis and drug development. We report the development of a cynomolgus monkey model of PD that combines adeno-associated virus (AAV)-mediated overexpression of α-synuclein into the substantia nigra with an injection of poly(ADP-ribose) (PAR) into the striatum. Our results show that pathological processes were accelerated, including dopaminergic neuron degeneration, Lewy body aggregation, and hallmarks of inflammation in microglia and astrocytes. Behavioral phenotypes, dopamine transporter imaging, and transcriptomic profiling further demonstrate consistencies between the model and patients with PD. This model can help to determine the mechanisms underlying PD impacted by α-synuclein and PAR and aid in the accelerated development of therapeutic strategies for PD.
Collapse
Affiliation(s)
- Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Naixue Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yaping Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Shaobo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Department of Nuclear Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Jialing Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yichao Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xue Gan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jiawen Zhou
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Guoqing Xie
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tianzhuang Huang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
31
|
Li LG, Zhang D, Huang Q, Yan M, Chen NN, Yang Y, Xiao RC, Liu H, Han N, Qureshi AM, Hu J, Leng F, Hui YJ. Mitochondrial disruption resulting from Cepharanthine-mediated TOM inhibition triggers ferroptosis in colorectal cancer cells. J Cancer Res Clin Oncol 2024; 150:460. [PMID: 39402386 PMCID: PMC11478973 DOI: 10.1007/s00432-024-05974-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Chemotherapy for colorectal cancer (CRC) urgently needs low-toxicity and highly effective phytomedicine. Cepharanthine (Cep) shown to have multiple anti-tumor effects, including colorectal cancer, whose pivotal mechanisms are not fully understood. Herein, the present work aims to reveal the impact of Cep on the mitochondrial and anti-injury functions of CRC cells. METHODS The TOM70/20 expression was screened by bioinformatic databases. SW480 cells were utilized as the colorectal cancer cell model. The expression of TOM70/20 and the downstream molecules were measured by western blots (WB). The ferroptosis was analyzed using Transmission electron microscopy (TEM), C11-BODIPY, PGSK, and DCFH-DA probes, wherein the detection was performed by flow cytometry and laser confocal microscopy. The anti-cancer efficacy was conducted by CCK-8 and Annexin-V/PI assay. The rescue experiments were carried out using Fer-1 and TOM70 plasmid transfection. RESULTS Bioinformatic data identified TOM20 and TOM70 were highly expressed in colorectal cancer, which could be down-regulated by Cep. Further findings disclosed that Cep treatment destroyed the mitochondria and inactivated the NRF2 signaling pathway, an essential pathway for resistance to ferroptosis, thereby promoting reactive oxygen species (ROS) generation in CRC cells. As a result, prominent ferroptosis could be observed in CRC cells in response to Cep, which thereby led to the reduced cell viability of cancer cells. On the contrary, recovery of TOM70 dampened the Cep-elicited mitochondria damage, ferroptosis, and anti-cancer efficacy. CONCLUSION In summary, Cep-mediated TOM inhibition inactivates the NRF2 signaling pathway, thereby triggering ferroptosis and achieving an anti-colorectal cancer effect. The current study provides an innovative chemotherapeutic approach for colorectal cancer with phytomedicine.
Collapse
Affiliation(s)
- Liu-Gen Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Di Zhang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China
| | - Qi Huang
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Min Yan
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Nan-Nan Chen
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Yan Yang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China
| | - Rong-Cheng Xiao
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China
| | - Hui Liu
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China
| | - Ning Han
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Abdul Moiz Qureshi
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China
| | - Jun Hu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Fan Leng
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Yuan-Jian Hui
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China.
| |
Collapse
|
32
|
Geibl FF, Henrich MT, Xie Z, Zampese E, Ueda J, Tkatch T, Wokosin DL, Nasiri E, Grotmann CA, Dawson VL, Dawson TM, Chandel NS, Oertel WH, Surmeier DJ. α-Synuclein pathology disrupts mitochondrial function in dopaminergic and cholinergic neurons at-risk in Parkinson's disease. Mol Neurodegener 2024; 19:69. [PMID: 39379975 PMCID: PMC11462807 DOI: 10.1186/s13024-024-00756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Pathological accumulation of aggregated α-synuclein (aSYN) is a common feature of Parkinson's disease (PD). However, the mechanisms by which intracellular aSYN pathology contributes to dysfunction and degeneration of neurons in the brain are still unclear. A potentially relevant target of aSYN is the mitochondrion. To test this hypothesis, genetic and physiological methods were used to monitor mitochondrial function in substantia nigra pars compacta (SNc) dopaminergic and pedunculopontine nucleus (PPN) cholinergic neurons after stereotaxic injection of aSYN pre-formed fibrils (PFFs) into the mouse brain. METHODS aSYN PFFs were stereotaxically injected into the SNc or PPN of mice. Twelve weeks later, mice were studied using a combination of approaches, including immunocytochemical analysis, cell-type specific transcriptomic profiling, electron microscopy, electrophysiology and two-photon-laser-scanning microscopy of genetically encoded sensors for bioenergetic and redox status. RESULTS In addition to inducing a significant neuronal loss, SNc injection of PFFs induced the formation of intracellular, phosphorylated aSYN aggregates selectively in dopaminergic neurons. In these neurons, PFF-exposure decreased mitochondrial gene expression, reduced the number of mitochondria, increased oxidant stress, and profoundly disrupted mitochondrial adenosine triphosphate production. Consistent with an aSYN-induced bioenergetic deficit, the autonomous spiking of dopaminergic neurons slowed or stopped. PFFs also up-regulated lysosomal gene expression and increased lysosomal abundance, leading to the formation of Lewy-like inclusions. Similar changes were observed in PPN cholinergic neurons following aSYN PFF exposure. CONCLUSIONS Taken together, our findings suggest that disruption of mitochondrial function, and the subsequent bioenergetic deficit, is a proximal step in the cascade of events induced by aSYN pathology leading to dysfunction and degeneration of neurons at-risk in PD.
Collapse
Affiliation(s)
- Fanni F Geibl
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Martin T Henrich
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Zhong Xie
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Enrico Zampese
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US
| | - Jun Ueda
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US
| | - David L Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elena Nasiri
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Constantin A Grotmann
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US.
| |
Collapse
|
33
|
Keeney MT, Rocha EM, Hoffman EK, Farmer K, Di Maio R, Weir J, Wagner WG, Hu X, Clark CL, Castro SL, Scheirer A, Fazzari M, De Miranda BR, Pintchovski SA, Shrader WD, Pagano PJ, Hastings TG, Greenamyre JT. LRRK2 regulates production of reactive oxygen species in cell and animal models of Parkinson's disease. Sci Transl Med 2024; 16:eadl3438. [PMID: 39356746 DOI: 10.1126/scitranslmed.adl3438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/30/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Oxidative stress has long been implicated in Parkinson's disease (PD) pathogenesis, although the sources and regulation of reactive oxygen species (ROS) production are poorly defined. Pathogenic mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are associated with increased kinase activity and a greater risk of PD. The substrates and downstream consequences of elevated LRRK2 kinase activity are still being elucidated, but overexpression of mutant LRRK2 has been associated with oxidative stress, and antioxidants reportedly mitigate LRRK2 toxicity. Here, using CRISPR-Cas9 gene-edited HEK293 cells, RAW264.7 macrophages, rat primary ventral midbrain cultures, and PD patient-derived lymphoblastoid cells, we found that elevated LRRK2 kinase activity was associated with increased ROS production and lipid peroxidation and that this was blocked by inhibitors of either LRRK2 kinase or NADPH oxidase 2 (NOX2). Oxidative stress induced by the pesticide rotenone was ameliorated by LRRK2 kinase inhibition and was absent in cells devoid of LRRK2. In a rat model of PD induced by rotenone, a LRRK2 kinase inhibitor prevented the lipid peroxidation and NOX2 activation normally seen in nigral dopaminergic neurons in this model. Mechanistically, LRRK2 kinase activity was shown to regulate phosphorylation of serine-345 in the p47phox subunit of NOX2. This, in turn, led to translocation of p47phox from the cytosol to the membrane-associated gp91phox (NOX2) subunit, activation of the NOX2 enzyme complex, and production of ROS. Thus, LRRK2 kinase activity may drive cellular ROS production in PD through the regulation of NOX2 activity.
Collapse
Affiliation(s)
- Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric K Hoffman
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyle Farmer
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julie Weir
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Weston G Wagner
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaoping Hu
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Courtney L Clark
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sandra L Castro
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Abigail Scheirer
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Teresa G Hastings
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Qi L, Liu S, Fang Q, Qian C, Peng C, Liu Y, Yang P, Wu P, Shan L, Cui Q, Hua Q, Yang S, Ye C, Yang W, Li P, Xu X. Ginsenoside Rg3 Restores Mitochondrial Cardiolipin Homeostasis via GRB2 to Prevent Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403058. [PMID: 39159293 PMCID: PMC11497058 DOI: 10.1002/advs.202403058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Indexed: 08/21/2024]
Abstract
Regulating cardiolipin to maintain mitochondrial homeostasis is a promising strategy for addressing Parkinson's disease (PD). Through a comprehensive screening and validation process involving multiple models, ginsenoside Rg3 (Rg3) as a compound capable of enhancing cardiolipin levels is identified. This augmentation in cardiolipin levels fosters mitochondrial homeostasis by bolstering mitochondrial unfolded protein response, promoting mitophagy, and enhancing mitochondrial oxidative phosphorylation. Consequently, this cascade enhances the survival of tyrosine hydroxylase positive (TH+) dopaminergic neurons, leading to an amelioration in motor performance within PD mouse models. Using limited proteolysis-small-molecule mapping combined with molecular docking analysis, it has confirmed Growth Factor Receptor-Bound Protein 2 (GRB2) as a molecular target for Rg3. Furthermore, these investigations reveal that Rg3 facilitates the interaction between GRB2 and TRKA (Neurotrophic Tyrosine Kinase, Receptor, Type 1), thus promotes EVI1 (Ecotropic Virus Integration Site 1 Protein Homolog) phosphorylation by ERK, subsequently increases CRLS1 (Cardiolipin Synthase 1) gene expression and boosts cardiolipin synthesis. The absence of GRB2 or CRLS1 significantly attenuates the beneficial effects of Rg3 on PD symptoms. Finally, Tenofovir Disoproxil Fumarate (TDF) that also promotes the binding between GRB2 and TRKA is further identified. The identified compounds, Rg3 and TDF, exhibit promising potential for the prevention of PD by bolstering cardiolipin expression and reinstating mitochondrial homeostasis.
Collapse
Affiliation(s)
- Li‐Feng‐Rong Qi
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Shuai Liu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
- Department of PharmacyThe Fourth Affiliated HospitalCenter for Innovative Traditional Chinese Medicine Target and New Drug ResearchInternational Institutes of MedicineZhejiang University School of MedicineYiwuZhejiang322000China
| | - Qiuyuan Fang
- Department of Biophysics and Department of Neurosurgery of the First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Cheng Qian
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Chao Peng
- National Facility for Protein Science in ShanghaiZhangjiang LabShanghai Advanced Research InstituteChinese Academy of ScienceShanghai201210China
- Shanghai Science Research CenterChinese Academy of SciencesShanghai201204China
| | - Yuci Liu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Peng Yang
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Ping Wu
- National Facility for Protein Science in ShanghaiZhangjiang LabShanghai Advanced Research InstituteChinese Academy of ScienceShanghai201210China
- Shanghai Science Research CenterChinese Academy of SciencesShanghai201204China
| | - Ling Shan
- Dept. Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesMeibergdreef 47Amsterdam1105BAthe Netherlands
| | - Qinghua Cui
- Department of Biomedical InformaticsSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Sciences of the Ministry of EducationCenter for Non‐Coding RNA MedicinePeking University Health Science Center BeijingBeijing100191China
| | - Qian Hua
- School of Life SciencesBeijing University of Chinese MedicineBeijing100029China
| | - Sen Yang
- Life Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Cunqi Ye
- Life Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Wei Yang
- Department of PharmacyThe Fourth Affiliated HospitalCenter for Innovative Traditional Chinese Medicine Target and New Drug ResearchInternational Institutes of MedicineZhejiang University School of MedicineYiwuZhejiang322000China
| | - Ping Li
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
| | - Xiaojun Xu
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingJiangsu210009China
- Department of PharmacyThe Fourth Affiliated HospitalCenter for Innovative Traditional Chinese Medicine Target and New Drug ResearchInternational Institutes of MedicineZhejiang University School of MedicineYiwuZhejiang322000China
| |
Collapse
|
35
|
Lam I, Ndayisaba A, Lewis AJ, Fu Y, Sagredo GT, Kuzkina A, Zaccagnini L, Celikag M, Sandoe J, Sanz RL, Vahdatshoar A, Martin TD, Morshed N, Ichihashi T, Tripathi A, Ramalingam N, Oettgen-Suazo C, Bartels T, Boussouf M, Schäbinger M, Hallacli E, Jiang X, Verma A, Tea C, Wang Z, Hakozaki H, Yu X, Hyles K, Park C, Wang X, Theunissen TW, Wang H, Jaenisch R, Lindquist S, Stevens B, Stefanova N, Wenning G, van de Berg WDJ, Luk KC, Sanchez-Pernaute R, Gómez-Esteban JC, Felsky D, Kiyota Y, Sahni N, Yi SS, Chung CY, Stahlberg H, Ferrer I, Schöneberg J, Elledge SJ, Dettmer U, Halliday GM, Bartels T, Khurana V. Rapid iPSC inclusionopathy models shed light on formation, consequence, and molecular subtype of α-synuclein inclusions. Neuron 2024; 112:2886-2909.e16. [PMID: 39079530 PMCID: PMC11377155 DOI: 10.1016/j.neuron.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/26/2023] [Accepted: 06/03/2024] [Indexed: 09/07/2024]
Abstract
The heterogeneity of protein-rich inclusions and its significance in neurodegeneration is poorly understood. Standard patient-derived iPSC models develop inclusions neither reproducibly nor in a reasonable time frame. Here, we developed screenable iPSC "inclusionopathy" models utilizing piggyBac or targeted transgenes to rapidly induce CNS cells that express aggregation-prone proteins at brain-like levels. Inclusions and their effects on cell survival were trackable at single-inclusion resolution. Exemplar cortical neuron α-synuclein inclusionopathy models were engineered through transgenic expression of α-synuclein mutant forms or exogenous seeding with fibrils. We identified multiple inclusion classes, including neuroprotective p62-positive inclusions versus dynamic and neurotoxic lipid-rich inclusions, both identified in patient brains. Fusion events between these inclusion subtypes altered neuronal survival. Proteome-scale α-synuclein genetic- and physical-interaction screens pinpointed candidate RNA-processing and actin-cytoskeleton-modulator proteins like RhoA whose sequestration into inclusions could enhance toxicity. These tractable CNS models should prove useful in functional genomic analysis and drug development for proteinopathies.
Collapse
Affiliation(s)
- Isabel Lam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Alain Ndayisaba
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Amanda J Lewis
- École Polytechnique Fédérale de Lausanne and University of Lausanne, Lausanne, Switzerland
| | - YuHong Fu
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health School of Medical Science, Sydney, NSW, Australia
| | - Giselle T Sagredo
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health School of Medical Science, Sydney, NSW, Australia
| | - Anastasia Kuzkina
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Meral Celikag
- Dementia Research Institute, University College London, London, UK
| | - Jackson Sandoe
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Ricardo L Sanz
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Aazam Vahdatshoar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Timothy D Martin
- Harvard Medical School, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nader Morshed
- Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Boston Children's Hospital, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Charlotte Oettgen-Suazo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Theresa Bartels
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Manel Boussouf
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Max Schäbinger
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Erinc Hallacli
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Xin Jiang
- Yumanity Therapeutics, Cambridge, MA, USA
| | - Amrita Verma
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Challana Tea
- University of California, San Diego, San Diego, CA, USA
| | - Zichen Wang
- University of California, San Diego, San Diego, CA, USA
| | | | - Xiao Yu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kelly Hyles
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Chansaem Park
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Xinyuan Wang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Haoyi Wang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Beth Stevens
- Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Boston Children's Hospital, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kelvin C Luk
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rosario Sanchez-Pernaute
- BioBizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | - Daniel Felsky
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | | | - Nidhi Sahni
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA
| | - S Stephen Yi
- The University of Texas at Austin, Austin, TX, USA
| | | | - Henning Stahlberg
- École Polytechnique Fédérale de Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Isidro Ferrer
- The University of Barcelona, Institut d'Investigacio Biomedica de Bellvitge IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | - Stephen J Elledge
- Harvard Medical School, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Glenda M Halliday
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health School of Medical Science, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Tim Bartels
- Dementia Research Institute, University College London, London, UK
| | - Vikram Khurana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
36
|
Pullara F, Forsmann MC, General IJ, Ayoob JC, Furbee E, Castro SL, Hu X, Greenamyre JT, Di Maio R. NADPH oxidase 2 activity disrupts Calmodulin/CaMKIIα complex via redox modifications of CaMKIIα-contained Cys30 and Cys289: Implications in Parkinson's disease. Redox Biol 2024; 75:103254. [PMID: 38968922 PMCID: PMC11278932 DOI: 10.1016/j.redox.2024.103254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) signaling in the brain plays a critical role in regulating neuronal Ca2+ homeostasis. Its dysfunctional activity is associated with various neurological and neurodegenerative disorders, including Parkinson's disease (PD). Using computational modeling analysis, we predicted that, two essential cysteine residues contained in CaMKIIα, Cys30 and Cys289, may undergo redox modifications impacting the proper functioning of the CaMKIIα docking site for Ca2+/CaM, thus impeding the formation of the CaMKIIα:Ca2+/CaM complex, essential for a proper modulation of CaMKIIα kinase activity. Our subsequent in vitro investigations confirmed the computational predictions, specifically implicating Cys30 and Cys289 residues in impairing CaMKIIα:Ca2+/CaM interaction. We observed CaMKIIα:Ca2+/CaM complex disruption in dopamine (DA) nigrostriatal neurons of post-mortem Parkinson's disease (PD) patients' specimens, addressing the high relevance of this event in the disease. CaMKIIα:Ca2+/CaM complex disruption was also observed in both in vitro and in vivo rotenone models of PD, where this phenomenon was associated with CaMKIIα kinase hyperactivity. Moreover, we observed that, NADPH oxidase 2 (NOX2), a major enzymatic generator of superoxide anion (O2●-) and hydrogen peroxide (H2O2) in the brain with implications in PD pathogenesis, is responsible for CaMKIIα:Ca2+/CaM complex disruption associated to a stable Ca2+CAM-independent CaMKIIα kinase activity and intracellular Ca2+ accumulation. The present study highlights the importance of oxidative stress, in disturbing the delicate balance of CaMKIIα signaling in calcium dysregulation, offering novel insights into PD pathogenesis.
Collapse
Affiliation(s)
| | - Madison C Forsmann
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
| | - Ignacio J General
- School of Science and Technology, Universidad Nacional de San Martin, San Martín, 1650, Buenos Aires, Argentina
| | - Joseph C Ayoob
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Emily Furbee
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sandra L Castro
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
| | - Xiaoping Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
| | - J Timothy Greenamyre
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
| | - Roberto Di Maio
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
37
|
Sagredo GT, Tanglay O, Shahdadpuri S, Fu Y, Halliday GM. ⍺-Synuclein levels in Parkinson's disease - Cell types and forms that contribute to pathogenesis. Exp Neurol 2024; 379:114887. [PMID: 39009177 DOI: 10.1016/j.expneurol.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Parkinson's disease (PD) has two main pathological hallmarks, the loss of nigral dopamine neurons and the proteinaceous aggregations of ⍺-synuclein (⍺Syn) in neuronal Lewy pathology. These two co-existing features suggest a causative association between ⍺Syn aggregation and the underpinning mechanism of neuronal degeneration in PD. Both increased levels and post-translational modifications of ⍺Syn can contribute to the formation of pathological aggregations of ⍺Syn in neurons. Recent studies have shown that the protein is also expressed by multiple types of non-neuronal cells in the brain and peripheral tissues, suggesting additional roles of the protein and potential diversity in non-neuronal pathogenic triggers. It is important to determine (1) the threshold levels triggering ⍺Syn to convert from a biological to a pathologic form in different brain cells in PD; (2) the dominant form of pathologic ⍺Syn and the associated post-translational modification of the protein in each cell type involved in PD; and (3) the cell type associated biological processes impacted by pathologic ⍺Syn in PD. This review integrates these aspects and speculates on potential pathological mechanisms and their impact on neuronal and non-neuronal ⍺Syn in the brains of patients with PD.
Collapse
Affiliation(s)
- Giselle Tatiana Sagredo
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Onur Tanglay
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia
| | - Shrey Shahdadpuri
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia
| | - YuHong Fu
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
38
|
Li R, Huang X, Shen L, Zhang T, Liu N, Hou X, Wong G. Novel C. elegans models of Lewy body disease reveal pathological protein interactions and widespread miRNA dysregulation. Cell Mol Life Sci 2024; 81:377. [PMID: 39212733 PMCID: PMC11364739 DOI: 10.1007/s00018-024-05383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/27/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Lewy body diseases (LBD) comprise a group of complex neurodegenerative conditions originating from accumulation of misfolded alpha-synuclein (α-syn) in the form of Lewy bodies. LBD pathologies are characterized by α-syn deposition in association with other proteins such as Amyloid β (Aβ), Tau, and TAR-DNA-binding protein. To investigate the complex interactions of these proteins, we constructed 2 novel transgenic overexpressing (OE) C. elegans strains (α-synA53T;Taupro-agg (OE) and α-synA53T;Aβ1-42;Taupro-agg (OE)) and compared them with previously established Parkinson's, Alzheimer's, and Lewy Body Dementia disease models. The LBD models presented here demonstrate impairments including uncoordinated movement, egg-laying deficits, altered serotonergic and cholinergic signaling, memory and posture deficits, as well as dopaminergic neuron damage and loss. Expression levels of total and prone to aggregation α-syn protein were increased in α-synA53T;Aβ1-42 but decreased in α-synA53T;Taupro-agg animals when compared to α-synA53T animals suggesting protein interactions. These alterations were also observed at the mRNA level suggesting a pre-transcriptional mechanism. miRNA-seq revealed that cel-miR-1018 was upregulated in LBD models α-synA53T, α-synA53T;Aβ1-42, and α-synA53T;Taupro-agg compared with WT. cel-miR-58c was upregulated in α-synA53T;Taupro-agg but downregulated in α-synA53T and α-synA53T;Aβ1-42 compared with WT. cel-miR-41-3p and cel-miR-355-5p were significantly downregulated in 3 LBD models. Our results obtained in a model organism provide evidence of interactions between different pathological proteins and alterations in specific miRNAs that may further exacerbate or ameliorate LBD pathology.
Collapse
Affiliation(s)
- Rongzhen Li
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, E12-3005 Avenida da Universidade, Macau, 999078, China
| | - Xiaobing Huang
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, E12-3005 Avenida da Universidade, Macau, 999078, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Linjing Shen
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, E12-3005 Avenida da Universidade, Macau, 999078, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tianjiao Zhang
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, E12-3005 Avenida da Universidade, Macau, 999078, China
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Ning Liu
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, E12-3005 Avenida da Universidade, Macau, 999078, China
| | - Xiangqing Hou
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, E12-3005 Avenida da Universidade, Macau, 999078, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Garry Wong
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, E12-3005 Avenida da Universidade, Macau, 999078, China.
| |
Collapse
|
39
|
Wang YF, Wang YD, Gao S, Sun W. Implications of p53 in mitochondrial dysfunction and Parkinson's disease. Int J Neurosci 2024; 134:906-917. [PMID: 36514978 DOI: 10.1080/00207454.2022.2158824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Purpose: To study the underlying molecular mechanisms of p53 in the mitochondrial dysfunction and the pathogenesis of Parkinson's disease (PD), and provide a potential therapeutic target for PD treatment. Methods: We review the contributions of p53 to mitochondrial changes leading to apoptosis and the subsequent degeneration of dopaminergic neurons in PD. Results: P53 is a multifunctional protein implicated in the regulation of diverse cellular processes via transcription-dependent and transcription-independent mechanisms. Mitochondria are vital subcellular organelles for that maintain cellular function, and mitochondrial defect and impairment are primary causes of dopaminergic neuron degeneration in PD. Increasing evidence has revealed that mitochondrial dysfunction-associated dopaminergic neuron degeneration is tightly regulated by p53 in PD pathogenesis. Neurodegenerative stress triggers p53 activation, which induces mitochondrial changes, including transmembrane permeability, reactive oxygen species production, Ca2+ overload, electron transport chain defects and other dynamic alterations, and these changes contribute to neurodegeneration and are linked closely with PD occurrence and development. P53 inhibition has been shown to attenuate mitochondrial dysfunction and protect dopaminergic neurons from degeneration under conditions of neurodegenerative stress. Conclusions: p53 appears to be a potential target for neuroprotective therapy of PD.
Collapse
Affiliation(s)
- Yi-Fan Wang
- Department of Neurology, Shenzhen Sami Medical Center, Shenzhen, China
| | - Ying-Di Wang
- Department of Urinary Surgery, Tumor Hospital of Jilin Province, Chang Chun, China
| | - Song Gao
- Department of Anesthesiology, Tumor Hospital of Jilin Province, Chang Chun, China
| | - Wei Sun
- Department of Neurology, Shenzhen Sami Medical Center, Shenzhen, China
| |
Collapse
|
40
|
Reddy A, Reddy RP, Roghani AK, Garcia RI, Khemka S, Pattoor V, Jacob M, Reddy PH, Sehar U. Artificial intelligence in Parkinson's disease: Early detection and diagnostic advancements. Ageing Res Rev 2024; 99:102410. [PMID: 38972602 DOI: 10.1016/j.arr.2024.102410] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, globally affecting men and women at an exponentially growing rate, with currently no cure. Disease progression starts when dopaminergic neurons begin to die. In PD, the loss of neurotransmitter, dopamine is responsible for the overall communication of neural cells throughout the body. Clinical symptoms of PD are slowness of movement, involuntary muscular contractions, speech & writing changes, lessened automatic movement, and chronic tremors in the body. PD occurs in both familial and sporadic forms and modifiable and non-modifiable risk factors and socioeconomic conditions cause PD. Early detectable diagnostics and treatments have been developed in the last several decades. However, we still do not have precise early detectable biomarkers and therapeutic agents/drugs that prevent and/or delay the disease process. Recently, artificial intelligence (AI) science and machine learning tools have been promising in identifying early detectable markers with a greater rate of accuracy compared to past forms of treatment and diagnostic processes. Artificial intelligence refers to the intelligence exhibited by machines or software, distinct from the intelligence observed in humans that is based on neural networks in a form and can be used to diagnose the longevity and disease severity of disease. The term Machine Learning or Neural Networks is a blanket term used to identify an emerging technology that is created to work in the way of a "human brain" using many intertwined neurons to achieve the same level of raw intelligence as that of a brain. These processes have been used for neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease, to assess the severity of the patient's condition. In the current article, we discuss the prevalence and incidence of PD, and currently available diagnostic biomarkers and therapeutic strategies. We also highlighted currently available artificial intelligence science and machine learning tools and their applications to detect disease and develop therapeutic interventions.
Collapse
Affiliation(s)
- Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Frenship High School, Lubbock, TX 79382, USA.
| | - Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; University of South Florida, Tampa, FL 33620, USA.
| | - Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department pf Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
41
|
Liu Z, Shan S, Kang K, Wang S, Yong H, Sun Y, Bai Y, Song F. Mitochondrial transfer of α-synuclein mediates carbon disulfide-induced mitochondrial dysfunction and neurotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116613. [PMID: 38908057 DOI: 10.1016/j.ecoenv.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/18/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Exposure to carbon disulfide (CS2) is a recognized risk factor in the pathogenesis of Parkinson's disease, yet the underlying mechanisms of deleterious effects on mitochondrial integrity have remained elusive. Here, through establishing CS2 exposure models in rat and SH-SY5Y cells, we demonstrated that highly expressed α-synuclein (α-Syn) is transferred to mitochondria via membrane proteins such as Tom20 and leads to mitochondrial dysfunction and mitochondrial oxidative stress, which ultimately causes neuronal injury. We first found significant mitochondrial damage and oxidative stress in CS2-exposed rat midbrain and SH-SY5Y cells and showed that mitochondrial oxidative stress was the main factor of mitochondrial damage by Mitoquinone intervention. Further experiments revealed that CS2 exposure led to the accumulation of α-Syn in mitochondria and that α-Syn co-immunoprecipitated with mitochondrial membrane proteins. Finally, the use of an α-Syn inhibitor (ELN484228) and small interfering RNA (siRNA) effectively mitigated the accumulation of α-Syn in neurons, as well as the inhibition of mitochondrial membrane potential, caused by CS2 exposure. In conclusion, our study identifies the translocation of α-Syn to mitochondria and the impairment of mitochondrial function, which has important implications for the broader understanding and treatment of neurodegenerative diseases associated with environmental toxins.
Collapse
Affiliation(s)
- Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kang Kang
- Qingdao Municipal Center For Disease Control&Prevention, Qingdao, Shandong 266033, China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hui Yong
- Qingdao Municipal Center For Disease Control&Prevention, Qingdao, Shandong 266033, China
| | - Yanan Sun
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
42
|
Qiu C, Wei R, Bian J, Lin X, Bai T, He J, Guo X, Chu Y. Novel 4-triazole phenyl amide (4-TPA) molecules: Potent promoters of α-synuclein fibril disassembly. Eur J Med Chem 2024; 273:116490. [PMID: 38772136 DOI: 10.1016/j.ejmech.2024.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
Parkinson's disease profoundly compromises patients' daily lives, and the disassembly of α-synuclein aggregates, a primary pathological factor, represents a promising therapeutic approach. In this study, we conducted a systematic screening and optimization process to identify the novel scaffold B37, a 4-triazolyl-phenylamine derivative, exhibiting a potent disassembly activity of 1.1 μM against α-synuclein preformed fibrils. Notably, B37 demonstrated significant neuroprotective effects, ameliorated autophagic dysfunction induced by preformed fibrils, mitigated oxidative stress, and restored the co-localization of preformed fibrils with lysosomes. Transmission electron microscopy corroborated its in vitro disassembly function. Pharmacokinetic profiling revealed favorable parameters with a receptible blood-brain barrier permeability. B37 emerges as a promising lead compound for further optimization, aiming to develop a highly effective agent targeting the disassembly of α-synuclein aggregates to treat neurodegenerative diseases like Parkinson's disease.
Collapse
Affiliation(s)
- Chenyang Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ruonan Wei
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiang Bian
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xin Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Tengfei Bai
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jie He
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xiaomin Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yong Chu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
43
|
Xian M, Li J, Liu T, Hou K, Sun L, Wei J. β-Synuclein Intermediates α-Synuclein Neurotoxicity in Parkinson's Disease. ACS Chem Neurosci 2024; 15:2445-2453. [PMID: 38905183 DOI: 10.1021/acschemneuro.4c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024] Open
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease in the world, and synuclein is closely related to the onset and progression of PD. Synuclein is considered a therapeutic target for PD. Recent studies have found that abnormal aggregation of α-synuclein (α-Syn) in the brains of PD patients leads to mitochondrial dysfunction and neuroinflammation. Research in the field of neuroscience has confirmed that β-synuclein (β-Syn) also plays a role in Parkinson's disease. However, there has been little research on the role mechanisms and interactions between β-Syn and α-Syn in PD. Therefore, the purpose of this study is to clarify the relationship between α-Syn, β-Syn, and PD and to explore the roles and interactions of β-Syn and α-Syn in PD.
Collapse
Affiliation(s)
- Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jingwen Li
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Kaiying Hou
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, P.R. China
| |
Collapse
|
44
|
Zhang X, Ruan L, Wang H, Zhu J, Li T, Sun G, Dong Y, Wang Y, Berreby G, Shay A, Chen R, Ramachandran S, Dawson VL, Dawson TM, Li R. Enhancing mitochondrial proteolysis alleviates alpha-synuclein-mediated cellular toxicity. NPJ Parkinsons Dis 2024; 10:120. [PMID: 38906862 PMCID: PMC11192938 DOI: 10.1038/s41531-024-00733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by mitochondrial dysfunction and accumulation of alpha-synuclein (α-Syn)-containing protein aggregates known as Lewy bodies (LB). Here, we investigated the entry of α-Syn into mitochondria to cause mitochondrial dysfunction and loss of cellular fitness in vivo. We show that α-Syn expressed in yeast and human cells is constitutively imported into mitochondria. In a transgenic mouse model, the level of endogenous α-Syn accumulation in mitochondria of dopaminergic neurons and microglia increases with age. The imported α-Syn is degraded by conserved mitochondrial proteases, most notably NLN and PITRM1 (Prd1 and Cym1 in yeast, respectively). α-Syn in the mitochondrial matrix that is not degraded interacts with respiratory chain complexes, leading to loss of mitochondrial DNA (mtDNA), mitochondrial membrane potential and cellular fitness decline. Importantly, enhancing mitochondrial proteolysis by increasing levels of specific proteases alleviated these defects in yeast, human cells, and a PD model of mouse primary neurons. Together, our results provide a direct link between α-synuclein-mediated cellular toxicity and its import into mitochondria and reveal potential therapeutic targets for the treatment of α-synucleinopathies.
Collapse
Affiliation(s)
- Xi Zhang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70130-2685, USA
| | - Linhao Ruan
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hu Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Taibo Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Gordon Sun
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yi Dong
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yuhao Wang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gil Berreby
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ashley Shay
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sreekumar Ramachandran
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Valina L Dawson
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70130-2685, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70130-2685, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Biological Sciences, National University of Singapore, Singapore, 117411, Singapore.
| |
Collapse
|
45
|
Li Y, Yu C, Jiang X, Fu J, Sun N, Zhang D. The mechanistic view of non-coding RNAs as a regulator of inflammatory pathogenesis of Parkinson's disease. Pathol Res Pract 2024; 258:155349. [PMID: 38772115 DOI: 10.1016/j.prp.2024.155349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. Emerging evidence suggests that inflammation plays a crucial role in the pathogenesis of PD, with the NLRP3 inflammasome implicated as a key mediator. Nfon-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have recently garnered attention for their regulatory roles in various biological processes, including inflammation. This review aims to provide a mechanistic insight into how ncRNAs function as regulators of inflammatory pathways in PD, with a specific focus on the NLRP3 inflammasome. We discuss the dysregulation of miRNAs and lncRNAs in PD pathogenesis and their impact on neuroinflammation through modulation of NLRP3 activation, cytokine production, and microglial activation. Additionally, we explore the crosstalk between ncRNAs, alpha-synuclein pathology, and mitochondrial dysfunction, further elucidating the intricate network underlying PD-associated inflammation. Understanding the mechanistic roles of ncRNAs in regulating inflammatory pathways may offer novel therapeutic targets for the treatment of PD and provide insights into the broader implications of ncRNA-mediated regulation in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Yu'an Li
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Chunlei Yu
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Jia Fu
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Ning Sun
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Daquan Zhang
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China.
| |
Collapse
|
46
|
Naoi M, Maruyama W, Shamoto-Nagai M, Riederer P. Toxic interactions between dopamine, α-synuclein, monoamine oxidase, and genes in mitochondria of Parkinson's disease. J Neural Transm (Vienna) 2024; 131:639-661. [PMID: 38196001 DOI: 10.1007/s00702-023-02730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Parkinson's disease is characterized by its distinct pathological features; loss of dopamine neurons in the substantia nigra pars compacta and accumulation of Lewy bodies and Lewy neurites containing modified α-synuclein. Beneficial effects of L-DOPA and dopamine replacement therapy indicate dopamine deficit as one of the main pathogenic factors. Dopamine and its oxidation products are proposed to induce selective vulnerability in dopamine neurons. However, Parkinson's disease is now considered as a generalized disease with dysfunction of several neurotransmitter systems caused by multiple genetic and environmental factors. The pathogenic factors include oxidative stress, mitochondrial dysfunction, α-synuclein accumulation, programmed cell death, impaired proteolytic systems, neuroinflammation, and decline of neurotrophic factors. This paper presents interactions among dopamine, α-synuclein, monoamine oxidase, its inhibitors, and related genes in mitochondria. α-Synuclein inhibits dopamine synthesis and function. Vice versa, dopamine oxidation by monoamine oxidase produces toxic aldehydes, reactive oxygen species, and quinones, which modify α-synuclein, and promote its fibril production and accumulation in mitochondria. Excessive dopamine in experimental models modifies proteins in the mitochondrial electron transport chain and inhibits the function. α-Synuclein and familiar Parkinson's disease-related gene products modify the expression and activity of monoamine oxidase. Type A monoamine oxidase is associated with neuroprotection by an unspecific dose of inhibitors of type B monoamine oxidase, rasagiline and selegiline. Rasagiline and selegiline prevent α-synuclein fibrillization, modulate this toxic collaboration, and exert neuroprotection in experimental studies. Complex interactions between these pathogenic factors play a decisive role in neurodegeneration in PD and should be further defined to develop new therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Peter Riederer
- Clinical Neurochemistry, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
47
|
Coukos R, Krainc D. Key genes and convergent pathogenic mechanisms in Parkinson disease. Nat Rev Neurosci 2024; 25:393-413. [PMID: 38600347 DOI: 10.1038/s41583-024-00812-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder marked by the preferential dysfunction and death of dopaminergic neurons in the substantia nigra. The onset and progression of PD is influenced by a diversity of genetic variants, many of which lack functional characterization. To identify the most high-yield targets for therapeutic intervention, it is important to consider the core cellular compartments and functional pathways upon which the varied forms of pathogenic dysfunction may converge. Here, we review several key PD-linked proteins and pathways, focusing on the mechanisms of their potential convergence in disease pathogenesis. These dysfunctions primarily localize to a subset of subcellular compartments, including mitochondria, lysosomes and synapses. We discuss how these pathogenic mechanisms that originate in different cellular compartments may coordinately lead to cellular dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
48
|
Rodriguez P, Blakely RD. Sink or swim: Does a worm paralysis phenotype hold clues to neurodegenerative disease? J Cell Physiol 2024; 239:e31125. [PMID: 37795580 DOI: 10.1002/jcp.31125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Receiving a neurodegenerative disease (NDD) diagnosis, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis, is devastating, particularly given the limited options for treatment. Advances in genetic technologies have allowed for efficient modeling of NDDs in animals and brought hope for new disease-modifying medications. The complexity of the mammalian brain and the costs and time needed to identify and develop therapeutic leads limits progress. Modeling NDDs in invertebrates, such as the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, offers orders of magnitude increases in speed of genetic analysis and manipulation, and can be pursued at substantially reduced cost, providing an important, platform complement and inform research with mammalian NDD models. In this review, we describe how our efforts to exploit C. elegans for the study of neural signaling and health led to the discovery of a paralytic phenotype (swimming-induced paralysis) associated with altered dopamine signaling and, surprisingly, to the discovery of a novel gene and pathway whose dysfunction in glial cells triggers neurodegeneration. Research to date on swip-10 and its putative mammalian ortholog MBLAC1, suggests that a tandem analysis will offer insights into NDD mechanisms and insights into novel, disease-modifying therapeutics.
Collapse
Affiliation(s)
- Peter Rodriguez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
49
|
Piergiorge RM, Vasconcelos ATRD, Santos-Rebouças CB. Understanding the (epi)genetic dysregulation in Parkinson's disease through an integrative brain competitive endogenous RNA network. Mech Ageing Dev 2024; 219:111942. [PMID: 38762037 DOI: 10.1016/j.mad.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Parkinson's disease (PD) is a rapidly growing neurodegenerative disorder characterized by dopaminergic neuron loss in the substantia nigra pars compacta (SN) and aggregation of α-synuclein. Its aetiology involves a multifaceted interplay among genetic, environmental, and epigenetic factors. We integrated brain gene expression data from PD patients to construct a comprehensive regulatory network encompassing messenger RNAs (mRNAs), microRNAs (miRNAs), circular RNAs (circRNAs) and, for the first time, RNA binding proteins (RBPs). Expression data from the SN of PD patients and controls were systematically selected from public databases to identify combined differentially expressed genes (DEGs). Brain co-expression analysis revealed modules comprising significant DEGs that function cooperatively. The relationships among co-expressed DEGs, miRNAs, circRNAs, and RBPs revealed an intricate competitive endogenous RNA (ceRNA) network responsible for post-transcriptional dysregulation in PD. Many genes in the ceRNA network, including the TOMM20 and HMGCR genes, overlap with the most relevant genes in our previous Alzheimer's disease-associated ceRNA network, suggesting common underlying mechanisms between both conditions. Moreover, in the ceRNA subnetwork, the RBP Aly/REF export factor (ALYREF), which acts as an RNA 5-methylcytosine(m5C)-binding protein, stood out. Our data sheds new light on the potential role of brain ceRNA networks in PD pathogenesis.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
50
|
Morales‐Prieto N, Bevans R, O'Mahony A, Barron A, Giles Doran C, McCarthy E, Concannon RM, Goulding SR, McCarthy CM, Collins LM, Sullivan AM, O'Keeffe GW. Human α-synuclein overexpression upregulates SKOR1 in a rat model of simulated nigrostriatal ageing. Aging Cell 2024; 23:e14155. [PMID: 38529808 PMCID: PMC11296121 DOI: 10.1111/acel.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
Parkinson's disease (PD) is characterised by progressive loss of dopaminergic (DA) neurons from the substantia nigra (SN) and α-synuclein (αSyn) accumulation. Age is the biggest risk factor for PD and may create a vulnerable pre-parkinsonian state, but the drivers of this association are unclear. It is known that ageing increases αSyn expression in DA neurons and that this may alter molecular processes that are central to maintaining nigrostriatal integrity. To model this, adult female Sprague-Dawley rats received a unilateral intranigral injection of adeno-associated viral (AAV) vector carrying wild-type human αSyn (AAV-αSyn) or control vector (AAV-Null). AAV-αSyn induced no detrimental effects on motor behaviour, but there was expression of human wild-type αSyn throughout the midbrain and ipsilateral striatum at 20 weeks post-surgery. Microarray analysis revealed that the gene most-upregulated in the ipsilateral SN of the AAV-αSyn group was the SKI Family Transcriptional Corepressor 1 (SKOR1). Bioenergetic state analysis of mitochondrial function found that SKOR1 overexpression reduced the maximum rate of cellular respiration in SH-SY5Y cells. Furthermore, experiments in SH-SY5Y cells revealed that SKOR1 overexpression impaired neurite growth to the same extent as αSyn, and inhibited BMP-SMAD-dependent transcription, a pathway that promotes DA neuronal survival and growth. Given the normal influence of ageing on DA neuron loss in human SN, the extent of αSyn-induced SKOR1 expression may influence whether an individual undergoes normal nigrostriatal ageing or reaches a threshold for prodromal PD. This provides new insight into mechanisms through which ageing-related increases in αSyn may influence molecular mechanisms important for the maintenance of neuronal integrity.
Collapse
Affiliation(s)
- Noelia Morales‐Prieto
- Department of Anatomy and Neuroscience, School of MedicineUniversity CollegeCorkIreland
| | - Rebekah Bevans
- Department of Anatomy and Neuroscience, School of MedicineUniversity CollegeCorkIreland
| | - Adam O'Mahony
- Department of Anatomy and Neuroscience, School of MedicineUniversity CollegeCorkIreland
| | - Aaron Barron
- Department of Anatomy and Neuroscience, School of MedicineUniversity CollegeCorkIreland
- Department of Pharmacology and Therapeutics, School of MedicineUniversity College CorkCorkIreland
| | - Conor Giles Doran
- Department of Anatomy and Neuroscience, School of MedicineUniversity CollegeCorkIreland
| | - Erin McCarthy
- Department of Anatomy and Neuroscience, School of MedicineUniversity CollegeCorkIreland
| | - Ruth M. Concannon
- Department of Anatomy and Neuroscience, School of MedicineUniversity CollegeCorkIreland
| | - Susan R. Goulding
- Department of Anatomy and Neuroscience, School of MedicineUniversity CollegeCorkIreland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, School of MedicineUniversity College CorkCorkIreland
| | - Louise M. Collins
- Department of Anatomy and Neuroscience, School of MedicineUniversity CollegeCorkIreland
- Department of Physiology, School of MedicineUniversity College CorkCorkIreland
- Parkinson's Disease Research Cluster (PDRC)University College CorkCorkIreland
| | - Aideen M. Sullivan
- Department of Anatomy and Neuroscience, School of MedicineUniversity CollegeCorkIreland
- Parkinson's Disease Research Cluster (PDRC)University College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Gerard W. O'Keeffe
- Department of Anatomy and Neuroscience, School of MedicineUniversity CollegeCorkIreland
- Parkinson's Disease Research Cluster (PDRC)University College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| |
Collapse
|