1
|
Xu H, Cao L, Chen Y, Zhou C, Xu J, Zhang Z, Li X, Liu L, Lu J. Single-cell RNA sequencing reveals the heterogeneity and interactions of immune cells and Müller glia during zebrafish retina regeneration. Neural Regen Res 2025; 20:3635-3648. [PMID: 38934409 PMCID: PMC11974639 DOI: 10.4103/nrr.nrr-d-23-02083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202512000-00031/figure1/v/2025-01-31T122243Z/r/image-tiff Inflammation plays a crucial role in the regeneration of fish and avian retinas. However, how inflammation regulates Müller glia (MG) reprogramming remains unclear. Here, we used single-cell RNA sequencing to investigate the cell heterogeneity and interactions of MG and immune cells in the regenerating zebrafish retina. We first showed that two types of quiescent MG (resting MG1 and MG2) reside in the uninjured retina. Following retinal injury, resting MG1 transitioned into an activated state expressing known reprogramming genes, while resting MG2 gave rise to rod progenitors. We further showed that retinal microglia can be categorized into three subtypes (microglia-1, microglia-2, and proliferative) and pseudotime analysis demonstrated dynamic changes in microglial status following retinal injury. Analysis of cell-cell interactions indicated extensive crosstalk between immune cells and MG, with many interactions shared among different immune cell types. Finally, we showed that inflammation activated Jak1-Stat3 signaling in MG, promoting their transition from a resting to an activated state. Our study reveals the cell heterogeneity and crosstalk of immune cells and MG in zebrafish retinal repair, and may provide valuable insights into future mammalian retina regeneration.
Collapse
Affiliation(s)
- Hui Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuxi Chen
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Cuiping Zhou
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Jie Xu
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Zhuolin Zhang
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Xiangyu Li
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Lihua Liu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Shi G, Nagarajan V, Caspi RR. AI-Driven Analysis Unveils Functional Dynamics of Müller Cells in Retinal Autoimmune Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640907. [PMID: 40093069 PMCID: PMC11908203 DOI: 10.1101/2025.02.28.640907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Müllercell is the most common type of glial cell in the human and mouse retina, playing a crucial role in maintaining retinal homeostasis. In addition to providing structural support to the retina, Müllercells can also supply trophic substances to retinal neurons, remove metabolic waste, mitigate oxidative stress, and promote synaptic activities. However, many roles of Müllercells remain largely unknown, particularly for those in the inflamed retina. In this article, we reanalyzed a single cell RNA-seq (scRNA-seq) dataset from Aire-/- mice, which exhibits autoimmune retinal inflammation, specifically focusing on Müllercells and T cells, identifying nine distinct Müllercell subgroups along with five T cell subgroups. Among them, three subgroups of Müllercells are activated Müllercells, representing over 60% Müllercells in the inflamed retina. Using SCassist - an Artificial Intelligence (AI) based workflow assistant for single-cell analysis, we constructed a comparison matrix to quantify the involvement of pathways characterizing the functions of each Müllercell subpopulation. The activated Müllercells primarily present a macrophage-like phenotype with or without augmentation of the known Müllercell functions. Trajectory analysis further identified two paths, validating the presence of these two phenotypes, governed by Neurod1 and Irf family transcription factors (TFs). We further inferred the interactions between Müllercells and T cells and observed that activated Müllercells do not exhibit extra chemoattraction to Th1 cells compared to other Müllercells but display nearly exclusive expression of immune checkpoint molecules, primarily targeting Th1 cells. Our findings open new avenues for understanding the specialized mechanisms of retinal pathogenic autoimmunity and identifying candidates to explore potential inhibitory pathways in the inflamed retina.
Collapse
|
3
|
Konar GJ, Lingan AL, Vallone KT, Nguyen TD, Flickinger ZR, Patton JG. Depletion of Polypyrimidine tract binding protein 1 (ptbp1) activates Müller glia-derived proliferation during zebrafish retina regeneration via modulation of the senescence secretome. Exp Eye Res 2025; 257:110420. [PMID: 40355064 DOI: 10.1016/j.exer.2025.110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/24/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Polypyrimidine Tract Binding protein 1 (PTB) is an alternative splicing factor linked to neuronal induction and maturation. Previously, knockdown experiments supported a model in which PTB can function as a potent reprogramming factor, able to elicit direct glia-to-neuron conversion in vivo, in both the brain and retina. However, later lineage tracing and genetic knockouts of PTB did not support direct neuronal reprogramming. Nevertheless, consistent with the PTB depletion experiments, we show that antisense knockdown of PTB (ptbp1a) in the zebrafish retina can activate Müller glia-derived proliferation and that depletion of PTB can further enhance proliferation when combined with acute NMDA damage. The effects of PTB are consistent with a role in controlling key senescence and pro-inflammatory genes that are part of the senescence secretome that initiates retina regeneration.
Collapse
Affiliation(s)
- Gregory J Konar
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| | - Audrey L Lingan
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| | - Kyle T Vallone
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| | - Tu D Nguyen
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| | | | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA.
| |
Collapse
|
4
|
Paysan D, Radhakrishnan A, Zhang X, Shivashankar GV, Uhler C. Image2Reg: Linking chromatin images to gene regulation using genetic and chemical perturbation screens. Cell Syst 2025:101293. [PMID: 40359941 DOI: 10.1016/j.cels.2025.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 01/17/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Representation learning provides an opportunity to uncover the link between 3D genome organization and gene regulatory networks, thereby connecting the physical and the biochemical space of a cell. Our method, Image2Reg, uses chromatin images obtained in large-scale genetic and chemical perturbation screens. Through convolutional neural networks, Image2Reg generates gene embedding that represents the effect of gene perturbation on chromatin organization. In addition, combining protein-protein interaction data with cell-type-specific transcriptomic data through a graph convolutional network, we obtain a gene embedding that represents the regulatory effect of genes. Finally, Image2Reg learns a map between the resulting physical and biochemical representation of cells, allowing us to predict the perturbed gene modules based on chromatin images. Our results confirm the deep link between chromatin organization and gene regulation and demonstrate that it can be harnessed to identify drug targets and genes upstream of perturbed phenotypes from a simple and inexpensive chromatin staining.
Collapse
Affiliation(s)
- Daniel Paysan
- ETH Zurich, Raemisstrasse 101, Zurich 8092, Switzerland; Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Adityanarayanan Radhakrishnan
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Xinyi Zhang
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - G V Shivashankar
- ETH Zurich, Raemisstrasse 101, Zurich 8092, Switzerland; Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland.
| | - Caroline Uhler
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Hamadmad S, Heisler‐Taylor T, Goswami S, Hawthorn E, Chaurasia S, Martini D, Summitt D, Zatari A, Shalash R, Sohail M, Urbanski EG, Bernstein K, Racine J, Satoskar A, El‐Hodiri HM, Fischer AJ, Cebulla CM. Ibudilast Protects Retinal Bipolar Cells From Excitotoxic Retinal Damage and Activates the mTOR Pathway. Glia 2025; 73:905-927. [PMID: 39916387 PMCID: PMC11920683 DOI: 10.1002/glia.24657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/09/2024] [Accepted: 11/24/2024] [Indexed: 02/12/2025]
Abstract
Ibudilast, an inhibitor of macrophage migration inhibitory factor (MIF) and phosphodiesterase (PDE), has been recently shown to have neuroprotective effects in a variety of neurologic diseases. We utilize a chick excitotoxic retinal damage model to investigate ibudilast's potential to protect retinal neurons. Using single cell RNA-sequencing (scRNA-seq), we find that MIF, putative MIF receptors CD74 and CD44, and several PDEs are upregulated in different retinal cells during damage. Intravitreal ibudilast is well tolerated in the eye and causes no evidence of toxicity. Ibudilast effectively protects neurons in the inner nuclear layer from NMDA-induced cell death, restores retinal layer thickness on spectral domain optical coherence tomography (SD-OCT), and preserves retinal neuron function, particularly for the ON bipolar cells, as assessed by electroretinography. PDE inhibition seems essential for ibudilast's neuroprotection, as AV1013, the analogue that lacks PDE inhibitor activity, is ineffective. scRNA-seq analysis reveals upregulation of multiple signaling pathways, including mTOR, in damaged Müller glia (MG) with ibudilast treatment compared to AV1013. Components of mTORC1 and mTORC2 are upregulated in both bipolar cells and MG with ibudilast. The mTOR inhibitor rapamycin blocked accumulation of pS6 but did not reduce TUNEL positive dying cells. Additionally, through ligand-receptor interaction analysis, crosstalk between bipolar cells and MG may be important for neuroprotection. We have identified several paracrine signaling pathways that are known to contribute to cell survival and neuroprotection and might play essential roles in ibudilast function. These findings highlight ibudilast's potential to protect inner retinal neurons during damage and show promise for future clinical translation.
Collapse
Affiliation(s)
- Sumaya Hamadmad
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Tyler Heisler‐Taylor
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Sandeep Goswami
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Evan Hawthorn
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Sameer Chaurasia
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Dena Martini
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Diana Summitt
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Ali Zatari
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Rahaf Shalash
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Misha Sohail
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Elizabeth G. Urbanski
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Kayla Bernstein
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | | | - Abhay Satoskar
- Department of PathologyThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Heithem M. El‐Hodiri
- Department of Neuroscience, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Andy J. Fischer
- Department of Neuroscience, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Colleen M. Cebulla
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
6
|
Bhattacharya S, Deka J, Avallone T, Todd L. The neuroimmune interface in retinal regeneration. Prog Retin Eye Res 2025; 106:101361. [PMID: 40287050 DOI: 10.1016/j.preteyeres.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Retinal neurodegeneration leads to irreversible blindness due to the mammalian nervous system's inability to regenerate lost neurons. Efforts to regenerate retina involve two main strategies: stimulating endogenous cells to reprogram into neurons or transplanting stem-cell derived neurons into the degenerated retina. However, both approaches must overcome a major barrier in getting new neurons to grow back down the optic nerve and connect to appropriate visual targets in environments that differ significantly from developmental conditions. While immune privilege has historically been associated with the central nervous system, an emerging literature highlights the active role of immune cells in shaping neurodegeneration and regeneration. This review explores the neuroimmune interface in retinal repair, dissecting how immune interactions influence glial reprogramming, transplantation outcomes, and axonal regeneration. By integrating insights from regenerative species with mammalian models, we highlight novel immunomodulatory strategies to optimize retinal regeneration.
Collapse
Affiliation(s)
- Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jugasmita Deka
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thomas Avallone
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Levi Todd
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
7
|
Norrie JL, Lupo MS, Little DR, Shirinifard A, Mishra A, Zhang Q, Geiger N, Putnam D, Djekidel N, Ramirez C, Xu B, Dundee JM, Yu J, Chen X, Dyer MA. Latent epigenetic programs in Müller glia contribute to stress and disease response in the retina. Dev Cell 2025; 60:1199-1216.e7. [PMID: 39753128 PMCID: PMC12014377 DOI: 10.1016/j.devcel.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/09/2024] [Accepted: 12/06/2024] [Indexed: 04/24/2025]
Abstract
Previous studies have demonstrated the dynamic changes in chromatin structure during retinal development correlate with changes in gene expression. However, those studies lack cellular resolution. Here, we integrate single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) with bulk data to identify cell-type-specific changes in chromatin structure during human and murine development. Although promoter activity is correlated with chromatin accessibility, we discovered several hundred genes that were transcriptionally silent but had accessible chromatin at their promoters. Most of those silent/accessible gene promoters were in Müller glial cells, which function to maintain retinal homeostasis and respond to stress, injury, or disease. We refer to these as "pliancy genes" because they allow the Müller glia to rapidly change their gene expression and cellular state in response to retinal insults. The Müller glial cell pliancy program is established during development, and we demonstrate that pliancy genes are important for regulating inflammation in the murine retina in vivo.
Collapse
Affiliation(s)
- Jackie L Norrie
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marybeth S Lupo
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Danielle R Little
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Akhilesh Mishra
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Qiong Zhang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Natalie Geiger
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Daniel Putnam
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cody Ramirez
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jacob M Dundee
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiang Yu
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiang Chen
- Departments of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael A Dyer
- Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
8
|
Schumann U, Liu L, Aggio-Bruce R, Cioanca AV, Shariev A, Madigan MC, Valter K, Wen J, Natoli R. Spatial transcriptomics reveals regionally altered gene expression that drives retinal degeneration. Commun Biol 2025; 8:629. [PMID: 40251274 PMCID: PMC12008306 DOI: 10.1038/s42003-025-07887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 03/05/2025] [Indexed: 04/20/2025] Open
Abstract
Photoreceptor cell death is a hallmark of age-related macular degeneration. Environmental, lifestyle and genetic risk factors are known contributors to disease progression, whilst at the molecular level, oxidative stress and inflammation are central pathogenetic drivers. However, the spatial and cellular origins of these molecular mechanisms remain unclear. We used spatial transcriptomics to investigate the spatio-temporal gene expression changes in the adult mouse retina in response to photo-oxidative stress. We identify regionally distinct transcriptomes, with higher expression of immunity related genes in the superior retina. Exposure to stress induced expression of genes involved in inflammatory processes, innate immune responses, and cytokine production in a highly localised manner. A distinct region ~800 µm superior from the optic nerve head seems a key driver of these molecular changes. Further, we show highly localised early molecular changes in the superior mouse retina during retinal stress and identify novel genes drivers. We provide evidence of angiogenic changes in response to photo-oxidative stress and suggest additional angiogenic signalling pathways within the retina including VEGF, pleiotrophin and midkine. These new insights into retinal angiogenesis pave the way to identify novel drivers of retinal neovascularisation with an opportunity for therapeutic development.
Collapse
Affiliation(s)
- Ulrike Schumann
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Save Sight Institute, The University of Sydney, Sydney, Australia.
| | - Lixinyu Liu
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), The Australian National University, Canberra, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| | - Adrian V Cioanca
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| | - Artur Shariev
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Michele C Madigan
- The Save Sight Institute, The University of Sydney, Sydney, Australia
- The School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| | - Jiayu Wen
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), The Australian National University, Canberra, Australia.
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| |
Collapse
|
9
|
Arrigo A, Cremona O, Aragona E, Casoni F, Consalez G, Dogru RM, Hauck SM, Antropoli A, Bianco L, Parodi MB, Bandello F, Grosche A. Müller cells trophism and pathology as the next therapeutic targets for retinal diseases. Prog Retin Eye Res 2025; 106:101357. [PMID: 40254246 DOI: 10.1016/j.preteyeres.2025.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Müller cells are a crucial retinal cell type involved in multiple regulatory processes and functions that are essential for retinal health and functionality. Acting as structural and functional support for retinal neurons and photoreceptors, Müller cells produce growth factors, regulate ion and fluid homeostasis, and facilitate neuronal signaling. They play a pivotal role in retinal morphogenesis and cell differentiation, significantly contributing to macular development. Due to their radial morphology and unique cytoskeletal organization, Müller cells act as optical fibers, efficiently channeling photons directly to the photoreceptors. In response to retinal damage, Müller cells undergo specific gene expression and functional changes that serve as a first line of defense for neurons, but can also lead to unwarranted cell dysfunction, contributing to cell death and neurodegeneration. In some species, Müller cells can reactivate their developmental program, promoting retinal regeneration and plasticity-a remarkable ability that holds promising therapeutic potential if harnessed in mammals. The crucial and multifaceted roles of Müller cells-that we propose to collectively call "Müller cells trophism"-highlight the necessity of maintaining their functionality. Dysfunction of Müller cells, termed "Müller cells pathology," has been associated with a plethora of retinal diseases, including age-related macular degeneration, diabetic retinopathy, vitreomacular disorders, macular telangiectasia, and inherited retinal dystrophies. In this review, we outline how even subtle disruptions in Müller cells trophism can drive the pathological cascade of Müller cells pathology, emphasizing the need for targeted therapies to preserve retinal health and prevent disease progression.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Ottavio Cremona
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Emanuela Aragona
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Casoni
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Consalez
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rüya Merve Dogru
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, 80939, Germany
| | - Alessio Antropoli
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bianco
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Francesco Bandello
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
10
|
Konar GJ, Vallone KT, Nguyen TD, Patton JG. Analysis of the senescence secretome during zebrafish retina regeneration. FRONTIERS IN AGING 2025; 6:1569422. [PMID: 40308558 PMCID: PMC12040975 DOI: 10.3389/fragi.2025.1569422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025]
Abstract
Introduction Zebrafish possess the innate ability to regenerate any lost or damaged retinal cell type with Müller glia serving as resident stem cells. Recently, we discovered that this process is aided by a population of damage-induced senescent immune cells. As part of the Senescence Associated Secretory Phenotype (SASP), senescent cells secrete numerous factors that can play a role in the modulation of inflammation and remodeling of the retinal microenvironment during regeneration. However, the identity of specific SASP factors that drive initiation and progression of retina regeneration remains unclear. Materials and Methods We mined the SASP Atlas and publicly available RNAseq datasets to identify common, differentially expressed SASP factors after retina injury. These datasets included two distinct acute damage regimens, as well as two chronic, genetic models of retina degeneration. We identified overlapping factors between these models and used genetic knockdown experiments, qRT/PCR and immunohistochemical staining to test a role for one of these factors (npm1a). Results We discovered an overlapping set of 31 SASP-related regeneration factors across all data sets and damage paradigms. These factors are upregulated after damage with functions that span the innate immune system, autophagic processing, cell cycle regulation, and cellular stress responses. From among these, we show that depletion of Nucleophosmin 1 (npm1a) inhibits retina regeneration and decreases senescent cell detection after damage. Discussion Our data suggest that differential expression of SASP factors promotes initiation and progression of retina regeneration after both acute and chronic retinal damage. The existence of a common, overlapping set of 31 factors provides a group of novel therapeutic targets for retina regeneration studies.
Collapse
Affiliation(s)
| | | | | | - James G. Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
11
|
Strachan EL, Dillon ET, Sullivan M, Glennon JC, Peyrel A, Sarniguet J, Dubois K, Delprat B, Kennedy BN, O'Sullivan NC. Novel in vivo models of autosomal optic atrophy reveal conserved pathological changes in neuronal mitochondrial structure and function. FASEB J 2025; 39:e70497. [PMID: 40202868 PMCID: PMC11981028 DOI: 10.1096/fj.202403271r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Autosomal optic atrophy (AOA) is a form of hereditary optic neuropathy characterized by the irreversible and progressive degermation of the retinal ganglion cells. Most cases of AOA are associated with a single dominant mutation in OPA1, which encodes a protein required for fusion of the inner mitochondrial membrane. It is unclear how loss of OPA1 leads to neuronal death, and despite ubiquitous expression appears to disproportionately affect the RGCs. This study introduces two novel in vivo models of OPA1-mediated AOA, including the first developmentally viable vertebrate Opa1 knockout (KO). These models allow for the study of Opa1 loss in neurons, specifically RGCs. Though survival is significantly reduced in Opa1 deficient zebrafish and Drosophila, both models permit the study of viable larvae. Moreover, zebrafish Opa1 KO larvae show impaired visual function but unchanged locomotor function, indicating that retinal neurons are particularly sensitive to Opa1 loss. Proteomic profiling of both models reveals marked disruption in protein expression associated with mitochondrial function, consistent with an observed decrease in mitochondrial respiratory function. Similarly, mitochondrial fragmentation and disordered cristae organization were observed in neuronal axons in both models highlighting Opa1's highly conserved role in regulating mitochondrial morphology and function in neuronal axons. Importantly, in Opa1 deficient zebrafish, mitochondrial disruption and visual impairment precede degeneration of RGCs. These novel models mimic key features of AOA and provide valuable tools for therapeutic screening. Our findings suggest that therapies enhancing mitochondrial function may offer a potential treatment strategy for AOA.
Collapse
Affiliation(s)
- Elin L. Strachan
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Eugene T. Dillon
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
| | - Mairéad Sullivan
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
- UCD School of MedicineUniversity College DublinDublinIreland
| | - Jeffrey C. Glennon
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
- UCD School of MedicineUniversity College DublinDublinIreland
| | - Amandine Peyrel
- MMDNUniversity of Montpellier, EPHE, INSERMMontpellierFrance
| | | | - Kevin Dubois
- MMDNUniversity of Montpellier, EPHE, INSERMMontpellierFrance
| | | | - Breandán N. Kennedy
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Niamh C. O'Sullivan
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| |
Collapse
|
12
|
Jahanshir E, Llamas J, Kim Y, Biju K, Oak S, Gnedeva K. The Hippo pathway and p27 Kip1 cooperate to suppress mitotic regeneration in the organ of Corti and the retina. Proc Natl Acad Sci U S A 2025; 122:e2411313122. [PMID: 40178894 PMCID: PMC12002246 DOI: 10.1073/pnas.2411313122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
The mature mammalian auditory sensory organ, the organ of Corti (OC), lacks the capacity for regenerating hair cells, leading to permanent hearing impairment. In contrast, the vestibular system has a limited capacity for hair cell regeneration, which we have shown to be further enhanced by inhibiting the Hippo pathway. Here, we demonstrate that, despite similar transcriptional responses, only vestibular and not auditory supporting cells proliferate as a result of Yap activation following Hippo inhibition. Mechanistically, we identify p27Kip1, a cell cycle kinase inhibitor encoded by Cdkn1b, as an additional barrier preventing cell cycle reentry specifically in the OC. We show that while in both systems Yap stimulates p27Kip1 degradation through activation of its direct target gene Skp2, this protein-level control is antagonized by an unusually high level of Cdkn1b transcription in the cochlea. Consequently, p27Kip1 activity is maintained in the OC even in the presence of constitutively active Yap5SA, counteracting its mitogenic effects. Supporting this model, inactivation of the Hippo pathway in the Cdkn1b-deficient background is sufficient to induce adult auditory supporting cell proliferation in vivo. Furthermore, we show that the synergistic interaction between Hippo and p27Kip1 is conserved in the retina where inhibition of both pathways potently induces Müller glia proliferation and initiates neuronal regeneration. Our work uncovers the molecular mechanism preventing quiescent adult sensory progenitor cells, supporting cells in the ear and Müller glia in the eye, from reentering the cell cycle after damage-the key step toward sensory receptor regeneration blocked in mammals.
Collapse
Affiliation(s)
- Eva Jahanshir
- University of Southern California Caruso Department of Otolaryngology—Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Juan Llamas
- University of Southern California Caruso Department of Otolaryngology—Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Yeeun Kim
- University of Southern California Caruso Department of Otolaryngology—Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Kevin Biju
- University of Southern California Caruso Department of Otolaryngology—Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Sanyukta Oak
- University of Southern California Caruso Department of Otolaryngology—Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Ksenia Gnedeva
- University of Southern California Caruso Department of Otolaryngology—Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| |
Collapse
|
13
|
He Y, Li X, Yang Y, Freitas R, Zhu J, Ji G, Zhang Y. Gabapentin impairs visual development in zebrafish via retinal apoptosis and thyroid disruption. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137299. [PMID: 39842123 DOI: 10.1016/j.jhazmat.2025.137299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/30/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Gabapentin (GBP), a pharmaceutical widely used for seizures and neuropathic pain, has emerged as a contaminant in global aquatic environments, raising concerns about its ecological impact. This study investigated the effects of environmentally relevant concentrations of GBP (0, 1, 10, 1000 μg/L) on visual development in zebrafish (Danio rerio). Behavioral assays showed that GBP exposure enhanced light sensitivity, as indicated by a significant increase in total travel distance (TTD) in all exposure groups compared to controls. The 1 μg/L and 1000 μg/L exposure groups demonstrated a 41 % and 37 % increase in TTD, respectively (p < 0.05). Apoptosis assays revealed dose-dependent retinal cell death, with fluorescence intensity rising by 15 % at 1000 μg/L (p < 0.05). Visual acuity, measured through optokinetic response (OKR) tests, decreased significantly across all color stimuli. Angular velocity under white light decreased from 4.0 °/s in controls to 1.6 °/s at 1000 μg/L (p < 0.01) in a dose-dependent manner. Retinal histopathology showed a 17 % increase in ganglion cell layer thickness at 1000 μg/L (p < 0.05) in a dose-dependent manner. Thyroid hormone assays indicated significant reductions in T3 and T4 levels (p < 0.001), with a 22 % increase in the T3/T4 ratio at 1000 μg/L. Gene expression analysis revealed dysregulation in apoptosis (casp3a, ifi27), thyroid (tshr, dio1), and retinal development (atoh7, pax6a) pathways. These findings demonstrate that GBP disrupts visual development in zebrafish through retinal apoptosis and thyroid hormone dysregulation, highlighting the ecological risks posed by pharmaceutical pollutants. GBP exposure increased light-driven locomotor activity, indicating heightened light sensitivity due to apoptosis in the retina. Visual acuity was assessed through the optokinetic response (OKR) test, retinal morphology, and thyroid hormone (TH) levels. Even at concentrations as low as 1 µg/L, GBP exposure led to significant reductions in OKR across various colors, likely due to changes in retinal thickness linked to thyroid hormone disruption. These effects were consistent with alterations in gene expression related to apoptosis, the thyroid system, and retinal development. Our findings enhance understanding of how GBP exposure impairs vision in fish and highlight the need to evaluate the ecological risks of pharmaceutical contaminants in aquatic environments.
Collapse
Affiliation(s)
- Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China.
| | - Xiang Li
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China
| | - Yan Yang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China
| | - Rosa Freitas
- Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal; Department of Biology & CESAM, University of Aveiro, Aveiro 3810193, Portugal
| | - Jiansheng Zhu
- Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China.
| |
Collapse
|
14
|
Wu Z, Liao B, Ying J, Keung J, Zheng Z, Ahola V, Xiong W. Simultaneous cyclin D1 overexpression and p27 kip1 knockdown enable robust Müller glia cell cycle reactivation in uninjured mouse retina. eLife 2025; 13:RP100904. [PMID: 40178080 PMCID: PMC11968108 DOI: 10.7554/elife.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Harnessing the regenerative potential of endogenous stem cells to restore lost neurons is a promising strategy for treating neurodegenerative disorders. Müller glia (MG), the primary glial cell type in the retina, exhibit extraordinary regenerative abilities in zebrafish, proliferating and differentiating into neurons post-injury. However, the regenerative potential of mouse MG is limited by their inherent inability to re-enter the cell cycle, constrained by high levels of the cell cycle inhibitor p27Kip1 and low levels of cyclin D1. Here, we report a method to drive robust MG proliferation by adeno-associated virus (AAV)-mediated cyclin D1 overexpression and p27Kip1 knockdown. MG proliferation induced by this dual targeting vector was self-limiting, as MG re-entered cell cycle only once. As shown by single-cell RNA-sequencing, cell cycle reactivation led to suppression of interferon signaling, activation of reactive gliosis, and downregulation of glial genes in MG. Over time, the majority of the MG daughter cells retained the glial fate, resulting in an expanded MG pool. Interestingly, about 1% MG daughter cells expressed markers for retinal interneurons, suggesting latent neurogenic potential in a small MG subset. By establishing a safe, controlled method to promote MG proliferation in vivo while preserving retinal integrity, this work provides a valuable tool for combinatorial therapies integrating neurogenic stimuli to promote neuron regeneration.
Collapse
Affiliation(s)
- Zhifei Wu
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong KongHong KongChina
| | - Baoshan Liao
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong KongHong KongChina
| | - Julia Ying
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong KongHong KongChina
| | - Jan Keung
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong KongHong KongChina
- Ming Wai Lau Centre for Reparative Medicine, Karolinska InstitutetHong KongChina
| | - Zongli Zheng
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong KongHong KongChina
- Ming Wai Lau Centre for Reparative Medicine, Karolinska InstitutetHong KongChina
| | - Virpi Ahola
- Ming Wai Lau Centre for Reparative Medicine, Karolinska InstitutetHong KongChina
- Institute of Biomedicine, University of Eastern FinlandKuopioFinland
| | - Wenjun Xiong
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong KongHong KongChina
| |
Collapse
|
15
|
Duarte-Silva AT, Domith I, Gonçalves-da-Silva I, Paes-de-Carvalho R. Vitamin C Modulates the PI3K/AKT Pathway via Glutamate and Nitric Oxide in Developing Avian Retina Cells in Culture. Brain Sci 2025; 15:369. [PMID: 40309873 PMCID: PMC12025763 DOI: 10.3390/brainsci15040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Background: In addition to its known antioxidant function, the reduced form of vitamin C, ascorbate, also acts as a neuromodulator in the nervous system. Previous work showed a reciprocal interaction of ascorbate with glutamate in chicken embryo retinal cultures. Ascorbate modulates extracellular glutamate levels by inhibiting excitatory amino acid transporter 3 and promoting the activation of NMDA receptors and the consequent activation of intracellular signaling pathways involved in transcription and survival. Objective: In the present work, we investigated the regulation of AKT phosphorylation by ascorbate in chicken embryo retina cultures. Methodology: Cultures of chicken embryo retina cells were tested using Western blot, immunocytochemistry, fluorescent probe transfection, and cellular imaging techniques. Results: Our results show that ascorbate induces a concentration and time-dependent increase in AKT phosphorylation via the accumulation of extracellular glutamate, the activation of glutamate receptors, and the activation of the PI3K pathway. Ascorbate produces an increase in intracellular calcium accumulation and, accordingly, AKT phosphorylation by ascorbate is blocked by the calcium chelator BAPTA-AM. Moreover, AKT phosphorylation is also blocked by the nitric oxide synthase inhibitor 7-nitroindazole, indicating that it is mediated by calcium and nitric oxide-dependent mechanisms. Conclusions: We demonstrate that ascorbate modulates the PI3K/AKT pathway in retinal cultures through the activation of glutamate receptors and NO production in a calcium-dependent manner. Given that previous research has shown that glutamate induces ascorbate release in retinal cultures, our findings emphasize the significance of the reciprocal interactions between ascorbate and glutamate in retinal development. These findings provide further evidence supporting the role of ascorbate as a neuromodulator in retinal development.
Collapse
Affiliation(s)
- Aline T. Duarte-Silva
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24210-346, RJ, Brazil; (A.T.D.-S.); (I.D.); (I.G.-d.-S.)
- Instituto D’Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, RJ, Brazil
| | - Ivan Domith
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24210-346, RJ, Brazil; (A.T.D.-S.); (I.D.); (I.G.-d.-S.)
- Instituto D’Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, RJ, Brazil
- IDOR/Pioneer Science Initiative, Rio de Janeiro 22281-100, RJ, Brazil
| | - Isabele Gonçalves-da-Silva
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24210-346, RJ, Brazil; (A.T.D.-S.); (I.D.); (I.G.-d.-S.)
| | - Roberto Paes-de-Carvalho
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói 24210-346, RJ, Brazil; (A.T.D.-S.); (I.D.); (I.G.-d.-S.)
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói 24210-346, RJ, Brazil
| |
Collapse
|
16
|
Pavlou M, Probst M, Kaplan L, Filippova E, Prieve AR, Rieke F, Reh TA. AAV-mediated expression of proneural factors stimulates neurogenesis from adult Müller glia in vivo. EMBO Mol Med 2025; 17:722-746. [PMID: 40050705 PMCID: PMC11982270 DOI: 10.1038/s44321-025-00209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 04/11/2025] Open
Abstract
The lack of regeneration in the human central nervous system (CNS) has major health implications. To address this, we previously used transgenic mouse models to show that neurogenesis can be stimulated in the adult mammalian retina by driving regeneration programs that other species activate following injury. Expression of specific proneural factors in adult Müller glia causes them to re-enter the cell cycle and give rise to new neurons following retinal injury. To bring this strategy closer to clinical application, we now show that neurogenesis can also be stimulated when delivering these transcription factors to Müller glia using adeno-associated viral (AAV) vectors. AAV-mediated neurogenesis phenocopies the neurogenesis we observed from transgenic animals, with different proneural factor combinations giving rise to distinct neuronal subtypes in vivo. Vector-borne neurons are morphologically, transcriptomically and physiologically similar to bipolar and amacrine/ganglion-like neurons. These results represent a key step forward in developing a cellular reprogramming approach for regenerative medicine in the CNS.
Collapse
Affiliation(s)
- Marina Pavlou
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Marlene Probst
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Lew Kaplan
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Elizaveta Filippova
- Department of Agricultural and Biological Engineering, Purdue University, Lafayette, IN, USA
| | - Aric R Prieve
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Fred Rieke
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Thomas A Reh
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
17
|
Yin Z, Kang J, Cheng X, Gao H, Huo S, Xu H. Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future. Neural Regen Res 2025; 20:946-959. [PMID: 38989930 PMCID: PMC11438324 DOI: 10.4103/nrr.nrr-d-23-01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 07/12/2024] Open
Abstract
Müller glia, as prominent glial cells within the retina, plays a significant role in maintaining retinal homeostasis in both healthy and diseased states. In lower vertebrates like zebrafish, these cells assume responsibility for spontaneous retinal regeneration, wherein endogenous Müller glia undergo proliferation, transform into Müller glia-derived progenitor cells, and subsequently regenerate the entire retina with restored functionality. Conversely, Müller glia in the mouse and human retina exhibit limited neural reprogramming. Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders. Müller glia reprogramming in mice has been accomplished with remarkable success, through various technologies. Advancements in molecular, genetic, epigenetic, morphological, and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice. Nevertheless, there remain issues that hinder improving reprogramming efficiency and maturity. Thus, understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency, and for developing novel Müller glia reprogramming strategies. This review describes recent progress in relatively successful Müller glia reprogramming strategies. It also provides a basis for developing new Müller glia reprogramming strategies in mice, including epigenetic remodeling, metabolic modulation, immune regulation, chemical small-molecules regulation, extracellular matrix remodeling, and cell-cell fusion, to achieve Müller glia reprogramming in mice.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | | | | | | | | | |
Collapse
|
18
|
Blackshaw S, Cayouette M. Timing neural development and regeneration. Curr Opin Neurobiol 2025; 91:102976. [PMID: 40010202 DOI: 10.1016/j.conb.2025.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/28/2025]
Abstract
Regulation of neural progenitor temporal identity is critical to control the chronological order of cell birth and generation of cell diversity in the developing central nervous system (CNS). Single-cell RNA sequencing studies have identified transcriptionally distinct early and late temporal identity states in mammalian neural progenitors in multiple CNS regions. This review discusses recent advances in understanding the mechanisms underlying regulation of temporal identity in mammalian neural progenitors, the implications of these findings for glia-to-neuron reprogramming strategies, and their potential therapeutic applications. We highlight potential future directions of research, including integrating temporal identity specification with proneural factor overexpression to enhance reprogramming efficiency and broaden the repertoire of neuronal subtypes generated from reprogrammed mammalian glia.
Collapse
Affiliation(s)
- Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212872, USA.
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 1A1, Canada.
| |
Collapse
|
19
|
Xu J, Li Y, Li X, Tan X, Liu L, Cao L, Xu H. Microglia-Derived IL-6 Promotes Müller Glia Reprogramming and Proliferation in Zebrafish Retina Regeneration. Invest Ophthalmol Vis Sci 2025; 66:67. [PMID: 40266594 PMCID: PMC12025339 DOI: 10.1167/iovs.66.4.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Purpose Inflammation activates the Jak1-Stat3 signaling pathway in zebrafish Müller glia (MG), leading to their status transition and proliferation following retinal injury. However, the source of Stat3-activating molecules remains unclear. This study aims to explore the expression and function of a Stat3-activating cytokine IL-6 in zebrafish retina regeneration. Methods Mechanical retinal injury was induced in adult zebrafish by a needle-poke lesion. Single-cell RNA sequencing (scRNAseq) and PCR were used to determine gene expression. Microglia ablation was performed by using the mpeg1:nsfb-mcherry transgenic zebrafish. Morpholino oligonucleotides, a recombinant zebrafish IL-6 protein and drugs, were used to manipulate IL-6 or Stat3 signaling in the retina. The 5-Ethynyl-2'-deoxyuridine (EdU) labeling was used to evaluate MG proliferation and the formation of MG-derived progenitor cells (MGPCs). Neuronal regeneration in the retina was analyzed by lineage tracing and immunostaining. Results The scRNAseq reveals that IL-6 is mainly expressed by a subset of pro-inflammatory microglia in the injured retina. Loss- and gain-of-function experiments demonstrate that IL-6 signaling promotes MG proliferation and the formation of MGPCs following retinal injury. Additionally, IL-6 facilitates MG status transition by modulating Jak1-Stat3 signaling and the expression of regeneration-associated genes. Interestingly, IL-6 may also regulate MGPC formation via phase-dependent pro-inflammatory and anti-inflammatory mechanisms. Finally, IL-6 promotes the early differentiation of MGPCs and contributes to the regeneration of retinal neurons in the injured retina. Conclusions Our study unveils the critical role of microglia-derived IL-6 in zebrafish retina regeneration, with potential implications for mammalian MG reprogramming.
Collapse
Affiliation(s)
- Jie Xu
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Yi Li
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Xiangyu Li
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Xuan Tan
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Lihua Liu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hui Xu
- Key Lab of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
20
|
Le N, Awad S, Palazzo I, Hoang T, Blackshaw S. Viral-mediated Oct4 overexpression and inhibition of Notch signaling synergistically induce neurogenic competence in mammalian Muller glia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.18.613666. [PMID: 39345433 PMCID: PMC11429848 DOI: 10.1101/2024.09.18.613666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Retinal Muller glia in cold-blooded vertebrates can reprogram into neurogenic progenitors to replace neurons lost to injury, but mammals lack this ability. While recent studies have shown that transgenic overexpression of neurogenic bHLH factors and glial-specific disruption of NFI family transcription factors and Notch signaling induce neurogenic competence in mammalian Muller glia, induction of neurogenesis in wild-type glia has thus far proven elusive. Here, we report that viral-mediated overexpression of the pluripotency factor Oct4 (Pou5f1) induces transdifferentiation of mouse Muller glia into bipolar neurons, and synergistically stimulates glial-derived neurogenesis in parallel with Notch loss of function. Single cell multiomic analysis shows that Oct4 overexpression leads to widespread changes in gene expression and chromatin accessibility, inducing activity of both the neurogenic transcription factor Rfx4 and the Yamanaka factors Sox2 and Klf4. This study demonstrates that viral-mediated overexpression of Oct4 induces neurogenic competence in retinal Muller glia, identifying mechanisms that could be used in cell-based therapies for treating retinal dystrophies.
Collapse
|
21
|
Lee EJ, Kim M, Park S, Shim JH, Cho HJ, Park JA, Park K, Lee D, Kim JH, Jeong H, Matsuzaki F, Kim SY, Kim J, Yang H, Lee JS, Kim JW. Restoration of retinal regenerative potential of Müller glia by disrupting intercellular Prox1 transfer. Nat Commun 2025; 16:2928. [PMID: 40133314 PMCID: PMC11937340 DOI: 10.1038/s41467-025-58290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Individuals with retinal degenerative diseases struggle to restore vision due to the inability to regenerate retinal cells. Unlike cold-blooded vertebrates, mammals lack Müller glia (MG)-mediated retinal regeneration, indicating the limited regenerative capacity of mammalian MG. Here, we identify prospero-related homeobox 1 (Prox1) as a key factor restricting this process. Prox1 accumulates in MG of degenerating human and mouse retinas but not in regenerating zebrafish. In mice, Prox1 in MG originates from neighboring retinal neurons via intercellular transfer. Blocking this transfer enables MG reprogramming into retinal progenitor cells in injured mouse retinas. Moreover, adeno-associated viral delivery of an anti-Prox1 antibody, which sequesters extracellular Prox1, promotes retinal neuron regeneration and delays vision loss in a retinitis pigmentosa model. These findings establish Prox1 as a barrier to MG-mediated regeneration and highlight anti-Prox1 therapy as a promising strategy for restoring retinal regeneration in mammals.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- Celliaz Ltd., Daejeon, South Korea
| | - Museong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Sooyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- Celliaz Ltd., Daejeon, South Korea
| | | | - Hyun-Ju Cho
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- KRIBB School, University of Science and Technology, Daejeon, South Korea
| | | | - Kihyun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Dongeun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jeong Hwan Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Haeun Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Centre for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hanseul Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- KRIBB School, University of Science and Technology, Daejeon, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
- Celliaz Ltd., Daejeon, South Korea.
| |
Collapse
|
22
|
Taylor OB, DeGroff N, El-Hodiri HM, Gao C, Fischer AJ. Sphingosine-1-phosphate signaling regulates the ability of Müller glia to become neurogenic, proliferating progenitor-like cells. eLife 2025; 13:RP102151. [PMID: 40047533 PMCID: PMC11884796 DOI: 10.7554/elife.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.
Collapse
Affiliation(s)
- Olivia B Taylor
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
- Neuroscience Graduate Program, The Ohio State UniversityColumbusUnited States
| | - Nicholas DeGroff
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Chengyu Gao
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State UniversityColumbusUnited States
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
| |
Collapse
|
23
|
Nonarath HJT, Simpson SL, Slobodianuk TL, Tran H, Collery RF, Dinculescu A, Link BA. The USH3A causative gene clarin1 functions in Müller glia to maintain retinal photoreceptors. PLoS Genet 2025; 21:e1011205. [PMID: 40067805 PMCID: PMC11925288 DOI: 10.1371/journal.pgen.1011205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2025] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Mutations in CLRN1 cause Usher syndrome type IIIA (USH3A), an autosomal recessive disorder characterized by hearing and vision loss, and often accompanied by vestibular dysfunction. The identity of the cell types responsible for the pathology and mechanisms leading to vision loss in USH3A remains elusive. To address this, we employed CRISPR/Cas9 technology to delete a large region in the coding and untranslated (UTR) region of zebrafish clrn1. The retinas of clrn1 mutant larvae exhibited sensitivity to cell stress, along with age-dependent loss of function and degeneration in the photoreceptor layer. Investigation revealed disorganization in the outer retina in clrn1 mutants, including actin-based structures of the Müller glia and photoreceptor cells. To assess cell-specific contributions to USH3A pathology, we specifically re-expressed clrn1 in either Müller glia or photoreceptor cells. Müller glia re-expression of clrn1 prevented the elevated cell death observed in larval clrn1 mutant zebrafish exposed to high-intensity light. Notably, the degree of phenotypic rescue correlated with the level of Clrn1 re-expression. Surprisingly, high levels of Clrn1 expression enhanced cell death in both wild-type and clrn1 mutant animals. However, rod- or cone-specific Clrn1 re-expression did not reduce the extent of cell death. Taken together, our findings underscore three crucial insights. First, clrn1 mutant zebrafish exhibit key pathological features of USH3A; second, Clrn1 within Müller glia plays a pivotal role in photoreceptor maintenance, with its expression requiring controlled regulation; third, the reliance of photoreceptors on Müller glia suggests a structural support mechanism, possibly through direct interactions between Müller glia and photoreceptors mediated in part by Clrn1 protein.
Collapse
Affiliation(s)
- Hannah J. T. Nonarath
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Samantha L. Simpson
- Department of Ophthalmology and Vision Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Tricia L. Slobodianuk
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Hai Tran
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ross F. Collery
- Department of Ophthalmology and Vision Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, Florida, United States of America
| | - Brian A. Link
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
24
|
Lin L, Yuan Y, Huang Z, Wang Y. YAP Signaling in Glia: Pivotal Roles in Neurological Development, Regeneration and Diseases. Neurosci Bull 2025; 41:501-519. [PMID: 39503968 PMCID: PMC11876503 DOI: 10.1007/s12264-024-01308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/06/2024] [Indexed: 03/04/2025] Open
Abstract
Yes-associated protein (YAP), the key transcriptional co-factor and downstream effector of the Hippo pathway, has emerged as one of the primary regulators of neural as well as glial cells. It has been detected in various glial cell types, including Schwann cells and olfactory ensheathing cells in the peripheral nervous system, as well as radial glial cells, ependymal cells, Bergmann glia, retinal Müller cells, astrocytes, oligodendrocytes, and microglia in the central nervous system. With the development of neuroscience, understanding the functions of YAP in the physiological or pathological processes of glia is advancing. In this review, we aim to summarize the roles and underlying mechanisms of YAP in glia and glia-related neurological diseases in an integrated perspective.
Collapse
Affiliation(s)
- Lin Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yinfeng Yuan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
25
|
He Q, Mi Z, Yin Z, Zheng Z, Guo B. Weighted Gene Networks Derived from Multi-Omics Reveal Core Cancer Genes in Lung Cancer. BIOLOGY 2025; 14:223. [PMID: 40136480 PMCID: PMC11939803 DOI: 10.3390/biology14030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide, driven by its complexity and the heterogeneity of its subtypes, which influence pathogenesis, tumor microenvironment, and genetic alterations. We developed a novel weighted gene regulatory network reconstruction method based on maximum entropy and Markov chain entropy principles, which integrates gene expression and DNA methylation data to generate biologically informed networks. Applied to LUAD and LUSC datasets, we define a network methylation index to determine whether gene methylation acts as oncogenic or tumor-suppressive. By revealing a stable core set of pathogenic genes, we identify not only genes with significant expression changes, such as CD74 and HGF, but also pathogenic genes with stable expression, such as BRAF and KDM6A. Additionally, we uncover potential driver genes, such as CORO2B and C20orf194, associated with disease stage, gender, and smoking status. This method offers a more comprehensive understanding of NSCLC mechanisms, paving the way for improved therapeutic strategies.
Collapse
Affiliation(s)
- Qingcai He
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
- LMIB and SKLCCSE, Beihang University, Beijing 100191, China
- Shen Yuan Honors College, Beihang University, Beijing 100191, China
| | - Zhilong Mi
- LMIB and SKLCCSE, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
| | - Ziqiao Yin
- LMIB and SKLCCSE, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- Zhongguancun Laboratory, Beijing 100094, China
| | - Zhiming Zheng
- LMIB and SKLCCSE, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- Zhongguancun Laboratory, Beijing 100094, China
| | - Binghui Guo
- LMIB and SKLCCSE, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- Zhongguancun Laboratory, Beijing 100094, China
| |
Collapse
|
26
|
Zhuang J, Jia L, Li C, Yang R, Wang J, Wang WA, Zhou H, Luo X. Recent advances in photothermal nanomaterials for ophthalmic applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:195-215. [PMID: 39995756 PMCID: PMC11849557 DOI: 10.3762/bjnano.16.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
The human eye, with its remarkable resolution of up to 576 million pixels, grants us the ability to perceive the world with astonishing accuracy. Despite this, over 2 billion people globally suffer from visual impairments or blindness, primarily because of the limitations of current ophthalmic treatment technologies. This underscores an urgent need for more advanced therapeutic approaches to effectively halt or even reverse the progression of eye diseases. The rapid advancement of nanotechnology offers promising pathways for the development of novel ophthalmic therapies. Notably, photothermal nanomaterials, particularly well-suited for the transparent tissues of the eye, have emerged as a potential game changer. These materials enable precise and controllable photothermal therapy by effectively manipulating the distribution of the thermal field. Moreover, they extend beyond the conventional boundaries of thermal therapy, achieving unparalleled therapeutic effects through their diverse composite structures and demonstrating enormous potential in promoting retinal drug delivery and photoacoustic imaging. This paper provides a comprehensive summary of the structure-activity relationship between the photothermal properties of these nanomaterials and their innovative therapeutic mechanisms. We review the latest research on photothermal nanomaterial-based treatments for various eye diseases. Additionally, we discuss the current challenges and future perspectives in this field, with a focus on enhancing global visual health.
Collapse
Affiliation(s)
- Jiayuan Zhuang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- School of Public Health, Yangzhou University, Yangzhou 225009, P. R. China
| | - Linhui Jia
- School of Marine Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Chenghao Li
- Medical College, Yangzhou University, Yangzhou 225009, P. R. China
| | - Rui Yang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Jiapeng Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
| | - Wen-an Wang
- The first school of clinical medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Heng Zhou
- School of Public Health, Yangzhou University, Yangzhou 225009, P. R. China
| | - Xiangxia Luo
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Gansu Provincial Hospital of TCM, Lanzhou 730000, P. R. China
| |
Collapse
|
27
|
Vidal-Vázquez N, Hernández-Núñez I, Carballo-Pacoret P, Salisbury S, Villamayor PR, Hervas-Sotomayor F, Yuan X, Lamanna F, Schneider C, Schmidt J, Mazan S, Kaessmann H, Adrio F, Robledo D, Barreiro-Iglesias A, Candal E. A single-nucleus RNA sequencing atlas of the postnatal retina of the shark Scyliorhinus canicula. Sci Data 2025; 12:228. [PMID: 39920165 PMCID: PMC11806052 DOI: 10.1038/s41597-025-04547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
The retina, whose basic cellular structure is highly conserved across vertebrates, constitutes an accessible system for studying the central nervous system. In recent years, single-cell RNA sequencing studies have uncovered cellular diversity in the retina of a variety of species, providing new insights on retinal evolution and development. However, similar data in cartilaginous fishes, the sister group to all other extant jawed vertebrates, are still lacking. Here, we present a single-nucleus RNA sequencing atlas of the postnatal retina of the catshark Scyliorhinus canicula, consisting of the expression profiles for 17,438 individual cells from three female, juvenile catshark specimens. Unsupervised clustering revealed 22 distinct cell types comprising all major retinal cell classes, as well as retinal progenitor cells (whose presence reflects the persistence of proliferative activity in postnatal stages in sharks) and oligodendrocytes. Thus, our dataset serves as a foundation for further studies on the development and function of the catshark retina. Moreover, integration of our atlas with data from other species will allow for a better understanding of vertebrate retinal evolution.
Collapse
Affiliation(s)
- Nicolás Vidal-Vázquez
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Aquatic One Health Research Center (ARCUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ismael Hernández-Núñez
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Pablo Carballo-Pacoret
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Paula R Villamayor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Francisca Hervas-Sotomayor
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
- INRAE, LPGP, Rennes, France
| | - Xuefei Yuan
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Francesco Lamanna
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Céline Schneider
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Julia Schmidt
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Sylvie Mazan
- CNRS, Sorbonne Université, Biologie Intégrative des Organismes Marins, UMR7232-BIOM, Banyuls-sur-Mer, France
| | - Henrik Kaessmann
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Fátima Adrio
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
- Departamento de Zooloxía, Xenética e Antropoloxía Física, CIBUS, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Aquatic One Health Research Center (ARCUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eva Candal
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Aquatic One Health Research Center (ARCUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
28
|
Taylor O, Kelly L, El-Hodiri H, Fischer AJ. Sphingosine-1-phosphate signaling through Müller glia regulates neuroprotection and the accumulation of immune cells in the rodent retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636254. [PMID: 39975061 PMCID: PMC11838470 DOI: 10.1101/2025.02.03.636254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The purpose of this study was to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, neuroprotection, and reprogramming of Müller glia (MG) into neurogenic MG-derived progenitor cells (MGPCs) in the adult mouse retina. We found that S1P-related genes were dynamically regulated following retinal damage. S1pr1 (encoding S1P receptor 1) and Sphk1 (encoding sphingosine kinase 1) are expressed at low levels by resting MG and are rapidly upregulated following acute damage. Overexpression of the neurogenic bHLH transcription factor Ascl1 in MG downregulates S1pr1, and inhibition of Sphk1 and S1pr1/3 enhances Ascl1-driven differentiation of bipolar-like cells and suppresses glial differentiation. Treatments that activate S1pr1 or increase retinal levels of S1P initiate pro-inflammatory NFκB-signaling in MG, whereas treatments that inhibit S1pr1 or decreased levels of S1P suppress NFκB-signaling in MG in damaged retinas. Conditional knock-out of NFκB-signaling in MG increases glial expression of S1pr1 but decreases levels of S1pr3 and Sphk1. Conditional knock-out (cKO) of S1pr1 in MG, but not Sphk1, enhances the accumulation of immune cells in acutely damaged retinas. cKO of S1pr1 is neuroprotective to ganglion cells, whereas cKO of Sphk1 is neuroprotective to amacrine cells in NMDA-damaged retinas. Consistent with these findings, pharmacological treatments that inhibit S1P receptors or inhibit Sphk1 had protective effects upon inner retinal neurons. We conclude that the S1P-signaling pathway is activated in MG after damage and this pathway acts secondarily to restrict the accumulation of immune cells, impairs neuron survival and suppresses the reprogramming of MG into neurogenic progenitors in the adult mouse retina.
Collapse
Affiliation(s)
- Olivia Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Lisa Kelly
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Heithem El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Ebner LJA, Karademir D, Nötzli S, Wögenstein GM, Samardzija M, Grimm C. Oxygen-dependent alternative mRNA splicing and a cone-specific motor protein revealed by single-cell RNA sequencing in hypoxic retinas. Exp Eye Res 2025; 251:110190. [PMID: 39638278 DOI: 10.1016/j.exer.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Restricted oxygen supply in the aging eye may lead to hypoxic conditions in the outer retina and contribute not only to physiological aging but also to nonhereditary degenerative retinal diseases. To understand the hypoxic response of specific retinal cell types, we performed single-cell RNA sequencing of retinas isolated from mice exposed to hypoxia. Significantly upregulated expression of marker genes in hypoxic clusters confirmed a general transcriptional response to hypoxia. By focusing on the hypoxic response in photoreceptors, we identified and confirmed a kinesin motor protein (Kif4) that was specifically and strongly induced in hypoxic cones. In contrast, RNA-binding proteins Rbm3 and Cirbp were differentially expressed across clusters but demonstrated isoform switching in hypoxia. The resulting short variants of these gene transcripts are connected to epitranscriptomic regulation, a notion supported by the differential expression of writers, readers and erasers of m6A RNA methylations in the hypoxic retina. Our data indicate that retinal cells adapt to hypoxic conditions by adjusting their transcriptome at various levels including gene expression, alternative splicing and the epitranscriptome. Adaptational processes may be cell-type specific as exemplified by the cone-specific upregulation of Kif4 or general like alternative splicing of RNA binding proteins.
Collapse
Affiliation(s)
- Lynn J A Ebner
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Duygu Karademir
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Sarah Nötzli
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Gabriele M Wögenstein
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Marijana Samardzija
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Wagistrasse 14, Schlieren, 8952, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
30
|
Singh K, Jin Y, Hu MW, Palazzo I, Cano M, Hoang T, Bhutto I, Wang S, Sinha D, Blackshaw S, Qian J, Handa JT. Cigarette smoke and biological age induce degenerative heterogeneity in retinal pigment epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635096. [PMID: 39974955 PMCID: PMC11838378 DOI: 10.1101/2025.01.27.635096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Environmental exposure such as cigarette smoke induces epigenetic changes that can induce degenerative heterogeneity and accelerate aging. In early age-related macular degeneration (AMD), the leading worldwide cause of blindness among the elderly, retinal pigment epithelial (RPE) cell heterogeneity is a key change. Since smoking is the strongest environmental risk factor for AMD, we hypothesized that cigarette smoke induces degenerative RPE heterogeneity through epigenetic changes that are distinct from aging, and that with aging, the RPE becomes vulnerable to cigarette smoke insult. We administered cigarette smoke condensate (CSC) intravitreally to young and aged mice and performed snRNA-seq and snATAC-seq on the RPE/choroid. This analysis identified separate cell clusters corresponding to healthy and abnormal, dedifferentiated RPE in both aged vehicle-treated and young CSC-treated mice. The dedifferentiated RPE were characterized by a global decrease in chromatin accessibility and decreased expression of genes in functional categories that were linked to hallmarks of aging. Notably, young, dedifferentiated RPE also exhibited a compensatory upregulation of hallmarks of aging-related genes, specifically those related to mitochondrial function and proteostasis. In contrast, aged dedifferentiated RPE did not express these compensatory changes, and did not survive CSC treatment, as experimentally verified with TUNEL labeling. These changes are relevant to early AMD because we identified through scRNA-seq, similar dedifferentiated and healthy macular RPE clusters in a donor who smoked and another with early AMD, but not from a nonsmoker. Degenerative cellular heterogeneity can include an abnormal cluster that jeopardizes cell survival and may represent an additional hallmark of ocular aging.
Collapse
Affiliation(s)
- Krishna Singh
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Yang Jin
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Ming-Wen Hu
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Isabella Palazzo
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Marisol Cano
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Thanh Hoang
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Imran Bhutto
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Shusheng Wang
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
| | - Debasish Sinha
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Jiang Qian
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - James T Handa
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| |
Collapse
|
31
|
Taylor O, DeGroff N, El-Hodiri H, Gao C, Fischer AJ. Sphingosine-1-phosphate signaling regulates the ability of Müller glia to become neurogenic, proliferating progenitor-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.06.606815. [PMID: 39149287 PMCID: PMC11326190 DOI: 10.1101/2024.08.06.606815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.
Collapse
Affiliation(s)
- Olivia Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nick DeGroff
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Heithem El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Chengyu Gao
- Campus Chemical Instrument Center, Mass Spectrometry & Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Li Z, Xu Z, Zhu L, Qin T, Ma J, Feng Z, Yue H, Guan Q, Zhou B, Han G, Zhang G, Li C, Jia S, Qiu Q, Hao D, Wang Y, Wang W. High-quality sika deer omics data and integrative analysis reveal genic and cellular regulation of antler regeneration. Genome Res 2025; 35:188-201. [PMID: 39542648 PMCID: PMC11789637 DOI: 10.1101/gr.279448.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
The antler is the only organ that can fully regenerate annually in mammals. However, the regulatory pattern and mechanism of gene expression and cell differentiation during this process remain largely unknown. Here, we obtain comprehensive assembly and gene annotation of the sika deer (Cervus nippon) genome. We construct, together with large-scale chromatin accessibility and gene expression data, gene regulatory networks involved in antler regeneration, identifying four transcription factors, MYC, KLF4, NFE2L2, and JDP2, with high regulatory activity across the whole regeneration process. Comparative studies and luciferase reporter assay suggest the MYC expression driven by a cervid-specific regulatory element might be important for antler regenerative ability. We further develop a model called combinatorial TF Oriented Program (cTOP), which integrates single-cell data with bulk regulatory networks and find PRDM1, FOSL1, BACH1, and NFATC1 as potential pivotal factors in antler stem cell activation and osteogenic differentiation. Additionally, we uncover interactions within and between cell programs and pathways during the regeneration process. These findings provide insights into the gene and cell regulatory mechanisms of antler regeneration, particularly in stem cell activation and differentiation.
Collapse
Affiliation(s)
- Zihe Li
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ziyu Xu
- CEMS, NCMIS, HCMS, MADIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Tao Qin
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jinrui Ma
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhanying Feng
- CEMS, NCMIS, HCMS, MADIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, California 94305, USA
| | - Huishan Yue
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qing Guan
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Botong Zhou
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ge Han
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guokun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600 Changchun, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600 Changchun, China
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Qiang Qiu
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China;
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China;
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Yong Wang
- CEMS, NCMIS, HCMS, MADIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;
- School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Wen Wang
- New Cornerstone Science Laboratory, Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China;
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
33
|
Wohlschlegel J, Kierney F, Arakelian KL, Luxardi G, Suvarnpradip N, Hoffer D, Rieke F, Moshiri A, Reh TA. Stimulating the regenerative capacity of the human retina with proneural transcription factors in 3D cultures. Proc Natl Acad Sci U S A 2025; 122:e2417228122. [PMID: 39823300 PMCID: PMC11759899 DOI: 10.1073/pnas.2417228122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/07/2024] [Indexed: 01/19/2025] Open
Abstract
Retinal diseases often lead to degeneration of specific retinal cell types with currently limited therapeutic options to replace the lost neurons. Previous studies have reported that overexpression of ASCL1 or combinations of proneural factors in Müller glia (MG) induce regeneration of functional neurons in the adult mouse retina. Recently, we applied the same strategy in dissociated cultures of fetal human MG and although we stimulated neurogenesis from MG, our effect in 2D cultures was modest and our analysis of newborn neurons was limited. In this study, we aimed to improve our MG reprogramming strategy in a more intact retinal environment. For this purpose, we used an in vitro culture system of human fetal retinal tissue and adult human postmortem retina. To stimulate reprogramming, we used lentiviral vectors to deliver constructs with a glial-specific promoter (HES1) driving ASCL1 alone or in combination with additional developmental transcription factors (TFs) such as ATOH1 and NEUROD1. Combining IHC, scRNA-seq, and electrophysiology, we show that human MG can generate new neurons even in adults. This work constitutes a key step toward a future clinical application of this regenerative medicine approach for retinal degenerative disorders.
Collapse
Affiliation(s)
| | - Faith Kierney
- Department of Biological Structure, University of Washington, Seattle, WA98125
| | - Kayla L. Arakelian
- Department of Biological Structure, University of Washington, Seattle, WA98125
| | - Guillaume Luxardi
- Department of Ophthalmology & Vision Science, University of California Davis School of Medicine, Sacramento, CA95616
| | - Naran Suvarnpradip
- Department of Ophthalmology & Vision Science, University of California Davis School of Medicine, Sacramento, CA95616
| | - Dawn Hoffer
- Department of Biological Structure, University of Washington, Seattle, WA98125
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA98125
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, University of California Davis School of Medicine, Sacramento, CA95616
| | - Thomas A. Reh
- Department of Biological Structure, University of Washington, Seattle, WA98125
- Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA98125
| |
Collapse
|
34
|
Herrera-Astorga L, Silva S, Berrosteguieta I, Rosillo JC, Fernández AS. Müller glia in short-term dark adaptation of the Austrolebias charrua retina: Cell proliferation and cytoarchitecture. Exp Cell Res 2025; 444:114394. [PMID: 39722301 DOI: 10.1016/j.yexcr.2024.114394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Fish with unique life cycles offer valuable insights into retinal plasticity, revealing mechanisms of environmental adaptation, cell proliferation, and thus, potentially regeneration. The variability of the environmental factors to which Austrolebias annual fishes are exposed has acted as a strong selective pressure shaping traits such as nervous system plasticity. This has contributed to adaptation to their extreme conditions including the decreased luminosity as ponds dry out. In particular, the retina of A. charrua has been shown to respond to 30 days of decreased luminosity by exacerbating cell proliferation Now, we aimed to determine the cellular component of the retina involved in shorter-term responses. To this end, we performed 5-bromo-2'-deoxyuridine (BrdU) experiments, exposing adult fish to a short period (11 days) of constant darkness. Strikingly, in control conditions, neurogenesis in the inner nuclear and ganglion cell layer in the differentiated retina was detected. In constant darkness, we observed an effect on inner nuclear layer cell proliferation and changes in retinal cytoarchitecture of the retina with cell clusters located in the inner plexiform layer. Additionally, increased BLBP (brain lipid-binding protein) presence was detected in darkness, which has been previously associated with immature and reactivated Müller glia. Thus, our results suggest that the A. charrua retina can respond to environmental changes via rapid activation of progenitor cells in the INL, namely the Müller glia This leads us to hypothesize, that cell proliferation and neurogenesis might contribute to the responses to the functional needs of organisms, potentially playing an adaptive role.
Collapse
Affiliation(s)
- Laura Herrera-Astorga
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| | - Stephanie Silva
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay.
| | - Inés Berrosteguieta
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay.
| | - Juan Carlos Rosillo
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800, Montevideo, Uruguay.
| | - Anabel Sonia Fernández
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
35
|
Zeng Z, You M, Fan C, Jang J, Xia X. FABP5 regulates ROS-NLRP3 inflammasome in glutamate-induced retinal excitotoxic glaucomatous model. FASEB J 2025; 39:e70281. [PMID: 39792326 DOI: 10.1096/fj.202400435r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/30/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear. In this study, we found that FABP5 is significantly altered in a model of glutamate excitotoxicity and is regulated by Stat3. Inhibition of FABP5 alleviated oxidative stress imbalance and activation of NLRP3 inflammasome, reduced the release of inflammatory factors, and ultimately attenuated glutamate excitotoxicity-induced retinal ganglion cell loss. Meanwhile, caspase1 inhibitors could alleviate the retinal ganglion cell loss induced by glutamate excitotoxicity. In conclusion, FABP5 inhibition protects retina ganglion cells from excitotoxic damage by suppressing the ROS-NLRP3 inflammasome pathway. FABP5 maybe a promising new target for glaucoma diagnosis and treatment.
Collapse
Affiliation(s)
- Zhou Zeng
- Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengling You
- Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Fan
- Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiang Jang
- Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
36
|
Nelson HM, Konar GJ, Patton JG. Isolation and Characterization of Extracellular Vesicles to Activate Retina Regeneration. Methods Mol Biol 2025; 2848:135-150. [PMID: 39240521 DOI: 10.1007/978-1-0716-4087-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Mammals do not possess the ability to spontaneously repair or regenerate damaged retinal tissue. In contrast to teleost fish which are capable of retina regeneration through the action of Müller glia, mammals undergo a process of reactive gliosis and scarring that inhibits replacement of lost neurons. Thus, it is important to discover novel methods for stimulating mammalian Müller glia to dedifferentiate and produce progenitor cells that can replace lost retinal neurons. Inducing an endogenous regenerative pathway mediated by Müller glia would provide an attractive alternative to stem cell injections or gene therapy approaches. Extracellular vesicles (EVs) are now recognized to serve as a novel form of cell-cell communication through the transfer of cargo from donor to recipient cells or by the activation of signaling cascades in recipient cells. EVs have been shown to promote proliferation and regeneration raising the possibility that delivery of EVs could be a viable treatment for visual disorders. Here, we provide protocols to isolate EVs for use in retina regeneration experiments.
Collapse
Affiliation(s)
- Hannah M Nelson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Gregory J Konar
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
37
|
Hernández-Núñez I, Clark BS. Experimental Framework for Assessing Mouse Retinal Regeneration Through Single-Cell RNA-Sequencing. Methods Mol Biol 2025; 2848:117-134. [PMID: 39240520 DOI: 10.1007/978-1-0716-4087-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Retinal degenerative diseases including age-related macular degeneration and glaucoma are estimated to currently affect more than 14 million people in the United States, with an increased prevalence of retinal degenerations in aged individuals. An expanding aged population who are living longer forecasts an increased prevalence and economic burden of visual impairments. Improvements to visual health and treatment paradigms for progressive retinal degenerations slow vision loss. However, current treatments fail to remedy the root cause of visual impairments caused by retinal degenerations-loss of retinal neurons. Stimulation of retinal regeneration from endogenous cellular sources presents an exciting treatment avenue for replacement of lost retinal cells. In multiple species including zebrafish and Xenopus, Müller glial cells maintain a highly efficient regenerative ability to reconstitute lost cells throughout the organism's lifespan, highlighting potential therapeutic avenues for stimulation of retinal regeneration in humans. Here, we describe how the application of single-cell RNA-sequencing (scRNA-seq) has enhanced our understanding of Müller glial cell-derived retinal regeneration, including the characterization of gene regulatory networks that facilitate/inhibit regenerative responses. Additionally, we provide a validated experimental framework for cellular preparation of mouse retinal cells as input into scRNA-seq experiments, including insights into experimental design and analyses of resulting data.
Collapse
Affiliation(s)
- Ismael Hernández-Núñez
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Clark
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
38
|
Taylor OB, El‐Hodiri HM, Palazzo I, Todd L, Fischer AJ. Regulating the formation of Müller glia-derived progenitor cells in the retina. Glia 2025; 73:4-24. [PMID: 39448874 PMCID: PMC11660542 DOI: 10.1002/glia.24635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
We summarize recent findings in different animal models regarding the different cell-signaling pathways and gene networks that influence the reprogramming of Müller glia into proliferating, neurogenic progenitor cells in the retina. Not surprisingly, most of the cell-signaling pathways that guide the proliferation and differentiation of embryonic retinal progenitors also influence the ability of Müller glia to become proliferating Müller glia-derived progenitor cells (MGPCs). Further, the neuronal differentiation of MGPC progeny is potently inhibited by networks of neurogenesis-suppressing genes in chick and mouse models but occurs freely in zebrafish. There are important differences between the model systems, particularly pro-inflammatory signals that are active in mature Müller glia in damaged rodent and chick retinas, but less so in fish retinas. These pro-inflammatory signals are required to initiate the process of reprogramming, but if sustained suppress the potential of Müller glia to become neurogenic MGPCs. Further, there are important differences in how activated Müller glia up- or downregulate pro-glial transcription factors in the different model systems. We review recent findings regarding regulatory cell signaling and gene networks that influence the activation of Müller glia and the transition of these glia into proliferating progenitor cells with neurogenic potential in fish, chick, and mouse model systems.
Collapse
Affiliation(s)
- Olivia B. Taylor
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
- Neuroscience Graduate ProgramThe Ohio State UniversityColumbusOhioUSA
| | - Heithem M. El‐Hodiri
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
| | - Isabella Palazzo
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMassachusettsUSA
| | - Levi Todd
- Department of Ophthalmology and Visual SciencesSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Andy J. Fischer
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
39
|
Lee JW, Cho JY. Comparative epigenetics of domestic animals: focusing on DNA accessibility and its impact on gene regulation and traits. J Vet Sci 2025; 26:e9. [PMID: 39901471 PMCID: PMC11799094 DOI: 10.4142/jvs.24259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 02/05/2025] Open
Abstract
IMPORTANCE Chromatin accessibility is vital for gene regulation, determining the ability of DNA-binding proteins to access the genomic regions and drive transcriptional activity, reflecting environmental changes. Although human and murine studies have advanced the understanding of chromatin dynamics, domestic animals remain comparatively underexplored despite their importance in agriculture and veterinary medicine. Investigating the accessibility of chromatin in these species is crucial for improving traits such as productivity, disease resistance, and environmental adaptation. This review assessed chromatin accessibility research in domestic animals, highlighting its significance in understanding and improving livestock traits. OBSERVATIONS This review outlines chromatin accessibility research in domestic animals, focusing on critical developmental processes, tissue-specific regulation, and economically significant traits. Advances in techniques, such as Assay for Transposase-Accessible Chromatin using sequencing, have enabled detailed mapping of regulatory elements, shedding light on epigenetic regulation of traits, such as muscle development and productivity. Comparative studies have uncovered conserved and species-specific cis-regulatory elements across multiple species. These findings offer insights into regulatory mechanisms that can enhance breeding strategies and animal management. In addition, high-throughput techniques, such as single-cell analysis and deep-learning models, have advanced the study of chromatin accessibility in lesser-studied species. CONCLUSIONS AND RELEVANCE Chromatin accessibility is crucial in gene regulation in domestic animals, influencing development, immune response, and productivity. Despite the progress, more comprehensive epigenomic datasets and cross-species analytical tools are needed to harness chromatin accessibility in domestic animal research. Understanding these mechanisms has practical applications in improving livestock traits, advancing breeding programs, and developing disease-resistant animals, highlighting the importance of integrating epigenetic and genomic tools for enhancing animal health and productivity.
Collapse
Affiliation(s)
- Jeong-Woon Lee
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 Plus and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul 08826, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 Plus and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
40
|
Bankole OO, Elliott MH. Is Caveolin-1 Required for Retinal Neuroprotection? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:287-291. [PMID: 39930210 DOI: 10.1007/978-3-031-76550-6_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The innate ability to produce neurotrophic cytokines is a crucial component of retinal neuroprotection. Reduced levels of these cytokines accelerate neuronal cell death in the retina during injury but prolonged overexpression can lead to inflammation and retinal damage. It is therefore critical to find molecular targets that regulate the endogenous production of retinal neurotrophic factors. Outside of the eye, caveolins play essential roles in preconditioning, pro-survival signaling, and neuronal protection. They amplify the secretion of neuroprotective cytokines such as leukemia inhibitory factor (LIF), an important retinal neurotroph. We hypothesize that Caveolin-1 (Cav1) in the retina is required for retinal neuroprotection. This mini-review summarizes findings on the cytoprotective roles of Cav1 and how it may be required for retinal neuroprotection.
Collapse
Affiliation(s)
- Olawale O Bankole
- Department of Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Michael H Elliott
- Department of Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Dean A. McGee Eye Institute, Oklahoma City, OK, USA.
| |
Collapse
|
41
|
Mitra M, Batista SL, Coller HA. Transcription factor networks in cellular quiescence. Nat Cell Biol 2025; 27:14-27. [PMID: 39789221 DOI: 10.1038/s41556-024-01582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025]
Abstract
Many of the cells in mammalian tissues are in a reversible quiescent state; they are not dividing, but retain the ability to proliferate in response to extracellular signals. Quiescence relies on the activities of transcription factors (TFs) that orchestrate the repression of genes that promote proliferation and establish a quiescence-specific gene expression program. Here we discuss how the coordinated activities of TFs in different quiescent stem cells and differentiated cells maintain reversible cell cycle arrest and establish cell-protective signalling pathways. We further cover the emerging mechanisms governing the dysregulation of quiescence TF networks with age. We explore how recent developments in single-cell technologies have enhanced our understanding of quiescence heterogeneity and gene regulatory networks. We further discuss how TFs and their activities are themselves regulated at the RNA, protein and chromatin levels. Finally, we summarize the challenges associated with defining TF networks in quiescent cells.
Collapse
Affiliation(s)
- Mithun Mitra
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Sandra L Batista
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Wang J, Zhang L, Cavallini M, Pahlevan A, Sun J, Morshedian A, Fain GL, Sampath AP, Peng YR. Molecular characterization of the sea lamprey retina illuminates the evolutionary origin of retinal cell types. Nat Commun 2024; 15:10761. [PMID: 39737973 PMCID: PMC11685597 DOI: 10.1038/s41467-024-55019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
The lamprey, a primitive jawless vertebrate whose ancestors diverged from all other vertebrates over 500 million years ago, offers a unique window into the ancient formation of the retina. Using single-cell RNA-sequencing, we characterize retinal cell types in the lamprey and compare them to those in mouse, chicken, and zebrafish. We find six cell classes and 74 distinct cell types, many shared with other vertebrate species. The conservation of cell types indicates their emergence early in vertebrate evolution, highlighting primordial designs of retinal circuits for the rod pathway, ON-OFF discrimination, and direction selectivity. The diversification of amacrine and some ganglion cell types appears, however, to be distinct in the lamprey. We further infer genetic regulators in specifying retinal cell classes and identify ancestral regulatory elements across species, noting decreased conservation in specifying amacrine cells. Altogether, our characterization of the lamprey retina illuminates the evolutionary origin of visual processing in the retina.
Collapse
Affiliation(s)
- Junqiang Wang
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lin Zhang
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Martina Cavallini
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ali Pahlevan
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Junwei Sun
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ala Morshedian
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Gordon L Fain
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Alapakkam P Sampath
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Yi-Rong Peng
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Stone ML, Lee HH, Levine EM. Agarose hydrogel-mediated electroporation method for retinal tissue cultured at the air-liquid interface. iScience 2024; 27:111299. [PMID: 39628577 PMCID: PMC11612790 DOI: 10.1016/j.isci.2024.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/29/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
It is advantageous to culture the ex vivo retina and other tissues at the air-liquid interface to allow for more efficient gas exchange. However, gene delivery to these cultures can be challenging. Electroporation is a fast and robust method of gene delivery, but typically requires submergence in liquid buffer for electrical current flow. We have developed a submergence-free electroporation technique that incorporates an agarose hydrogel disk between the positive electrode and retina. Inner retinal neurons and Müller glia are transfected with increased propensity toward Müller glia transfection after extended time in culture. We also observed an increase in BrdU incorporation in Müller glia following electrical stimulation, and variation in detection of transfected cells from expression vectors with different promoters. This method advances our ability to use ex vivo retinal tissue for genetic studies and should be adaptable for other tissues cultured at an air-liquid interface.
Collapse
Affiliation(s)
- Megan L. Stone
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville TN 37232, USA
| | - Hannah H. Lee
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232, USA
| | - Edward M. Levine
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville TN 37232, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232, USA
| |
Collapse
|
44
|
Yin Z, Kang J, Xu H, Huo S, Xu H. Recent progress of principal techniques used in the study of Müller glia reprogramming in mice. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:30. [PMID: 39663301 PMCID: PMC11635068 DOI: 10.1186/s13619-024-00211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
In zebrafish, Müller glia (MG) cells retain the ability to proliferate and de-differentiate into retinal progenitor-like cells, subsequently differentiating into retinal neurons that can replace those damaged or lost due to retinal injury. In contrast, the reprogramming potential of MG in mammals has been lost, with these cells typically responding to retinal damage through gliosis. Considerable efforts have been dedicated to achieving the reprogramming of MG cells in mammals. Notably, significant advancements have been achieved in reprogramming MG cells in mice employing various methodologies. At the same time, some inevitable challenges have hindered identifying accurate MG cell reprogramming rather than the illusion, let alone improving the reprogramming efficiency and maturity of daughter cells. Recently, several strategies, including lineage tracking, multi-omics techniques, and functional analysis, have been developed to investigate the MG reprogramming process in mice. This review summarizes both the advantages and limitations of these novel strategies for analyzing MG reprogramming in mice, offering insights into enhancing the reliability and efficiency of MG reprogramming.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Jiahui Kang
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Haoan Xu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shujia Huo
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| | - Haiwei Xu
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| |
Collapse
|
45
|
Rumford JE, Grieshaber A, Lewiston S, Reed JL, Long SS, Mitchell DM. Forced MyD88 signaling in microglia impacts the production and survival of regenerated retinal neurons. Front Cell Dev Biol 2024; 12:1495586. [PMID: 39633708 PMCID: PMC11614808 DOI: 10.3389/fcell.2024.1495586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Inflammation and microglia appear to be key factors influencing the outcome of retinal regeneration following acute retinal damage. Despite such findings, direct connection of microglia-specific inflammatory factors as drivers of regenerative responses in the retina are still not defined, and intracellular pathways activated to stimulate such signals from microglia are currently unknown. We became interested in MyD88 regulation in microglia because transcriptomic datasets suggest myd88 could be regulated temporally in zebrafish microglia responding to damage in the central nervous system. MyD88 is an intracellular molecular adaptor that initiates signaling cascades downstream of several innate immune receptors, and probably most well-known for inducing gene expression of pro-inflammatory factors. Using zebrafish, which spontaneously regenerate retinal neurons after acute retinal damage, we studied the effects of overactivation of MyD88 signaling in microglia and macrophages on the Müller glia-mediated regenerative response. Our results indicate that increased MyD88 signaling in microglia/macrophages impacts the initial response of Müller glia entering a regenerative response after acute, neurotoxin-induced retinal damage to inner retinal neurons. In addition, increased MyD88 signaling in microglia/macrophages resulted in reduced survival of inner retinal neurons in regenerated retinas. This work supports the idea that temporal control of inflammatory signaling is a key component in the production of MG-derived progenitors yet further indicates that such control is important for differentiation and survival of regenerated neurons.
Collapse
Affiliation(s)
- Jordan E. Rumford
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Ailis Grieshaber
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Samantha Lewiston
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Jordan L. Reed
- Department of Computer Science, University of Idaho, Moscow, ID, United States
- Formerly North Idaho College, Coeur d’Alene, ID, United States
| | - Samuel S. Long
- Business and Computer Science Division, Lewis-Clark State College, Lewiston, ID, United States
| | - Diana M. Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
46
|
Blasdel N, Bhattacharya S, Donaldson PC, Reh TA, Todd L. Monocyte Invasion into the Retina Restricts the Regeneration of Neurons from Müller Glia. J Neurosci 2024; 44:e0938242024. [PMID: 39353729 PMCID: PMC11561870 DOI: 10.1523/jneurosci.0938-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Endogenous reprogramming of glia into neurogenic progenitors holds great promise for neuron restoration therapies. Using lessons from regenerative species, we have developed strategies to stimulate mammalian Müller glia to regenerate neurons in vivo in the adult retina. We have demonstrated that the transcription factor Ascl1 can stimulate Müller glia neurogenesis. However, Ascl1 is only able to reprogram a subset of Müller glia into neurons. We have reported that neuroinflammation from microglia inhibits neurogenesis from Müller glia. Here we found that the peripheral immune response is a barrier to CNS regeneration. We show that monocytes from the peripheral immune system infiltrate the injured retina and negatively influence neurogenesis from Müller glia. Using CCR2 knock-out mice of both sexes, we found that preventing monocyte infiltration improves the neurogenic and proliferative capacity of Müller glia stimulated by Ascl1. Using scRNA-seq analysis, we identified a signaling axis wherein Osteopontin, a cytokine highly expressed by infiltrating immune cells is sufficient to suppress mammalian neurogenesis. This work implicates the response of the peripheral immune system as a barrier to regenerative strategies of the retina.
Collapse
Affiliation(s)
- Nicolai Blasdel
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Phoebe C Donaldson
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Levi Todd
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
47
|
Yao M, Su Y, Xiong R, Zhang X, Zhu X, Chen YC, Ao P. Deciphering the topological landscape of glioma using a network theory framework. Sci Rep 2024; 14:26724. [PMID: 39496747 PMCID: PMC11535471 DOI: 10.1038/s41598-024-77856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Glioma stem cells have been recognized as key players in glioma recurrence and therapeutic resistance, presenting a promising target for novel treatments. However, the limited understanding of the role glioma stem cells play in the glioma hierarchy has drawn controversy and hindered research translation into therapies. Despite significant advances in our understanding of gene regulatory networks, the dynamics of these networks and their implications for glioma remain elusive. This study employs a systemic theoretical perspective to integrate experimental knowledge into a core endogenous network model for glioma, thereby elucidating its energy landscape through network dynamics computation. The model identifies two stable states corresponding to astrocytic-like and oligodendrocytic-like tumor cells, connected by a transition state with the feature of high stemness, which serves as one of the energy barriers between astrocytic-like and oligodendrocytic-like states, indicating the instability of glioma stem cells in vivo. We also obtained various stable states further supporting glioma's multicellular origins and uncovered a group of transition states that could potentially induce tumor heterogeneity and therapeutic resistance. This research proposes that the transition states linking both glioma stable states are central to glioma heterogeneity and therapy resistance. Our approach may contribute to the advancement of glioma therapy by offering a novel perspective on the complex landscape of glioma biology.
Collapse
Affiliation(s)
- Mengchao Yao
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Yang Su
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Ruiqi Xiong
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Xile Zhang
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
- Shanghai Shibei High School, Shanghai, China
| | - Xiaomei Zhu
- Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yong-Cong Chen
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China.
| | - Ping Ao
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
48
|
Chucair-Elliott AJ, Pham K, Cleuren ACA, Schafer CM, Griffin CT, Ocanas SR, Freeman WM, Elliott MH. Comparative analysis of In vivo endothelial cell translatomes across central nervous system vascular beds. Exp Eye Res 2024; 248:110101. [PMID: 39303842 PMCID: PMC11532013 DOI: 10.1016/j.exer.2024.110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Endothelial cells (ECs) display organ- and tissue-specific heterogeneity. In the eye, the retinal and choroidal vascular beds are distinct networks with different molecular and morphological properties that serve location-specific functions, i.e., the former maintaining a tight barrier and the latter, a permeable fenestrated vasculature. Given that retinal health critically relies on the function of these vascular beds and that their dysfunction is implicated in a variety of retinal diseases, a molecular understanding of both physiological and pathophysiological characteristics of these distinct vasculatures is critical. Given their interspersed anatomic distribution among parenchymal cells, the study of EC gene expression, in vivo, has been hampered by the challenge of isolating pure populations of ocular ECs in sufficient quantities for large-scale transcriptomics. To address this challenge, we present a methodological and analytical workflow to facilitate inter-tissue comparisons of the in vivo EC translatome isolated from choroid, retina, and brain using the Cre-inducible NuTRAP flox construct and two widely-used endothelial Cre mouse lines: constitutive Tie2-Cre and tamoxifen-inducible Cdh5-CreERT2. For each Cre line, inter-tissue comparison of TRAP-RNAseq enrichment (TRAP-isolated translatome vs input transcriptome) showed tissue-specific gene enrichments with differential pathway representation. For each mouse model, inter-tissue comparison of the EC translatome (choroid vs brain, choroid vs retina, and brain vs retina) showed over 50% overlap of differentially expressed genes (DEGs) between the three paired comparisons, with differential pathway representation for each tissue. Pathway analysis of DEGs in the Cdh5-NuTRAP vs Tie2-NuTRAP comparison for retina, choroid, and brain predicted inhibition of processes related to myeloid cell function and activation, consistent with more specific targeting of ECs in the Cdh5-NuTRAP than in the Tie2-NuTRAP model which also targets hematopoietic progenitors giving rise to immune cells. Indeed, while TRAP enriches for EC transcripts in both models, myeloid transcripts were also captured in the Tie2-NuTRAP model which was confirmed using cell sorting. We suggest experimental/analytical considerations should be taken when selecting Cre-lines to target ECs.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Kevin Pham
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Audrey C A Cleuren
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Christopher M Schafer
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sarah R Ocanas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Michael H Elliott
- Department of Ophthalmology, McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
49
|
Jui J, Goldman D. Müller Glial Cell-Dependent Regeneration of the Retina in Zebrafish and Mice. Annu Rev Genet 2024; 58:67-90. [PMID: 38876121 DOI: 10.1146/annurev-genet-111523-102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Sight is one of our most precious senses. People fear losing their sight more than any other disability. Thus, restoring sight to the blind is an important goal of vision scientists. Proregenerative species, such as zebrafish, provide a system for studying endogenous mechanisms underlying retina regeneration. Nonregenerative species, such as mice, provide a system for testing strategies for stimulating retina regeneration. Key to retina regeneration in zebrafish and mice is the Müller glial cell, a malleable cell type that is amenable to a variety of regenerative strategies. Here, we review cellular and molecular mechanisms used by zebrafish to regenerate a retina, as well as the application of these mechanisms, and other strategies to stimulate retina regeneration in mice. Although our focus is on Müller glia (MG), niche components and their impact on MG reprogramming are also discussed.
Collapse
Affiliation(s)
- Jonathan Jui
- Molecular Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; ,
| | - Daniel Goldman
- Molecular Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; ,
| |
Collapse
|
50
|
Mikula Mrstakova S, Kozmik Z. Genetic analysis of medaka fish illuminates conserved and divergent roles of Pax6 in vertebrate eye development. Front Cell Dev Biol 2024; 12:1448773. [PMID: 39512904 PMCID: PMC11541176 DOI: 10.3389/fcell.2024.1448773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
Landmark discovery of eye defects caused by Pax6 gene mutations in humans, rodents, and even fruit flies combined with Pax6 gene expression studies in various phyla, led to the master control gene hypothesis postulating that the gene is required almost universally for animal visual system development. However, this assumption has not been broadly tested in genetically trackable organisms such as vertebrates. Here, to determine the functional role of the fish orthologue of mammalian Pax6 in eye development we analyzed mutants in medaka Pax6.1 gene generated by genome editing. We found that transcription factors implicated in vertebrate lens development (Prox1a, MafB, c-Maf, FoxE3) failed to initiate expression in the presumptive lens tissue of Pax6.1 mutant fish resulting in aphakia, a phenotype observed previously in Pax6 mutant mice. Surprisingly, the overall differentiation potential of Pax6.1-deficient retinal progenitor cells (RPCs) is not severely compromised, and the only cell types affected by the absence of Pax6.1 transcription factor are retinal ganglion cells. This is in stark contrast to the situation in mice where the Pax6 gene is required cell-autonomously for the expansion of RPCs, and the differentiation of all retina cell types. Our results provide novel insight into the conserved and divergent roles of Pax6 gene orthologues in vertebrate eye development indicating that the lens-specific role is more evolutionarily conserved than the role in retina differentiation.
Collapse
Affiliation(s)
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|